
On the Change-Making Problem

Timothy M. Chan∗ Qizheng He∗

Abstract

Given a set of n non-negative integers representing a coin

system, the change-making problem seeks the fewest number

of coins that sum up to a given value t, where each

type of coin can be used an unlimited number of times.

This problem is a popular homework exercise in dynamic

programming, where the textbook solution runs in O(nt)

time.

It is not hard to solve this problem in O(t polylog t) time

by using convolution. In this paper, we present a simple

deterministic O(t log t log log t) time algorithm, and later

improve the running time to O(t log t) by randomization.

1 Introduction

In the change-making (or coin changing) problem, a
cashier wants to give exactly t amount of money to the
customer, choosing from a set of coins, where each type
of coin has a positive integer value and has unlimited
supply, and the cashier wants to minimize the number
of coins used. More formally, given a set V of n positive
integers (coin values) and a target number t, we want
to select the fewest number of elements from V that
sum to exactly t, where an element may be picked
more than once. This problem is a popular exercise in
algorithm textbooks, where the standard solution runs
inO(nt) time by dynamic programming [13]. (The naive
greedy algorithm may fail to give optimal solutions for
arbitrary sets of coin values.) The problem is known to
be weakly NP-hard [11].

The change-making problem is closely related to
many other well known problems with similar O(nt)-
time textbook solutions, the most relevant of which
include

• subset sum: select elements from V to sum to
exactly t, but an element may be picked at most
once, and a minimum solution is not required;

• unbounded knapsack : select elements from V to
sum to at most t, and an element may be picked
more than once, but we want to maximize a general
linear objective function.

∗Department of Computer Science, University of Illinois at

Urbana-Champaign, USA, {tmc,qizheng6}@illinois.edu. Work
supported in part by NSF Grant CCF-1814026.

(There are a number of other interesting problems
related to coin systems, such as the Frobenius problem,
but these are not relevant to the present paper.)

Partially spurred by a renewed interest in fine-
grained complexity, there have been a flurry of re-
cent works that improve upon the standard O(nt) so-
lution for the subset sum problem, starting with Koil-
iaris and Xu’s deterministic O(

√
nt polylog t)-time al-

gorithm [8, 9], followed by Bringmann’s randomized
O(tpolylog t)-time algorithm [3] and Jin and Wu’s
randomized O(t log t)-time algorithm from SOSA last
year [7]. All these improved algorithms use convolu-
tions (i.e., FFT) or other algebraic techniques. There
are also conditional lower bounds [1] to suggest that get-
ting better than t1−ε running time might not be possible
for subset sum (ignoring nO(1) factors). Of course, as a
function of n, improving upon 2n/2 worst-case time has
remained a longstanding open problem.

Despite all these recent works on subset sum, the
change-making problem has not received as much at-
tention, and we are not aware of any reported im-
provements. One paper [10] provided conditional hard-
ness results for knapsack-related problems, including a
stronger version of the change-making problem with a
general linear objective function. Goebbels et al. [5]
noted an O(mt log t)-time algorithm for the decision
problem of testing whether there is a solution with at
most m coins, which is better for small m, but their
solution uses convolution in a very naive way. The
situation is somewhat ironic, considering that change-
making seems not as difficult to solve via convolution,
because duplicates are allowed (in previous works on
solving subset sum via convolution [8, 3], much of the
challenge is about how to avoid duplicates). Indeed, an
O(tpolylog t)-time solution follows almost immediately
by combining convolution with repeated squaring—we
point out some of these easily rediscoverable solutions
in Section 3.1

Following these straightforward solutions with extra
logarithmic factors, we present a new simple determin-
istic algorithm in Section 4 that improves the running

1For example, the first solution in Section 3 has appeared
in an algorithms homework by Sariel Har-Peled; see the second
page of https://courses.engr.illinois.edu/cs473/fa2018/hw/
hw_03.pdf.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

https://courses.engr.illinois.edu/cs473/fa2018/hw/hw_03.pdf
https://courses.engr.illinois.edu/cs473/fa2018/hw/hw_03.pdf

time to O(t log t log log t), and a further refinement us-
ing (Las Vegas) randomization in Section 5 that achieves
O(t log t) expected running time.

We feel that the succession of improved solutions
presented here is well suitable for teaching, considering
the popularity and natural appeal of the change-making
problem.

2 Preliminaries

The change-making problem can be formally defined as
follows:

Problem 2.1. (Change Making (Optimization
Version)) Given a set V = {v1, . . . , vn} of n nonneg-
ative integers (coin values) and an integer t, find the
smallest multiset S (duplicates allowed) contained in V
such that S sums to exactly t, i.e., find the minimum m∗

of
∑n

i=1mi subject to the constraint that
∑n

i=1mivi = t,
where mi ∈ N.

For simplicity of presentation, we focus on finding
the minimum number of coins m∗. It is possible to
modify our algorithms to return the optimal multiset of
coins without increasing the asymptotic running time;
see the remark at the end of Section 4.

Without loss of generality, we assume that 0 is in V ,
since adding a coin value 0 does not affect the optimal
solution. This assumption ensures monotonicity, which
will be useful: if there is a solution using m coins, then
there is a solution using m′ coins for any m′ ≥ m. We
may assume that n ≤ t. Trivially, m∗ ≤ t (unless
m∗ =∞).

Some of our algorithms will solve the decision
version of the problem as a stepping stone:

Problem 2.2. (Change Making (Decision Ver-
sion)) Given a set V = {v1, . . . , vn} of n nonnegative
integers (coin values), an integer t, and an integer m,
decide whether m∗ ≤ m, i.e., whether there is a multiset
S with m coins (counting duplicates) such that S sums
to exactly t, i.e., whether there exist mi ∈ N such that∑n

i=1mivi = t and
∑n

i=1mi = m.

We use the standard word-RAM model with word
length w = Θ(log t) in this paper.

Convolution. Let A[0, . . . , t1 − 1] be an array with
t1 elements, and let B[0, . . . , t2 − 1] be an array with
t2 elements. The convolution of A and B is an array
A ∗ B with t1 + t2 − 1 elements such that (A ∗ B)[i] =∑t1−1

j=0 A[j]B[i − j] for 0 ≤ i ≤ t1 + t2 − 2 (where we
assume out-of-range values are 0). Let A ∗t B denote
the array containing the first t+ 1 elements of A ∗B.

Lemma 2.3. We can compute the convolution A∗tB of
two arrays A and B in deterministic O(t log t) time, by
FFT.

Boolean convolution. When the elements of A and B
are Boolean values in {0, 1}, we can define the Boolean
convolution of A and B (with respective size t1 and t2)
to be an array A ◦B with t1 + t2− 1 elements such that
(A◦B)[i] =

∨t1−1
j=0 (A[j]∧B[i− j]) for 0 ≤ i ≤ t1 + t2−2

(where we assume out-of-range values are 0). Similarly
let A ◦t B denote the array containing the first t + 1
elements of A ◦ B. It is easy to see (A ◦ B)[i] = 1 iff
(A ∗B)[i] > 0, so we can compute A ◦tB by Lemma 2.3
in deterministic O(t log t) time.

The following lemma states that speedup is possible
with randomization, if we can tolerate error with prob-
ability p per entry. This improvement will be needed
only in our final randomized algorithm in Section 5.

Lemma 2.4. Given two arrays A and B with size O(t)
and 0 < p < 1, we can compute an array C in
randomized O(t log 1

p) time such that for all 0 ≤ i ≤ t:

• If (A ◦t B)[i] = 0, then C[i] = 0.

• If (A ◦t B)[i] = 1, then Pr[C[i] = 1] ≥ 1− p.

Proof. For p = 1/2, this was noted for example by
Indyk [6]. Roughly, we use Freivald’s technique [4] to
reduce Boolean convolution to convolution over GF(2),
with constant error probability. The latter problem can
be solved by packing k = Θ(log t) bits and compute
convolution of arrays with size O(t

k) over GF(2k) by
FFT.

We can further reduce the error probability to any
p < 1 by repeating O(log 1

p) times independently and
taking the entry-wise or of the results.

3 Basic Algorithms

We first present two basic algorithms for the change-
making problem.

First solution. The first solution solves the decision
version of the problem in O(t log2 t) time, and the
optimization version in O(t log3 t) time. For any k, let
Ck[0, . . . , t] denote the Boolean array where Ck[j] = 1 iff
we can sum to exactly j using k coins. Given a value m,
we can decide whether m ≥ m∗ by computing Cm[t]. It
is easy to compute C1 in O(t) time, and we can compute
Cm recursively (by repeated squaring with respect to
the operator ◦t): if m is even, Cm = Cm

2
◦t Cm

2
,

otherwise, Cm = Cm−1 ◦t C1. The algorithm requires
O(log t) FFTs, so the running time is O(t log2 t) for the
decision version.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

To solve the optimization version, we can use a
binary search for the optimal number of coins m∗, which
requires O(log t) calls to the decision algorithm, so the
total running time is O(t log3 t).

Second solution. The second algorithm re-
implements the binary search more carefully. In
the following pseudocode, lines 1–3 first perform
repeated squaring; this part requires O(log t) FFTs and
takes O(t log2 t) time.

In lines 4–9, at each iteration, we maintain a value
m satisfying the invariant that m∗ ∈ (m,m + 2i], and
we also maintain its corresponding array Cm; as i is
decreased to 0, we will have zoomed into the correct
value of m∗. This part also requires O(log t) FFTs and
takes O(t log2 t) time. Thus, the total running time is
O(t log2 t).

1: Set C1[j] = 1 iff there is a coin with value j.
2: for i = 1, . . . , blog tc do
3: Set C2i = C2i−1 ◦t C2i−1 .

4: Set m = 0.
5: Set C0[j] = 1 iff j = 0.
6: for i = blog tc, . . . , 0 do
7: Set Cm+2i = Cm ◦t C2i .
8: if Cm+2i [t] = 0 then
9: Set m = m+ 2i.

10: Return m∗ = m+ 1.

4 Improved Deterministic Algorithms

Third solution. Let σ(S) =
∑

s∈S s denote the sum
of a multiset S. Our next algorithm is based on the
following intuition: for the optimal multiset of coins S
with total value t, if we can partition S evenly into two
parts S1 and S2 each with total value t

2 , then we can
reduce the target value, which would speed up the FFT
computations.2 This is not always possible, but the
following partition lemma shows that if we take out an
additional coin from S, a balanced partition exists.

Lemma 4.1. (Partition Lemma3) Suppose S is a
multiset with |S| = m and σ(S) = t, where m is even.
There exists a partition of S into three parts S1, S2 and
a singleton {s0}, such that |S1| = m

2 , |S2| = m
2 − 1, and

σ(S1), σ(S2) ≤ t
2 .

Proof. Let s1, s2, . . . , sm be the elements of S (in any
order). Without loss of generality, assume that the first

2 Bringmann [3, Section 5] adopted a similar strategy to solve
the unbounded subset sum problem (just deciding whether there
exists a multiset of S summing to t), but as the coin problem seeks

to minimize the cardinality of S, we want a partition that divides
both the sum and the cardinality evenly—this is less obvious.

half has a smaller sum than the second half (otherwise,
we can swap the two halves). Maintain a sliding
windowW containing exactly m

2 consecutive elements of
s1, . . . , sm. Initially, W = {s1, . . . , sm

2
} and σ(W) ≤ t

2 .

At the end, W = {sm
2 +1, . . . , sm} and σ(W) ≥ t

2 . Thus,

at some moment in time, we must have σ(W) ≤ t
2 but

σ(W ′) ≥ t
2 , where W ′ denotes the next window after

W . We let S1 = W , and s0 be the unique element in
W ′ \W , and S2 = S \ (W ∪ {s0}). Since S2 ⊆ S \W ′,
we have σ(S2) ≤ t

2 .

We now use the Partition Lemma to obtain a simple
algorithm for the decision problem.

Lemma 4.2. We can solve the decision version of the
change-making problem (Problem 2.2) in O(t log t) time.

Proof. Recall that Ck[0, . . . , t] denotes the Boolean ar-
ray where Ck[j] = 1 iff we can sum to exactly j using
k coins. More generally, we let Ck,s[0, . . . , s] denote the
subarray containing the first s+ 1 elements of Ck.

The Partition Lemma suggests the following algo-
rithm: If m is even, we recursively compute Cm,t =
Cm

2 −1,
t
2
◦t Cm

2 −1,
t
2
◦t C1,t ◦t C1,t. (Note that when ap-

plying the Partition Lemma, we think of taking out one
more singleton from S1 to make its size equal to m

2 − 1.
Of course, the set S is not known to the algorithm, but
the Lemma is used for showing correctness.) If m is
odd, we recursively compute Cm,t = Cm−1,t ◦t C1,t.

Each convolution ◦t takes O(t log t) time by FFT.
The array sizes in the recursion form a geometric series,
so the total running time is

O

(
log t∑
i=0

(
1

2

)i

t log t

)
= O(t log t).

If we directly perform a binary search for m∗, we
would need O(log t) calls to Lemma 4.2 and the running
time for the optimization version is still O(t log2 t). In
the next solution, we will reduce the cost of the binary
search, by using the idea from the second solution. . .

Fourth solution. For our next algorithm, we need a
lopsided variant of the Partition Lemma that can split
into two parts of arbitrary sizes. Because we only need
an upper bound on the total value for one of the two
parts, the proof becomes completely trivial.

Lemma 4.3. (Lopsided Partition Lemma) Suppose
S is a multiset with |S| = m and σ(S) = t. For any
integers m1,m2 ≥ 0 with m1 + m2 = m, there exists
a partition of S into two parts S1 and S2, such that
|S1| = m1, |S2| = m2, and σ(S1) ≤ m1t

m .

Proof. Just let S1 contain them1 smallest elements of S.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

We first compute a 2-approximation for m∗, or more
precisely, a value 2` such that m∗ ∈ (2`, 2`+1]. This
can be done by a binary search over all O(log t) powers
of 2, which requires O(log log t) calls to the decision
algorithm, taking O(t log t log log t) time by Lemma 4.2.

Now, we proceed as in the second solution and
maintain a value m satisfying m∗ ∈ (m,m + 2i],
along with the corresponding array Cm,t, and decrease
i at each iteration to zoom into m∗, as shown in
the pseudocode below. Note that the algorithm in
Lemma 4.2 not only can solve the decision problem for
one target value t but can compute the entire array
Cm,t, for a given m.

1: Set m = 2`.
2: Compute Cm,t by Lemma 4.2.
3: for i = `, . . . , 0 do
4: Set Cm+2i,t = Cm,t ◦tC2i, t

2`−i
, where C2i, t

2`−i
is

computed by Lemma 4.2.
5: if Cm+2i,t[t] = 0 then
6: Set m = m+ 2i.

7: Return m∗ = m+ 1.

In line 4, the decrease in the subscript from t to
t

2`−i in the second term is the key to improving the
running time, and is due to the Lopsided Partition

Lemma, since 2it
m+2i ≤

t
2`−i . However, as stated in the

pseudocode, each FFT still involves O(t) elements and
takes O(t log t) time per iteration, and the total running
time is still O(t log2 t).

We observe that it suffices to maintain just the last
t

2`−i−1 + 1 elements of Cm,t, i.e., Cm,t[t− t
2`−i−1 , . . . , t],

in each iteration. To compute Cm+2i,t[t
′] for any t′ ∈

[t− t
2`−i , . . . , t], we only need the values of Cm,t[t

′′] for
t′′ ∈ [t′ − t

2`−i , t
′] ⊆ [t − t

2`−i−1 , . . . , t]. The invariant is
maintained when we decrement i for the next iteration.
This way, the convolution in line 4 involves only O(t

2`−i)
elements and takes O((t

2`−i) log t) time. The total time
over all iterations is bounded by a geometric series:

O

(∑̀
i=0

(
t

2`−i

)
log t

)
= O(t log t).

The overall running time is O(t log t log log t), as the
initial step for computing the 2-approximation turns out
to be the bottleneck.

5 Improved Randomized Algorithm

Final solution. To speed up the fourth solution, it
suffices to compute the initial 2-approximation faster.
We do so by first improving the running time of Lemma
4.2 in a randomized setting where error is allowed.

Lemma 5.1. We can solve the decision version of the
change-making problem (Problem 2.2) in O(t(log log t+
log 1

p)) time, with error probability O(p).

Proof. We modify the algorithm in Lemma 4.2. As
before, if m is even, we recursively compute Cm,t =
Cm

2 −1,
t
2
◦t Cm

2 −1,
t
2
◦t C1,t ◦t C1,t. If m is odd, we

recursively compute Cm,t = Cm−1,t ◦t C1,t.
We make one change: For the top h0 = log log t

levels of recursion (where in a “level”, t is reduced
to t/2), we use Lemma 2.4 instead to perform the
Boolean convolutions, with one-sided error probability
p

log t . Consider the final array entry Cm,t[t]. If it is true,

it will be detected correctly if certain O(2h0) entries in
the top h0 levels are all computed correctly (there are
no errors below these levels). By a union bound, the
probability of making an error in computing Cm,t[t] is
thus at most O(2h0 · p

log t) = O(p). The running time
for the top h0 levels is bounded by

O

(
h0∑
i=1

(
1

2

)i

t · log
(

log t
p

))
= O(t(log log t+ log 1

p)).

The remaining levels of recursion are unchanged
and has running time

O

(
log t∑
i=h0

(
1

2

)i

t log t

)
= O

(
1

log t
· t log t

)
= O(t).

Now we can compute a 2-approximation of m∗, i.e.,
a value 2` such that m∗ ∈ (2`, 2`+1], by binary search
over all O(log t) powers of 2, by making O(log log t)
calls to the decision algorithm in Lemma 5.1 with
error probability p = 1

log t . The running time is

O(t(log log t)2). By a union bound, the overall error
probability is O(log log t

log t) = o(1). We can verify whether

the computed value 2` correctly satisfies m∗ > 2` and
m∗ ≤ 2`+1 by two additional calls to the (deterministic)
decision algorithm from Lemma 4.2, in O(t log t) time.
In expectation we only need to repeat O(1) times. The
total expected running time is thus O(t log t).

After computing 2`, the rest of the algorithm is as
in the fourth solution and takes O(t log t) time.

Remark on finding an optimal multiset. If we
want to recover an optimal multiset S of coins, we
can first find the minimum number m∗ and then run
the decision algorithm in Lemma 4.2 for m∗, which
computes the array Cm∗,t in O(t log t) time. Say m∗

is even (the odd case is similar). Note that during
its execution, the algorithm has already computed the
intermediate arrays Cm∗

2 −1,
t
2
, Cm∗

2 −1,
t
2
◦tCm∗

2 −1,
t
2
, and

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Cm∗
2 −1,

t
2
◦tCm∗

2 −1,
t
2
◦tC1,t. By scanning these arrays in

O(t) time, we can decompose t into a sum of t1, t2, s1, s2,
where s1, s2 ∈ V , t1, t2 ≤ t

2 , and Cm∗
2 −1,

t
2
[t1] and

Cm∗
2 −1,

t
2
[t2] are true. We recursively find multisets of

m∗

2 − 1 coins summing to t1 and t2. The extra running
time satisfies the recurrence T (t) = 2T (t

2)+O(t), which
solves to O(t log t).

This represents another advantage of our improved
algorithms over the basic algorithms: if we were using
the first two solutions from Section 3 instead, recovering
an optimal multiset efficiently would be less straightfor-
ward and would need “witness finding” techniques (e.g.,
see [2, 12]) for convolutions, which require more extra
logarithmic factors.

Acknowledgement. We thank Sariel Har-Peled and
Chao Xu for helpful discussion; one of Sariel’s homework
problems sparked the present work.

References

[1] Amir Abboud, Karl Bringmann, Danny Hermelin, and
Dvir Shabtay. SETH-based lower bounds for subset
sum and bicriteria path. In Proceedings of the 30th An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 41–57, 2019.

[2] Noga Alon, Zvi Galil, Oded Margalit, and Moni Naor.
Witnesses for Boolean matrix multiplication and for
shortest paths. In Proceedings of the 33rd Annual
IEEE Symposium on Foundations of Computer Science
(FOCS), pages 417–426, 1992.

[3] Karl Bringmann. A near-linear pseudopolynomial
time algorithm for subset sum. In Proceedings of the
28th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 1073–1084, 2017.

[4] Rusins Freivalds. Probabilistic machines can use less
running time. In IFIP congress, volume 839, page 842,
1977.

[5] Steffen Goebbels, Frank Gurski, Jochen Rethmann,
and Eda Yilmaz. Change-making problems revisited: a
parameterized point of view. Journal of Combinatorial
Optimization, 34(4):1218–1236, 2017.

[6] Piotr Indyk. Faster algorithms for string matching
problems: Matching the convolution bound. In Pro-
ceedings of the 39th Annual Symposium on Foundations
of Computer Science (FOCS), pages 166–173, 1998.

[7] Ce Jin and Hongxun Wu. A simple near-linear pseu-
dopolynomial time randomized algorithm for subset
sum. In Proceedings of the 2nd Symposium on Simplic-
ity in Algorithms (SOSA), volume 69, pages 17:1–17:6,
2019.

[8] Konstantinos Koiliaris and Chao Xu. A faster pseu-
dopolynomial time algorithm for subset sum. In Pro-
ceedings of the 28th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1062–1072, 2017.

[9] Konstantinos Koiliaris and Chao Xu. Faster pseu-
dopolynomial time algorithms for subset sum. ACM
Transactions on Algorithms (TALG), 15(3):40, 2019.

[10] Marvin Künnemann, Ramamohan Paturi, and Stefan
Schneider. On the fine-grained complexity of one-
dimensional dynamic programming. In Proceedings
of the 44th International Colloquium on Automata,
Languages, and Programming (ICALP), volume 80,
pages 21:1–21:15, 2017.

[11] George S Lueker. Two NP-complete problems in non-
negative integer programming. Princeton University.
Department of Electrical Engineering, 1975.

[12] Raimund Seidel. On the all-pairs-shortest-path prob-
lem. In Proceedings of the 24th Annual ACM Sympo-
sium on Theory of Computing (STOC), pages 745–749,
1992.

[13] J. W. Wright. The change-making problem. Journal
of the ACM, 22(1):125–128, 1975.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Preliminaries
	Basic Algorithms
	Improved Deterministic Algorithms
	Improved Randomized Algorithm

