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Abstract
Dynamic connectivity is a well-studied problem, but so far the most compelling progress has been

confined to the edge-update model: maintain an understanding of connectivity in an undirected graph,
subject to edge insertions and deletions. In this paper, we study two more challenging, yet equally
fundamental problems:

Subgraph connectivity asks to maintain an understanding of connectivity under vertex updates:
updates can turn vertices on and off, and queries refer to the subgraph induced by on vertices. (For
instance, this is closer to applications in networks of routers, where node faults may occur.)

We describe a data structure supporting vertex updates in Õ(m2/3) amortized time, wherem denotes
the number of edges in the graph. This greatly improves over the previous result [Chan, STOC’02],
which required fast matrix multiplication and had an update time of O(m0.94). The new data structure
is also simpler.

Geometric connectivity asks to maintain a dynamic set of n geometric objects, and query connec-
tivity in their intersection graph. (For instance, the intersection graph of balls describes connectivity in a
network of sensors with bounded transmission radius.)

Previously, nontrivial fully dynamic results were known only for special cases like axis-parallel line
segments and rectangles. We provide similarly improved update times, Õ(n2/3), for these special cases.
Moreover, we show how to obtain sublinear update bounds for virtually all families of geometric objects
which allow sublinear-time range queries. In particular, we obtain the first sublinear update time for arbi-
trary 2D line segments: Õ(n9/10); for d-dimensional simplices: Õ(n1− 1

d(2d+1) ); and for d-dimensional
balls: Õ(n1− 1

(d+1)(2d+3) ).



1 Introduction
1.1 Dynamic Graphs

Dynamic graphs inspire a natural, challenging, and well-studied class of algorithmic problems. A rich body
of the STOC/FOCS literature has considered problems ranging from the basic question of understanding
connectivity in a dynamic graph [13, 17, 34, 6, 31], to maintaining the minimum spanning tree [20], the
min-cut [36], shortest paths [9, 35], reachability in directed graphs [10, 25, 26, 32, 33], etc.

But what exactly makes a graph “dynamic”? Computer networks have long provided the common
motivation. The dynamic nature of such networks is captured by two basic types of updates to the graph:

• edge updates: adding or removing an edge. These correspond to setting up a new cable connection,
accidental cable cuts, etc.
• vertex updates: turning a vertex on and off. Vertices (routers) can temporarily become “off” after

events such as a misconfiguration, a software crash and reboot, etc. Problems involving only vertex
updates have been called dynamic subgraph problems, since queries refer to the subgraph induced by
vertices which are on.

Loosely speaking, dynamic graph problems fall into two categories. For “hard” problems, such as
shortest paths and directed reachability, the best known running times are at least linear in the number of
vertices. These high running times obscure the difference between vertex and edge updates, and identical
bounds are often stated [9, 32, 33] for both operations. For the remainder of the problems, sublinear running
times are known for edge updates, but sublinear bounds for vertex updates seems much harder to get. For
instance, even iterating through all edges incident to a vertex may take linear time in the worst case. That
vertex updates are slow is unfortunate. Referring to the computer-network metaphor, vertex updates are
cheap “soft” events (misconfiguration or reboot), which occur more frequently than the costly physical
events (cable cut) that cause an edge update.

Subgraph connectivity. As mentioned, most previous sublinear dynamic graph algorithms address edge
updates but not the equally fundamental vertex updates. One notable exception, however, was a result of
Chan [6] from STOC’02 on the basic connectivity problem for general sparse (undirected) graphs. This al-
gorithm can support vertex updates in time1 O(m0.94) and decide whether two query vertices are connected
in time Õ(m1/3).

Though an encouraging start, the nature of this result makes it appear more like a half breakthrough.
For one, the update time is only slightly sublinear. Worse yet, Chan’s algorithm requires fast matrix multi-
plication (FMM). The O(m0.94) update time follows from the theoretical FMM algorithm of Coppersmith
and Winograd [8]. If Strassen’s algorithm is used instead, the update time becomes O(m0.984). Even if
optimistically FMM could be done in quadratic time, the update time would only improve to O(m0.89).
FMM has been used before in various dynamic graph algorithms (e.g., [10, 26]), and the paper [6] noted
specific connections to some matrix-multiplication-related problems (see Section 2). All this naturally led
one to suspect, as conjectured in the paper, that FMM might be essential to our problem. Thus, the result we
are about to describe may come as a bit of a surprise. . .

Our result. In this paper, we present a new algorithm for dynamic connectivity, achieving an improved
vertex-update time of Õ(m2/3), with an identical query time of Õ(m1/3). First of all, this is a significant
quantitative improvement (to anyone who regards an m0.27 factor as substantial), and it represents the first
convincingly sublinear running time. More importantly, it is a significant qualitative improvement, as our

1Here m is the number of edges of the graph, and Õ(·) ignores polylogarithmic factors or, on some occasions, mε or nε factors
for an arbitrarily small constant ε > 0. Update bounds in this paper are, by default, amortized.
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Figure 1: (a) Is b reachable from a staying on the roads? (b) Do the gears transmit rotation from a to b?

bound does not require FMM. Our algorithm involves a number of ideas, some of which can be traced back
to earlier algorithms, but we use known edge-updatable connectivity structures to maintain a more cleverly
designed intermediate graph. The end product is not straightforward at all, but still turns out to be simpler
than the previous method [6] and has a compact, two-page description (we regard this as another plus, not a
drawback).

1.2 Dynamic Geometry

We next turn to another important class of dynamic connectivity problems—those arising from geometry.

Geometric connectivity. Consider the following question (Figure 1(a)). Maintain a set of line segments
in the plane, under insertions and deletions, to answer queries of the form: “given two points a and b, is
there a path between a and b along the segments?”

This simple-sounding problem turns out to be a challenge. On one hand, understanding any local ge-
ometry does not seem to help, because the connecting path can be long and windy. On the other hand, the
graph-theoretic understanding is based on the intersection graph, which is too expensive to maintain. A
newly inserted (or deleted) segment can intersect a large number of objects in the set, changing the intersec-
tion graph dramatically.

Abstracting away, we can consider a broad class of problems of the form: maintain a set of n geometric
objects, and answer connectivity queries in their intersection graph. Such graphs arise, for instance, in VLSI
applications in the case of orthogonal segments, or gear transmission systems, in the case of touching disks
(see Figure 1(b)). A more compelling application can be found in sensor networks: if r is the radius within
which two sensors can communicate, the communication network is the intersection graph of balls of radius
r/2 centered at the sensors. While our focus is on theoretical understanding rather than the practicality of
specific applications, these examples still indicate the natural appeal of geometric connectivity problems.

All these problems have a trivial Õ(n) solution, by maintaining the intersection graph through edge
updates. A systematic approach to beating the linear time bound was proposed in Chan’s paper as well [6],
by drawing a connection to subgraph connectivity. Assume that a particular object type allows data struc-
tures for intersection range searching with space S(n) and query time T (n). It was shown that geometric
connectivity can essentially be solved by maintaining a graph of size m = O(S(n) + nT (n)) and running
O(S(n)/n+ T (n)) vertex updates for every object insertion or deletion. Using the previous subgraph con-
nectivity result [6], an update in the geometric connectivity problem took time Õ([S(n)/n+T (n)] · [S(n)+
nT (n)]0.94). Using our improved result, the bound becomes Õ([S(n)/n+ T (n)] · [S(n) + nT (n)]2/3).
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The prime implication in the previous paper is that connectivity of axis-parallel boxes in any constant
dimension (in particular, orthogonal line segments in the plane) reduces to subgraph connectivity, with a
polylogarithmic cost. Indeed, for such boxes range trees yield S(n) = n · lgO(d) n and T (n) = lgO(d) n.
Unfortunately, while nontrivial range searching results are known for many types of objects, very efficient
range searching is hard to come by. Consider our main motivating examples:

• for arbitrary (non-orthogonal) line segments in IR2, one can achieve T (n) = Õ(
√
n) and S(n) =

Õ(n), or T (n) = Õ(n1/3) and S(n) = Õ(n4/3) [28].
• for disks in IR2, one can achieve T (n) = Õ(n2/3) and S(n) = Õ(n), or T (n) = Õ(n1/2) and
S(n) = Õ(n3/2) [3].

Even with our improved vertex-update time, the [S(n)/n + T (n)] · [S(n) + nT (n)]2/3 bound is too weak
to beat the trivial linear update time. For arbitrary line segments in IR2, one would need to improve the
vertex-update time to m1/2−ε, which appears unlikely without FMM (see Section 2). The line segment case
was in fact mentioned as a major open problem, implicitly in [6] and explicitly in [1]. The situation gets
worse for objects of higher complexity or in higher dimensions.

Our results. In this paper, we are finally able to break the above barrier for dynamic geometric connec-
tivity. At a high level, we show that range searching with any sublinear query time is enough to obtain
sublinear update time in geometric connectivity. In particular, we get the first nontrivial update times for
arbitrary line segments in the plane, disks of arbitrary radii, and simplices and balls in any fixed dimension.
While the previous reduction [6] involves merely a straightforward usage of “biclique covers”, our result
here requires much more work. For starters, we need to devise a “degree-sensitive” version of our improved
subgraph connectivity algorithm (which is of interest in itself); we then use this and known connectivity
structures to maintain not one but two carefully designed intermediate graphs.

Essentially, if T (n) = Õ(n1−b) and S(n) = Õ(n), we can support dynamic geometric connectivity
with update time Õ

(
n1−b2/(2+b)

)
and query time Õ

(
nb/(2+b)

)
. For non-orthogonal line segments in IR2,

this gives an update time of Õ(n9/10) and a query time of Õ(n1/5). For disks in IR2, the update time is
Õ(n20/21), with a query time of Õ(n1/7).

Known range searching techniques [2] from computational geometry almost always provide sublinear
query time. For instance, Matoušek [28] showed that b = 1/2 is attainable for line segments, triangles, and
any constant-size polygons in IR2; more generally, b = 1/d for simplices or constant-size polyhedra in IRd.
Further results by Agarwal and Matoušek [3] yield b = 1/(d+ 1) for balls in IRd. Most generally, b > 0 is
possible for any class of objects defined by semialgebraic sets of constant description complexity.

More results. Our general sublinear results undoubtedly invite further research into finding better bounds
for specific classes of objects. In general, the complexity of range queries provides a natural barrier for the
update time, since upon inserting an object we at least need to determine if it intersects any object already
in the set. Essentially, our result has a quadratic loss compared to range queries: if T (n) = n1−b, the update
time is n1−Θ(b2).

In Appendix A, we make a positive step towards closing this quadratic gap: we show that if the updates
are given offline (i.e. are known in advance), the amortized update time can be made n1−Θ(b). We need FMM
this time, but the usage of FMM here is more intricate (and interesting) than typical. For one, it is crucial
to use fast rectangular matrix multiplication. Along the way, we even find ourselves rederiving Yuster and
Zwick’s sparse matrix multiplication result [38] in a more general form. The juggling of parameters is also

more unusual, as one can suspect from looking at our actual update bound, which is Õ(n
1+α−bα

1+α−bα/2 ), where
α = 0.294 is an exponent associated with rectangular FMM.
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2 Related Work
Before proceeding to our new algorithms, we mention more related work, for the sake of completeness.

Graphs. Most previous work on dynamic subgraph connectivity concerns special cases only. Frigioni and
Italiano [14] considered vertex updates in planar graphs, and described a polylogarithmic solution.

If vertices have constant degree, vertex updates are equivalent to edge updates. For edge updates, Hen-
zinger and King [17] were first to obtain polylogarithmic update times (randomized). This was improved by
Holm et al. [20] to a deterministic solution with O(lg2m) time per update, and by Thorup [34] to a random-
ized solution with O(lgm · (lg lgm)3) update time. The randomized bound almost matches the Ω(lgm)
lower bound from [30]. All these data structures maintain a spanning forest as a certificate for connectivity.
This idea fails for vertex updates in the general case, since the certificate can change substantially after just
one update.

In many practical settings, these planar-graph and constant-degree special cases are unfortunately inad-
equate. In particular, large networks of routers are often designed as overlay graphs over a (small-degree)
geographic graph. Long fiber-optic links bypass intermediate nodes, in order to minimize the latency cost
of passing through the electric domain repeatedly.

For more difficult dynamic graph problems, the goal is typically changed from getting polylogarithmic
bounds to finding better exponents in polynomial bounds; for example, see all the papers on directed reach-
ability [10, 25, 32, 33]. Evidence suggests that dynamic subgraph connectivity fits this category. It was
observed [6] that finding triangles (3-cycles) or quadrilaterals (4-cycles) in directed graphs can be reduced
to O(m) vertex updates. Thus, an update bound better than

√
m appears unlikely without FMM, since the

best running time for finding triangles without FMM is O(m3/2), dating back to STOC’77 [24]. Even with
FMM, known results are only slightly better: finding triangles and quadrilaterals takes time O(m1.41) [5]
and O(m1.48) [37] respectively. Thus, current knowledge prevents an update bound better than m0.48.

Geometry. It was shown [6] that subgraph connectivity can be reduced to dynamic connectivity of axis-
parallel line segments in 3 dimensions. Thus, as soon as one gets enough combinatorial richness in the host
geometric space, subgraph connectivity becomes the only possible way to solve geometric connectivity.

When the geometry is less combinatorially rich, it is possible to find ad hoc algorithms that do not rely
on subgraph connectivity. Special cases that have been investigated include:

• for orthogonal segments or axis-parallel rectangles in the plane, Afshani and Chan [1] proposed a data
structure with update time Õ(n10/11) and constant query time. This is incomparable to our result of
update time Õ(n2/3) and query time Õ(n1/3).

• for unit axis-parallel hypercubes, the problem reduces to maintaining the minimum spanning tree un-
der the `∞ metric. Eppstein [11] describes a general technique for dynamic geometric MST, ultimately
appealing to range searching, and obtains polylogarithmic time per operation.

• for unit balls, the problem reduces to dynamic Euclidean MST, which in turn reduces to range search-
ing by Eppstein’s technique [11]. In two dimensions, Chan’s dynamic nearest-neighbor data struc-
ture [7] implies an O(lg10 n) update time for this problem.

Dynamic geometric connectivity is a natural continuation of static geometric connectivity problems,
which have been studied since the early 1980s. As in our case, the main challenge is to avoid working
explicitly with the intersection graph, which could be of quadratic size. Known results include O(n lg n)-
time algorithms [22, 23] for computing the connected components of axis-aligned rectangles in the plane,
and Õ(n4/3)-time algorithms [16, 27] for arbitrary line segments in the plane. More generally, Chan [6]
(and later Eppstein [12]) noted the connection of static geometric connectivity to range searching, which
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implied subquadratic algorithms for objects with constant description complexity. The connection carries
over to the incremental (insertion-only) and decremental (deletion-only) cases [6], e.g., yielding Õ(n1/3)
update time for arbitrary line segments, reproving and extending some older results [4].

Another related problem is maintaining connectivity in the kinetic setting, where each objects move
continuously according to known flight plans. See [18, 19] for the case of axis-parallel boxes, and [15] for
unit disks.

3 Dynamic Subgraph Connectivity with Õ(m2/3) Update Time
In this section, we present our new method for the dynamic subgraph connectivity problem: maintaining a
subset S of vertices in a graph G, under vertex insertions and deletions in S, so that we can decide whether
any two query vertices are connected in the subgraph induced by S. We will call the vertices in S the active
vertices. For now, we assume that the graph G itself is static.

The complete description of the new method is given in the proof of the following theorem. It is “short
and sweet”, especially if the reader compares with Chan’s paper [6]. The previous method requires several
stages of development, addressing the offline and semi-online special cases, along with the use of FMM—
we completely bypass these intermediate stages, and FMM, here. Embedded below, one can find a number
of different ideas (some also used in [6]): rebuilding periodically after a certain number of updates, dis-
tinguishing “high-degree” features from “low-degree” features (e.g., see [5, 37]), amortizing by splitting
smaller subsets from larger ones, etc. The key lies in the definition of a new, yet deceptively simple, inter-
mediate graph G∗, which is maintained by known polylogarithmic data structures for dynamic connectivity
under edge updates [17, 20, 34]. Except for these known connectivity structures, the description is entirely
self-contained.

Theorem 1. We can design a data structure for dynamic subgraph connectivity for a graph G = (V,E)
with m edges, having amortized vertex update time Õ(m2/3), query time Õ(m1/3), and preprocessing time
Õ(m4/3).

Proof. We divide the update sequence into phases, each consisting of q := m/∆ updates. The active vertices
are partitioned into two sets P and Q, where P undergoes only deletions and Q undergoes both insertions
and deletions. Each vertex insertion is done to Q. At the end of each phase, we move the elements of Q to
P and reset Q to the empty set. This way, |Q| is kept at most q at all times.

Call a connected component in (the subgraph induced by) P high if the sum of the degrees of its vertices
exceeds ∆, and low otherwise. Clearly, there are at most O(m/∆) high components.

The data structure.

• We store the components of P in a data structure for decremental (deletion-only) connectivity that
supports edge deletions in polylogarithmic amortized time.

• We maintain a bipartite multigraph Γ between V and the components γ in P : for each uv ∈ E where
v lies in component γ, we create a copy of an edge uγ ∈ Γ.

• For each vertex pair u,v, we maintain the value C[u, v] defined as the number of low components in
P that are adjacent to both u and v in Γ. (Actually, only O(m∆) entries of C[·, ·] are nonzero and
need to be stored.)

• We define a graph G∗ whose vertices are the vertices of Q and components of P :

(a) For each u, v ∈ Q, if C[u, v] > 0, then create an edge uv ∈ G∗.
(b) For each vertex u ∈ Q and high component γ in P , if uγ ∈ Γ, then create an edge uγ ∈ G∗.
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(c) For each u, v ∈ Q, if uv ∈ E, then create an edge uv ∈ G∗.
We maintain G∗ in another data structure for dynamic connectivity supporting polylogarithmic-time
edge updates.

Justification. We claim that two vertices ofQ are connected in the subgraph induced by the active vertices
in G iff they are connected in G∗. The “if” direction is obvious. For the “only if” direction, suppose two
vertices u, v ∈ Q are “directly” connected in G by being adjacent to a common component γ in P . If γ is
high, then edges of type (b) ensure that u and v are connected in G∗. If instead γ is low, then edges of type
(a) ensure that u and v are connected in G∗. By concatenation, the argument extends to show that any two
vertices u, v ∈ Q connected by a path in G are connected in G∗.

Queries. Given two vertices v1 and v2, if both are in Q, we can simply test whether they are connected
in G∗.

If instead vj (j ∈ {1, 2}) is in a high component γj , then we can replace vj with any vertex ofQ adjacent
to γj in G∗. If no such vertex exists, then because of type-(b) edges, γj is an isolated component and we can
simply test whether v1 and v2 are both in the same component of P .

If on the other hand vj is in a low component γj , then we can exhaustively search for a vertex in Q
adjacent to γj in Γ, in Õ(∆) time, and replace vj with such a vertex. Again if no such vertex exists, then γj
is an isolated component and the test is easy. The query cost is Õ(∆).

Preprocessing per phase. At the beginning of each phase, we can compute the multigraph Γ in Õ(m)
time. We can compute the matrix C[·, ·] in Õ(m∆) time, by examining each edge vγ ∈ Γ and each of the
O(∆) vertices u adjacent to a low component γ and testing whether γu ∈ Γ. The graph G∗ can then be
initialized. The cost per phase is Õ(m∆). We can cover this cost by charging every update operation with
amortized cost Õ(m∆/q) = Õ(∆2).

Update of a vertex u in Q. We need to update O(q) edges of types (a) and (c), and O(m/∆) edges of
type (b) in G∗. The cost is Õ(q +m/∆) = Õ(m/∆).

Deletion of a vertex from a low component γ in P . The component γ is split into a number of subcom-
ponents. Since the total degree in γ is O(∆), we can update the multigraph Γ in Õ(∆) time. Furthermore,
we can update the matrix C[·, ·] in Õ(∆2) time, by examining each vertex pair u, v adjacent to γ and decre-
menting C[u, v] if u and v lie in different subcomponents. Consequently, we need to update O(∆2) edges
of type (a). The cost is Õ(∆2).

Deletion of a vertex from a high component γ in P . The component γ is split into a number of subcom-
ponents γ1, . . . , γ` with, say, γ1 being the largest. We can update the multigraph Γ in time Õ(deg(γ2) +
· · · + deg(γ`)) by splitting the smaller subcomponents from the largest subcomponent. Consequently, we
need to update O(deg(γ2) + · · · + deg(γ`)) edges of type (b) in G∗. Since P undergoes deletions only, a
vertex can belong to the smaller subcomponents in at most O(lg n) splits over the entire phase, and so the
total cost per phase is Õ(m), which is absorbed in the preprocessing cost of the phase.

For each low subcomponent γj , we update the matrix C[·, ·] in Õ(deg(γj)∆) time, by examining each
edge γjv ∈ Γ and each of the O(∆) vertices u adjacent to γj and testing whether γju ∈ Γ. Consequently,
we need to update O(deg(γj)∆) edges of type (a) in G∗. Since a vertex can change from being in a high
component to a low component at most once over the entire phase, the total cost per phase is Õ(m∆), which
is absorbed by the preprocessing cost.
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Finale. The overall amortized cost per update operation is Õ(∆2 +m/∆). Set ∆ = m1/3.

Note that edge insertions and deletions in G can be accomodated easily (e.g., see Lemma 2 of the next
section).

4 Dynamic Geometric Connectivity with Sublinear Update Time
In this section, we investigate geometric connectivity problems: maintaining a set S of n objects, under
insertions and deletions of objects, so that we can decide whether two query objects are connected in the
intersection graph of S. (In particular, we can decide whether two query points are connected in the union
of S by finding two objects containing the two points, via range searching, and testing connectedness for
these two objects.)

By the biclique-cover technique from [6], the result from the previous section immediately implies a
dynamic connectivity method for axis-parallel boxes with Õ(n2/3) update time and Õ(n1/3) query time in
any fixed dimension.

Unfortunately, this technique is not strong enough to lead to sublinear results for other objects, as we
have explained in the introduction. This is because (i) the size of the maintained graph, m = O(S(n) +
nT (n)), may be too large and (ii) the number of vertex updates triggered by an object update, O(S(n)/n+
T (n)), may be too large.

We can overcome the first obstacle by using a different strategy that rebuilds the graph more often to
keep it sparse; this is not obvious and will be described precisely later during the proof of Theorem 5.
The second obstacle is even more critical: here, the key is to observe that although each geometric update
requires multiple vertex updates, many of these vertex updates involves vertices of low degrees.

4.1 A degree-sensitive version of subgraph connectivity

The first ingredient we need is a dynamic subgraph connectivity method that works faster when the degree
of the updated vertex is small. Fortunately, we can prove the following lemma, which extends Theorem 1 (if
we set ∆ = n1/3). The method follows that of Theorem 1, but with an extra twist: not only do we classify
components of P as high or low, but we also classify vertices of Q as high or low.

Lemma 2. Let 1 ≤ ∆ ≤ n. We can design a data structure for dynamic subgraph connectivity for a graph
G = (V,E) with m edges, having amortized vertex update time

Õ(∆2 + min{m/∆, deg(u)})

for a vertex u, query time Õ(∆), preprocessing time Õ(m∆), and amortized edge update time Õ(∆2).

Proof. The data structure is the same as in the proof of Theorem 1, except for one difference: the definition
of the graph G∗.

Call a vertex high if its degree exceeds m/∆, and low otherwise. Clearly, there are at most O(∆) high
vertices.

• We define a graph G∗ whose vertices are the vertices of Q and components of P :

(a′) For each high vertex u ∈ Q and each vertex v ∈ Q, if C[u, v] > 0, then create an edge uv ∈ G∗.
(b) For each vertex u ∈ Q and high component γ in P , if uγ ∈ Γ, then create an edge uγ ∈ G∗.

(b′) For each low vertex u ∈ Q and each component γ in P , if uγ ∈ Γ, then create an edge uγ ∈ G∗.
(c) For each u, v ∈ Q, if uv ∈ E, then create an edge uv ∈ G∗.

We maintain G∗ in a data structure for dynamic connectivity with polylogarithmic-time edge updates.
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Justification. We claim that two vertices ofQ are connected in the subgraph induced by the active vertices
in G iff they are connected in G∗. The “if” direction is obvious. For the “only if” direction, suppose two
vertices u, v ∈ Q are “directly” connected in G by being adjacent to a common component γ in P . If γ is
high, then edges of type (b) ensure that u and v are connected in G∗. If u and v are both low, then edges of
type (b′) ensure that u and v are connected in G∗. In the remaining case, at least one of the two vertices, say,
u is high, and γ is low; here, edges of type (a′) ensure that u and v are again connected in G∗. The claim
follows by concatenation.

Queries. Given two vertices v1 and v2, if both are in Q, we can simply test whether they are connected in
G∗. If instead vj (j ∈ {1, 2}) is in a component γj , then we can replace vj with any vertex of Q adjacent to
γj in G∗. If no such vertex exists, then because of type-(b′) edges, γj can only be adjacent to high vertices
of Q. We can exhaustively search for a high vertex in Q adjacent to γj in Γ, in Õ(∆) time, and replace vj
with such a vertex. If no such vertex exists, then γj is an isolated component and we can simply test whether
v1 and v2 are both in γj . The cost is Õ(∆).

Preprocessing per phase. At the beginning of each phase, the cost to preprocess the data structure is
Õ(m∆) as before. We can charge every update operation with an amortized cost of Õ(m∆/q) = Õ(∆2).

Update of a high vertex u in Q. We need to update O(q) edges of types (a′) and (c), and O(m/∆) edges
of type (b) in G∗. The cost is Õ(q +m/∆) = Õ(m/∆).

Update of a low vertex u in Q. We need to update O(∆) edges of type (a′), and O(deg(u)) edges of
types (b), (b′), and (c) in G∗. The cost is Õ(deg(u) + ∆).

Deletion of a vertex from a low/high component γ in P . Proceeding exactly as in the proof of Theo-
rem 1, we can update the data structure with amortized cost Õ(∆2).

Edge updates. We can simulate the insertion of an edge uv by inserting a new low vertex z adjacent to
only u and v to Q. Since the degree is 2, the cost is Õ(1). We can later simulate the deletion of this edge by
deleting the vertex z from Q.

4.2 Range searching tools from geometry

Next, we need known range searching techniques. These techniques give linear-space data structures
(S(n) = Õ(n)) that can retrieve all objects intersecting a query object in sublinear time (T (n) = Õ(n1−b))
for many types of geometric objects. We assume that our class of geometric objects satisfies the following
property for some constant b > 0—this property neatly summarizes all we need to know from geometry.

Property 3. Given a set P of n objects, we can form a collection C of canonical subsets of total size Õ(n),
in Õ(n) time, such that the subset of all objects of P intersecting any object z can be expressed as the union
of disjoint subsets in a subcollection Cz of Õ(n1−b) canonical subsets, in Õ(n1−b) time. Furthermore, for
every 1 ≤ ∆ ≤ n,

(i) the number of subsets in Cz of size exceeding n/∆ is Õ(∆1−b).

(ii) the total size of all subsets in Cz of size at most n/∆ is Õ(n/∆b).

The property is typically proved by applying a suitable “partition theorem” in a recursive manner,
thereby forming a so-called “partition tree”; for example, see the work by Matoušek [28] or the survey
by Agarwal and Erickson [2]. Each canonical subset corresponds to a node of the partition tree (more pre-
cisely, the subset of all objects stored at the leaves underneath the node). Matoušek’s results imply that
b = 1/d is attainable for simplices or constant-size polyhedra in IRd. (To go from simplex range searching
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to intersection searching, one uses multi-level partition trees; e.g., see [29].) Further results by Agarwal and
Matoušek [3] yield b = 1/(d + 1) for balls in IRd and nontrivial values of b for other families of curved
objects (semialgebraic sets of constant degree). The special case of axis-parallel boxes corresponds to b = 1.

The specific bounds in (i) and (ii) may not be too well known, but they follow from the hierarchical
way in which canonical subsets are constructed. For example, (ii) follows since the subsets in Cz of size at
most n/∆ are contained in Õ(∆1−b) subsets of size Õ(n/∆). In fact, (multi-level) partition trees guarantee
a stronger inequality,

∑
C∈Cz |C|

1−b = Õ(n1−b), from which both (i) and (ii) can be obtained after a
moment’s thought.

As an illustration, we can use the above property to develop a data structure for a special case of dynamic
geometric connectivity where insertions are done in “blocks” but arbitrary deletions are to be supported.
Although the insertion time is at least linear, the result is good if the block size s is sufficiently large. This
subroutine will make up a part of the final solution.

Lemma 4. We can maintain the connected components among a set S of objects in a data structure that
supports insertion of a block of s objects in Õ(n+ sn1−b) amortized time (s < n), and deletion of a single
object in Õ(1) amortized time.

Proof. We maintain a multigraph H in a data structure for dynamic connectivity with polylogarithmic edge
update time (which explicitly maintains the connected components), where the vertices are the objects of S.
This multigraph will obey the invariant that two objects are geometrically connected iff they are connected
in S. We do not insist that H has linear size.

Insertion of a block B to S. We first form a collection C of canonical subsets for S ∪ B by Property 3.
For each z ∈ B and each C ∈ Cz , we assign z to C. For each canonical subset C ∈ C, if C is assigned
at least one object of B, then we create new edges in H linking all objects of C and all objects assigned to
C in a path. (If this path overlaps with previous paths, we create multiple copies of edges.) The number of
edges inserted is thus Õ(n+ |B|n1−b).

Justification. The invariant is satisfied since all objects in a canonical subset C intersect all objects as-
signed to C, and are thus all connected if there is at least one object assigned to C.

Deletion of an object z from S. For each canonical subset C containing or assigned the object z, we need
to delete at most 2 edges and insert 1 edge to maintain the path. As soon as the path contains no object
assigned to C, we delete all the edges in the path. Since the length of the path can only decrease over the
entire update sequence, the total number of such edge updates is proportional to the initial length of the path.
We can charge the cost to edge insertions.

4.3 Putting it together

We are finally ready to present our sublinear result for dynamic geometric connectivity. We again need the
idea of rebuilding periodically, and splitting smaller sets from larger ones. In addition to the graph H (of
superlinear size) from Lemma 4, which undergoes insertions only in blocks, the key lies in the definition of
another subtly crafted intermediate graph G (of linear size), maintained this time by the subgraph connec-
tivity structure of Lemma 2. The definition of this graph involves multiple types of vertices and edges. The
details of the analysis and the setting of parameters get more interesting.

Theorem 5. Assume 0 < b ≤ 1/2. We can maintain a collection of objects in amortized update time
Õ(n1−b2/(2+b)) and answer connectivity queries in time Õ(nb/(2+b)).
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Proof. We divide the update sequence into phases, each consisting of y := nb updates. The current objects
are partitioned into two sets X and Y , where X undergoes only deletions and Y undergoes both insertions
and deletions. Each insertion is done to Y . At the end of each phase, we move the elements of Y to X and
reset Y to the empty set. This way, |Y | is kept at most y at all times.

At the beginning of each phase, we form a collection C of canonical subsets for X by Property 3.

The data structure.

• We maintain the components of X in the data structure from Lemma 4.

• We maintain the following graph G for dynamic subgraph connectivity, where the vertices are objects
of X ∪ Y , components of X , and the canonical subsets of the current phase:

(a) Create an edge in G between each component of X and each of its objects.

(b) Create an edge in G between each canonical subset and each of its objects in X .

(c) Create an edge in G between each object z ∈ Y and each canonical subset C ∈ Cz . Here, we
assign z to C.

(d) Create an edge in G between every two intersecting objects in Y .

(e) We make a canonical subset active in G iff it is assigned at least one object in Y . Vertices that
are objects or components are always active.

Note that there are Õ(n) edges of types (a) and (b), Õ(yn1−b) edges of type (c), and O(y2) edges of
type (d). For y = nb, the size of G is thus Õ(n).

Justification. We claim that two objects are geometrically connected in X ∪ Y iff they are connected in
the subgraph induced by the active vertices in the graph G. The “only if” direction is obvious. For the “if”
direction, we note that all objects in an active canonical subset C intersect all objects assigned to C and are
thus all connected.

Queries. We answer a query by querying in the graph G. The cost is Õ(∆).

Preprocessing per phase. Before a new phase begins, we need to update the components in X as we
move all elements of Y to X (a block insertion). By Lemma 4, the cost is Õ(n+ yn1−b) = Õ(n). We can
now reinitialize the graph G containing Õ(n) edges of types (a) and (b) in Õ(n∆) time by Lemma 2. We
can charge every update operation an amortized cost of Õ(n∆/y) = Õ(n1−b∆).

Update of an object z in Y . We need to update Õ(n1−b) edges of type (c) and O(y) edges of type (d) in
G. The cost according to Lemma 2 is Õ(n1−b∆2).

Furthermore, because of (e), we may have to update the status of as many as Õ(n1−b) vertices. The
number of such vertices of degree exceeding n/∆ is Õ(∆1−b) by Property 3(i), and the total degree among
such vertices of degree at most n/∆ is Õ(n/∆b) by Property 3(ii). Thus, according to Lemma 2, the cost
of these vertex updates is Õ(n1−b∆2 + ∆1−b · n/∆ + n/∆b) = Õ(n1−b∆2 + n/∆b).

Deletion of an object z in X . We first update the components of X . By Lemma 4, the amortized cost is
Õ(1). We can now update the edges of type (a) in G. The total number of such edge updates per phase is
O(n lg n), by always splitting smaller components from larger ones. The amortized number of edge updates
is thus Õ(n/y). The amortized cost is Õ((n/y)∆2) = Õ(n1−b∆2).

Finale. The overall amortized cost per update operation is Õ(n1−b∆2 + n/∆b). Set ∆ = nb/(2+b).

Note that we can still prove the theorem for b > 1/2, by handling the O(y2) intersections among Y (the
type (d) edges) in a less naive way. However, we are not aware of any specific applications with b ∈ (1/2, 1).
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5 Open Problems
Our work opens up many interesting directions for further research. For subgraph connectivity, an obvious
question is whether the Õ(m2/3) vertex-update bound can be improved (without or with FMM); as we
have mentioned , improvements beyond

√
m without FMM are not possible without a breakthrough on the

triangle-finding problem. An intriguing question is whether for dense graphs we can achieve update time
sublinear in n, i.e., O(n1−ε) (or possibly even sublinear in the degree).

For geometric connectivity, it would be desirable to determine the best update bounds for specific shapes
such as line segments and disks in two dimensions. Also, directed settings of geometric connectivity arise
in applications and are worth studying; for example, when sensors’ transmission ranges are balls of different
radii or wedges, a sensor may lie in another sensor’s range without the reverse being true.

For both subgraph and geometric connectivity, we can reduce the query time at the expense of increas-
ing the update time, but we do not know whether constant or polylogarithmic query time is possible with
sublinear update time in general (see [1] for a result on the 2-dimensional orthogonal special case). Also,
the queries we have considered are about connectivity between two vertices/objects. Can nontrivial re-
sults be obtained for richer queries such as counting the number of connected components (see [1] on the
2-dimensional orthogonal case), or perhaps shortest paths or minimum cut?
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[30] Mihai Pǎtraşcu and Erik D. Demaine. Logarithmic lower bounds in the cell-probe model. SIAM
Journal on Computing, 35(4):932–963, 2006. See also SODA’04 and STOC’04.

12
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A Offline Dynamic Geometric Connectivity
For the special case of offline updates, we can improve the result of Section 4 for small values of b by a
different method using rectangular matrix multiplication.

Let M [n1, n2, n3] represent the cost of multiplying a Boolean n1×n2 matrix A with a Boolean n2×n3

matrix B. Let M [n1, n2, n3 |m1,m2] represent the same cost under the knowledge that the number of 1’s
in A is m1 and the number of 1’s in B is m2. We can reinterpret this task in graph terms: Suppose we are
given a tripartite graph with vertex classes V1, V2, V3 of sizes n1, n2, n3 respectively where there are m1

edges between V1 and V2 and m2 edges between V2 and V3. Then M [n1, n2, n3 |m1,m2] represent the cost
of deciding, for each u ∈ V1 and v ∈ V3, whether u and v are adjacent to a common vertex in V2.

A.1 An offline degree-sensitive version of subgraph connectivity

We begin with an offline variant of Lemma 2:

Lemma 6. Let 1 ≤ ∆ ≤ q ≤ m. We can design a data structure for offline dynamic subgraph connectivity
for a graphG = (V,E) withm edges and n vertices, under the assumption thatO(∆) vertices are classified
as high and at most mH edges are incident to high vertices. Updates of a low vertex u take amortized time

Õ(M [∆, n, q |mH ,m]/q + deg(u)),

updates of high vertices take amortized time Õ(q), queries take time Õ(∆), and preprocessing takes time
O(M [∆, n, q |mH ,m]).

Proof. We divide the update sequence into phases, each consisting of q low-vertex updates. The active
vertices are partitioned into two sets P and Q, with Q ⊆ Q0, where P and Q0 are static and Q undergoes
both insertions and deletions. Each vertex insertion/deletion is done toQ. At the end of each phase, we reset
Q0 to hold all O(∆) high vertices plus the low vertices involved in the updates of the next phase, reset P to
hold all active vertices not in Q0, and reset Q to hold all active vertices in Q0. Clearly, |Q| ≤ |Q0| = O(q).

13



The data structure is the same as the one in the proof of Lemma 2, with one key difference: we only
maintain the value C[u, v] when u is a high vertex in Q0 and v is a (high or low) vertex in Q0. Moreover,
we do not need to distinguish between high and low components, i.e., all components are considered low.

During preprocessing of each phase, we can now compute C[·, ·] by matrix multiplication in time
O(M [∆, n, q |mH ,m]), since there are O(∆) choices for the high vertex u and O(q) choices for the vertex
v ∈ Q0. The amortized cost per low-vertex update for this step is O(M [∆, n, q |mH ,m]/q).

Updating a high vertex u inQ now requires updatingO(q) edges of types (a′) and (c) (there are no edges
of type (b) now). The cost is Õ(q).

Updating a low vertex u in Q requires updating O(∆) edges of type (a′), and O(deg(u)) edges of types
(b′) and (c) in G∗. The cost is Õ(deg(u)).

Deletions in P do not occur now.

A.2 Sparse and dense rectangular matrix multiplication

Sparse matrix multiplication can be reduced to multiplying smaller dense matrices, by using a “high-
low” trick [5]. Fact 7(i) below can be viewed as a variant of [6, Lemma 3.1] and a result of Yuster and
Zwick [38]—incidentally, this fact is sufficiently powerful to yield a simple(r) proof of Yuster and Zwick’s
sparse matrix multiplication result, when combined with known bounds on dense rectangular matrix mul-
tiplication. Fact 7(ii) below states one known bound on dense rectangular matrix multiplication which we
will use.

Fact 7.

(i) For 1 ≤ t ≤ m1, we have M [n1, n2, n3 |m1,m2] = O(M [n1,m1/t, n3] +m2t).

(ii) Let α = 0.294. If n1 ≤ min{n2, n3}α, then M [n1, n2, n3] = Õ(n2n3).

Proof. For (i), consider the tripartite graph setting with vertex classes V1, V2, V3. Call a vertex in V2 high
if it is incident to at least t vertices in V1, and low otherwise. There are at most O(m1/t) high vertices.
For each u ∈ V1 and v ∈ V3, we can determine whether u and v are adjacent to a common high vertex, in
O(M [n1,m1/t, n3]) total time. On the other hand, we can enumerate all (u, v) ∈ V1 × V3 such that u and
v are adjacent to a common low vertex, in O(m2t) time, by examining each edge wv with (w, v) ∈ V2×V3

and each of the at most t neighbors u ∈ V1 of w.
For (ii), Huang and Pan [21] have shown that M [nα, n, n] = M [n, nα, n] = Õ(n2). Thus,

M [n1, n2, n3] = O(
⌈
n2/n

1/α
1

⌉
·
⌈
n3/n

1/α
1

⌉
·M [n1, n

1/α
1 , n

1/α
1 ]) = O(

⌈
n2/n

1/α
1

⌉
·
⌈
n3/n

1/α
1

⌉
· n2/α

1 ).

A.3 Putting it together

We now present our offline result for dynamic geometric connectivity using Lemma 6. Although we also
use Property 3, the design of the key graph G is quite different from the one in the proof of Theorem 5.
For instance, the size of the graph is larger (and no longer Õ(n)), but the number of edges incident to high
vertices remains linear; furthermore, each object update triggers only a constant number of vertex updates
in the graph. All the details come together in the analysis to lead to some intriguing choices of parameters.

Theorem 8. Assume 0 < b ≤ 1. Let α = 0.294. We can maintain a collection of objects in amortized time

Õ(n
1+α−bα

1+α−bα/2 ) for offline updates and answer connectivity queries in time Õ(n
α

1+α−bα/2 ).
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Proof. We divide the update sequence into phases, each consisting of q updates, where q is a parameter
satisfying ∆ ≤ q ≤ n/∆1−b. The current objects are partitioned into two sets X and Y , with Y ⊆ Y0

where X and Y0 are static and Y undergoes both insertions and deletions. Each insertion/deletion is done
to Y . At the end of each phase, we reset Y0 to hold all objects involved the objects of the next phase, X to
hold all current objects not in Y0, and Y to hold all current objects in Y0. Clearly, |Y | ≤ |Y0| = O(q).

At the beginning of each phase, we form a collection C of canonical subsets for X ∪ Y0 by Property 3.

The data structure.

• We maintain the components of X in the data structure from Lemma 4.

• We maintain the following graph G for offline dynamic subgraph connectivity, where the vertices are
objects of X ∪ Y0, components of X , and canonical subsets of size exceeding n/∆:

(a) Create an edge in G between each component of X and each of its objects.

(b) Create an edge in G between each canonical subset C of size exceeding n/∆ and each of its
objects in X ∪ Y .

(c) Create an edge in G between each object z ∈ Y0 and each canonical subset C ∈ Cz of size
exceeding n/∆. Here, we assign z to C.

(d) Create an edge in G between each object z ∈ Y0 and each object in the union of the canonical
subsets in Cz of size at most n/∆.

(e) We make a canonical subset active in G iff it is assigned at least one object in Y . We make the
vertices inX∪Y active, and all components active. The high vertices are precisely the canonical
subsets of size exceeding n/∆; there are Õ(∆) such vertices.

Note that there are Õ(n) edges of types (a) and (b), Õ(q∆1−b) edges of type (c) by Property 3(i),
and Õ(qn/∆b) edges of type (d) by Property 3(ii). So the graph has size m = Õ(n + qn/∆b) =
Õ(qn/∆b), and the number of edges incident to high vertices is mH = Õ(n+ q∆1−b) = Õ(n).

Preprocessing per phase. Before a new phase begins, we need to update the components in X as we
delete O(q) vertices from and insert O(q) vertices to X . By Lemma 4, the cost is Õ(n + qn1−b). We can
then determine the edges of type (a) in G in Õ(n) time. We can now initialize G in O(M [∆, n, q |n,m])
time by Lemma 8. We can charge every update operation with an amortized cost of Õ(M [∆, n, q |n,m]/q+
n/q + n1−b).

Update of an object z in Y . We need to make a single vertex update z in G, which has degree Õ(n/∆b)
by Property 3(ii). Furthermore, we may have to change the status of as many as Õ(∆1−b) high vertices by
Property 3(i). According to Lemma 8, the cost of these vertex updates is Õ(M [∆, n, q |n,m]/q + n/∆b +
∆1−bq).

Finale. By Fact 7, assuming that ∆ ≤ qα and q ≤ n/t, we have M [∆, n, q |n,m] = O(M [∆, n/t, q] +
mt) = Õ(nq/t+ nqt/∆b). Choosing t = ∆b/2 gives Õ(nq/∆b/2).

The overall amortized cost per update operation is thus Õ(n/∆b/2 + ∆1−bq+n/q+n1−b). Set ∆ = qα

and q = n
1

1+α−bα/2 and the result follows. (Note that indeed ∆ ≤ q ≤ n/∆1−b and q ≤ n/t for these
choices of parameters.)

Compared to Theorem 5, the dependence on b of the exponent in the update bound is only 1 − Θ(b)
rather than 1−Θ(b2). The bound is better, for example, for b ≤ 1/4.
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