
All-Pairs Shortest Paths for Real-Weighted
Undirected Graphs with Small Additive Error
Timothy M. Chan #

Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

Abstract
Given a graph with n vertices and real edge weights in [0, 1], we investigate an approximate version
of the standard all-pairs shortest paths (APSP) problem where distances are estimated with additive
error at most ε. Yuster (2012) introduced this natural variant of approximate APSP, and presented
an algorithm for directed graphs running in Õ(n(3+ω)/2) ≤ O(n2.687) time for an arbitrarily small
constant ε > 0, where ω denotes the matrix multiplication exponent. We give a faster algorithm for
undirected graphs running in Õ(n(3+ω2)/(ω+1)) ≤ O(n2.559) time for any constant ε > 0. If ω = 2,
the time bound is Õ(n7/3), matching a previous result for undirected graphs by Dor, Halperin, and
Zwick (2000) which only guaranteed additive error at most 2.
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1 Introduction

The all-pairs shortest paths (APSP) problem is one of the most well-known problems in
algorithm design, and plays a central role in the study of fine-grained complexity. Only small
(subpolynomial) speedups over the textbook cubic-time algorithms are known for arbitrary
real-weighted dense graphs [6, 8, 13, 21], and it has been conjectured that there are no truly
subcubic algorithms [20]. If faster running time is desired, one thus turns to approximation
algorithms.

To this end, Zwick [23] described an O(nω log wmax
wmin

)-time algorithm with approximation
factor 1 + ε for any constant ε > 0, for any (directed or undirected) graph with positive
real edge weights, where n is the number of vertices, wmin and wmax denote the minimum
and maximum edge weight, and ω < 2.373 is the matrix multiplication exponent [2, 11].
For every pair of vertices u and v, the algorithm computes a value D̃[u, v] such that
D[u, v] ≤ D̃[u, v] ≤ (1 + ε)D[u, v], where D[u, v] denotes the distance (i.e., the shortest-path
weight) from u to v.

While multiplicative approximation is natural, in this paper we are interested in an even
stronger form of approximation, where we want small additive error bounded by εwmax.
More precisely, for every u and v, we seek a value D̃[u, v] such that D[u, v] ≤ D̃[u, v] ≤
D[u, v] + εwmax. To see how this can yield a much better estimate, imagine the case when
the distance D[u, v] is large; a (1 + ε)-factor approximation may differ from the true value
by εD[u, v], which could be much bigger than ε times the maximum weight of a single edge.1

From now on, we assume wmax = 1, without loss of generality, by rescaling. In other
words, we assume that all edge weights lie in [0, 1] and we tolerate additive error at most ε.

1 In fact, we can achieve additive error at most O(εwmax[u, v]), where wmax[u, v] denotes the weight of
the longest edge in a shortest path from u to v, by guessing a value w ∈ [wmax[u, v]/2, wmax[u, v]] and
removing all edges of weight exceeding w from the graph; O(log wmax

wmin
) guesses of w suffice.
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27:2 All-Pairs Shortest Paths with Small Additive Error
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Figure 1 Tradeoffs between additive error and running time for approximate APSP in undirected
real-weighted graphs. The blue part indicates the new result using the current matrix multiplication
bound ω < 2.373; the red part indicates the new result if ω = 2.

This form of additive approximation was first considered by Yuster [22], who gave an
algorithm running in Õ(n(3+ω)/2) ≤ O(n2.687) time2 for any constant additive error ε > 0.
If ω = 2, the time bound is Õ(n2.5). For arbitrary (dense) directed graphs, this would be
difficult to improve, since approximate APSP with additive error at most c for any constant
c is at least as hard as exact unweighted APSP, for which the current best algorithm by
Zwick [23] has exponent 2.5 when ω = 2 and is conjectured to be near optimal [9]. However,
a question remains as to whether an improved result for approximate APSP with additive
error ε is possible for undirected graphs (for which Õ(nω)-time algorithms are known for
exact unweighted APSP [15, 19]).

For unweighted undirected graphs, the seminal work by Aingworth, Chekuri, Indyk,
and Motwani [1] described combinatorial algorithms for approximate APSP achieving O(1)
additive error without using fast matrix multiplication. Subsequent improvements were
described by Dor, Halperin, and Zwick [12]: in particular, for dense graphs, the best results
were an Õ(n7/3)-time algorithm with additive error at most 2, and an Õ(n2+2/(3k−2))-time
algorithm with additive error at most k for any even constant k > 2. As noted in Dor et
al.’s paper, these algorithms for unweighted undirected graphs can actually be extended to
weighted undirected graphs with arbitrary real edge weights in [0, 1]. However, none of these
results achieve additive error below 2. In fact, approximate undirected APSP with additive
error strictly below 2 is at least as hard as Boolean matrix multiplication (by considering
tripartite graphs with unit edge weights), thus ruling out combinatorial algorithms for
arbitrarily small ε.

New result. Our main result is a new algorithm for undirected real-weighted graphs
with additive error ε. The algorithm uses fast matrix multiplication and achieves running
time Õ(n(3+ω2)/(ω+1)) ≤ O(n2.559). This improves Yuster’s O(n2.689)-time directed-graph
algorithm. Furthermore, if ω = 2, our time bound becomes Õ(n7/3), which improves Yuster’s
Õ(n2.5) bound and also matches Dor, Halperin, and Zwick’s time bound for additive error 2
while making the additive error an arbitrarily small constant ε. (See Figure 1.)

Other related work. Other formulations of approximate APSP have been studied in the
literature. For example, Bringmann, Künnemann, and Wegrzycki [5] revisited multiplicative
approximation, but in a setting where wmax

wmin
may be large (Zwick’s approximation algo-

rithm [23] works well only when this ratio is bounded). On the other hand, Roditty and

2 The Õ notation hides logO(1) n factors. Factors dependent on ε are also suppressed, for simplicity, but
they will all be polynomial in 1/ε.
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Shapira [18] gave results (recently improved by Chan, Vassilevska Williams, and Xu [9]) on
approximate APSP for unweighted directed APSP that achieved sublinear additive error
bounded by D[u, v]p for a given constant p < 1; the guarantee is stronger than 1 + ε mul-
tiplicative approximation as D[u, v] gets larger, but is not as strong as constant additive
error.

In the literature on graph spanners, there have also been many results for unweighted
undirected graphs with constant additive errors [1, 4, 10].

Our time bound appears unusual among algorithms in the literature that rely on fast
matrix multiplication. Coincidentally, Grandoni et al. [16] gave a matrix-multiplication-based
algorithm for an entirely different problem (all-pairs lowest common ancestors in DAGs)
with a time bound that is also Õ(n7/3) if ω = 2 (though their exponent got below 2.5 under
the current matrix multiplication bound). For our result, n7/3 is a natural barrier, since
even with additive error 2, the current best algorithm by Dor, Halperin, and Zwick [12] still
requires Õ(n7/3) time.

Techniques. To see why the additive approximation problem is challenging for real-weighted
graphs, consider the standard idea of rounding edge weights and rescaling to turn them into
integers. To guarantee additive error at most a constant ε, since a shortest path may require
Θ(n) edges in the worst case, one would need to round edge weights to multiples of ε/n, and
the rescaled integers could then be Θ(n); unfortunately, APSP (or min-plus product) for
integer input of that magnitude still requires near cubic time under the current state of the
art.

Yuster’s previous algorithm for directed graphs [22] is based on an approach by Zwick [23]
(originally for exact small-edge-weighted APSP), which divides into two cases: paths that
use a few edges (i.e., hops) vs. paths that use many edges. For shortest paths with less
than L edges, the aforementioned rounding approach reduces the problem to computing
min-plus products for small integers bounded by O(L), which reduces to standard matrix
multiplication on Õ(L)-bit numbers. On the other hand, for shortest paths with more than
L edges, there exists a small hitting set (also called a “bridging set”) with Õ(n/L) vertices,
and we can run a single-source/single-sink algorithm from/to each such vertex. Finally, the
parameter L is chosen (near

√
n if ω = 2) to balance cost.

To improve the running time, we combine this approach with Aingworth et al.’s ap-
proach [1] (which Dor et al.’s algorithm [12] builds upon). Aingworth et al.’s approach divides
into two cases differently: vertices with low degree vs. vertices with high degree. Low-degree
vertices are less expensive because the number of incident edges is small. On the other
hand, for high-degree vertices, there exists a small dominating set, and so these vertices can
be covered by a small number of “clusters”; sources in the same cluster are close together,
and so distances from one fixed source s give us a good approximation (with O(1) additive
error) to distances from other sources in the same cluster (since the graph is undirected).
To reduce the additive error from O(1) to O(ε), we need a number of further ideas. We
will use min-plus products at each layer of the BFS tree from s. To make the error sum to
O(ε), we will set the error tolerance at each layer to be proportional to the size of the layer
(roughly εni/n if the i-th layer has size ni, as we will describe in Section 4). Bounding the
total running time requires some care, since the min-plus products are done to matrices of
different dimensions at the different layers.

The general plan shares some similarity with an exact combinatorial APSP algorithm
by Chan [7] for sparse undirected unweighted graphs, which also modifies Aingworth et
al.’s algorithm and simulates BFS to compute distances from multiple sources in a cluster.

ESA 2021



27:4 All-Pairs Shortest Paths with Small Additive Error

However, what makes our algorithm interesting is the combination of Aingworth et al.’s
approach with fast matrix multiplication. (A recent algorithm by Chan, Vassilevska Williams,
and Xu [9] for a different problem – all-pairs lightest shortest paths for undirected small-
weighted graphs – also combines Aingworth et al.’s approach with matrix multiplication, but
does not involve approximation nor real weights. Our algorithm here is more elaborate.)

2 Preliminaries

Given two matrices A and B, we let A ⋆ B denote the min-plus product, i.e., (A ⋆ B)[u, v] =
minz(A[u, z] + B[z, v]).

Let M(n1, n2, n3) denote the time complexity for computing the standard product of an
n1 × n2 and an n2 × n3 matrix.

Let M⋆(n1, n2, n3 | ℓ) denote the time complexity for computing the min-plus product of
an n1 × n2 and an n2 × n3 matrix, where all the matrix entries are from {0, 1, . . . , ℓ, ∞}. As
is well known [3], M⋆(n1, n2, n3 | ℓ) ≤ Õ(ℓ · M(n1, n2, n3)).

3 Small Distances

We begin with a lemma on computing small distances, which will be useful later. Yuster [22]
has already observed how to solve the problem for paths with small number of edges, but our
lemma is more challenging, since a path with small weight could still have a large number of
hops.

▶ Lemma 1. Given a directed or undirected graph G = (V, E) with n vertices and real edge
weights in [0, 1], and given β > ε, we can approximate all distances that are at most β, with
additive error O(ε), in Õ((β/ε)nω) time.

Proof. We use a form of repeated squaring: loosely speaking, we recursively solve the
problem for β/2 and compute the min-plus product of the resulting matrix with itself. The
additive error ε needs to be roughly halved in the recursive call, but luckily the ratio β/ε

stays roughly the same.
Let δ > 0 be a parameter to be set later. Let βmin be the smallest edge weight. Assume

that β > ε. For every u, v ∈ V , we will compute D̃(β,ε)[u, v], an approximation to D[u, v]
with additive error at most ε, provided that D[u, v] ≤ β. (More precisely, if D̃(β,ε)[u, v] ̸= ∞,
it is a valid approximation; and if D[u, v] ≤ β, then it is guaranteed that D̃(β,ε)[u, v] ̸= ∞.)

To compute D̃(β,ε):
1. First recursively compute D′ = D̃(β/2,(1−δ)ε/2). Round the entries in D′ (upward) to

multiples of δε/3.
2. Let A′[u, v] be w(u, v) rounded (upward) to a multiple of δε/3. If A′[u, v] > β, reset

A′[u, v] = ∞.
3. Set D̃(β,ε) = D′ ⋆ A′ ⋆ D′. If D̃(β,ε)[u, v] > β + ε, reset D̃(β,ε)[u, v] = ∞.

Correctness follows since any path with weight at most β can be expressed as π1eπ2,
where each of π1 and π2 is a subpath with weight at most β/2, and e is a single edge (the
“median”). The additive error is bounded by 2(1 − δ)ε/2 + δε/3 + δε/3 + δε/3 = ε.

Since the finite entries of D′ and A′ after rescaling are integers bounded by O( β
δε ), these

min-plus products take O(M⋆(n, n, n | β
δε )) = Õ( β

δε nω) time. The total time satisfies the
recurrence

T (β, ε) = T (β/2, (1 − δ)ε/2) + Õ( β
δε nω),

which yields T (β, ε) = Õ( β
δε ( 1

1−δ )log(β/βmin)nω).
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We may assume that β ≤ n and βmin ≥ ε/n, since we can initially round edge weights
to multiples of ε/n. We set δ = 1/ log(β/βmin) = Ω(1/ log(n/ε)), so that ( 1

1−δ )log(β/βmin) is
bounded by a constant. ◀

4 Multiple Sources

Next, we solve the subproblem of approximating shortest paths from multiple sources in a
close-knit “cluster” of vertices S ⊆ V . (To optimize the final running time, we find it useful
to separate out a preprocessing stage that does not depend on S.)

▶ Lemma 2. Given an undirected graph G = (V, E) with n vertices and real edge weights
in [0, 1] ∪ {∞}, and a parameter B, we can preprocess in Õ((1/ε)Bnω) time, so that: given
a subset S ⊆ V of size O(n/t) where every pair of vertices in S have distance at most an
integer constant c, we can approximate the distances for all pairs in S × V with additive
error O(ε), in Õ((1/ε)(nω/Bω−2 + nω/tω−2)) time.

Proof. Let ε′ = ε/ log n. Fix a vertex s ∈ S. We first compute all distances from s in O(n2)
time by Dijkstra’s algorithm. Let Vi = {v ∈ V : D[s, v] ∈ [i, i + 1)}. For any interval I, let
VI =

⋃
i∈I Vi. Let ni = |V[i−2c−3,i+2c+3]|; note that

∑
i ni = O(n).

We describe an algorithm to compute a partial matrix D̃ of approximate distances. For
subsets S1, S2 ⊆ V , let D̃(S1, S2) denote the submatrix of D̃ containing only entries for
(u, v) ∈ S1 × S2.

Step 0. For each i, we compute D̃(Vi−1, Vi) by applying Lemma 1 to approximate distances
between all u ∈ Vi−1 and all v ∈ Vi that are bounded by 2c + 1, in the subgraph induced
by V[i−2c−3,i+2c+3] (which has size O(ni)), with additive error O( ε′ni

n ). (More precisely, for
u ∈ Vi−1 and v ∈ Vi, if D̃[u, v] ̸= ∞, then the computed value D̃[u, v] is a valid approximation;
and if u and v have distance at most 2c + 1 in the induced subgraph, then it is guaranteed
that D̃[u, v] ̸= ∞.) For all i with ni ≤ n/B, the total running time is

Õ

(∑
i

n
ε′ni

· nω
i

)
= Õ

(∑
i

n
ε′ · nω−1

i

)

≤ Õ

(∑
i

n
ε′ · (n/B)ω−2 · ni

)
= Õ( n

ε′ · (n/B)ω−2 · n) = Õ((1/ε′)nω/Bω−2).

In the case when ni > n/B, we apply Lemma 1 instead to the original graph with additive
error O(ε′/B), which is at least as good as O( ε′ni

n ), in Õ((1/ε′)Bnω) time – note that this
can be done just once during preprocessing.

Step 1. For i = 0, . . . , c, we compute D̃(S, Vi) by using Lemma 1 to approximate all
distances bounded by O(c), with additive error O(ε′).

For each i = c+1, . . . , t, we compute D̃(S, Vi) by taking the min-plus product D̃(S, Vi−1)⋆

D̃(Vi−1, Vi), with additive error O( ε′ni

n ). We do the following filtering step: for each entry
D̃[x, y] just computed, if D̃[x, y] ̸∈ D[s, y] − D[s, x] ± (2c + O(ε)), reset D̃[x, y] = ∞. Because
of the filtering step, for all u ∈ S, z ∈ Vi−1, and v ∈ Vi, we have D̃[u, z] ∈ i ± O(c) if it is
finite, and D̃[z, v] ∈ O(c) if it is finite. Thus, in computing D̃(S, Vi−1) ⋆ D̃(Vi−1, Vi), we can
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27:6 All-Pairs Shortest Paths with Small Additive Error

make the matrix entries lie in O(c) by shifting. We can then round entries to multiples of
n

ε′ni
. So, the total time to compute the products for all i = c + 1, . . . , t is

Õ

(
t∑

i=1
M⋆(n/t, ni, ni | n

ε′ni
)
)

≤ Õ

(
t∑

i=1

n
ε′ni

· M(n/t, ni, ni)
)

≤ Õ

(
t∑

i=1

n
ε′ni

· ( n/t
ni

nω
i + ( ni

n/t )2(n/t)ω)
)

= Õ

(
1
ε′

t∑
i=1

((n2/t)nω−2
i + (nω−1/tω−2)ni)

)
≤ Õ( 1

ε′ · ((n2/t)nω−2t3−ω + (nω−1/tω−2)n))
= Õ((1/ε′)nω/tω−2).

Step 2. Now, assume that D̃(S, Vi) has been computed for all i = 0, . . . , ℓ/2 for a given
ℓ ≥ 2t. We will compute D̃(S, Vi) for all i = ℓ/2 + 1, . . . , ℓ. First pick an i0 ≤ ℓ/2 with
|Vi0 | = O(n/ℓ). For each i = i0 + 1, . . . , ℓ, we compute D̃(Vi0 , Vi) by taking the min-plus
product D̃(Vi0 , Vi−1) ⋆ D̃(Vi−1, Vi), with additive error O( ε′ni

n ). Do the filtering step as
before. Because of the filtering step, for all u ∈ Vi0 , z ∈ Vi−1, and v ∈ Vi, we have
D̃[u, z] ∈ i − i0 ± O(c) if it is finite, and D̃[z, v] ∈ O(c) if it is finite. By a similar analysis,
the total time to compute these products for i = i0 + 1, . . . , ℓ is upper-bounded by

Õ

(
ℓ∑

i=1
M⋆(n/ℓ, ni, ni | n

ε′ni
)
)

≤ Õ((1/ε′)nω/ℓω−2) ≤ Õ((1/ε′)nω/tω−2).

Finally, we compute D̃(S, V(ℓ/2,ℓ]) by taking the min-plus product D̃(S, Vi0) and
D̃(Vi0 , V(ℓ/2,ℓ]) with additive error O(ε′). Do the filtering step as before. Because of the
filtering step, for all u ∈ S, z ∈ Vi0 , and v ∈ V(ℓ/2,ℓ], we have D̃[u, z] ∈ i0 ± O(c) if it is finite,
and D̃[z, v] ∈ D[s, v] − i0 ± O(c) if it is finite. We can again make the matrix entries lie in
O(c) by shifting. This product takes time

Õ(M⋆(n/t, n/ℓ, n | 1/ε′)) ≤ Õ((1/ε′)M(n/t, n/t, n))
≤ Õ((1/ε′)t(n/t)ω) = Õ((1/ε′)nω/tω−1).

We repeat the above for all ℓ ≥ 2t that are powers of 2.

Correctness. For every u ∈ S and v ∈ V , we claim that D̃[u, v] approximates D[u, v] with
additive error O(ε). To see this, let π be the shortest path from u to v. For any subpath
of π, say, from x to y, we have D[x, y] = D[u, y] − D[u, x] ∈ D[s, y] − D[s, x] ± 2c, since
D[s, u] ≤ c and the graph is undirected (this justifies the filtering step). If u ∈ S and
v ∈ Vi with i > c, then π must pass through a vertex z ∈ Vi−1. For every node z′ in the
subpath from z to v, D[z, z′] ≤ D[u, v] − D[u, z] ≤ D[s, v] − D[s, z] + 2c ≤ 2c + 2, and
D[s, z′] ∈ D[s, z] ± D[z, z′] ∈ i ± (2c + 3), so the subpath lies in the subgraph induced by
V[i−2c−3,i+2c+3]. It follows that the total additive error in Step 1 is O(

∑
i

ε′ni

n ) = O(ε′). The
analysis of Step 2 is similar: if u ∈ S and v ∈ Vi with i > ℓ/2, then π must pass through
a vertex u′ ∈ Vi0 , and the subpath from u′ to v must pass through a vertex z ∈ Vi−1. The
overall additive error is bounded by O(ε′ log n) = O(ε). ◀
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5 Overall Algorithm

Our overall algorithm employs a careful combination of Aingworth et al.’s technique [1]
involving low- vs. high-degree vertices, and Zwick’s technique [23] involving short vs. long
paths, and a judicious choice of several parameters to balance cost.

Let B, L, and t be parameters to be set later. Let Vhigh be the set of all vertices of degree
more than n/t, and Vlow be the set of all vertices of degree at most n/t.

Phase 1. We will first compute an approximation D̃[u, v] to D[u, v] for all u ∈ Vhigh and
v ∈ V , as follows:

Let X ⊆ V be a dominating set for Vhigh, such that every vertex in Vhigh is in the
(closed) neighborhood of some vertex in X. As noted by Aingworth et al. [1], there exists
such a dominating set of size Õ(t), and it can be found easily by random sampling, or
deterministically by a greedy algorithm.

Consequently, we can cover Vhigh by Õ(t) groups of vertices, such that vertices of each
group have distance at most 2 from each other, by taking the neighborhoods of the vertices
of X. We may assume that these groups are disjoint (for example, by removing from the i-th
group those vertices that appear in the first i − 1 groups). Furthermore, we may assume that
every group has size O(n/t) (by subdividing the groups, which only increases the number
of groups by O(t)). For each group S, we apply Lemma 2 (with c = 2). The total time
of these Õ(t) invocations of the lemma is Õ(t · (1/ε)nω/Bω−2), assuming that B ≤ t, after
Õ((1/ε)Bnω)-time preprocessing.

Phase 2. Let R ⊆ V be a subset of vertices that hits all shortest paths with at least L

edges. As shown by Zwick [23], there exists such a hitting set of size Õ(n/L), and it can be
found by random sampling, or deterministically. We will next compute an approximation
D̂[u, v] to D[u, v] for all u ∈ R and v ∈ V as follows:

Fix u ∈ R. Define a graph Gu containing all edges xy with x ∈ Vlow or y ∈ Vlow; for
each z ∈ Vhigh, we add an extra edge uz with weight D̃[u, z], which has been computed in
Phase 1. Then the distance from u to v in Gu approximates the distance in G (because if
⟨u1, . . . , uk⟩ is a shortest path in G with u1 = u, and i is the largest index with ui ∈ Vhigh,
then ⟨u1, ui, . . . , uk⟩ is a path in Gu). We run Dijkstra’s algorithm on Gu from the source
u. Since Gu has O(n2/t) edges, this takes Õ(n2/t) time per u. The total over all u ∈ R is
Õ((n/L) · (n2/t)) = Õ(n3/(tL)).

Phase 3. We now approximate D[u, v] for all u, v ∈ V as follows.
For (u, v) with D[u, v] ≤ L, we use Lemma 1, which takes Õ((1/ε)Lnω) time.
For (u, v) with D[u, v] > L, recall that we have computed D̂(V, R) from Phase 2. For

u ∈ V and z ∈ R, let D′[u, z] = D̂[u, z] if D̂[u, z] ≤ L + O(ε), and D′[u, z] = ∞ otherwise.
For z ∈ R and v ∈ V , let D′′

a [z, v] = (D̂[z, v] + a) mod 10L. Compute the min-plus product
D′(V, R) ⋆ D′′

a(R, V ) with additive error O(ε) for a = 0 and for a = 5L. Since the finite
entries after rescaling are integers bounded by O(L/ε), this takes Õ(M⋆(n, n/L, n | L/ε)) ≤
Õ((1/ε)Lnω) time. For each (u, v), we remember which z gives the minimum for the two
products, and take the one with the smaller D̂[u, z] + D̂[z, v] among the two.

To justify correctness, consider a pair u, v with D[u, v] ≥ L. Consider a shortest path π

from u to v. There exists a vertex z∗ ∈ R among the first L vertices in π. Thus, D[u, z∗] ≤ L.
Furthermore, among all z ∈ R with D[u, z] ≤ L + O(ε), we have D[z, v] lying in an interval
I of length 2L + O(ε), since the graph is undirected. For either a = 0 or a = 5L, the shifted
interval I + a would be completely contained in [L, 9L] modulo 10L, and so the minimum of
D̂[u, z] + D̂[z, v] would be correctly computed, with additive error O(ε) + O(ε) = O(ε).

ESA 2021



27:8 All-Pairs Shortest Paths with Small Additive Error

Total time. The overall running time (ignoring poly(1/ε) factors) is

Õ(Bnω + tnω/Bω−2 + n3/(tL) + Lnω).

Choosing t = Bω−1 and L = B (noting that indeed B ≤ t) gives Õ(Bnω + n3/Bω). Finally,
choosing B = n(3−ω)/(ω+1) gives Õ(nω+(3−ω)/(ω+1)) = O(n(3+ω2)/(ω+1)) = O(n2.559).

Standard techniques for generating witnesses for matrix products can be applied to
recover the approximate shortest paths [14, 23].

▶ Theorem 3. Given an undirected graph with n vertices and real edge weights in [0, 1], we can
solve the approximate APSP problem with additive error O(ε) in Õ(n(3+ω2)/(ω+1)) = O(n2.559)
time, for any constant ε > 0.

6 Final Remarks

It remains open whether an Õ(n2)-time algorithm for undirected real-weighted graphs is
possible if ω = 2, even with a large constant additive error.

Under the current bounds on matrix multiplication, could our O(n2.559) result be further
improved? At the moment, we don’t know how to use rectangular matrix multiplication
to speed up our algorithm. And we don’t know either how to use rectangular matrix
multiplication to speed up Yuster’s O(n2.687)-time algorithm for directed graphs [22] (ideally,
to match up with Zwick’s unweighted exact APSP algorithm [23], which has running time
O(n2.529) via the latest bounds on rectangular matrix multiplication [17]).
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