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Abstract

Recent years have witnessed a prosperous development of dialogue response generation
since the advent of Transformer [66]. Fine-tuning pretrained language models for different
downstream tasks has become the dominant paradigm in Natural Language Processing
(NLP). However, fine-tuning requires storing a full copy of parameter states for every task,
which is memory-consuming and expensive to serve when working with large-scale models
with billions of parameters like GPT-3 [3].

Meanwhile, prompt-tuning has become an increasingly popular parameter-efficient
method for steering large pretrained language models to various tasks. Most of the prompt-
ing techniques are applied in language understanding and assuming fixed prompts for all
data samples within a task. Therefore, there arises an urgent need to exploit the ability of
prompt-tuning in open-domain dialogue generation where data samples may vary greatly
within a task.

In this thesis, we present a novel, instance-specific prompt-tuning algorithm for dialogue
generation. Specifically, we generate prompts based on instance-level control code, rather
than the conversation context, to explore their impact on controlled dialogue generation.
Experiments on popular open-domain dialogue datasets, evaluated with both automated
metrics and human evaluation, demonstrate that our method is superior to prompting
baselines as well as other lightweight controlled generation methods, and comparable to
fine-tuning with less than 10% of total parameters.
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Chapter 1

Introduction

1.1 Motivation

The release of transformer-based models [66, 50, 11] and extensive training have boosted
the development of natural language generation. Due to the enormous potential stored in
millions of or billions of parameters, models can generate fluent and consistent responses
during various dialogue generation tasks [70, 59]. In light of this development, researchers
are interested in developing personalized conversation agents for different users and the
concept of controlled dialogue generation has rapidly gained popularity [62]. Models are
trained to create responses depending on conversation context, with additional control
attributes taken into account. The control attribute can either be a label attribute such
as the dialogue intent/action and the desired topic, or a series of sentences describing the
user’s persona or background knowledge.

Previous work on this topic proposes different methods, including “controllable train-
ing” [30, 59]: fine-tuning all model parameters for each task; or “post-processing” [17, 10]:
changing the model’s activation states or modifying the output conditional distribution
based on an independent classifier. Despite their outstanding performance, these methods
either require storing a full copy of model parameters (“controllable training”) or suffer
from low-variance and high-biased frozen pretrained models (“post processing”). Recently,
there has been a surge of interest in “additive networks” which add new parameters for
each new attribute. For instance, SideControl [11] trains a residual (side net) on top of
the pretrained base model to flexibly adapt the model to the new task. Because the con-
trol attribute combination occurs after the base model’s computation and does not inject
directly into the model, we notice that the model’s performance degrades greatly when



applied to different downstream datasets in our preliminary experiments. To this end, we
are interested in developing a method that is more expressive.

As of recently, we derive our inspiration from the continuous prompts / prompt-
tuning [33, 38, 45, 41], that interleave a sequence of key-value pairs and impact the model’s
computation accordingly. However, most of the prompt-tuning methods are applied in
language understanding tasks with relatively little work on language generation such as
dialogue generation, and they typically assume a task-level prompt for all samples within
a task, neglecting the fact that samples might vary greatly, especially in the field of con-
versation generation.

1.2 Problem Statement

Motivated by previous studies, we cast the controlled dialogue generation as a prompt-
tuning task. Given a large pretrained model that consists of a function fs(z) = y that
takes as input some text x and computes some output y based on a large number of
parameters . Controlled dialogue generation additionally introduces control attribute a
that frames the function as fy(x,a) = y. In practice, people are interested in training
specialized functions gy, (z,a) = y; for downstream tasks (indexed by 7). In that process,
0; for each task ¢ is tuned and stored which includes as many parameters as the entire
pretrained model for each downstream task.

The problem that this thesis explores is how to avoid creating or modifying as many
parameters as the full pretrained model. In other words, we intend to create and/or
modify only a small number of parameters in comparison to the full pretraind model.
Inspired by prompt-tuning, We present a method for steering the pretrained model 6
with an additional small set of parameters ¢; modifying the control attribute a such that
fo([z, he,)]) = go,(x,a). Here hy, is a small prompting module that takes as input some
control attribute a and encodes it into a prompt that is concatenated with x as input to the
pretrained language model. The pretrained model fy is frozen throughout the fine-tuning.
Since the prompting module is a fraction of the size of the pretrained dialogue model,
this allows many controlled dialogue systems to be stored on a device without too much
overhead.



1.3 Contributions

In this work, we propose Controlled DialogPrompt which applies a finer-grained prompt-
tuning in controlled dialogue generation. It optimizes prompts based on provided control
codes rather than the previous conversation history and we further explore the controlla-
bility of prompts at the instance level. By encoding control attributes into hidden vectors
and injecting them at every layer of the base model, we find our method can dynamically
modulate the base model in content-rich and challenging datasets with specified attributes.
The size of the prompt encoder is strictly limited and we freeze the pretrained model during
training in order to preserve memory efficiency.

We test our technique on label control and document control scenarios with two different
open-domain dialogue datasets, showing that our method outperforms prompting and other
lightweight controlled generation baselines and matches fine-tuning with less than 10%
of total parameters. Besides, we carry out an ablation study of the expressiveness of
different prompts depth with pair-wise human evaluations and provide generated samples
for reference.

1.4 Thesis Outline

This thesis is organized as follows.

e In Chapter 2, we introduce basic components in the generation model and the devel-
opment of text generation structures including Feedforward neural networks, Recur-
rent neural networks (RNN), Sequence-to-Sequence models, and Transformers.

e In Chapter 3, we describe more related work in both controlled dialogue generation
and prompt-tuning. These works serve as an important foundation on which we
propose our approach in the intersection of these two fields.

e In Chapter 4, we propose the method of Controlled DialogPrompt to adapt pretrained
models effectively and efficiently, introduce experimental design from datasets to
evaluation metrics, and report comparative results with detailed explanations.

e In Chapter 5, we summarize our work and discuss possible future work.



Chapter 2

Background

In this chapter, we first introduce Feedforward neural networks which are the basic ele-
ments in Deep Learning. We then cover the concept of Recurrent neural networks which
are proficient in solving sequential data and their inefficiencies. Besides, we cover the
structure of Sequence-to-Sequence model that is popular in natural language generation
and is widely applied in dialogue tasks. Finally, we describe the state-of-the-art Trans-
former architecture and the prevalent paradigm of pretraining as well as several advanced
pretrained transformer-based dialogue generation models.

2.1 Feedforward Neural Networks

Feedforward neural networks are among the most flexible and powerful biologically inspired
learning algorithms. The network consists of neurons, called units or nodes, which are
connected to one another and arranged into three layers: input layer, hidden layer, and
output layer. Nodes in one layer are fully connected to nodes in adjacent layers, and input
information flows through the net from the input layer to hidden layers and finally to the
output layer to generate the output. The connections do not form a loop, i.e. the output
will not be fed back as the input and that’s why these networks are called “feedforward”.
We provide one example of a simple feedforward neural network in Figure 2.1. Connections
between nodes are called edges, and they are responsible for passing values from one layer
to another. Normally, edges do not have the same strengths or weights.

In the forward pass, each node in the hidden layers would take input values from the
previous layer, multiply them by the weights of the connecting edges, add a constant called
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Figure 2.1: Sample of a feedforward neural net with one hidden layer from Quiza and Davim,
2011. [55]

bias, and go through a non-linear activation function to produce the output value. The
values pass iteratively to the next layer until the output layer node generates the final
output. All weights and biases form the trainable parameters of the entire neural network.

After the neural net generates an output, the difference between the predicted output
and the true values/labels, known as loss, can be computed using different loss functions
such as Cross Entropy or Mean Squared Error. The smaller the loss is, the better the neural
net predicts. All parameters (weights and biases) are initialized randomly and adjusted to
reduce the loss during the training so as to improve the accuracy of predictions. It does so
by backpropagating the loss and updating the weights based on their calculated gradients
using some optimization functions such as Stochastic Gradient Descent (SGD), Adam, etc.
Let 6 be the parameter of the neural network, £ be the loss function and 7 be the learning
rate, then the update can be expressed as:

0« 0—n-VeLl(0)

The number of layers in the neural network defines its depth. It is widely considered
that a large depth is necessary to build a powerful model which can have more ability to
learn different representations. However, it brings up another famous question called the
vanishing /exploding gradient problem. Briefly speaking, with deeper layers, the product
of the derivative (gradient) shrinks/explodes during the backpropagation and lower layers
fail to receive a reasonable amount of gradients to make adjustments. As a result, lower
layers do not learn/totally explode during the training.



2.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) are another type of artificial neural networks where
connections between nodes can create a cycle so that the previous output can be used as
the next input and affect the subsequent computation. For example, if we encounter a text
generation task where the prediction of the next token depends on the context created by
the previous words, we cannot use a feedforward neural net which assumes every input
is independent of each other, but instead, we can use an RNN which has a “memory”
component to store the states and incorporate the dependencies.

e e s ™
<1> <2> <t> <t+1>]
- S J J
e o Y a<t—1> (T Y a<t> a<t+l>
a<0> — ‘_. ‘_. I L,
& J \ J
LA ) . .
.’E<1> CL'<2> Z’<t> $<t+1>
| ) \ J

. / \, ,/ - v

Figure 2.2: An unrolled recurrent neural network (RNN).!

We provide a graph (Figure 2.2) in which we unroll the RNN and analyze its behavior.
In the beginning, an RNN is provided with initial hidden state a® and input 2!, it predicts
a' and y' and stores a! as its latest “memory”. In the next step, when given !, it uses the
stored a' jointly to generate a? and y? and update a? as the latest “memory”. In keeping
with this, at every time step ¢, we can express the calculation as follows:

a' = g(Waaa' ™ + Wopa' +b,)

yt = f(Wyaat + by)

where W, Waz, b, Wy, by are learnable weights and biases that are shared temporally and
g, f are activation functions.

As before, all parameters are updated using backpropagation during training. Though
an RNN is capable of processing inputs of any length, it has difficulty remembering long-
range dependencies. [7] Later, Long Short Term Memory (LSTM) [21] and Gated Recurrent
Unit (GRU) [12] solve the problem by adding the gating mechanism to retain the past infor-
mation and the vanishing/exploding problem. However, RNNs are still time-consuming to

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
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train and infer due to their sequential structure. Later, we will introduce Transformer 2.4
which is designed to process sequential data in parallel.

2.3 Sequence-to-Sequence Models

Sutskever et al. [50] propose Sequence-to-sequence (Seq2seq) models for solving tasks when
input sequences and output sequences have different lengths. It has been widely applied
in different language modeling tasks such as Machine Translation [50], Text Summariza-
tion [51], Dialogue Generation[(7, (3], etc. Based on the previous RNN section, we notice
that an RNN learns how to take the current hidden state and combine it with an input
vector to produce the subsequent hidden state and the output vector. A Seq2Seq model
is essentially composed of two multilayered RNNs: an encoder and a decoder. The en-
coder processes the source sentence and builds an internal vector of fixed dimensionality
to encapsulate its understanding of the source sentence. The decoder takes the encoded
representation and previous words in the target sentence to generate the next word step by
step. By default, the decoder’s internal vector is initialized by the encoder’s last internal
vector. Normally, the target sentence starts with “begin of sentence” token ((BOS)) to
shift the expected output by one time steps and is followed by “end of sentence” token
((EOS)) to tell the decoder where to stop the generation. We provide a Seq2seq model in
Figure 2.3.

Encoder Decoder
lls regardent . <eos>
> —> > —> > > >
f ] 1 | 7 fF 5
They are watching . <eos> : | . |
<bos> lls regardent

Figure 2.3: A Sequence-to-sequence model. 2

To train a Seq2seq model, one forces the decoder to generate gold sequences by pe-
nalizing it for assigning low probabilities to gold sequences. Losses are summed on all

2nttps://d21.ai/chapter_recurrent-modern/seq2seq.html
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probabilities generated at every token in the target sentence and we use the generated loss
to adjust the parameters (backpropagation mentioned earlier).

With the last hidden state of the encoder being the only encoded representation,
Seq2seq model is incapable of capturing long source sentences. Later, Bahdanau et al. [3]
and Luong et al. [17] integrate the attention mechanism into Sequence-to-sequence models,
which allows the decoder to flexibly select a set of source words to attend to when pre-
dicting the target word. The attention mechanism is one of the most powerful techniques
in machine learning that allows a model to automatically pay more attention to certain
words and phrases in the past and it has demonstrated its effectiveness through qualitative
analysis of Machine Translation tasks.

2.4 Transformers

Though recurrent neural networks can provide better performance in sequence modeling
with the attention mechanism, the recurrent nature restricts them to processing every
sentence word by word and it becomes prohibitively time-consuming to train RNNs on
massive longer sequence datasets. In order to remedy this problem, Vaswani et al. [60]
propose Transformer which is entirely built from self-attention blocks to compute repre-
sentations and enables parallel computation that significantly reduces the training time.

Transformer follows the encoder-decoder structure where the encoder maps the input
sentence to a sequence of fixed-dimension vectors that the decoder can utilize to generate an
output sentence. In Figure 2.4, the left half depicts the encoder structure, which contains
N stacked layers. In the paper, N is set to 6. Each layer consists of two sub-layers named
multi-head self-attention and feedforward neural network. Multi-head self-attention is
the key for the encoder to encapsulate the understanding of all processed tokens. We will
explain the attention block in more detail in the next paragraph. Every sublayer is wrapped
with a residual connection and a layer normalization that has proved effective at solving
the vanishing/exploding gradient problem and stabilizing the hidden state dynamics. The
decoder on the right-hand side is also composed of N stacked layers, which include three
sub-layers, masked multi-head self-attention, multi-head cross-attention, and a feedforward
neural network. According to the paper, masked multi-head self-attention is the trick that
prevents the decoder from peeking at future tokens that it needs to generate and allows it
to only pay attention to previous words. Multi-head cross attention enables the decoder
to attend to the representation computed by the encoder, which supports the information
flow in the encoder-decoder structure.
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Figure 2.4: Transformer architecture from Vaswani et al. [66]



The most essential part of the transformer is “Attention”, or “Scaled Dot-Product
Attention”. Basically, the stacked input X of sequence length [ is firstly multiplied with
weight matrices W%, WX WV to produce the stacked matrices Query @, Key K and Value
V. Then the Query is multiplied with the Key to obtain the attention scores for values
in V at different sequence positions. After scaling down the attention scores product, the
output is multiplied with Value V' to produce the final value. We represent the matrix of

outputs as:
T

Vdy,

1
dy is the dimension of queries and keys and WA is the scaling factor. Instead of using

Attention(Q, K, V') = softmax(

V%

scaled-dot-product attention directly, authors suggest adopting “Multi-Head Attention”,
where X is projected to queries, keys and values h times. In this way, the model can
benefit from richer representation subspaces between pieces of the input sequence. These
h attention computations are performed in much smaller hidden dimensions and will be
computed in parallel so as to reduce computational costs. Following that, all attention
computations will be combined together back to the model’s hidden dimensions. The
multi-head process can be represented as follows:

MultiHead(Q, K, V) = Concat(heady, . .., head,) W
where head; = Attention(QW2, KW, viv))

where WZ-Q, WE WY and WO are projection matrices to be learned.

In order to make the attention-based encoder-decoder work better, Transformer also
has word embedding layers before the encoder and the decoder, as shown in Figure ref-
Transformer. The word embedding helps to convert input tokens to continuous vectors of
the model’s hidden dimensionality for later computation. Besides, in order to convert the
decoder output vector to the conditional probability of the next token over the vocabulary,
they apply a linear layer that shares the same weights as the aforementioned embedding
layer. As the transformer removes the recurrent structure, which might result in the loss
of information about the relative position of the input tokens, the transformer further in-
cludes a sinusoid-wave-based positional encoding into the input embeddings to preserve
the important distance information.

With the attention mechanism, transformers manage to solve long-range text generation
much more powerfully and efficiently compared to previous recurrent models, and they have
become the de facto structure in the field of Natural Language Processing. Later, three

10



main types of transformer-based models have been developed: (1) decoder-based models,
(2) encoder-based models and (3) encoder-decoder-based models.

Among decoder-based models, the GPT series (GPT, GPT-2, GPT3) [56, 57, 8] are
most commonly used. They are composed of a stack of transformer decoder blocks and
trained to predict the next token with previously provided tokens. We build our experi-
ments on GPT-2 and we will discuss them in detail in the next section.

Encoder-based models are composed of a stack of transformer encoder blocks. Typ-
ically, they are trained with the "Masked Language Model” (MLM) objective, which in-
volves reading a masking-corrupted sentence and predicting the masked word to complete
the sentence based on the provided context. Due to transformer encoder blocks’ inherent
bidirectionality, these models are able to comprehend the context coming from both left
and right collectively and develop a deeper understanding of the sentence compared to uni-
directional decoder-based transformers. As an example, Google Al Language researchers
propose Bidirectional Encoder Representations from Transformers (BERT) [I1] and Ro-
bustly Optimized BERT (RoBERTa) [16] which have shown breakthroughs in a variety
of NLP tasks such as natural language inference (MNLI task), sentiment analysis (SST2
task) and question answering (SQuAD task). While BERT can be used for text generation
tasks [03], their performance is not particularly impressive because they are not trained in
an autoregressive style from the beginning, and researchers normally seek decoder-based
models like GPTs for natural language generation (NLG).

Meanwhile, models like Bidirectional and Auto-Regressive Transformers (BART) [31]
and Text-to-text Transfer Transformer (T5) [58] adopt the standard encoder-decoder struc-
ture to generalize both autoencoding and autoregressive abilities. In BART, the encoder
is trained to recover corrupted sentences, while its decoder is trained to generate text se-
quentially. T5 frames and unifies text-based problems into a text-to-text format where
inputs are sentences with gaps and outputs are phrases that fit into these gaps to com-
plete sentences. They achieve state-of-the-art results across multiple NLP tasks including
document summarization, machine translation and text classification.

2.4.1 Generative Pretrained Transformers (GPTs)

The series of Generative Pretraining models [56, 57, §] are all transformer-decoder-based
models which follow the language modeling approach. More specifically, language models
produce the conditional probability of a given sequence of words occurring in a sentence
and their goal is to maximize the joint likelihood of all target words. Due to their ability
to generate words sequentially, they can also be referred as autoregressive models. Despite

11



increases in model size and dataset volume, the evolvement from GPT, GPT-2 to GPT-3
illustrates the strength and capability of Pretraining.

Before GPT, “Fully supervised learning” on every single task plays a pivotal role in
numerous natural language processing tasks, and continuing to develop with novel archi-
tectures and algorithms. [3, 66] In order to achieve strong performance on a specific task,
models are normally trained on a large amount of data samples with curated labels. Con-
sequently, this leads to two major limitations. First, the model’s performance is highly
dependent on the amount and quality of the human engineered dataset. It takes a lot of
effort to create a satisfactory clean dataset, which typically requires thousands of thousands
samples. Second, the model’s performance degrades dramatically when transferring from
the training dataset to other datasets. i.e., the resulting model is task-specific, thereby
limiting its applicability.

With the advent of GPT, academia has accelerated the development of a more human-
like “Pretrain then fine-tune” paradigm, where language models can be first generatively
learned on noisy, unlabeled, large-scale natural language tasks, developing an initial pa-
rameter representation from a variety of tasks, and then undergo minor adaptation to a
specific domain with a supervised objective discriminatively, resulting in significant gains
on different downstream scarce tasks. [22]

Later GPT-2 changes the format to provide instructions (the task description, input
and output) in natural language words in pretraining and fine-tuning, and therefore unifies
the supervised objective during fine-tuning to be the same as the unsupervised objective
trained during the pretraining stage. Instead of designing different sequences and objec-
tives elaborately during fine-tuning, GPT-2 is provided with natural language sequences,
and is expected to do inferences based on natural words and provide the answers for dif-
ferent downstream tasks more easily. GPT-2 provides models up to 48 layers (1.5 billion
parameters) which is 10 times larger than GPT and pretrained on 40GB text data from over
8 million documents. Though GPT-2 is competitive with supervised baselines in several
language modeling datasets, it is still struggling with some tasks such as text summariza-
tion. In addition, the paper discloses an interesting phenomenon that GPT-2 with more
parameters and trained on a larger dataset can surpass its smaller counterpart on many
tasks. Attempting to build even stronger models, Open Al built GPT-3 which pushes the
limit to 175 billion parameters, which is 100 times more parameters than GPT-2. Owing
to its large capacity, it is capable of writing human-like articles and performing tasks it has
never been explicitly trained to. The technique that the model develops its skills during the
pretraining and being able to perform downstream tasks without gradient updates during
fine-tuning is called “in-context learning” or ”prompting”, which we will explore in more
detail in section 3.2.1.
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2.4.2 Dialogue Generation Models

Dialogue generation models or conversational agents are designed to generate fluent and
coherent responses based on given previous utterances. The advent of self-attention ar-
chitecture along with the “Pretrain then fine-tune” paradigm has shed lights on dialogue
generation, where a large number of recent open-domain dialogue systems have been built
on large-scale transformer structures and extensive pretrained datasets. These works in-
clude Meena [1], DialoGPT [70], PLATO [1], PLATO-2 [5], BlenderBot [59], LaMDA [65].
Among these, Meena, DialoGPT, LaMDA are built on transformer-decoder-based lan-
guage model like GPT-2 while PLATO, PLATO-2, BlenderBot utilizes a standard Seq2seq
transformer structure to generate the next utterance. In this thesis, we concentrate on
DialoGPT, which is a large, publicly available and flexibly tunable conversational agent.
DialoGPT extends GPT-2 to strengthen the capability of dialogue generation by further
training on 147M Redddit posts from 2005 through 2017. More importantly, DialoGPT
provides different scales of transformer-decoder models from 12 to 48 layers for researchers
to experiment with and has shown its flexibility and superiority when being fine-tuned on
different downstream datasets. [10, 10]

In recent studies, scaling up model and dataset sizes has been shown to be beneficial
for existing systems [76, 59, (5], and considerable effort has gone into expanding model
size to improve generation capabilities. For instance, LaMDA scales the model to 137B
parameters and requires a pretraining dataset containing 1.56T words. There emerges an
increasingly urgent need to address the efficiency problem caused by these huge models:
Does there exist any efficient method to steer these models flexibly in various downstream
tasks? In this thesis, we will focus on adapting large-scale pretrained language models to
different dialogue tasks in a minimally effortful manner.
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Chapter 3

Related work

In the chapter, we describe related work in two domains where we are going to propose
our approach. The first one is controlled dialogue generation, where we mainly focus on
transformer-based fine-tuning methods. These methods can be classified into conditional
fine-tuning and lightweight fine-tuning. The second type consists of Activation updating,
Weighted decoding and Additive network based on where the pretrained model introduces
the adjustment: pretrained model hidden states, output conditional distribution, or an ad-
ditional small module. Another section depicts the development of prompting and prompt-
tuning and shows the progression from task-level prompts, to attribute-level prompts and
instance-level (instance-specific) prompts. By doing so, we pave the way for introducing
instance-specific prompts in controlled dialogue generation in the next chapter.

3.1 Controlled Dialogue Generation

The advent of transformers [66] and large-scale training [56, 11] has advanced the devel-
opment of dialogue generation, which aims to generate P(X) unconditionally when given
input sentence X. Despite their high quality and fluency[76, 59, 4, 65], these large con-

versational models generate responses based on conversation history without considering
extra factors such as preferred topic, emotion, dialogue intent/action, etc. Meanwhile, con-
trolled dialogue generation introduces control attribute A so that the model is expected
to generate P(X|A) within the restriction given by A. Normally, the control attribute
can be the desired label attribute, such as a specific topic, language formality, or a series
of sentences describing the user’s persona or background knowledge. Compared to other
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controlled text generation tasks, controlled dialogue generation usually requires a higher
level of consistency, engagingness, and informativeness [25].

The topic of controlled generation in large language models has received increased
attention. There have been several successful PLMs-based approaches to generating con-
trolled text using pretrained language models in recent years, and we classify them into
four categories: (1) Conditional fine-tuning (2) Activation updating (3) Weighted decoding
and (4) Additive network.

Conditional fine-tuning demonstrates that control code can be applied and learned
during the training stage. [30] proposes Conditional Transformer Language (CTRL) which
trains a conditional transformer from scratch and attempts to generate consistent con-
tent based on various control code such as govern styles, domains or even defined URLs.

The method prepends control codes a to starting words z = (x1,...,x,) and continues
generating the following words by modeling the chain rule of probability as P(z|a) =
[Liei1 Plzila, 21, ..., 2,_1). As aresult, it releases a 48-layer, 1.63 billion-parameter con-

ditional transformer which can be easily governed by control information. Nevertheless,
this type of method requires updating all parameters in the model, which not only makes
it difficult to scale up to larger models but also to integrate new control codes.

Activation updating performs conditional generation during the decoding stage rather
than the training stage to avoid retraining large-scale pretrained language models for every
single attribute. [10] introduces Plug-and-Play Language Models (PPLM) which is quite
popular in controlled text generation. The intuition behind this method is to train a small
attribute model on top of the frozen pretrained language model, utilize the output of the
attribute model to iteratively perturb the language model’s activation states using gradient
descent, and finally generate tokens towards the expected control attribute.

We denote the expected control attribute as a and the sequence of input words generated
so far as © = (x1,...,2,). Under the recurrent generation view, we denote the language
model’s key-value pairs for every transformer layer as H; at time-step t. Hence, H, repre-
sents the states of the pretrained language model before any generation. At every decoding
step t, H; will be shifted towards the sum of two gradients: (1) higher log-likelihood of the
given attribute a under the conditional attribute model p(a|z) and (2) higher log-likelihood
of x; under the unconditional language model p(z). The first likelihood is computed by
the aforementioned additional attribute model and the second likelihood is computed by
Kullback-Leibler (KL) Divergence and Post-norm Geometric Mean Fusion generated be-
tween the modified language model (H;) and the unmodified language model (Hy). In this
way, the modified model is able to stay close to the pretrained version and retain its fluency
while generating more attribute-related words.
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For time-step t, let AH; denote the update to H; and AH; has an initial value of 0,
AH,; can be written as follows:

Van,(logp(a|H + AHy) + Nog p(H: + AHy))

AH, +— AH, + «
' " U Van(logp(alHy + AHy) + MNog p(H, + AH,)) ||

where « is the step size, v is the scaling coefficient for the normalization term for each layer
of the language model and A is the scalar for the unconditional likelihood. After repeating
a few steps (the paper uses 3 to 10 steps), the language model’s state is updated as

Hy, = Hy+ AH,

There are following works [18, 48] that add different attribute models and additional
strategies on top of PPLM and show satisfactory results. Though PPLM is flexible and
light in comparison to full-model training, it has several drawbacks:

1. Since it involves a few steps of gradient updates at each decoding step, the generation
is pretty time-consuming (see Table 4.1 and Table 4.2) and especially not suitable
for interactive dialogue generation.

2. The method is restricted to label control or Bag of Words (BoW) control. In the
paper, the control attribute model can be either a label classifier or a predefined BoW.
In the BoW scenario, authors use a set of related keywords that specify the desired
topic (e.g. “biology”, “theory”, etc. under the topic “science”) and use the sum of
the likelihoods of all keywords in the set to produce the desired gradient update. As
a result, it becomes difficult to implement the method in sentence control scenarios
such as using the user’s persona, where the control attribute is several sentences
rather than a label or a topic with curated keywords. Therefore, we use this method
as one of the baselines in the label control scenario in later experiments, but not in
the sentence control scenario.

Weighted decoding [17, 71, 31] is another alternative to prevent full-model fine-tuning
which uses discriminators to steer the pretrained language model. Instead of modifying
the base model’s state representation, weighted decoding methods typically employ the
attribute model to reweight the base model’s output distribution. [17] presents a modified
scoring function that perturbs the final output distribution and increases the likelihood
of a bag of desired candidate tokens. Likewise, FUDGE [71] trains a binary discrimi-
nator to rescore the output conditional distribution via Bayes Rule. Specifically, given
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a sequence of words © = (z1,...,x,) and the control attribute a, FUDGE avoids mod-
eling P(z;|x1,...,2;_1,a) directly as conditional fine-tuning, and it utilizes the Bayesian
factorization to transform the distribution as

P(zi|xy, ..., xi1,a) < Pla|xy, ..., x;)P(xi|xy, ... 2iq)

and it becomes sufficient to train the first term with an independent binary classifier. These
two methods have shown promising results on text generation but they rely on either binary
label or bag of words, which is not scalable to our multi-labels and document control tasks.

Later, GEDI [31] also proposes to transform the conditional probability via Bayes
Rule, but it further normalizes the distribution over binary-class distributions with several
heuristics: It utilizes control code a and a corresponding undesired or anti-control code
a when training P(a|xy,...,x;), which is not applicable to our tasks where there is no
anti-control code in user’s persona sentence description.

In addition, since weighted decoding methods are not involved in the pretrained model’s
computation and only modify the final distributions generated by the pretrained model,
they are restricted by low-variance and high-biased pretrained models and can easily return
common words instead of related targeting words when attribute weights are set low [14]
or they may lose the fluency if attribute weights are set high[62].

Fixed Features | Fine-Tune Side-Tune

N
|
\

Figure 3.1: Side-tuning model structure from Zhang et al., 2020.

Recently, [73] extends the idea of Weighted decoding to Additive network with a method
called Side-tuning (Figure 3.1), which adds a side conditional network to understand the
control code and freeze the base model during the training. If the base model is denoted
as B and the small side model is denoted as S, given input z, the curated output becomes
B(z) ® S(x). @ can be defined as a blending where « € [0, 1] is a learnable parameter to
control the feature constraints, and the output becomes aB(z) + (1 — a)S(x).

SideControl [11] implements this idea in controlled dialogue generation, where it uti-
lizes the base model’s pretrained language understanding ability to digest the conversation
context, trains a side network to encode control attributes and performs a point-wise «
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blending to generate the final output. Using the same annotation as Side-tuning, SideCon-
trol first generates the hidden states from the base model B on input z as hy, = B(x). This
is the same output as directly using a pretrained language model. Then SideControl uses
the side network S, which they set as a bidirectional LSTM or a feedforward neural net, to
encode the control attribute a into the base representation as hy = S(hy, a). Finally, the
final output A is combined using « blending as h = ahy + (1 — a)hs. Additionally, in order
to train the side net to encode control codes more accurately and explicitly, they introduce
the control attribute loss L.ontroi and the final loss is a combination of the cross entropy
loss from the base model and control attribute loss, denoting as L = Lpgse + ALcontror (A 18
task-specific hyperparameter).

SideControl shows better controllability and text quality compared to other parameter-
efficient methods in Activation updating and Weighted decoding categories. More impor-
tantly, they do not have restrictions over the control attribute and can serve as a com-
petitive baseline model in our later experiments. However, the combination of the control
attribute occurs after the base model’s generation and its performance depends on the
base model’s ability to understand the conversation context. It is challenging to adapt the
pretrained model to unfamiliar downstream tasks where the pretrained model may fail to
generate reasonable base representations in the first place. Furthermore, SideControl over-
looks the powerful attention mechanism within the pretrained model and it might be more
expressive if the control code is injected directly into the pretrained model to participate
in the attention computation.

To summarize, controlled dialogue generation has evolved into different categories to
efficiently integrate control code with dialogue generation. These methods generally incor-
porate control attributes on top of the base model. However, the idea of inserting control
attributes before the base model or interleaving the base model with control attributes is
rarely explored, and we propose a new Additive network method that can interact with
the pretrained model during the generation.

3.2 Prompt-tuning

3.2.1 Prompting
As mentioned earlier, “Pretrain then fine-tune” has been the dominant paradigm when

deploying generative pretrained language models (PLMs) to downstream tasks since the
advent of GPT [50] and BERT [!1]. It has achieved remarkable performance in different
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NLP tasks including question answering, commonsense reading, and so forth. However,
this requires storing a full copy of parameter states for every downstream task during the
fine-tuning stage, which is memory-consuming and expensive to serve when working with
large-scale models like GPT-3 [3], which requires 175B parameters for each task.

The emergence of GPT-3, on the other hand, revealed a possibility to induce the pre-
trained language model’s learning ability without any tuning. For a given task, inputs
are transformed into cloze-style phrases, along with none or some number of similar ex-
amples demonstrating the task, and the model is required to complete the sentence using
a reasonable word over the masked token. The given task description and examples are
known as discrete prompt and the method is called prompting or in-context learning. For
example, when GPT-3 is given some instructions such as “Please unscramble the letters
into a word, and the word: taefed = “, it can naturally finish the sentence by outputting
“defeat”. It can even imitate particular writers’” work by only conditioning on the given
title, the author’s name and a few starting words. It turns out that GPT-3 can adapt its
pretrained learning ability quickly towards specific tasks with mere task descriptions and
possible guiding examples.

Later work [60, 61] proposes a promising application of GPT-3 called pattern-exploiting
training (PET) and iterative PET (iPET) which incorporate minor gradient-based finetun-
ing into GPT-3 and achieve much better performance compared to strong semi-supervised
methods. They define a “pattern” that wraps every input into a predefined template with
mask tokens and a “verbalizer” which maps meaningless labels to words in the model’s
vocabulary. For instance, in a movie review sentiment analysis task, we define the “pat-
tern” to become “(sentence), the movie is (mask)” and “verbalizer” to be V where V (yo) =
good and V(y;) = bad. If an input sentence is “It is totally worth the price”, it will be
transformed as “It is totally worth the price, the movie is (mask)” and then be forwarded
to the model. Since GPT-3 is pretrained in a generative manner, it may assign a higher
possibility to positive labels such as “good” compared to "bad”. The probabilities for two
classes are then obtained using the softmax function applied to extracted vocab tokens as

exp p('good’)
exp p("bad’) + exp p('good’)”
and the desired output to update the parameters of the language model. In this way, they
found that pretrained GPT-3 can quickly learn with mere 32 training examples and be
used to annotate a large set of unlabeled data, which can be provided as training examples
for other much smaller models’ fine-tuning.

follows: p(yo) = Cross-entropy loss is computed between p

Prompting has demonstrated shockingly satisfactory performance on various down-
stream tasks after only one pretraining session. The “freezing” PLM with flexible prompts
technique is appealing because one copy of the model can be shared across different tasks,
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resulting in a much smaller carbon footprint. However, the model’s performance is largely
restricted by the maximum conditional input length, the model size, and manual guesswork
for prompts. Specifically, different prompts can generate significant instability in model
performance[78, 60, 61, 28]. [78] has shown that prediction accuracy varies from 90% to
50% across different prompt formats on a sentiment analysis task SST-2. More impor-
tantly, creating effective prompts demands domain knowledge of datasets and a thorough
understanding of language models.

Previous works have focused on automatically searching for better discrete prompts to
better solve the task at hand (prompt engineering) [28, (4, 15, (]. For example, Auto-
Prompt [64] generates a set of trigger tokens through a gradient-based strategy iteratively
and concatenates them with inputs conforming to predefined templates to probe a masked
language model’s ability on several downstream application tasks. [15] introduces encoder-
decoder-based pretrained model T5 to prune brute-force search on suitable label words and
decode template tokens automatically. Though automated prompt search shows effective-
ness in optimization and superior performance compared to manual prompt, prompting
is still sub-optimal relative to fine-tuning [33, 45, 43]. In addition, some automatically
generated prompts might seem mysterious and lack interpretability [0, 15]; for instance,
"Hi” is chosen to represent the ”entailment” class in SNLI, a natural language inference
dataset. [15].

3.2.2 Prompt-tuning

Recently, there has been an increased interest in continuous prompts / prompt-tuning,
which bridges the gap between prompting and fine-tuning, while remaining efficient during
training [33, 38, 45, 44]. Continuous prompts remove the trouble of prompt engineering and
extend the prompt selection to the entire space of embeddings, including vector embeddings
that do not correspond to any human-interpretable natural language tokens. It commonly
introduces another small module to encode and generate prompts so that the template or
prompt tokens can be easily tuned on different tasks without being parameterized by the
pretrained language models. As a result, soft prompts are found to be more expressive than
discrete prompts [33, 43]. In prompt tuning, the prompt encoding module is commonly
referred to as a “prompt encoder”.

[33] introduces Soft Prompt-tuning (Figure 3.2) where the backbone model is frozen
during the training and an additional embedding layer is updated for prompt encoding.
Suppose the main frozen model is parameterized as My and the prompt encoder is pa-
rameterized as E,, when given a data sample D = (X,Y) where X represents the source
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Figure 3.2: Soft Prompt Tuning model structure from Lester et al., 2021.

tokens and Y represents the target tokens, prompting (or discrete prompts) would add a
sequence of task description words P to X and optimizes

Prv, (Y([P; X])

Comparatively, Soft Prompt-tuning generates P’ from F, and maximizes

Pry, g, (Y[[P) X])

They show that the approach on TH-Large can outperform few-shot prompt design with
GPT-3 175B (over 220 times larger) and even match the performance to full model-tuning
when the underlying model scales up to T5-11B [58] with only 0.01% task-specific param-
eters introduced.

Prefix
(Translation)

Prefix-tuning

refix
(Summarization)
1

Transformer (Pretrained)

LR L

name Starbucks type coffee shop [SEP] Starbucks serves coffee
Input (table-to-text) Output (table-to-text)

Prefix
(Table-to-text)

Figure 3.3: Prefix Tuning model structure from Li and Liang, 2021.
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Concurrently, Prefix-tuning [358, 11] (Figure 3.3) proposes a more effective technique
that adds soft tokens in the form of key-value pairs at every attention block of the trans-
former. Similar to the above annotation, the method changes the prompt encoder from an
embedding layer E, to a multi-layer perceptron m, and the generated prompt becomes
P" =[P|,Pj,..., P]] where [ represents the pretrained model’s layer count. Prefix-tuning
aims to maximize the following likelihood objective

Progym, (Y[[P"; X]) = Praggm, (Y[[([P, Py, .., F)) © (h1, ha, . )]

where the term h; is the input source hidden states at every transformer layer and ¢
is layer-wise concatenation between prompt and intermediate source hidden states. Ex-
perimentally, Prefix-tuning achieves a comparable performance with fine-tuning with only
0.1% parameters in both table-to-text generation and summarization tasks. Prefix-tuning
even outperforms fine-tuning in low data regimes and has better extrapolation to unseen
topics by preserving pretrained language model parameters.

Later papers refer to the prompt added at the input embedding layer as shallow prompt-
tuning (or shallow prompt) and the prompt prepended at every layer of the transformer as
deep prompt-tuning (or deep prompt).

However, both deep prompts and shallow prompts assume a static prompt / task-level
prompt for all samples within a task, neglecting the fact that samples might vary greatly
and each scenario might require a different prompt [29]. Identifying an appropriate prompt
dynamically for different scenarios is difficult, especially in the field of open-domain conver-
sation generation where we may encounter diverse conversational contexts and responses
within a task (Figure 3.4).

»Context: Good morning. What's the matter with you?

»Response: Good morning, doctor. | have a terrible
headache.

»Context: We've managed to reduce our energy
consumption in our factory by about 15 percent in the last
two years.

»Response: That’s excellent. How have you managed that?

Figure 3.4: Diverse dialogues within a task.

There are recent papers exploring possible finer-grained prompts in both attribute-level
and instance-level.
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Control-prefixes [9] utilize an attribute-level prompt along with a task-level prompt to
generate output values. In every task, the method will train N attribute-level prompt
candidates to cope with different features (e.g. “sport”, “technology” in the news domain
context). Control-prefixes outperform Prefix-tuning in Text Simplification, Data-to-Text
task, etc. However, Control-prefixes can handle only a limited number of labels and are
not scalable to tasks with thousands of categories. Instance-Dependent Prompt Generation
(IDPG) [70] proposes a finer-grained instance-level deep prompt by first generating the rep-
resentation h, of input = using the frozen pretrained language model and then generating
deep prompt p where p = f(h,) and f is a light-weight prompt encoder. But it requires two
passes through the frozen language model for every sample which causes a longer training
and inference time. Additionally, the method is only shown capable of performing classi-
fication tasks rather than more complex generation tasks. Later Instance-aware prompt
learning (IPL) [29] adds instance-specific shallow prompts by including a look-up module
to re-weight prompt tokens before passing the updated embedding-only prompt into the
transformer. But IPL updates all model parameters, which loses the efficiency benefits of
prompting. Recent works such as Contrastive prefixes [53] and Tailor [72] both propose
attribute-based prompts to include either single-attribute or multi-attribute prompts into
controlled text generation tasks, which reveal the powerful potential of controllability of
continuous prompts.

Although there has been a flourishing emergence of finer-grained prompt-tuning meth-
ods, few of them have investigated prompt-tuning in dialogue generation. Recently, [20]
presents DialogPrompt which performs instance-specific prompting for dialogue genera-
tion by conditioning the prompt on the entire dialogue history. It shows that dynamic
instance-specific prompts are more suitable for dialogue generation compared to generic
task prompts. However, their prompting module consists of GPT-2, which is a full-fledged
language model, and the approach is as costly as storing an entire fine-tuned base model.

Overall, despite the rise of attribute prompts and instance-specific prompts, tricks still
appear, such as fully updating large-scale models or confining the method to classifica-
tion tasks. In addition, the potential for parameter-efficient prompt-tuning has not been
exploited yet in open-domain dialogue generation, including controlled dialogue generation.
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Chapter 4

Methodology

4.1 Controlled DialogPrompt

In this work we present Controlled DialogPrompt (Controlled DP) for controlled dialogue
generation inspired by static prompts from Soft Prompt-tuning [33] and Prefix-tuning [35].
Different from static prompts where prompts are fixed for a task, Controlled DialogPrompt
is expected to provide control attribute information such as the dialogue intention or the
user’s persona within the prompt and steer the pretrained model efficiently.

Consider a controlled generation task where a sample dialogue D = [uy,ug, ..., uy]
of N tokens consists of the conversation context C' = [uj,usg,...,u,] (n < N) and the
corresponding response R = [u,11, Upy2, - .., uy]. The control attribute A = [aq, ..., ap]

can be either a label with one token or a set of sentences with multiple tokens (detailed
attribute settings are provided in Section 4.2.1).

We begin with the pretrained autoregressive language model My which is parameterized
by pretrained weights 6. Here we use the pretrained DialoGPT [70].

Normally, fine-tuning (Figure 4.1 top) performs gradient updates based on the following

objective:
N-1

maaXPG(R‘A7C) = Z logPH(uLJrl’al? Sy AM, UL - 7uL)

L=n
where P is the conditional distribution. L is the length of prior input tokens and the
concatenated length is M + L.
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Figure 4.1: Diagrams illustrating Controlled DialogPrompt for response generation.
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Concretly, the autoregressive backbone model first applies an input embedding layer eq
to convert the concatenation of attribute tokens and input tokens to a sequence of vectors
of model dimension d,,,q.; as follows:

[69(&1), .. ,eg(CLM), 69(U1), 69(u2), e eg(uL)]

where eg(a), eg(u) € R

The sequence of input embeddings then forwards through a stack of multi-headed self-
attention layers followed by position-wise feedforward layers to produce an output distri-
bution over target tokens. At every attention layer, the model calculates key, value and
query as

K=UWgk, Q=UWq, V=UWy

where U € RMFL)*dmodet ig input activation at every layer, Wy, Wg, Wy, € Rimederxhxdn p
is the number of parallel attention heads and dj, = d04e1/h. The backbone model produces

attention output as
Q T
Attention(Q, K, V') = softmax(
Vdy

1%

1
with scaling factor ——.
Vg
And lastly, the model projects the final output from the last transformer block to the
vocabulary-size logit vectors and derives the conditional probability for the next token.

In fine-tuning, control attribute A is encoded together with context C' by the model’s
parameters . Though powerful, it requires a full-scale model update and is especially
costly to serve when the model size scales up. Besides, recent studies have demonstrated
that the model is prone to overfitting the training downstream task and its extrapolation
ability deteriorates after tuning and shifting towards the task [38, 33]. In this sense, We
attempt to freeze the pretrained model to preserve its pretrained learning ability as well
as maintain the parameter-efficiency, and encode the control attribute separately from the
conversation context so that the model can understand and modify the attribute informa-
tion independently with greater flexibility. We would like to encode the control attribute
with prompt encoders and in terms of the injected prompt depth, we classify these meth-
ods into Controlled DialogPrompt-Embedding and Controlled DialogPrompt-Deep. Briefly
speaking, Controlled DialogPrompt-Embedding inserts the controlled prompt at the embed-
ding layer, whereas Controlled DialogPrompt-Deep inserts the controlled prompt at every
layer of the backbone.
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Controlled DP-Embedding (Figure 4.1 middle) trains another embedding layer to encode
the control attribute A. We denote this embedding layer as e;. The updated objective

becomes
N—1

IIl(;lX Pg7¢(R|A, C) = Z IOg P97¢(UL+1|CL1, e, Qpr,Ugy . ,UL)
L=n

and the input embedding changes to
lep(a1), .- eglanr), eo(u1), eo(uz), ..., eq(ur)]

After concatenating the prompt embedding and the word embedding, the upper acti-
vation layers are computed the same by the pretrained model as fine-tuning.

Controlled DP-Deep (Figure 4.1 bottom), on the other hand, suggests enhancing the
influence of the controlled prompt by generating key-value pairs prepended to each atten-
tion layer of the frozen pretrained dialogue system rather than only at the embedding.
Mathematically, the objective is the same as for Controlled DP-Embedding:

N-1

max Py 4»(R|A,C) = Z log Py g(ur+1la, ..., an,ur, ... ur)
L=n

but the input embedding only needs to compute context tokens as:

[eg(ul), 60(u2>, . ,eg(uL)]

The key difference is that for every attention block, the prompt encoder generates an addi-
tional set of key-value pairs beforehand, denoted as K,, V, € RE*"*dn and the pretrained
model will integrate and process both prompt key-value pairs and context key-value pairs
at the same time in the forward pass. The attention computing now becomes:

! 11T

Vi

Attention(Q', K', V') = softmax( L%

Q =UW,

K' = concat(K,, U W)

V' = concat(V,, U'Wy)
U' € REXdmodet Ve W, Wy, € Rimoderxhxdn
Q' € REXMxdn [y ¢ RIMAL)xhxdy
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Finally, the pretrained model calculates the conditional probability for the next token
by projecting the final output of the last transformer block onto the logit vectors.

Controlled DP-Deep facilitates the controlled generation in the following ways:

(i) Controlled DP freezes the pretrained models and trains a versatile prompt so that
it can retain the functionality of the pretrained model and guide the model to generate
restricted text through training and selecting appropriate prompts and hence fulfill the
objective of controllability.

(ii) Controlled information is given as additional key-value pairs K,, V,, so it won’t take
place in the context window size of the input to the pretrained transformer. It becomes
possible to extend the controlled attribute to extremely long sentences, such as conversation
background knowledge documents because we no longer have a length restriction imposed
by the pretrained model. Since prompted key-value pairs are precomputed, we can also
compute document representations offline without a heavy computational load per sample.

(iii) Compared to Controlled DP-Embedding, Controlled DP-Deep injects attributes as
the form of key-value pairs at every layer, which directly participates in pretrained model’s
attention computation and interpolates original attention output and is therefore much
more expressive than the embedding-only prompt.

4.2 Experimental Design

4.2.1 Datasets
DialogAct Label Control

Dailydialog [39](Figure 4.2) is a widely used daily conversation dataset that provides a
dialogue act for every sentence. Dialogue acts indicate the communication function of
each utterance and there are 4 types of dialogue acts: Inform, Questions, Directives, and
Commissive: (1) "Inform” indicates the speaker should provide information within the
sentence; (2) ”Questions” means the speaker should raise a question to seek for some
information; (3) ”Directives” indicates the speaker should come up with a request, instruct,
suggest and (4) ”Commissive” means the speaker should capture the user’s commitments
to perform certain actions such as accepting/rejecting requests or suggestions.

We follow the standard split of the original Dailydialog dataset, limit the conversation
context to a maximum of four sentences, and remove any sentence that has more than 25
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words to maintain computation efficiency. As a result, we obtain 61,669 training samples,
5769 validation samples, and 5453 testing samples.

During the response quality evaluation, We additionally use the Dailydialog multi-
reference dataset from [21] in metrics computation, which provides 5 references to each
response in order to mitigate the one-to-many possible response problem.

Act: Questions

/I guess you are right. But what shall we

\do’? | don't feel like sitting at home . )

Act: Directives
| suggest a walk over to the gym where ‘

we can play singsong and meet some of
our friends.

Act: Commissive

That's a good idea. | hear Mary and Sally
often go there to play pingpong. Perhaps
we can make a foursome with them.

Act: Inform

we could ask them to go dancing with us.
That is excellent exercise and fun, too

Sounds great to me! If they are willing,

Act: Directives

[ Good. Let' s go now. ]

Figure 4.2: Example dialogue from DailyDialog dataset.

User’s Persona Document Control

FoCus[20](Figure 4.3) is a new persona-grounded dataset. Unlike DailyDialog, FoCus aims
to build a dialogue agent that provides informative answers based on the user’s persona
about the geographical landmark; therefore, it is more content-rich and challenging. The
selected knowledge candidate sentence is prepended to the conversation and regarded as
part of the input. For every utterance, the dataset provides 5 user’s persona sentences
to condition on, and we include all of them without manual selection, so we can simulate
real-life settings more accurately. In other words, models are expected to condition on
related personas.

Since the grounded answer of the test set has not been released, we shuffle and split
the original training set to construct our training samples and validation samples (70%
training and 30% validation) and the original validation set as our testing samples. We
further restrict conversation context to at most three sentences because the bot’s utterances
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are much longer than human’s utterances. In total, we have 8738 conversations for training,
3746 conversations for validation, and 1000 conversations for testing (49,198 samples for
training, 21,134 samples for validation, and 5,639 samples for testing).

Human @

(Wow, this is amazing! What is this? |}

= General Answer
{ This is the Great Pyramid of Giza.)

Machine

Customized Answer N
/ This is the Great Pyramid of Giza. As you
~‘ < would like to visit all of the Seven Wonders
of the Ancient World, you will be excited to
hear that it is the oldest, and most intact, of
\ these wonders. v

Machine

Knowledge

The Great Pyramid of Giza is the oldest and largest
-+« of the Seven Wonders of the Ancient World, -
and most intact.

User’s Persona
I would like to visit all of the Seven Wonders of the
Ancient World.

Figure 4.3: Example dialogue from Focus dataset.

4.2.2 Baseline Model Settings

To demonstrate the better performance of Controlled DialogPrompt, we compare our model
with other competitive controlled dialogue generation methods and prompt-tuning tech-
niques.

During our experiments, we have set both DialoGPT-Medium and DialoGPT-large
as the frozen backbone model and trained all models on two Nvidia V100 32G GPUs.
Models are trained for 10 epochs with a training batch size of 16 and a learning rate
of le-4 except for fine-tuning, which is set to be-5 in the FoCus dataset and le-5 in the
Dailydialog dataset. When setting the learning rate for each experiment, we search from
the set {le—5,5e —5,1le —4,5e¢ —4, 1le — 3} and choose the one rendering lowest evaluation
loss.

e Pretrained DialoGPT [70]: DialoGPT-Medium and DialoGPT-large has shown its
superiority for a wide range of open-domain dialogue generation tasks by pretraining
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on a massive corpus. The goal is to demonstrate that the model has learned an
understanding of general language modeling during the pretraining phase.

Fine-tuning: Fine-tuning, though memory-consuming, is the most straightforward
and prevalent adaptation technique to downstream tasks. Fine-tuning has been con-
sidered as the benchmark for all light-weight fine-tuning methods including prompt-
tuning.

PPLM [11]: Plug-and-Play Language Models(PPLM) is a competitive controlled
dialogue generation baseline model which updates the language model’s activation
states at every decoding step. It is only included in the label control comparison.
In order to ensure the model can generate a full response, we set the maximum
generation length to 20, which is twice the average response length. Besides, we set
the number of gradient updates to 10, step size o = 0.2, kl scale A = 0.01, scaling
coefficient v = 0.95.

SideControl [I1]: This is a competitive controlled dialogue generation baseline
model which adds a side network on top of the base model and leverages the output
distribution with control signals. We follow the training setting in this paper for label
control (Dailydialog dataset) and we search and select the hyperparameter A = le—5
in document control (Focus dataset) and training batch size 16 with others kept the
same.

Soft Prompt-tuning (static shallow prompt) [33]: The method applies a static
task prompt to the embedding of every input. We experiment with different lengths
{10, 50} of the static shallow prompt and use the better length 50 based on the lower
evaluation loss.

Prefix-tuning (static deep prompt) [35]: Prefix prompts are added to every layer
during computation. We experiment with different lengths of {10,50} and we report
the better prompt result with length 10 which shows lower evaluation loss.

Controlled DP - Embedding (instance-specific shallow prompt): The shal-
low version of our method with controlled prompts is added only in the embedding
layer. It is used to demonstrate the expressiveness of the deep Controlled Dialog-
Prompt.

In the label control scenario (Dailydialog dataset), the embedding layer size is set
to [label size x model hidden size] to encode several labels, which is close to Soft
Prompt-tuning and is much smaller compared to Controlled DP-Deep models. In
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the document control scenario (Focus dataset), the embedding layer size is set to
[vocab_size x model hidden_size] in order to encode words, resulting in a significant
increase in parameter size because DialoGPT’s vocabulary size is 50257.

e Controlled DP - Deep: Controlled DP - MLP / 2-layer Transf-Dec (instance-
specific deep prompt): We explore different prompt encoder structures, among
which MLP prompt encoder shares the frozen pretrained transformer embedding
layer to reduce tunable parameters.

In Controlled DP - MLP, we follow the setting and the reparameterization trick
in Prefix-tuning where we design two fully connected layers with tanh activation
applied to each token of the control attribute, but the hidden size is changed to 512.
In Controlled DP - 2-layer Transf-Dec, we train a two-layer transformer decoder with
an embedding size of 256. The embedding size of each architecture was chosen to
yield roughly the same number of parameters. This number of parameters is about
5%-6% of the number of parameters of the language model.

During our experiments, we have set both DialoGPT-Medium and DialoGPT-large as
the frozen backbone model and trained all models on two Nvidia V100 32G GPUs. Models
are trained for 10 epochs with a training batch size of 16 and a learning rate of le-4 except
for fine-tuning, which is set to 5e-5 in the FoCus dataset and le-5 in the Dailydialog
dataset. When setting the learning rate for prompt-tuning methods, we search from the
set {le—5,5e —5,1le —4,5¢ — 4, 1le — 3} and choose the one rendering the lowest evaluation
loss. Models that achieve the lowest validation losses are saved during the training. We
perform optimization with the AdamW optimizer with maximum gradient clipping set
to 1. For decoding, we choose top-k sampling provided in Huggingface where k=10 and
temperature T=0.9. The random seed is set to 42 in all of our experiments.

4.2.3 Evaluation Methods

Automated metrics

We are going to evaluate both the controllability and the response quality of different
controlled methods.

Controllability We mainly follow [11] to evaluate whether models can customize re-
sponses based on specified control attributes for controllability.

In label control, we fine-tune an independent BERT classifier [!1] which can take a
sentence and predict its dialogue intention. We train the classifier on the same training set
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and achieve 83.23% accuracy on the test set. During the training, we use Adam optimizer
with a linear warmup of 100 steps for the learning rate le — 5, and we set evaluation_step
to 500 and save the model with the lowest evaluation loss.

In document control, we also compute the cosine similarity between the GloVe embed-
ding of the generated responses and grounded persona documents. GloVe is an unsuper-
vised learning algorithm trained to derive word embeddings by aggregating global word
co-occurrence matrices from a given corpus. Here we obtain the sentence embedding by
averaging all the word embeddings within a sentence. The GloVe embedding is pretrained
on Wikipedia 2014 + Gigaword 5 with 6B tokens and 400K vocabulary size. We use vec-
tors with dimensionality 100. Since the FoCus dataset contains human-annotated labels
for persona sentences, only those that are actually used are evaluated.

Response Quality

How can we evaluate the performance of a conversational agent? A simple way to
evaluate the response is to show the generated sentence side-by-side with the grounded
responses and ask humans to rate its quality. But human evaluation is expensive and time
consumed that cannot be reused. We present several widely used automatic evaluation
metrics to provide more comprehensive results to evaluate different conversational agents’
abilities. We utilize different variants of n-gram-based metrics such as BLEU (B-2, B-4)
[52], NIST (N-2, N-4) [13], ROUGE-L [11], METEOR [2] to evaluate fluency and adequacy
and distinct n-gram distribution metrics such as Dist (D-1, D-2) [35] and Entropy (E-4)
[75] to measure the diversity of the response.

BLEU BiLingual Evaluation Understudy(BLEU) [52] is a popular automatic metric
for evaluating machine-translated text and has been widely used in dialogue generation.
BLEU scores measure the degree of overlapping between machine-generated text named
hypothesis and a set of references, ranging from 0 to 1. The metric firstly involves comput-
ing the precision of n-grams for the defined n: all candidate n-gram counts are collected and
clipped by their corresponding maximum count in all the references, summed and divided
by the total number of all unclipped candidate n-gram counts. If we have M candidate
n-grams in total and denote the precision score as p,, for n-gram, then

M = Z Count(n-gram)

n-gramé€ Candidate

1
Dn = i Z Count gy (n-gram)

n-gramé€ Candidate

Let ¢ be the length of the candidate and r be the closest reference sentence length, then the
metric requires the calculation of the brevity penalty BP to discourage excessively short
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candidates:
1, ife>r.

BP =
{e(l_’"/c), otherwise.

Then, BLEU is calculated as the multiplication of the brevity penalty with the geometric
average of the precision scores.

N
BLEU = BP exp(»_ w, logp,)
n=1
In our experiments, we report the more commonly used BLEU-2 and BLEU-4 [12], i.e.

N =2 or 4 and use uniform weights w, = 1/N.

NIST NIST [13] is a variant of BLEU which assigns heavier credits for rarer words and
values more on informative n-grams. The information weight for each n-gram is computed

as:

Info(w, . . . wy) = 10g2(the # of occurrences of wl ... w, 4

)

In addition, NIST changes the geometric mean of co-occurrences to the arithmetic average
to prevent counterproductive variance in low co-occurrences for larger N. It also switches
to a smaller brevity penalty for smaller variations in candidate lengths.

ROUGE-L Recall Oriented Understudy for Gisting Evaluation (ROUGE) [11] is a set
of metrics specifically designed for evaluating automatic summarization, and can also used
in dialogue generation evaluation. BLEU focuses on precision, that is how many n-grams
in the candidate appear in the reference, whereas ROUGE focuses on recall, that is how
many n-grams in the reference are displayed in the candidate sentence. If we use a similar

format as BLEU that we have M reference n-grams in total and denote the recall score as
ROUGE-N for n-gram, then

the # of occurrences of wl...w,

M = Z Count(n-gram)

n-gramé Reference

1
ROUGE-N = i Z Count paten (n-gram)

n-gramé€ Reference

where Count,,qicn(n-gram) is the maximum number of n-grams co-occurring in a candidate
sentence.

We use an advanced version called ROUGE-L which is based on the longest common
subsequence(LCS). Basically, the LCS is the longest sequence of words shared between
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the candidate and reference, and words do not have to be consecutive, but they must be
arranged in the correct order. It has the flexibility to automatically include the longest in-
sequence common n-grams and it is inexpensive to compute. In addition to BLEU metrics,
it serves as a complementary tool. However, this method does not manage synonyms and
only measures syntactical matches.

METEOR METEOR [2] calculates both precision and recall and includes a weighted
F-score to capture the matched words’ order nicely. If more than one reference translation
is possible, the metric provides the best score.

The algorithm first finds a set of mappings between unigrams named alignment between
the candidate and the reference by calculating either through the exact match, stem match,
or synonymy match. After the final alignment is formalized, suppose there is m unigrams
mapping, m., m, is the length of candidate and response, then precision P and recall R is

calculated as:
m

p="pr="

me my

Then Fmean is computed by combining P and R via a harmonic-mean which renders:

10PR

r -
mean = "pop

Since previous steps focus on unigram mapping and the metric seeks longer-term matching,
it adds a penalty p to encourage longer matches. This firstly requires all adjacent unigrams
to be grouped together to form the fewest possible chunks. Intuitively, the longer consecu-
tive adjacent unigrams (n-grams) exist, the fewer chucks will be formed. Suppose ¢ is the
number of chunks it forms and v is the number of unigrams that are previously mapped,
the final score s is calculated as:

€\3
p=05(")
s = (1 —p)Fmean

Dist Diversity(Dist) [35] is a straightforward method to report the degree of diversity by
simply calculating the number of distinct unigrams and bigrams in the generated responses.
Thus it is a reference-free metric and is divided by the total number of generated tokens. It
is recently used in the neural conversation model evaluation [75, 76, 10] as a measurement
to avoid repetitive and dull responses.

Entropy Entropy-N(E-N) [75] points out that Dist metrics overlook the n-grams fre-
quency differences. If n-gram A and n-gram B occur m times each, it is preferred than
n-gram A occurring once but n-gram B occurring 2m — 1 times. In that case, Entropy-N
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takes the n-gram distribution into account and prefers to have a more even distribution of
different n-grams. Denote f(m) as the frequency of the n-gram m and E-N is calculated

as follow:
M= > f(m)

meéEgenerated tokens

E-N = —% > f(m)log %

meEgenerated N words

Avg Len It reports the average length of generated response sentences in the corpus.

Decoding Cost We follow [11] to report the average decoding second per token, which
can be used to compare generation efficiency across different models. We pick 30 dialogue
contexts as the testing set and calculate each model’s total decoding time which is divided
by the total number of tokens produced. The metric is set to clearly reflect the high
computational cost of PPLM method.

Hil Thank you for taking part into our conversational agent evaluation. You are invited to
finish the following survey.

In this task, you will see 40 groups of chat conversations. In each group, there will have a

daily conversation between speakerA and speakerB where both speakers are supposed to

give answers based on previous conversation context and the guided dialog act. Attributte Relevancy: Which response do you think is more related to the given
dialog act (intention)?

In general, a dialog act represents the intention of a sentence and there are four possible

dialog acts: O Response 1
1. Inform: The speaker should provide information.

2. Question: The speaker should raise a question to seek for some information. O Response 2
3. Directive: The speaker should come up with a request, instruct, suggest and accept/reject

offer. QO Both

4. Commissive: The speaker should capture the user's commitments to perform certain

actions such as accepting/rejecting request or suggetion and offering. O None

Every group includes two candidate RESPONSES and you need to determine which of the

two responses seem to be more related to the given dialog act and the conversation

context. Consistency: Which response do you think is more consistent to the above
) conversation context?

Here is an example format:

O Response 1

Conversation Context

Re 2
- SpeakerA: May | help you ? (O Response

. O Both
Dialog act for the next sentence:
Question (The speaker should raise a question to seek for some information.) O None

SpeakerB's response:
Response #1: What can | get for this scarf?
Response #2: | don’t know.

Figure 4.4: Human evaluation survey snippet of DialogAct.
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rsona Survey Example

Hi! Thank you for taking part into our conversational agent evaluation. You are invited to

finish the following survey.

In this task, you will see 45 groups of chat conversations. In each group, there will have a
conversation between a user and a bot where the bot is supposed to give answer based on

the user's personas and the given Wikipedia knowledge.

Every group includes two candidate RESPONSES and you need to determine which of the

two responses seem to be more related to the user's personality and the conversation
context.

Please ignore punctuation, spacing, and other minor formatting issues.

Here is an example format:

User's Profile:
1.1 would like to see a chapel.
2. 1like gardens.
3. | wish to visit England.
4. | love country houses

5. 1am interested in architecture.

Background Knowledge: Arley Hall is a country house in the village of Arley, Cheshire,
England, about 4 miles (6 km) south of Lymm and 5 miles (8 km) north of Northwich.

Conversation Context:
- User: I think I've been there before but | don't remember the name of this place.
- Bot: This is Arley Hall ,a country house and something you love.

- User: | dont remember this, where is this?

Bot's response:

* Response#1: This is located in a village in the village of Arley, Cheshire, England, about 4

miles north of Lymm, and 5 miles south of Northwich.
* Response#2: The name of this place is Arley Hall.

Figure 4.5: Human evaluation

Personality: Which response do you think is more related to the persona?

(O Response 1
(O Response2
(O Both
(O None

Consistency: Which response do you think is more consistent to the above
conversation context?

O Response 1
() Response 2
(O Both
(O None

survey snippet of User’s Persona.
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Human Evaluation

In order to demonstrate the expressiveness of (1) instance-specific prompts and (2) deep
prompts, we carry out the human evaluation on Controlled DialogPrompt with every other
competitive prompt-tuning methods, covering static shallow prompt, static deep prompt,
and instance-specific shallow prompt. We pick the base model to be DialoGPT-Large.

Human evaluation is set to measure consistency between dialogue context and response
and attribute controllability. Similar to ACUTE-Eval in [37, 59], we adopt single-turn
pairwise evaluations to prevent annotator bias in numerical score evaluation. In each
comparison group, there are two questions designed separately to assess the response’s di-
alogact /persona controllability as well as consistency to the previous conversation context.
We sample 15 conversations from each comparison group and there are 5 conversations
overlapped across different groups. Annotators are industrial NLP researchers and NLP
graduate students. We collected 900 annotations in total. Surveys are conducted using
Google Forms, and snippets from each scenario are provided separately in Figure 4.4 and
Figure 4.5.

4.3 Results and Analysis

Table 4.1 summarizes the automatic evaluation results on the DialogAct label control task
with the base model as DialoGPT-Medium. Table 4.2 summarizes the automatic evaluation
results on the DialogAct label control task with the base model as DialoGPT-Large.

Controlled DialogPrompt - Deep outperforms all other parameter-efficient controlled
methods on controllability and achieves accuracy pretty close to fine-tuning. It confirms
the effectiveness of injecting the controlling attribute into every layer of the base model,
which can interfere with the language modeling directly. Though Controlled DialogPrompt
- Deep achieves satisfactory results on language fluency, SideControl achieves higher scores
on NIST and Entropy. NIST is weighted-BLEU with higher weights on rarer words and
Entropy-4 counts the distribution of distinct 4-grams, and we notice SideControl tends
to generate more diverse phrases than other models which makes it outperform on these
metrics. PPLM achieves surprisingly better performance on Diversity, but it incurs a
much higher decoding cost, which is 60 times slower than Controlled DP with DialoGPT-
Medium and 100 times slower than Controlled DP with DialoGPT-Large. As the base
model grows, the cost of updating all its parameters increases. This impedes PPLM from
being implemented with more complex models such as GPT-3.
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Compared to Prefix-tuning (static task prompts), Controlled DialogPrompt - Deep
achieves better performance consistently, especially on deep prompt levels. Since the con-
trolled attribute is injected independently through the prompts, it does not affect the
understanding and generation ability of the pretrained transformer. Both Controlled DP
deep methods show higher controllability and response quality than Controlled DP em-
bedding, in line with [38, 41, 51] indicating the expressiveness of deep prompts. Also,
Controlled DP deep methods show performance close to fine-tuning and even outperform
on some metrics such as NIST when training less than 5% of total parameters.

Human evaluation result table 4.3 also shows that Controlled DP deep has a significantly
higher winning rate than other prompting techniques on both control attribute relevancy
and conversation consistency. We provide sample generated dialogues in 4.7 and 4.8. In
these examples, Controlled DP - Deep is highly compatible with provided dialogue intention
(DialogAct) while generating a fluent and well-coordinated response.

Table 4.4 summarizes the automatic evaluation results on the user’s persona document
control task with the base model as DialoGPT-Medium. Table 4.5 summarizes the auto-

matic evaluation results on the user’s persona document control task with the base model
as DialoGPT-Large.

Unlike simple daily conversations in the label control scenario, dialogue generation
based on the user’s persona and knowledge-rich FoCus dataset is much more challenging
and requires careful consideration of the control attribute. In this example, SideControl
significantly degrades its performance when only manipulating the control attribute on top
of the base model. It has difficulty adhering to its goal of generating relevant responses.
It extracts some keywords from the knowledge and the conversation context and creates
hallucinated facts on the topic, which can be observed in the provided example 4.9. In
contrast, methods, such as Prefix-tuning and Controlled DialogPrompt, that provide con-
trolled information before or interleaving the base model form a better understanding of
the user’s persona and maintain a complete generation of dialogue responses.

Particularly, Controlled DialogPrompt displays advantages over other prompting meth-
ods in terms of response quality, which shows a promising sign that controlled Dialog-
Prompt can be adapted to more challenging document control scenarios. Although con-
trolled DialogPrompt methods perform slightly lower than Prefix-tuning on the similarity
scores with given user’s persona and Entropy-4 values, we find it to be highly consistent
with the previous conversation history in human evaluation (Figure 4.6). Similar results
are observed with FoCus [26] where models with high generation abilities do not always
ensure high grounding abilities. In addition, the difference between static/instance-specific
deep prompts and static/instance-specific shallow prompts emphasizes the direct impact of

39



deep prompts in complex tasks. The advantage of deep prompts is consistent in different
sizes of base models (DialoGPT-Medium and DialoGPT-Large). Fine-tuning performs the
best but with approximately 20 times more tunable parameters. We provide sample gener-
ated dialogues in 4.9 and 4.10. In these examples, Controlled DP - Deep can flexibly quote
provided user’s persona based on given dialogue contexts and generate more personalized
responses.

Wikipedia Knowledge Document Control

From previous experiments, we observe Controlled DialogPrompt’s superiority in control-
ling user’s persona. Controlled DialogPrompt can integrate the provided personas flexibly
and generate related responses conditioned on previous conversation context. For exam-
ple, in Example 4.10, Controlled DialogPrompt - Deep takes in 7it is among the greatest
examples of Georgian architecture” and I am interested in architecture” and generates
"The Royal Crescent is one of the Georgian architectural masterpieces. You should re-
ally visit this place since you love architecture!”. The generation is derived from provided
information but with a reasonable minor adjustment, which enriches the corpus.

However, we later evaluate Controlled DialogPrompt with knowledge being injected
as the prompt and unexpectedly find that the performance greatly degrades. Table 4.11
shows the automatic evaluation results and Table 4.12 4.12 gives a few examples to better
illustrate our points. Compared with previous persona based Controlled DialogPrompt (de-
noted as ” Controlled DialogPrompt (on Persona)”), Controlled DialogPrompt (on Knowl-
edge) does not have knowledge concatenated with conversation context to form the input.
The grounded knowledge sentence is provided in the prompt and the model is expected to
generate the response when knowledge is encoded by the prompt encoder and conversation
context is fed as input to the base model. Moreover, we provide Fine-tuning baselines with
and without knowledge to visualize lower and upper bounds for knowledge usage.

From the table, Controlled DP (Knowledge) performs much worse than Controlled DP
(Persona) and just performs slightly better than Fine-tuning without knowledge. Com-
bined with the provided examples 4.12, we notice the model cannot copy the information
precisely from the provided knowledge sentence. To illustrate, it modifies "Grade I listed
building” to ”Grade VIII listed building” and replaces “from 1924 to 1939” with “back in
1926”. Presumably, we expect the model to condition on / relate to the user’s persona
but not to copy the knowledge sentence accurately. Controlled prompt might be suitable
for conditioning but not information repetition. Therefore, when implementing knowledge
prompts that rely heavily on knowledge during response generation such as Focus, we find
that the model has difficulty replicating the knowledge exactly as specified. In our future
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Method ¢%  Controllability BLEU 1t NIST 1 ROUGE-L 1

Accuracy B-2 B-4 N-2 N-4

Pretrained 0% 46.60% 14.92% 3.05% 1.54 1.57 27.58%
Fine-tuning 100% 79.90% 20.78% 5.81% 1.18 1.21 34.23%
PPLM 0.001% 69.74% 15.54% 3.10% 1.06 1.08 26.86%
SideControl 1.8% 53.42% 18.03% 4.52% 1.27 1.29 31.84%
Soft Prompt-tuning 0.014% 67.23% 19.13%  4.83% 0.99 1.01 32.39%
Prefix-tuning 3.6% 74.93% 19.19% 4.70% 1.07 1.09 32.8T%
Controlled DialogPrompt (Embedding) 0.001% 68.42% 18.60% 4.57% 1.08 1.10 32.17%
Controlled DialogPrompt (MLP) 3.6% 79.11% 19.58%  4.91% 1.15 1.18 33.33%
Controlled DialogPrompt (2-layer Transf-Dec) 4.2% 79.35% 19.76% 5.12% 1.18 1.21 33.18%
Method % METEOR 1 Dist 1 Entropy T Avg Len Decoding Cost

D-1 D-2 E-4 sec/token
Pretrained 0% 11.32% 5.51% 32.52% 10.46 11.72 0.023
Fine-tuning 100% 13.18% 597%  34.35% 10.28 10.19 0.024
PPLM 0.001% 10.92% 6.13%  29.23% 9.58 10.49 1.792
SideControl 1.8% 12.32% 4.67% 29.62% 10.28 10.68 0.031
Soft Prompt-tuning 0.014% 12.39% 5.13% 30.84% 10.20 9.92 0.027
Prefix-tuning 3.6% 12.55% 5.36% 31.64% 10.25 10.10 0.029
Controlled DialogPrompt (Embedding) 0.001% 12.37% 5.05%  30.44% 10.23 10.15 0.029
Controlled DialogPrompt (MLP) 3.6% 12.79% 547%  31.98% 10.27 10.25 0.028
Controlled DialogPrompt (2-layer Transf-Dec) 4.2% 12.89% 5.14%  30.55% 10.23 10.29 0.026

Table 4.1: Automated metrics on Dailydialog multi-reference evaluation. The backbone
model is DialoGPT-Medium. ¢% denotes the % of tunable parameters to the frozen-LM
parameters required at training time. Red number is the best value in every metric on all
methods. Blue number is the best value in every metric among parameter-efficient fine-tuning
methods.

work, we intend to solve this problem so that the large-scale model can perform efficient
controlled generation with complicated features.
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Method % _ Controllability BLEU 1 NIST T ROUGE-L 1

Accuracy B-2 B-4 N-2 N-4
Pretrained 0% 58.30% 10.31% 1.73% 0.18 0.18 19.43%
Fine-tuning 100% 80.25% 21.03% 5.70% 0.96 0.98 34.38%
PPLM 0.001% 56.63% 15.19% 3.17% 1.45 1.47 27.40%
SideControl 1.3% 52.92% 17.05%  3.78% 1.51 1.54 31.31%
Soft Prompt-tuning 0.008% 70.51% 18.15% 4.08% 0.56 0.57 31.58%
Prefix-tuning 3.1% 75.02% 19.94% 5.12% 0.91 0.93 33.29%
Controlled DialogPrompt (Embedding) 0.001% 69.06% 20.11% 4.91% 0.71 0.73 32.80%
Controlled DialogPrompt (MLP) 3.1% 78.36% 19.92%  5.43% 0.98 1.01 33.12%
Controlled DialogPrompt (2-layer Transf-Dec) 3.3% 78.58% 19.86%  5.26% 1.01 1.04 33.35%
Method % METEOR 1 Dist 1 Entropy © Avg Len Decoding Cost
D-1 D-2 E-4 sec/token

Pretrained 0% 7.30% 7.61%  40.00% 10.03 7.54 0.038
Fine-tuning 100% 13.05% 6.02% 34.51% 10.21 9.68 0.034
PPLM 0.001% 11.38% 5.47% 27.56% 9.80 11.46 4.613
SideControl 1.3% 12.33% 4.12% 27.00% 10.33 11.36 0.042
Soft Prompt-tuning 0.008% 11.46% 5.33%  30.82% 10.02 8.88 0.037
Prefix-tuning 3.1% 12.54% 5.59%  32.46% 10.17 9.64 0.035
Controlled DialogPrompt (Embedding) 0.001% 12.19% 5.18%  30.07% 10.03 9.18 0.033
Controlled DialogPrompt (MLP) 3.1% 12.61% 5.71% 32.42% 10.20 9.83 0.035
Controlled DialogPrompt (2-layer Transf-Dec) 3.3% 12.64% 5.82% 33.16% 10.23 9.92 0.036

Table 4.2: Automated metrics on Dailydialog multi-reference evaluation. The backbone
model is DialoGPT-Large. ¢% denotes the % of tunable parameters to the frozen-LM param-
eters required at training time. Red number is the best value in every metric on all methods.
Blue number is the best value in every metric among parameter-efficient fine-tuning methods.

Attribute Relevancy:
Which response do you think is more related to the given dialog act?
Method A Neutral Method B
Controlled DP (Deep) 30.7% | 49.3% | 20.0%  Soft Prompt-tuning
Controlled DP (Deep) 25.3% | 58.7% | 16.0% Prefix-tuning
Controlled DP (Deep) 34.7% | 56.0% 9.3%  Controlled DP (Shallow)

Consistency:
Which response do you think is more consistent to the above conversation context?
Method A Neutral Method B

Controlled DP (Deep) 32.0% | 48.0% | 20.0% Soft Prompt-tuning
Controlled DP (Deep) 37.3% | 46.7% | 16.0% Prefix-tuning
Controlled DP (Deep) 38.7% | 36.0% | 25.3%  Controlled DP (Shallow)

Table 4.3: Human evaluation concerning prompting methods on Dailydialog dataset. ” Con-
trolled DP (Deep)” represents Controlled DialogPrompt with 2-layer transformer decoder as the
prompt module. ”Controlled DP (Shallow)” represents Controlled DialogPrompt on the embed-
ding layer. ”Neutral” means both methods are equal and there is no preference.
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Method ¢%  Controllability BLEU 1 NIST 1 ROUGE-L 1

Similarity B-2 B-4 N-2 N-4
Pretrained 0% 52.11% 1.77% 0.49% 0.02 0.02 6.39%
Fine-tuning 100% 70.61% 35.13% 24.52% 5.55 6.01 26.45%
SideControl 7.4% 58.86% 6.98% 2.28% 0.65 0.67 11.24%
Soft Prompt-tuning 0.014% 63.04% 21.30%  12.50% 3.36 3.56 17.64%
Prefix-tuning 7.3% 66.30% 28.32%  18.02% 4.55 4.86 21.55%
Controlled DialogPrompt (Embedding) 14.5% 63.46% 18.14%  9.08% 2.82 2.97 17.07%
Controlled DialogPrompt (MLP) 7.3% 66.12% 30.10%  19.64% 4.79 5.12 22.59%
Controlled DialogPrompt (2-layer Transf-Dec) 7.7% 66.59% 33.71% 23.16% 5.27 5.68 24.64%
Method % METEOR 1 Dist T Entropy T Avg Len

D-1 D-2 E-4

Pretrained 0% 3.68% 6.98% 32.86% 10.15 9.71
Fine-tuning 100% 23.33% 8.66% 41.39% 11.31 23.50
SideControl 7.4% 6.48% 4.17% 23.00% 10.62 16.23
Soft Prompt-tuning 0.014% 14.95% 7.42%  35.21% 11.13 22.16
Prefix-tuning 7.3% 19.19% 7.79%  37.76% 11.27 24.06
Controlled DialogPrompt (Embedding) 14.5% 12.91% 571%  29.62% 11.05 22.63
Controlled DialogPrompt (MLP) 7.3% 20.20% 7.79%  37.61% 11.26 24.42
Controlled DialogPrompt (2-layer Transf-Dec) 7.7% 22.08% 7.92% 38.37% 11.31 24.86

Table 4.4: Automated metrics on Focus validation dataset. The Backbone model is
DialoGPT-Medium. ¢% denotes the % of tunable parameters to the frozen-LM parameters
required at training time. Red number is the best value in every metric on all methods. Blue
number is the best value in every metric among parameter-efficient fine-tuning methods.

Method ¢%  Controllability BLEU 1 NIST 1 ROUGE-L 7t

Similarity B-2 B-4 N-2 N-4
Pretrained 0% 51.40% 1.63%  0.42% 0.02 0.02 6.62%
Fine-tuning 100% 75.21% 37.38% 25.77% 5.80 6.30 27.71%
SideControl 5.3% 57.79% 7.31% 2.44% 0.61 0.63 12.33%
Soft Prompt-tuning 0.008% 62.69% 18.01%  9.50% 2.72 2.87 16.53%
Prefix-tuning 6.2% 66.89% 27.18%  16.73% 4.35 4.63 21.38%
Controlled DialogPrompt (Embedding) 8.3% 61.16% 13.01%  5.12% 1.89 1.96 14.84%
Controlled DialogPrompt (MLP) 6.2% 64.96% 26.82%  17.09% 4.25 4.54 21.40%
Controlled DialogPrompt (2-layer Transf-Dec) 5.0% 66.34% 31.85% 21.67% 5.00 5.40 24.20%
Method % METEOR 71 Dist 1 Entropy © Avg Len

D-1 D-2 E-4

Pretrained 0% 3.67% 7.62% 34.44% 10.15 9.28
Fine-tuning 100% 24.43% 7.93% 38.20% 11.28 24.76
SideControl 5.3% 6.78% 5.27% 26.81% 10.63 15.72
Soft Prompt-tuning 0.008% 13.29% 6.77%  32.19% 10.96 20.86
Prefix-tuning 6.2% 18.56% 7.60% 36.88% 11.25 23.77
Controlled DialogPrompt (Embedding) 8.3% 10.28% 5.21%  26.45% 10.82 20.15
Controlled DialogPrompt (MLP) 6.2% 18.47% 7.85%  37.58% 11.18 22.57
Controlled DialogPrompt (2-layer Transf-Dec) 5.0% 21.16% 7.85% 37.86% 11.24 23.55

Table 4.5: Automated metrics on Focus validation dataset. The Backbone model is
DialoGPT-Large. ¢% denotes the % of tunable parameters to the frozen-LM parameters
required at training time. Red number is the best value in every metric on all methods. Blue
number is the best value in every metric among parameter-efficient fine-tuning methods.
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Personality:

Which response do you think is more related to the persona?

Method A Neutral

Method B

Controlled DP (Deep) 41.3% | 53.4%
Controlled DP (Deep) 22.7% | 50.6%
Controlled DP (Deep) 29.3% | 49.4%

5.3%  Soft Prompt-tuning
26.7%  Prefix-tuning
21.3%  Controlled DP (Shallow)

Consistency:
Which response do you think is more consistent

to the above conversation context?

Method A Neutral

Method B

Controlled DP (Deep) 44.0% | 42.7%
Controlled DP (Deep) 28.0% | 64.0%
Controlled DP (Deep) 41.3% | 49.4%

13.3%  Soft Prompt-tuning
8.0%  Prefix-tuning
9.3%  Controlled DP (Shallow)

Table 4.6: Human evaluation concerning prompting methods on Focus dataset. ”Controlled
DP (Deep)” represents Controlled DialogPrompt with 2-layer transformer decoder as the prompt
module. ”Controlled DP (Shallow)” represents Controlled DialogPrompt on the embedding layer.
”Neutral” means both methods are equal and there is no preference.
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DialogAct: Question The speaker should raise a question to seek for some information.

Conversation Context:

- I heard that one of their specialties is the samosa.

- Well, let’s get a plate of those then.

- Sounds good. What are you going to have for your main course?
- I think I might have a dahl.

Different model responses with the base model being DialoGPT-Medium

Pretrained: I can’t tell if you're being sarcastic or not.

Fine-tuning: OK, I'll be right back... What are you going to have for dessert?
PPLM: I like the idea! Dahl sounds delicious, thanks!

SideControl: You're going to love that. it’s got a high energy and strong taste.
Soft Prompt-tuning: I'll have a try of that. Is it a good one?

Prefix-tuning: Have you got anything for dessert?

Controlled DP (Shallow): That’s great. How much is that?

Controlled DP (Deep): That sounds good, what kind of dahl is it?

Different model responses with the base model being DialoGPT-Large

Pretrained: : do you have a special dahl recipe? I want one to share.

Fine-tuning: That sounds good. How are you planning to spend your evening?

PPLM: I like dahl

SideControl: Sounds good.

Soft Prompt-tuning: Oh, that’s too bad, I like the kind that have the whole country in its mouth.

Prefix-tuning: How about a dahl?

Controlled DP (Shallow): What do you think of the samosa?

Controlled DP (Deep): You know, that sounds quite good. I heard they are pretty good. Do you remember what
kind of dahl you have?

Table 4.7: Sample utterances from different models when provided with conversation context,
grounded knowledge and dialogue intent.

45



DialogAct: Directives The speaker should come up with a request, instruct, suggest.

Conversation Context:

- I want a pair of sports shoes, Adidas.
- What size do you want?

- I wear size 40.

Different model responses with the base model being DialoGPT-Medium

Pretrained: Try out the adidas x adi sneakers

Fine-tuning: Well, you needn’t buy this pair for me. I am going to buy a different pair for you.
PPLM: I'll buy them off you

SideControl: OK. Can I see it?

Soft Prompt-tuning: How about size 43 for me?

Prefix-tuning: Then I'll get you one for free

Controlled DP (Shallow): Size 41, sir.

Controlled DP (Deep): How about these? They are very lightweight, and comfortable.

Different model responses with the base model being DialoGPT-Large

Pretrained: , get a pair.

Fine-tuning: Then, go get some Red Wing.

PPLM: I’d buy you a pair of Vans, Adidas, for 20, please.

SideControl: How about this one?

Soft Prompt-tuning: Adidas?

Prefix-tuning: Let me see. How about this pair?

Controlled DP (Shallow): Would you like to buy a pair of leather shoes?
Controlled DP (Deep): We'll get you a pair of size 40. They have all kinds of styles.

Table 4.8: Sample utterances from different models when provided with conversation context,
grounded knowledge and dialogue intent.
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User’s Persona Grounded Knowledge
I am going to visit Bavaria.

I like military museums. The Bayerisches Armeemuseum is the Military History Mu-
I like old history. seum of Bavaria. It was founded in 1879 in Munich and is
I like historical sites. located in Ingolstadt since 1972.

I have a desire to be a soldier on peacekeeping missions.

Conversation Context:
User: I know this place, but I don’t remember the name of this place.

Different model responses with the base model being DialoGPT-Medium

Pretrained: Haha :D

Fine-tuning: This is the Bayerisches Armeemuseum, a Military History Museum of Bavaria. As you said you will be
visiting Bavaria, I have been looking for places that might interest you.

SideControl: The name of this place is the museum, the museum is a place you like, the museum contains the world
of the British, the place is the museum of the American, the museum is a place you might like.

Soft Prompt-tuning: This is the Bayerisches Armeemuseum in Munich. You may recognize the place since this is a
Military history museum and it is in Munich.

Prefix-tuning: This is Bayerisches Armeemuseum located in Munich, Germany. As a military history buff, you are
going to like this place!

Controlled DP (Shallow): Bayerisches Armeemuseum is the Military History Museum of Bavaria, which you may
have heard of since you have a desire to be the military museums. I will tell you that the museum itself is located in
Munich.

Controlled DP (Deep): This is the Bayerisches Armeemuseum, located in Munich, Germany. If you are interested
in military history, put it on the list!

Different model responses with the base model being DialoGPT-Large

Pretrained: I think he said it was in Bavaria.

Fine-tuning: It is the Bayerisches Armeemuseum in Bavaria. Since you told me that you are going to visit Bavaria
and that you like military museums, I have been looking for places that may interest you.

SideControl: It is a military base, a military history-listed house, and a former military hospital. Since you told me
you like old history, I have this information that is interesting.

Soft Prompt-tuning: This is the Bayerisches Armeem Museum of Bavaria and it was founded in 1879 in Munich after
being founded in 1879 in Munich.

Prefix-tuning: The name of this place is Bayerisches Armeemuseum, a military history museum, located in Bavaria,
since 2002.

Controlled DP (Shallow): This is the Armeem museum in Munich, Bavarian military museum. Since its founded in
1879, the Bayerisches Armeem Museum place is named Bayerisches Armeem Museum.

Controlled DP (Deep): This is Bayerisches Armeemuseum, the Military History Museum of Bavaria. Since you are
studying military history, you should visit here!

Table 4.9: Sample utterances from different models when provided with conversation context,
grounded knowledge and user’s persona.
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User’s Persona Grounded Knowledge
I am from England.

I live in Great Britain.

I would like to visit Bath.

I am interested in architecture.
I love the Georgian style.

Designed by the architect John Wood, the Younger and built
between 1767 and 1774, it is among the greatest examples
of Georgian architecture to be found in the United Kingdom
and is a Grade I listed building.

Conversation Context:

User: Could you tell me where in England it is located?

Bot: Specifically, the Royal Crescent is located in Bath, a place that you want to visit someday.
User: What is the Royal Crescent known for?

Different model responses with the base model being DialoGPT-Medium

Pretrained: It’s the only building to exist on the Isle of Wight, the only building in the area.

Fine-tuning: As you’re interested in architecture, you’ll be happy to hear that this is one of the most famous Georgian
architecture to be found in the UK.

SideControl: It was used by the Georgian Empire to use the place as a trading post, for which it was the second most
populous building in the world.

Soft Prompt-tuning: As an example, it is one of the greatest examples of Georgian architecture in the United
Kingdom.

Prefix-tuning: As you love building, I am sure you’d love to know that the Royal Crescent is known for Georgian
architecture.

Controlled DP (Shallow): The Royal Crescent is, in Bath is known as the Royal Crescent.

Controlled DP (Deep): Since you like Georgian architecture, you might be interested to hear this building is known
for being one of the greatest examples of the country’s Georgian architecture.

Different model responses with the base model being DialoGPT-Large

Pretrained: It is in Bath

Fine-tuning: As an architecture and design enthusiast, you’ll enjoy visiting the Grand Crescent which is Grade I listed.
SideControl: It is a place with a high level of architectural style, which you might enjoy, since you love architecture.
Soft Prompt-tuning: Being the seat of the monarch of a royal family, you will be pleased to know that the royal
family also built it.

Prefix-tuning: As you’re interested in architecture, the Royal Crescent is known as one of the most amazing things
in the country to be found in England. You could check the architecture website of the Royal Crescent to see if there’s
anything you love.

Controlled DP (Shallow): The Royal Crescent is is a kind of Crescent you would find in a British city.
Controlled DP (Deep): The Royal Crescent is one of the Georgian architectural masterpieces. You should really
visit this place since you love architecture!

Table 4.10: Sample utterances from different models when provided with conversation context,
grounded knowledge and user’s persona.
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Method % BLEU | NIST 1 ROUGE-L |
B-2 B-4 N-2 N-4
Pretrained 0% 1.63% 0.42% 0.02 0.02 6.62%
Fine-tuning (wt knowledge) 100% 37.38% 25.77%  5.80 6.30 27.71%
Fine-tuning (wo knowledge) 100% 13.32% 4.99% 2.02 2.09 16.73%
Controlled DialogPrompt (on Persona) 5.0% 31.85% 21.67%  5.00 5.40 24.20%
Controlled DialogPrompt (on Knowledge) 5.0% 14.20% 4.84% 2.27 2.33 16.69%
Method ¢% METEOR 1 Dist 1 Entropy 1 Avg Len
D-1 D-2 E-4
Pretrained 0% 3.67% 7.62%  34.44% 10.15 9.28
Fine-tuning (wt knowledge) 100% 24.43% 7.93%  38.20% 11.28 24.76
Fine-tuning (wo knowledge) 100% 10.10% 5.35% 28.87T% 10.91 21.95
Controlled DialogPrompt (on Persona) 5.0% 21.16% 7.85%  37.86% 11.24 23.55
Controlled DialogPrompt (on Knowledge) 5.0% 10.89% 5.99%  31.34% 11.12 23.44

Table 4.11: Automated metrics on Focus validation dataset comparing prompts on persona or
knowledge. The Backbone model is DialoGPT-Large. ¢% denotes the % of tunable parameters

to the frozen-LM parameters required at training time.

Controlled DialogPrompt in terms of knowledge control.
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User’s Persona Grounded Knowledge
T am from England.

I live in Great Britain. Designed by the architect John Wood, the Younger and built between 1767 and 1774, it is
I would like to visit Bath. among the greatest examples of Georgian architecture to be found in the United Kingdom
I am interested in architecture. and is a Grade I listed building.

I love the Georgian style.

Conversation Context:

User: Could you tell me where in England it is located?

Bot: Specifically, the Royal Crescent is located in Bath, a place that you want to visit someday.
User: What is the Royal Crescent known for?

Controlled DialogPrompt (on Persona): The Royal Crescent is one of the Georgian architectural masterpieces. You should really visit this place
since you love architecture!

Controlled DialogPrompt (on Knowledge): Being in Britain, you are familiar with the Royal Crescent. It is a large building and has been
designated as a Grade VIII listed building in the country’s Heritage Sites.

User’s Persona Grounded Knowledge

I would like to visit the Nazareth House again.

I love Benevolent institutions.

I am interested in History. It was built from 1924 to 1939.
I have curiosity about the Description of this place.

I would like to know when it was Built.

Conversation Context:

User: Can you describe this house to me?

Bot: You have curiosity about the description of Nazareth House and I will tell you. Nazareth House is prominently located on an elevation along
Wynnum North Road. The complex consists of a number of buildings including the original building, the Convent and Chapel and two more recent
additions, St Joseph’s Hostel and the nursing home known as Larmeniere.

User: Does this house look old to me, when it was built?

Controlled DialogPrompt (on Persona): Yes, you have curiosity about the building, I will tell you it was built from 1924 to 1939.
Controlled DialogPrompt (on Knowledge): No, actually, It started as a Church back in 1926, it has been renovated recently.

Table 4.12: Sample utterances from Controlled DialogPrompt models with different prompt
information.
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Chapter 5

Conclusion and Future Work

In this work, we presented a novel prompt-tuning technique dependent on the provided
attribute for controlled dialogue generation. The control attribute can either be a dia-
logue intent label or user’s persona description. This instance-specific prompt includes
the attribute encoding step and language modeling step. In the attribute encoding step,
we use either a multilayer perceptron or a two-layer transformer decoder to represent the
attribute text into a sequence of continuous vectors. In the language modeling step, we
provide the encoded representation in two different ways, either in the embedding layer and
concatenated with input word embeddings (shallow prompt) or in every layer of the base
model and provided as extra key-value pairs (deep prompt). In both ways, we analyze the
performance and discover they can outperform previous static prompt-tuning baselines.

We present a comprehensive description of prior studies about controlled dialogue gen-
eration and prompt-tuning that served as the inspiration for the proposed approach. We
carry out experiments for two scenarios: label control with Dailydialog [39] and document
control with Focus [26]. We show that deep controlled prompt outperforms superiorly
compared to other controlled methods in terms of its controllability and consistency. The
advantage is more significant in document control where the dataset centers on landmark
discussions and provides content-rich user’s persona description. When other controlled
methods are not directly involved in the base model’s generation, they fail to steer the
pretrained model smoothly as they do in the label control scenario.

In addition, we perform an ablation study that compares deep prompts to shallow
prompts in both static prompts and instance-specific controlled prompts. According to
the pair-wise human evaluation results, deep prompts yield better results than shallow
prompts since deep prompts can be attended to in every attention block instead of the
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embedding layer only for shallow prompts.

In the last part of the Results section, we point out Controlled DialogPrompt’s in-
ability to accurately transcribe knowledge from document. This might be related to the
fact that the existing model lacks a corresponding structure to ensure entity consistency,
such as the address or typical dates. It is more common to copy these entities from the
knowledge documents rather than generating them from scratch. CopyNet [19] might be
able to resolve this issue. It uses a trainable pointer to increase the attention distribu-
tion over related tokens in the knowledge document. It has shown improved performance
in task-oriented dialogue systems recently [09]. Following that, we may obtain different
prompts conditioned on different documents and we will be able to explore the integration
of multiple Controlled DialogPrompts, which has never been studied before to the best of
our knowledge.

In addition, due to limited computing power, we have not applied our parameter-
efficient prompt-tuning technique on larger models such as OPT [74] which has a version
that contains up to 175B parameters. It would be very interesting to leverage such a
huge language model’s pretrained ability and test its performances on different dialogue
datasets. More importantly, it can push the limit of model size to a point where fine-tuning
becomes intractable due to the limited GPU memory. Meanwhile, prompt-tuning modules
can be trained easily and stored for various downstream tasks without too much overhead.
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