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Abstract. In the path minimum query problem, we preprocess a tree
on n weighted nodes, such that given an arbitrary path, we can locate the
node with the smallest weight along this path. We design novel succinct
indices for this problem; one of our index structures supports queries in
O(α(m,n)) time, and occupiesO(m) bits of space in addition to the space
required for the input tree, where m is an integer greater than or equal
to n and α(m,n) is the inverse-Ackermann function. These indices give
us the first succinct data structures for the path minimum problem, and
allow us to obtain new data structures for path reporting queries, which
report the nodes along a query path whose weights are within a query
range. We achieve three different time/space tradeoffs for path reporting
by designing (a) an O(n)-word structure with O(lgϵ n+ occ · lgϵ n) query
time, where occ is the number of nodes reported; (b) an O(n lg lgn)-word
structure with O(lg lg n+ occ · lg lgn) query time; and (c) an O(n lgϵ n)-
word structure withO(lg lg n+occ) query time. These tradeoffs match the
state of the art of two-dimensional orthogonal range reporting queries [8]
which can be treated as a special case of path reporting queries. When the
number of distinct weights is much smaller than n, we further improve
both the query time and the space cost of these three results.

1 Introduction

As one of the most fundamental structures in computer science, trees have been
widely used in modeling and representing different types of data in numerous
computer applications. In many cases, objects are represented by nodes and
their properties are characterized by weights assigned to nodes. Researchers have
studied the problems of maintaining a weighted tree, such that various types of
path queries can be computed efficiently [1, 9, 24, 25, 23, 6, 20, 28, 22, 11]. In this
paper, we consider path minimum (maximum) queries and path reporting queries.

– Path minimum(maximum): Given nodes u and v, return the minimum (max-
imum) node along the path from u to v, i.e., the node along the path whose
weight is the minimum (maximum) one;
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– Path reporting: Given nodes u and v along with a range [p, q], report the
nodes along the path from u to v whose weights are between p and q.

When the given tree is a path, the above queries become range minimum (maxi-
mum) queries [14, 11] and two-dimensional orthogonal range reporting queries [8],
respectively. As stated in [20], the path queries we consider generalize these fun-
damental range queries to weighted trees.

In this paper, we represent the input tree as an ordinal one, i.e., a rooted tree
in which siblings are ordered. The weights of nodes are assumed to be drawn
from [1..σ]. We use lg to denote the base-2 logarithm and use ϵ to denote a con-
stant in (0, 1). Unless otherwise specified, the underlying model of computation
is the standard word RAM model with word size w = Ω(lg n).

Path minimum. The problem of supporting path minimum queries has
been heavily studied [1, 9, 2, 29, 23, 6, 11]. Unlike our formulation, previous work
considers trees on weighted edges instead of weighted nodes. However, it is not
hard to see that these two formulations are equivalent.

The minimum spanning tree verification problem is a special offline case of
the path minimum problem, for which one should determine whether a given
spanning tree is minimum. This problem can be solved using O(n+m) compar-
isons and linear overhead under the word RAM model [24]. The online version
of this problem, i.e., the path minimum problem, was considered by Alon and
Schieber [1]. In the pointer machine model, they designed a structure that uses
super-linear space. Concurrently, Chazelle [9] presented a linear space data struc-
ture under word RAM. Both structures require O(α(n)) query time to sum up
weights along a given path, where α(n) is the inverse-Ackermann function, and
weights are drawn from a semigroup. Thus the online version of the path mini-
mum problem can also be supported in the same time and space. More recently,
several solutions using O(n) words, i.e., O(n lg n) bits, with O(1) query time
have been designed under word RAM [2, 23, 6, 11]. Pettie [29] studied the lower
bound in terms of comparisons of edge weights, and showed that Ω(q ·α(q, n)+n)
comparisons are necessary to serve q queries over a tree of size n.

In this paper we present lower and upper bounds for path minimum queries.
In Lemma 4 we show that Ω(n lg n) bits of space are necessary to encode the
answers to path minimum queries over a tree of size n. This distinguishes path
minimum queries from range minimum queries in terms of space cost.

We adopt the indexing model (also called the systematic model) [3, 7, 5] in
designing new data structures for path minimum queries. Applying this model to
weighted trees, we assume that weights are represented in an arbitrary given raw
form; the only requirement is that the given data support access to the weight of
a node given its preorder rank. Auxiliary data structures called indices are then
constructed, and query algorithm uses indices and the access operator provided
for the raw data. Not only is this an important theoretical model (its variants
are frequently used to prove lower bounds [12, 26, 17]), it is also of practical
importance as it addresses cases in which the (large) raw data are stored in
slower external memory or even remotely, while the (smaller) indices could be
stored in memory or locally. The space of an index is called additional space. Note



that the lower bound in the previous paragraph is proved under the encoding
model, and thus does not apply to the indexing model.

To present our results, we assume the following definition for the Ackermann

function: A0(i) = i + 1 and Aℓ+1(i) = A
(i+1)
ℓ (i + 8), where A

(0)
ℓ (i) = i and

A
(i)
ℓ (j) = Aℓ(A

(i−1)
ℓ (j)) for i ≥ 1. This is faster growing than the one defined by

Cormen et al. [10]. Let α(m,n) be the smallest L such that AL(⌊m/n⌋) > n, and
α(n) be α(n, n). The following theorem presents our indices for path minimum:

Theorem 1. An ordinal tree on n weighted nodes can be indexed (a) using
O(m) bits of space to support path minimum queries in O(α(m,n)) time and
O(α(m,n)) accesses to the weights of nodes, for any m ≥ n; or (b) using 2n+o(n)
bits of space to support path minimum queries in O(α(n)) time and O(α(n)) ac-
cesses to the weights of nodes.

To better understand variant (a) of this result, we discuss the time and
space costs for the following possible values of m. When m = n, then we have an
index of O(n) bits that supports path minimum queries in O(α(n)) time. When
m = O(n(lg∗)∗n), for example, then it is well-known that α(m,n) = O(1), and
thus we have an index of O(n(lg∗)∗n) 1 bits that supports path minimum queries
in O(1) time. Previous solutions [2, 23, 6, 11] to the same problem with constant
query time occupy Ω(n lgn) bits of space in addition to the space required for the
input tree. Combining the above results with a trivial encoding of node weights,
we obtain the first succinct data structures for path minimum queries. With a
little extra work, we can even represent a weighted tree using n lg σ+ 2n+ o(n)
bits only, i.e., within an o(n) additive term of the information-theoretic lower
bound, to support queries in O(α(n)) time. Considering the construction time
is O(n), this variant almost matches the lower bound of Pettie [29].

Path reporting. Path reporting queries were proposed by He et al. [20].
They obtained two solutions: one uses O(n) words and O(lg σ+ occ · lg σ) query
time, and the other uses O(n lg lg σ) words but O(lg σ+ occ · lg lg σ) query time,
where σ is the number of distinct weights and occ is output size. For the same
problem, Patil et al. [28] designed a succinct structure based on heavy path
decomposition [31, 18]. Their structure requires only n lg σ+6n+o(n lg σ) bits but
O(lg σ lg n+occ·lg σ) time. Concurrently, He et al. [22] designed another succinct
structure based on a different idea. This structure, requiring O(lg σ/ lg lg n+occ ·
lg σ/ lg lg n) query time, is the best previously known linear space solution.

In this paper, we design three new data structures for path reporting queries:

Theorem 2. An ordinal tree on n nodes whose weights are drawn from a set of
σ distinct weights can be represented using O(n lg σ ·s(σ)) bits of space, such that
path reporting queries can be supported in O(min{lg lg σ + t(σ), lg σ/ lg lg n} +
occ ·min{t(σ), lg σ/ lg lg n}) time, where occ is the size of output, and s(σ) and
t(σ) are: (a) s(σ) = O(1) and t(σ) = O(lgϵ σ); (b) s(σ) = O(lg lg σ) and
t(σ) = O(lg lg σ); or (c) s(σ) = O(lgϵ σ) and t(σ) = O(1).

1 (lg∗)∗ is the number of times lg∗ must be iteratively applied before the result becomes
less than or equal to 1.



These results completely subsume almost all previous results; the only ex-
ceptions are the succinct data structures for this problem designed in previous
work, whose query times are worse than our linear-space solution. Furthermore,
our data structures match the state of the art of 2D range reporting queries [8]
when σ = n, and have better performance when σ is much less than n.

Overview of Techniques. Unlike previous succinct tree structures [16, 28,
22, 19, 13], our approach for path minimum is based on topological partitions [15]
which transform the input tree into a binary tree and further recursively decom-
poses it into a hierarchy of clusters with constant external degrees. Our main
strategy of constructing path minimum query structures (in Section 3) is to re-
cursively divide the set of levels of decomposition into multiple subsets of levels;
with a carefully-defined version of the path minimum query problem which takes
levels in the decomposition as parameters, the query over the entire structure
can be answered by conquering the subproblems local to the subsets of levels.
Solutions to special cases of the query problem are also designed, so that we can
present the time and space costs of our solution using recursive formulas. Then,
by carefully constructing a number series and using it in the division of levels
into subsets, we can prove that our structures achieve the tradeoff presented in
Theorem 1 using the inverse-Ackermann function. This approach is novel and
exciting, and it does not directly use standard techniques for word RAM at all.

The above strategy would not achieve the desired space bound without a
succinct data structure that supports navigations in the input tree, the binary
tree that it is transformed into and the clusters in the topological partition. We
design such a structure (in Section 4) occupying only 2n + o(n) bits, which is
of independent interest. Finally, to design solutions to path reporting (in Sec-
tion 5), we follow the general framework of He et al. [22] to extract subtrees
based on the partitions of the entire weight range, and make use of a concep-
tual structure that borrows ideas from the classical range tree. One strategy of
achieving improved results is to further reduce path reporting into queries in
which the weight ranges are one-sided, which allows us to apply our succinct
index for path minimum queries to achieve the tradeoffs presented in the second
half of the abstract. We further apply a tree covering strategy to reduce the
space cost for the case in which the number of distinct weights is much smaller
than n, and hence prove Theorem 2.

2 Preliminaries

Succinct Data Structures. Bit vectors are one of the main building blocks in
many space efficient data structures. Let B[1..n] denote a bit vector of size n. For
α ∈ {0, 1}, rankα(B, i) counts α-bits in B[1..i], while selectα(B, i) finds the
i-th α-bit in B. The following lemma presents succinct bit vector representations:

Lemma 1 ([30]). A bit vector with n−m zeros and m ones can be represented
using lg

(
n
m

)
+O(n lg lg n/ lg n) bits of space to support rankα, selectα, and the

access to each bit in constant time.



The next lemma presents succinct ordinal trees over an alphabet of size
σ = o(lg lg n), and unlabeled trees can be considered as a special case:

Lemma 2 ([16, 19, 13]). An ordinal tree T on n nodes over an alphabet of size
σ can be encoded in n(lg σ + 2) +O(σn lg lg lg n/ lg lg n) bits of space to support
the following operations in O(1) time. Here x and y, which are nodes in T , are
identified by preorder ranks. A node is its own 0-th ancestor. In addition, a node
with label α is an α-node, and an α-node is an α-ancestor of its descendants.

– depth(T, x): the depth of x (i.e., the number of ancestors of x);

– depthα(T, x): the number of α-ancestors of x;

– parent(T, x): the parent of x;

– level anc(T, x, i): the i-th lowest ancestor of x;

– level ancα(T, x, i): the i-th lowest α-ancestor of x;

– LCA(T, x, y): the lowest common ancestor of x and y.

Topological Partitions and Topology Trees. Frederickson [15] presented
topological partitions for online updating of minimum spanning trees. An input
tree T , which may have arbitrary degree, is transformed into a binary tree B;
and then B is partitioned as follows:

Lemma 3 ([15]). A binary tree B on n nodes can be partitioned into a hierarchy
of clusters with h + 1 levels for some h = O(lg n): each cluster is a connected
component of B; the only cluster at level h contains all the nodes in B, and each
cluster at level 0 contains a single node; a cluster at level i > 0 is the disjoint
union of at most 4 clusters at level i − 1; at level i, there are at most (3/4)in
clusters of size at most 4i, which form a partition of the nodes in the binary tree;
and each cluster has at most 3 nodes that are connected to the outside, which
are called its endpoints.

The hierarchy of clusters is referred to as the topology tree of T and B, which is
denoted by H. A node at level i > 0 of H represents a cluster C at level i of the
hierarchy, and its children represent the clusters at the lower level that partition
C. In particular, the leaf nodes of H, which are at level 0, represent individual
nodes of the binary tree B.

Tree Extraction. He et al. [20, 22] introduced tree extraction to support
path queries. This technique is based on the deletion operation of tree edit
distance [4]. To delete a non-root node u, its children are inserted in place of u
into the list of children of its parent, preserving the original left-to-right order.
Let T be an ordinal tree and X be a subset of nodes in T . The X-extraction
of T , FX , is defined to be the ordinal forest obtained by deleting all the nodes
that are not in X from T . There is a natural one-to-one correspondence between
the nodes in X and the nodes in FX , and the ancestor-descendant and preorder
relationships among the remaining nodes are preserved. If X contains the root
of T , then FX consists of a single ordinal tree only, which is denoted by TX .



3 Path Minimum Queries

We first give a simple lower bound for path minimum queries under the encoding
model. Due to page limitation, the proof is omitted here.

Lemma 4. In the worst case, Ω(n lg n) bits are required to encode the answers
to all possible path minimum queries over a tree on n weighted nodes.

Unlike the lower bound of Pettie [29], Lemma 4 provides a separation between
path minimum and range minimum in terms of space: Ω(n lg n) bits are required
to encode path minimum queries over a tree on n weighted nodes, while range
minimum over an array of length n can always be encoded in 2n bits [14].

Now we consider the support for path minimum queries. The space cost of
maintaining a weighted tree is dominated by storing the weights of nodes. Thus
we represent the input tree as an ordinal one, for which the nodes are identified
by their preorder ranks. This does not significantly affect the space cost.

We will assume the indexing model described in Section 1 and develop sev-
eral novel succinct indices for path minimum queries. Thus the weights of nodes
are assumed to be stored separately from the index for queries, and can be ac-
cessed with the preorder ranks of nodes. The time cost to answer a given query
is measured by the number of accesses to the index and that to node weights.

Let T be an input tree on n nodes. Here T is represented as an ordinal one,
and its nodes are identified by preorder ranks. We transform T into a binary
tree B as follows (essentially as in the usual way but with added dummy nodes):
For each node u with d > 2 children, where v1, v2, · · · , vd are children of u, we
add d− 2 dummy nodes x1, x2, · · · , xd−2. The first and the second child of u are
set to be v1 and x1, respectively. For 1 ≤ k < d − 2, the first and the second
child of xk are set to be vk+1 and xk+1, respectively. Finally, the first and the
second child of xd−2 are set to be vd−1 and vd, respectively. In this way we have
replaced u and its children with a right-leaning binary tree, where the leaf nodes
are children of u. This transformation does not change the preorder relationship
among the nodes in T . In addition, the set of non-dummy nodes along the path
between any two non-dummy nodes remain the same after transformation.

We decompose B and obtain the topology tree H using Lemma 3. For sim-
plicity, a cluster at level i is called a level-i cluster, and its endpoints are called
level-i endpoints. Since T and B are both rooted trees, each cluster contains a
node that is the ancestor of all the other nodes in the same cluster. This node
is referred to as the root of the cluster. In the topology tree H, sibling clusters
are ordered by the preorder ranks of their roots. Each cluster C is identified by
its topological rank, i.e., the preorder rank of the node in H that represents C.

To facilitate the use of topology trees, we define operations relevant to nodes,
clusters and endpoints. Here we assume that x and y are nodes in B.

– conversions between nodes in B and T ;
– level cluster(H, i, x): the level-i cluster that contains node x;
– LCC(H, x, y): the lowest-level cluster C that contains nodes x and y;
– cluster root(H, C): the root of level-i cluster C;



– cluster endpoints(H, C): the endpoints of level-i cluster C;
– closest endpoint(H, C, x): the endpoint of C that is the closest to node x,

given that x is outside of C;
– parent(B, x): the parent node of x;
– LCA(B, x, y): the lowest common ancestor of x and y;
– endpoint rank(B, i, x): the number of level-i endpoints preceding x in pre-

order of B;
– endpoint select(B, i, j): the j-th level-i endpoint in preorder of B.

Lemma 5. Let T be an ordinal tree on n nodes. Then T , the transformed binary
tree B, and their topology tree H can be encoded in 2n+ o(n) bits of space such
that the operations listed above can be supported in O(1) query time.

To present our key strategy first, we defer the proof of Lemma 5 to Section 4.
As the conversion between nodes in T and B can be performed in O(1) time,
we assume that each given query is specified by two nodes in B. Let h denote
the highest level of H. The following two query problems are defined in terms of
clusters and endpoints, for 0 ≤ i < j ≤ h:

– Pi,j(C0, C1, C2): find the minimum node along the path from an endpoint of
a level-i cluster C1 to an endpoint of another level-i cluster C2, where both
C1 and C2 are contained in the same level-j cluster C0;

– P ′
i,j(C0, C1): find the minimum node along the path from an endpoint of a

level-i cluster C1 to an endpoint of a level-j cluster C0, where C1 is in C0.

For simplicity, we drop the parameters when referring to these problems in the
rest of this section. Thus the original problem is P0,h. If Pi,j is solved, then P ′

i,j

and Pi′,j for i′ > i are also naturally solved.
Let h0 > 0 be a parameter whose value will be determined later. We will

solve P0,h0 using brute-force search, and support Ph0,h using a novel recursive
approach as described below. For each cluster C whose level is higher than or
equal to h0, we explicitly store the minimum node on the bridges of C, where
bridges are paths connecting pairs of endpoints of C (excluding the endpoints).
This requires 6i bits for a cluster at level i, as it has at most three bridges. The
overall space cost is

∑h
i=h0

(
6i · (3/4)in

)
= O(h0(3/4)

h0n) bits, which is o(n)
bits when h0 = ω(1). We have the following lemmas as base cases of recursion.

Lemma 6. For i ≥ h0, Pi,i+8 can be solved in O(1) query time and 0 extra bits.

The correctness of this lemma follows from the fact that each level-(i + 8)
cluster contains a constant number of level-i clusters, which makes it possible to
split a query path into a constant number of subpaths, each being either a level-i
endpoint or a bridge of some level-i cluster which have been preprocessed.

Lemma 7. P ′
i,j can be solved using O(1) query time and O((3/4)in) extra bits.

Proof. We construct an ordinal tree Ti by extracting all level-i endpoints from
B. The size of Ti is O((3/4)in). For convenience, we denote a node in Ti by u′

iff it corresponds to a level-i endpoint u in B. The conversion between u and u′



can be performed in O(1) time using endpoint rank and endpoint select.
Next we assign labels from alphabet {0, 1} to the nodes of Ti. We only con-

sider the case in which the level-j endpoint is the first one in preorder of its
cluster; the other cases can be handled similarly. Let u be any level-i endpoint
and let v be the first endpoint of C0 = level cluster(B, j, u), i.e., the level-j
cluster that contains u. Like the proof of Lemma 6, the path from u to v in B can
be split into a sequence of level-i endpoints and bridges of level-i clusters. Let x
be the next level-i endpoint on the path. We assign 1 to u′ in Ti if the minimum
node between u and v is smaller than that between x and v; otherwise we assign
0 to u′. We represent this labeled tree in O((3/4)in) bits using Lemma 2.

To find the minimum node between u and v, we need only find the closest
1-node to u′ along the path from u′ to v′ in Ti. This can be done in O(1) time
by performing level ancα and depthα operations on Ti. Let x

′ be such a node.
Then the minimum node between u and v must be x or appear on some bridge
of the level-i cluster that contains x, and thus can be retrieved in O(1) time. ⊓⊔

Now we turn to consider general Pi,j , for which we will develop a recursive
strategy with multiple iterations. At each iteration, we pick a sequence i = i0 <
i1 < i2 < . . . < ik = j, for which Pi0,i1 , Pi1,i2 , . . . , Pik−1,ik are assumed to be
solved at the previous iteration. By Lemma 7, we solve P ′

i,i1
, P ′

i,i2
, . . . , P ′

i,ik
using

O(k(3/4)in) bits of additional space.
Consider the support for a query of Pi,j , for which level-i endpoints u and t

are endpoints of the query path, and u and t are contained in the same level-j
cluster. W.l.o.g, we assume that t is an ancestor of u (the case in which neither
node is an ancestor of the other can be reduced to this case easily). We compute
C0 = LCC(B, u, t), which is the lowest level cluster that contains both u and
t. Let i′ be the level of C0. Then we determine s such that is < i′ ≤ is+1; s
can be computed in constant time by precomputing the result for each of the
h + 1 = O(lg n) levels. Let C1 be the level-is cluster that contains u and let x
be an endpoint of C1 that is between u and t. Similarly, let C2 be the level-is
cluster that contains t and let z be an endpoint of C2 that is between u and
t. Note that x and z can be found in constant time using level cluster and
closest endpoint. Thus the query path can be decomposed into u ∼ x ∼ z ∼ t.
The minimum node on u ∼ x and that on z ∼ t can be found by querying P ′

i,is
.

The minimum node on x ∼ z can be found by recursively querying Pis,is+1 .
Summarizing the discussion above, we have the following recurrences. Here

ℓ is the number of iterations, and Qℓ(i, j) and Sℓ(i, j) are time and space costs
for solving Pi,j at the ℓ-th iteration.

Sℓ+1(i, j) =

k−1∑
s=0

Sℓ(is, is+1) +O(k(3/4)in) (1)

Qℓ+1(i, j) =
k−1
max
s=0

Qℓ(is, is+1) +O(1) (2)

Lemma 8. Given a fixed value L, there exists a recursive strategy and some
constant c such that, for 0 ≤ ℓ ≤ L, Sℓ(i, Aℓ(i)) ≤ c(4/5)in and Qℓ(i, Aℓ(i)) ≤ cℓ.



Proof. At the 0-th iteration, we have A0(i) = i + 1. This can be used as the
base case. By Lemma 6, Pi,i+1 can be supported using constant query time at
no extra space cost. Thus the statement holds for ℓ = 0.

At the (ℓ+1)-th iteration, we choose the sequence i, i+8, Aℓ(i+8), A
(2)
ℓ (i+

8), . . . , A
(i)
ℓ (i+ 8), A

(i+1)
ℓ (i+ 8). The last term is Aℓ+1(i). Then by Equation 1:

Sℓ+1(i, Aℓ+1(i)) ≤
∑

0≤j≤i

Sℓ(A
(j)
ℓ (i+ 8), A

(j+1)
ℓ (i+ 8)) +O(i(3/4)in)

≤ O(i(3/4)in) +
∑

0≤j≤i

c(4/5)A
(j)

ℓ
(i+8)n

≤ O(i(3/4)in) + 5c(4/5)i+8n ≤ c(4/5)in

for some sufficiently large constant c. This convergence follows because 5(4/5)8 is

less than 1. Equation 2 implies Qℓ+1(i, Aℓ+1(i)) ≤ O(1) +max0≤j≤i Qℓ(A
(j)
ℓ (i+

8), A
(j+1)
ℓ (i+8)) ≤ O(1)+cℓ ≤ c(ℓ+1) for some sufficiently large c. The induction

thus carries through. ⊓⊔

To achieve desired time-space tradeoffs, we recurse one more iteration. Given
a parameter m ≥ n, we set L = α(m,n) and h0 = 0. At the final (L + 1)-th
iteration, choose the sequence 0, 1, 2, . . . , ⌊m/n⌋, AL(⌊m/n⌋). This gives

SL+1(0, AL(⌊m/n⌋)) ≤ SL(⌊m/n⌋, AL(⌊m/n⌋)) +O(⌊m/n⌋n) ≤ O(m)

and QL+1(0, AL(⌊m/n⌋)) ≤ O(L) = O(α(m,n)). Thus we have proved part (a)
of Theorem 1.

To further decrease the space cost of our index to 2n + o(n) bits, we still
recurse L levels. We choose L = α(n) and h0 = ⌈log4 L⌉. Note that h0 = ω(1)
and AL(h0) ≥ h. Therefore we have SL(h0, AL(h0)) = O((4/5)h0n) = o(n), and
QL(h0, AL(h0)) = O(L) = O(α(n)). To solve P0,h0

and P ′
0,h0

, we perform brute-

force search on the query path in O(4h0) = O(α(n)) time, as a level-h0 cluster
has at most 4h0 nodes. Thus we have proved part (b) of Theorem 1.

By further constructing the preorder label sequence [22, 21] of T , we have:

Corollary 1. Let T be an ordinal tree on n nodes, each having a weight drawn
from [1..σ]. Then T can be represented (a) using n lg σ + O(m) bits of space to
support path minimum queries in O(α(m,n)) time, for any m ≥ n; or (b) using
n(lg σ+2)+o(n) bits of space to support path minimum queries in O(α(n)) time.

4 Encoding Topology Trees

Let T be an ordinal tree on n nodes. As described in Section 3, we transform
T into a binary tree B, and compute the topology tree of B as H. Let nH de-
note the number of nodes in H; clearly nH = O(n). Let i1 = ⌈8 lg lg n⌉ and
i2 = ⌊(1/2) lg lg n⌋ − 1. By Lemma 3, there are at most n1 = (3/4)i1n =

O(n/(4/3)8 lg lgn) = O(n/ lg8 lg(4/3) n) < O(n/ lg3 n) clusters at level i1, each



being of size at most m1 = 4i1 ≤ 48 lg lgn+1 = 4 lg16 n. Similarly, there are at
most n2 = (3/4)i2n = O(n/ lg(1/2) lg(4/3) n) < O(n/(lg1/5 n)) clusters at level i2,
each being size of at most m2 = 4i2 ≤ 4(1/2) lg lgn−1 = (lg n)/4. Level-i1 clusters
are called mini-clusters, and level-i2 ones are called micro-clusters. We first store
the encodings of micro-clusters.

Lemma 9. All micro-clusters can be encoded in 2n + o(n) bits of space such
that given the topological rank of a cluster, its encoding can be retrieved in O(1)
time if it is a micro-cluster.

Proof. Note that B has at most 2n nodes. Given a micro-cluster C, we do not
store its encoding directly because it could require about 4n bits of space for
all micro-clusters. Instead, we define X to be the union of non-dummy nodes
and endpoints of C and store only CX , where CX is the X-extraction of C
as defined in Section 2. We also mark the (at most 3) dummy nodes in CX ,
which requires O(lgm2) = O(lg lg n) bits per node. Encoding CX as balanced
parentheses [27], the overall space cost of encoding C is 2nC + O(lg lgn) bits,
where nC is the number of non-dummy nodes in C. We concatenate the above
encodings of all micro-clusters ordered by topological rank and store them in
a sequence, P , of n′ = 2n + O(n lg lg n/(lg1/5 n)) bits. We construct a sparse
bit vector, P ′, of the same length, and set P ′[i] to 1 iff P [i] is the first bit
of the encoding of a micro-cluster. P ′ can be represented using Lemma 1 in

lg
(
n′

n2

)
+ O(n lg lg n/ lg n) = O(n lg lg n/(lg1/5 n)) bits to support rankα and

selectα in constant time. We construct another bit vector B0[1..nH], in which
B0[j] = 1 iff the cluster with topological rank j is a micro-cluster, which has the
same asymptotic space cost.

To retrieve the encoding of a cluster, C, whose topological rank is j, we first
use B0 to check if C is a micro-cluster. If it is, let r = rank1(B0, j). Then the
encoding of CX is P [select1(P

′, r)..select1(P
′, r+ 1)− 1]. To recover C from

CX , we need only follow the procedure described at the beginning of Section 3.
This can be done in O(1) time using a lookup table F0 of o(n) bits. ⊓⊔

To support operations, our main strategy is to encode global information at
levels on or above i1, information local to a mini-cluster among levels between
i2 and i1, and lookup tables for the levels contained in a micro-cluster. Extra
care is needed as the topological order of clusters is not the same as the relative
order of their roots in preorder. Details are omitted due to page limitation.

5 A Sketch of Supporting Path Reporting Queries

In this section we sketch our improved data structures for path reporting queries.
The details of supporting path reporting queries are deferred to the full version
of this paper. Our solutions present various algorithmic techniques we developed
to prove Theorem 2, as well as a simplified approach to achieve similar time-
space tradeoffs for the 2D orthogonal range reporting problem on an n×σ grid.

Following the approach of He et al. [22], we build a conceptual range tree on



[1..σ] with branching factor f = ⌈lgϵ n⌉. We keep splitting ranges until the bot-
tom level contains σ leaf ranges. This conceptual range tree has h = ⌈logf σ⌉+1
levels, among which the top level is the first level, and the bottom level is the
h-th level. For each range [a..b] in the conceptual range tree, we obtain Fa,b by
extracting all nodes whose weights are in [a..b] from T . Each node x in Fa,b is
assigned a label between 1 and f , which indicates the child range at the lower
level that contains the node that corresponds to x. All these Fa,b’s are main-
tained in succinct representations such that path reporting queries with respect
to labels can be answered in constant time per node.

Let u and v be the endpoints of query path and [p..q] be the query range. The
algorithm of He et al. [22] traverses the conceptual range tree from top to bottom,
and splits [p..q] into O(lg σ/ lg lg n) canonical ranges, each being a single range,
or the union of consecutive sibling ranges in the conceptual range tree. Thus the
original query can be transformed into O(lg σ/ lg lg n) subqueries on different
Fa,b’s. This relatively simple algorithm requires an overhead of O(lg σ/ lg lg n)
time, in addition to O(lg σ/ lg lg n) time per node in the output, since we need
convert a node in Fa,b to that of T level by level.

Our new algorithm avoids traversing the conceptual range tree level by lev-
el. We make use of the ball-inheritance problem, such that, given a node x in
some Fa,b, we can determine the node in T that corresponds to x much faster
than O(lg σ/ lg lg n) time. To support the given query, we first find the low-
est range [a..b] in the conceptual range tree that completely contains [p..q]. Let
[a1..b1], [a2..b2], . . . , [af ..bf ] be the child ranges of [a..b] in increasing order of left
endpoints. We determine α, β ∈ [1..f ], such that [aα..bβ ] covers [p..q], and β−α
is minimized. The query range can thus be decomposed into [p..bα], [aα+1..bβ−1]
and [aβ ..q]. The support for the second subrange is the same as that of He et
al. [22]. For the third subrange, we employ the succinct index designed in Theo-
rem 1 with m = O(n lg∗ n), such that we can enumerate the nodes in Faβ ,q that
are on the query path in increasing order of weights. For each of them, we use
the auxiliary data structures for the ball-inheritance problem to find the corre-
sponding node in T . This procedure is terminated if the weight of the current
node is above q. The support for the first subrange is similar.
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