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Abstract

Probabilistic graphical models such as Bayesian networks and Markov networks provide a

general framework to represent multivariate distributions while exploiting conditional indepen-

dence. Over the years, many approaches have been proposed to learn the structure of those

networks Heckerman et al. (1995); Neapolitan (2004). However, even if the resulting network

is small, inference may be intractable (e.g., exponential in the size of the network) and practi-

tioners must often resort to approximate inference techniques. Recent work has focused on the

development of alternative graphical models such as arithmetic circuits (ACs) Darwiche (2003)

and sum-product networks (SPNs) Poon and Domingos (2011) for which inference is guaranteed

to be tractable (e.g., linear in the size of the network for SPNs and ACs). This means that the

networks learned from data can be directly used for inference without any further approxima-

tion. So far, previous work has focused on learning models with only random variables and for

a fixed number of variables based on fixed-length data Lowd and Domingos (2012); Dennis and

Ventura (2012); Gens and Domingos (2013); Peharz et al. (2013); Rooshenas and Lowd (2014). In

this thesis, I present two new probabilistic graphical models: Dynamic Sum-Product Networks

(DynamicSPNs) and Decision Sum-Product-Max Networks (DecisionSPMNs), where the for-

mer is suitable for problems with sequence data of varying length and the latter is for problems

with random, decision, and utility variables. Similar to SPNs and ACs, DynamicSPNs and De-

cisionSPMNs can be learned directly from data with guaranteed tractable exact inference and

decision making in the resulting models. I also present a new online Bayesian discriminative

learning algorithm for Selective Sum-Product Networks (SSPNs), which are a special class of

SPNs with no latent variables. This new learning algorithm achieves tractability by utilizing a

novel idea of mode matching, where the algorithm chooses a tractable distribution that matches

the mode of the exact posterior after processing each training instance. This approach lends it-

self naturally to distributed learning since the data can be divided into subsets based on which

partial posteriors are computed by different machines and combined into a single posterior.
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Chapter 1

Introduction

Modeling and reasoning about uncertainty is at the heart of artificial intelligence (AI). Im-

age understanding, speech recognition, robot navigation, and many other tasks in AI can be for-

mulated as applications of modeling and reasoning about uncertainty. Uncertainty problems

have different properties. For example, the variables of an uncertainty problem can be discrete

or continuous, the number of variables can be fixed or dynamic, the relationships between the

variables can be in one or two directions, and the variables can be fully or partially observed.

These are a few examples of the variety of uncertainty problems. Through the history of AI, sev-

eral frameworks have been proposed for modeling and reasoning about uncertainty Domingos

(2006). One of the frameworks that proved to be general and suitable for the wide spectrum

of uncertainty problems is the probabilistic graphical models (PGMs) framework. PGMs have

many properties that make them among the elegant representational formalisms in AI. For one,

they compactly represent probabilistic and decision problems. Consider for example a problem

with n binary random variables, the full specification of the joint distributions requires O(2n)

entries, compared to only O(n · 2k) entries in a PGM that has at most k parents for each vari-
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able. PGMs also provide a declarative framework with clear semantics, which makes it easy to

understand the relationship between the variables and grasp the decision making process in a

decision problem. In addition to these, PGMs combine two heavily studied branches of mathe-

matics: probability and graph theory, which together provide a sound machinery to reason and

interpret the results in these models.

Although compactness, declarativity, and interpretability are appealing properties, what is

more important in practice is the ability to answer queries about the uncertainty problem, which

in the case of PGMs corresponds to performing inference to answer queries about some of the

variables given the values of other variables. Unfortunately, when it comes to performing infer-

ence PGMs generally suffer very badly from the curse of intractability. Exact inference in PGMs

is known to be #P-Hard. Also, for many PGMs, existing inference algorithms are exponential in

the treewidth of the model’s structure, where the notion of treewidth is a quantification of the

structure resemblance to a tree. Thus, a practitioner who decides to use a PGM would often

resort to either restrict himself to models with low treewidth or to use approximate inference,

for which performance guarantees are also computationally hard to achieve (NP-hard) Dagum

and Luby (1993).

There are several active lines of research that try to tackle the problem of tractable exact infer-

ence in PGMs. They can, generally, be grouped into two categories. The first group contains the

methods that restrict themselves within the space where exact inference is known to be tractable.

This is, basically, the space of models that have low treewidth. Algorithms in this group include:

Chow-Liu, Thin Junction Trees, and Bounded Treewidth. The main shortcoming of this type

of algorithms is that focusing on only low treewidth models severely restricts the expressivity of

the resulting models.

The second group contains the methods where the computation needed for inference is
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modeled directly, such that exact inference is guaranteed in the resulting models. In other words,

inference in PGMs can be seen as a sequence of sum and product operations. Therefore, the

problem of tractable exact inference can be addressed by focusing on learning models that per-

form these operations and making sure that the output of the models are correct answers of

probabilistic queries that are of interest. Arithmetic Circuits (ACs) and Sum-Product Networks

(SPNs) are examples of the models in this category. These two models are closely related. ACs

were first proposed as inference machines in Darwiche (2003). The basic idea is that we can per-

form inference on a PGM using one of the known inference algorithms and store the sequence

of operations in a graph of sum and product nodes. This process is known in the literature as

knowledge compilation. This work also introduces a concept of mathematical functions called

network polynomials that encode probability distributions and can be evaluated to answer prob-

abilistic queries.

Sum-Product Networks (SPNs) were proposed in Poon and Domingos (2011). SPNs are

semantically equivalent to ACs. Poon and Domingos address two important issues. First, the

process of knowledge compilation may blow up exponentially, because its complexity is equiva-

lent to the complexity of the inference algorithm that is used in the compilation process. Second,

knowledge compilation assumes the existence of a PGM before it starts the compilation process.

Decomposability and smoothness are two properties that were originally proposed in Darwiche

(2003) and reintroduced in Poon and Domingos (2011) under the name of decomposability and

completeness. Poon and Domingo proved that SPNs encode proper joint distributions when

they satisfy these two properties. Since SPNs and ACs are semantically equivalent, this result

also applies to ACs. An SPN that encodes a proper joint distribution is called a valid SPN (or a

valid AC, in the case of ACs). Exact inference in SPNs is always tractable and can be done in a

time that is linear in the size of the network.

3



Figure 1.1 – A Venn diagram shows the position of Sum-Product Networks within the

space of possible functions and distributions.

The Venn diagram in Figure 1.1 visualizes the relationship between ACs, SPNs, PGMs, com-

pactly represented PGMs, tractable PGMs, valid ACs, valid SPNs, and low treewidth PGMs.

Compactly represented PGMs are the family of PGMs where the representation size is polyno-

mial in the number of variables. Tractable PGMs are the family of PGMs where the time of

inference is polynomial in the number of variables. ACs and SPNs can be used to represent any

arbitrary function; hence, the space of possible ACs and SPNs is a superset of the space of pos-

sible PGMs. Most PGMs can be compactly represented, but only a subset of these are tractable.

The notion of valid ACs and valid SPNs refers to subsets of ACs and SPNs that encode proper

distributions. Since inference is tractable in low-treewidth PGMs, valid ACs and valid SPNs

subsume this type of models and also include other type of PGMs where inference is tractable.
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1.1. Uncertainty in Dynamic Settings

1.1 Uncertainty in Dynamic Settings

As mentioned above, uncertainty problems have different properties. One of the common

properties of uncertainty problems is being dynamic. In a dynamic setting the number of vari-

ables is not fixed and not known a priori. Consider for example a model that maps frames of

YouTube videos to sequences of labels that describe the frames. Each frame can have a fixed

number of variables that describe it (e.g., a variable for each pixel), but the number of frames

varies from one YouTube video to another. Textual documents are usually treated as bags of

words, but they can also be treated as sequences of words; also here the length of the sequence

varies for each document.

A naive approach to deal with this problem is to define an upper bound for the number of

variablesN , presumably based on the longest sequence that we have in a training set. Then, learn

a fixed model with that number of variables. This approach suffers from two main problems.

First, the resulting model will not be suitable for any sequence that is longer than N . Second,

if the sequences in the training set are mostly shorter thanN , we will end up having difficulties

learning a correct model for the variables at the end, due to the shortage of data.

The previous approach completely ignores the dynamic nature of the problem and treats it as

if it was a static problem. The other way to deal with this type of problems is to focus on captur-

ing the dynamics of the problem, i.e., how the variables at each time step interact and how they

affect the variables on the next time step. By focusing on these two things, we can effectively and

compactly capture the dynamic nature of the problem. The type of PGMs that is designed for

dynamic uncertainty problems is called Dynamic PGMs and they are usually defined by spec-

ifying the interaction among the variables within each time step and between the time steps.

Unfortunately, Dynamic PGMs exhibit the same intractability issues as regular PGMs.
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1.2. Uncertainty in Online Settings

In this thesis, I present a new tractable probabilistic graphical model called Dynamic Sum-

Product Networks (DynamicSPN) that tackles the intractability problem in Dynamic PGMs

by directly learning template SPNs that effectively and compactly capture the dynamic nature

of a problem from sequence data that can possibly be of varying length. As in the case of SPNs,

exact inference in DynamicSPNs is always tractable and can be done in a time that is linear in

the size of the template SPNs. As part of the DynamicSPNs’ formulation, I introduced a new

property, named invariance, that can be used to easily ensure that the DynamicSPN is valid

(complete and decomposable). By exploiting this property, I also developed an iterative anytime

search-and-score structure learning algorithm for DynamicSPNs that can learn the structure of

a template SPN directly from data.

1.2 Uncertainty in Online Settings

Another common property of uncertainty problems that has been gaining even more popu-

larity over the past several years is being online. In the online setting, the data is streamed into the

model and the model has to update its belief incrementally. It is normal in this setting to assume

that the model has only one chance to handle each data instance that appears in the stream. This

means that many of the learning algorithms that perform multiple passes over the data during

the learning process are not suitable for this type of settings. One paradigm that lends itself nat-

urally to online settings is called Bayesian learning. It allows us to express prior knowledge about

the model. Then, it updates the model after processing each data instance. Bayesian learning is

mathematically elegant and very simple, but in most cases it is computationally hard.

Previous work A. Rashwan (2016) proposes the use of an approximation technique called

moment matching to develop a Bayesian learning algorithm for SPNs, where the focus was on
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1.3. Decision Making under Uncertainty

learning the joint distribution over random variables. This type of learning that focuses on the

joint distribution is called generative learning. In this thesis, I developed a new learning algorithm

calledDiscBays for a special type of SPNs that has no latent variables. DiscBays is an online algo-

rithm that utilizes the Bayesian learning paradigm. It directly learns a conditional distribution of

a target variable given another set of variables. This type of learning is known as discriminative
learning. Unfortunately, the moment matching technique is not feasible in the discriminative

case. Instead, I developed a novel approximation technique based on mode matching that and

works nicely for the discriminative case.

1.3 Decision Making under Uncertainty

The notion of intelligent agents is yet another concept that is at the heart of AI. Agents are

entities that have some perceptions about the environment and they can act upon it, where acting

involves making decisions. Besides random variables, decision making problems often require

two additional types of variables: decision and utility variables. Decision variables encode the

possible actions an agent can take and utility variables encode the desirability of the possible

outcomes. A main concern in AI is to develop what is known as rational agents. An agent is

considered rational if it follows a set of axioms, named axioms of rationality; these axioms impose

constraints on how to define the agent’s utility. A rational agent is also defined as an agent that

follows themaximum expected utility principle, which states that the agent should always take the

actions that maximize its expected utility. Influence diagrams (also known as decision networks)

are a class of PGMs that concerns the problem of decision making under uncertainty. They

provide a framework to define decision problems using three types of nodes: chance, decision,

and utility nodes, where chance nodes correspond to random variables.
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1.4. Summary of the Contributions

This thesis presents a new model called DecisionSPMN, which is an extension of SPNs to

the class of decision making problems. To enable this, the new model introduces two new types

of nodes: max nodes to represent the maximization operation over different possible values of

a decision variable, and utility nodes to represent the utility values. The solution of a Decision-

SPMN is the set of decisions that maximizes the expected utility and it can be computed in a

time that is linear in the size of the network. The semantics of the max node is that its output

is the value of the decision that leads to the maximal value among all decisions. Analogously to

sum-product networks, I introduce a set of properties that guarantee the validity of the Deci-

sionSPMN, such that the solution of a DecisionSPMN will correspond to the expected utility

obtained from a valid embedded probabilistic model and a utility function that are encoded by

the network.

1.4 Summary of the Contributions

Using the idea of modeling inference, I developed two new probabilistic graphical models

that guarantee tractable exact inference. I also developed a new online discriminative Bayesian

parameter learning algorithm for a special class of tractable models called Selective Sum-Product

Networks based on the novel idea of Bayesian mode matching. The following list summarizes

the contributions made in this thesis:

• Dynamic Sum-Product Networks (DynamicSPNs):

I developed a new tractable exact inference model called: Dynamic Sum-Product Net-

works (DynamicSPNs), that is suitable for sequence data of varying length. I introduced

the concept of template networks that can be repeated to model data sequences of any

8
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length. I also introduced a new property: invariance, which can be used to easily ensure

that the DynamicSPNis valid (complete and decomposable)

• A Structure Learning Algorithm for DynamicSPNs (LearnDynamicSPN):

I developed an iterative anytime search-and-score structure learning algorithm for Dy-

namicSPNs that can learn the structure of a template network directly from data.

• A Discriminative Bayesian Learning Algorithm for Selective SPNs (DiscBays):

I developed a new online discriminative Bayesian learning technique for a special class

of tractable models called Selective Sum-Product Networks based on the novel idea of

Bayesian mode matching. This new technique can be used when data is presented in an

online fashion and can easily be extended to a distributed learning setting.

• Decision Sum-Product Networks (DecisionSPMN):

I developed a new tractable model for decision problems, named DecisionSPMN. This

model adds two new types of nodes to SPNs: max nodes and utility nodes. Optimal de-

cision strategies can be obtained from DecisionSPMN in time that is linear in the size of

the network.

• Structure and Parameter Learning for DecisionSPMNs (LearnDecisionSPMN):

I developed algorithms to learn both the structure and the parameters of decision prob-

lems directly from data. The structure learning algorithm is recursive and respects the

constraint imposed by the decision problem’s partial order.

1.5 Thesis Structure

The thesis is structured as follows:

9



1.5. Thesis Structure

• Chapter 2

The background materials that are needed for the rest of the thesis are presented in this

chapter. The chapter introduces two of the traditional probabilistic graphical models

(PGMs): Bayesian networks and Markov networks. Then, after introducing the concept

of network polynomial functions, the chapter explains SPNs, how to learn them, and how

to do inference with them.

• Chapter 3

This chapter presents Dynamic Sum-Product Networks (DynamicSPNs). It also presents

an invariance property that is sufficient to ensure that the resulting DynamicSPN is valid

(i.e., encodes a joint distribution) by being complete and decomposable. The chapter also

presents a general anytime search-and-score framework with a local search technique to

learn the structure of a template network that defines a DynamicSPN based on data se-

quences of varying length. The experimental results section in this chapter demonstrates

the advantages of DynamicSPNs over static SPNs, Dynamic Bayesian Networks, and

Hidden Markov Models on synthetic and real sequence data.

• Chapter 4

This chapter presents a new online discriminative Bayesian learning algorithm called Dis-

cBays for Selective Sum-Product Networks (SSPNs). After discussing SSPNs and the

previous work on discriminative and Bayesian learning for SPNs, the chapter presents

DiscBays and provides a brief discussion of how to use it in a distributed fashion. The

experimental section shows the results when comparingDiscBays to generative and (non-

Bayesian) discriminative learning algorithms.

• Chapter 5

10



1.5. Thesis Structure

The new tractable model for decision making, DecisionSPMN, is presented in this chap-

ter. The chapter discuss the relationship betweenDecisionSPMN and some other related

works. The formulation of DecisionSPMN along with the algorithms for learning the

structure and the parameters are presented in this chapter.

• Chapter 6

This concluding chapter provides a summary of the thesis and a discussion of possible

future directions.
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Chapter 2

Background

This chapter starts by introducing two of the traditional probabilistic graphical models (PGMs):

Bayesian networks and Markov networks. Section 2.2 explains how we can construct a function

called network polynomial that encodes a joint distribution. Section 2.3 presents Sum-Product

Networks (SPNs), which emerged recently as a new class of tractable probabilistic graphical mod-

els, that are built upon the idea of network polynomials and guarantee linear time inference in

the size of the network.

2.1 Probabilistic Graphical Models

PGMs are a powerful and an elegant framework for modeling uncertainty by utilizing prob-

ability theory and graph theory. Generally, a PGM G over a set of random variables X =

{X1, X2, ..., XN} is defined using a graph G = 〈V,E〉 and a set of non-negative functions

F, where V is a set of nodes,E is a set of edges such thatE ⊆ V × V ; each node n ∈ V is asso-

ciated with a random variable. The set of functions F factorizes the joint distribution according

12



2.1. Probabilistic Graphical Models

to the conditional independence constraints induced by the graph G. G is called the structure

of the PGM and F is its parameterization.

IfG is a directed acyclic graph (DAG), which means that all edges are directed and the graph

contains no cycles, and each fn ∈ F is a conditional distribution of variableXn given its parents,

i.e fn(Xn, parents(Xn)) = Pr(Xn|parents(Xn)), then G is called a Bayesian Network (also

known as Bayes Net and Belief Network).

Definition 2.1 (Bayesian Networks)

A Bayesian network B over a set of random variables X = {X1, X2, ..., XN} is
a pair B = 〈G,F〉, where G = 〈V,E〉 is a directed acyclic graph, and F is a
set of conditional probability distributions. Each node n ∈ V is associated with a
random variable and each function fn ∈ F is a conditional distribution of the variable
Xn given its parents fn(Xn, parents(Xn)) = Pr(Xn|parents(Xn)). The joint
distribution ofX is factorized as:

Pr(X0,X1, ...,XN) =
∏
n∈V

Pr(Xn|parents(Xn))

Figure 2.1 shows simple examples of Bayesian networks, (a) is the burglar alarm Bayesian net-

work, in which an alarm has a possibility of being set off by either a burglary or an earthquake

and there is a possibility of receiving a call from two of the neighbors if they heard the alarm; (b)

is known as the sprinkler network and shows the relationship among five random variables: sea-

son of the year, state of the sprinkler, whether it is raining, whether the grass is wet, and whether

the grass is slippery.

In the case whereG is an undirected graph and the joint distribution is factorized according

to the cliques of G, the PGM G is called a Markov Network or a Markov random field. More
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2.1. Probabilistic Graphical Models

formally, let C be the set of all maximal cliques of G and for each clique C ∈ C we associate a

non-negative function fC ∈ F : Val(C)→ R+
, where Val(C) is the Cartesian product of the

state spaces of the random variables that are in cliqueC . These functions are called factors.

Definition 2.2 (Markov Networks)

A Markov networkM over a set of random variables X = {X1, X2, ..., XN} is a
pairM = 〈G,F〉, whereG = 〈V,E〉 is an undirected graph, andF is a set of factors
defined over the maximal cliques of the graph fC ∈ F : Val(C) → R+. The joint
distribution ofX is factorized as:

Pr(X0,X1, ...,XN) =
1

Z

∏
C∈C

fC(Xc),

where Z is a normalization constant.

If a PGM encodes all and only the conditional independence constraints of a distribution,

then it is called a perfect map of that distribution. Bayesian networks and Markov networks can

equivalently be perfect maps for some distributions, but there are also distributions that can only

be modeled using one of these two representations Koller and Friedman (2009).

Figure 2.2 shows two Markov networks structures, (a) is an example of a Markov network

that encodes conditional independence constraints that can not be perfectly modeled using a

Bayesian network (any Bayesian network will have either less or more conditional independence

assertions); (b) is an example of a grid structure that is widely used in many computer vision and

image processing applications Wang et al. (2013).
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2.1. Probabilistic Graphical Models

Burglary

Alarm

JohnCalls MaryCalls

Earthquake

(a)

Season

Sprinkler Rain

WetGrass

Slippery

(b)

Figure 2.1 – Examples of Bayesian networks Pearl (1995); Koller and Friedman (2009).

Each node is associated with a random variable and a conditional probability distribu-

tion. (a) is the burglar alarm Bayesian network. (b) is known as the sprinkler network.

2.1.1 Inference in Probabilistic Graphical Models

Inference in PGMs is the task of answering probabilistic queries, such as the marginal prob-

ability of some variablesY, i.e. Pr(Y), or the conditional probability of some variablesY given

the values of other variables E, i.e., Pr(Y|E), where E is usually called the evidence. Both exact

and approximate inference are known to be computationally hard, where the former is #P-Hard

and the later is NP-hard Valiant (1979); Dagum and Luby (1993).

Exact inference in PGMs can be done using the variable elimination algorithm. Other ex-

act inference algorithms, such as junction trees and the Cutset-conditioning algorithm can be

seen as variants of the variable elimination algorithm. The next example demonstrates how the

algorithm works using a small concrete example.
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2.1. Probabilistic Graphical Models

X0

X1 X2

X3

(a)

X0

X1

X4

X2

X5

X3

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

(b)

Figure 2.2 – Examples of two Markov network structures, (a) is an example of a Markov

network that encodes conditional independencies that can not be perfectly modeled us-

ing a Bayesian network (any Bayesian network will have either less or more conditional

independence assertions); (b) is an example of a grid structure that is widely used in

many computer vision and image processing applications Wang et al. (2013).

Example 2.1 (Variable Elimination Algorithm)

Consider the Bayesian networks in Figure 2.3. The network has m + 1 binary random
variables. Each variable is represented by a node in the graph and edges correspond to depen-
dencies between the variables. Assume that we want to compute the marginal probability of
X1 = True, i.e Pr(X1 = True). One way to compute the marginal is by enumerating the
entire joint distribution and summing the entries that are consistent with X1 = True:

Pr(X1 = True) =
∑
Y

∑
X2

∑
X3

...
∑
Xm

Pr(X1 = True,Y,X2,X3, ...,Xm)︸ ︷︷ ︸
A

Each term A in the summation is an entry in the joint distribution, which is in this case
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2.1. Probabilistic Graphical Models

X1 X2 X3 ... Xm

Y

Figure 2.3 – An example Bayesian network with m + 1 variables. Each variable is rep-

resented by a node in the graph and edges correspond to dependencies between the

variables. This structure is also known as the Naive Bayes model.

a giant table with 2m+1 entries. We can exploit the structure of the Bayesian network to
substitute the term A with the small factored Conditional Probability Tables (CPTs) that are
associated with the nodes in the Bayesian network:

Pr(X1 = True) =
∑
Y

∑
X2

∑
X3

...
∑
Xm

Pr(Y)Pr(X1 = True|Y)Pr(X2|Y)Pr(X3|Y)...Pr(Xm|Y)

=
∑
Y

∑
X2

∑
X3

...
∑
Xm

f0(Y)f1(X1 = True,Y)f2(X2,Y)f3(X3,Y)...fm(Xm,Y)

In the second step we used the notation fi(X), whereX can be a set of variables, to denote a
tabular representation of the CPTs; fi(X) is called a factor and X is its scope. To efficiently
compute the previous equation we can utilize the dynamic programming technique by pushing
the sums inside the product and store the intermediate results in new temporary factors.
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2.1. Probabilistic Graphical Models

Pr(X1 = True) =
∑
Y

f0(Y)f1(X1 = True,Y)
∑
X2

f2(X2,Y)
∑
X3

f3(X3,Y)...
∑
Xm

fm(Xm,Y)︸ ︷︷ ︸
fm+1(Y)︸ ︷︷ ︸

fj(Y)︸ ︷︷ ︸
fk(Y)

Each new intermediate factor is the result of summing out a variable a�er multiplying all
the factors that include the variable in their scopes. The factor multiplication operation is a
binary operation that takes two factors fi(X) and fj(Y) and returns a new factor that has
a scope ofX ∪Y.

The order in which the summations are performed is called the elimination order. In

the previous example the order was: Xm, Xm−1, ..., X3, X2, Y .

The elimination order has a large impact on the efficiency of the variable elimination algo-

rithm. This is mainly due to two related facts: 1) the factor multiplication operation returns a

new factor with a scope that is the union of its operands’ scopes, 2) a tabular representation for

factors is exponential in the size of its scope. So, while one elimination order can be very efficient,

another one might produce intractable intermediate factors. In the previous example, each elim-

ination step other than the last one produces a new intermediate factor with scope {Y } and each

multiplication is between two factors, one with the scope {Xi, Y }, i ∈ 1, ...,m and the other

with the scope {Y }. Hence, the largest produced factor has a scope of size 2.

Now let us look into an example where an inefficient elimination order is used:

Example 2.2 (Inefficient Elimination Order)

Consider the same Bayesian network and the same probabilistic query as in Example 2.1. If
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2.1. Probabilistic Graphical Models

we perform variable elimination using the elimination order Y,Xm, Xm−1, ..., X3, X2 we
will get the following:

Pr(X1 = True) =
∑
X2

∑
X3

...
∑
Xm

∑
Y

f0(Y)f1(X1 = True,Y)f2(X2,Y)f3(X3,Y)...fm(Xm,Y)︸ ︷︷ ︸
fm+1(X1,X2,X3,...,Xm)

The resulting intermediate factor fm+1 has the scope of X1, X2, X3, ..., Xm and requires
O(2m) space for its representation.

For some special structures the optimal elimination order is known. For example, if the struc-

ture is a polytree, an optimal elimination order consists of eliminating singly connected nodes

first. However, for arbitrary structures, finding the optimal elimination order is an NP-Hard

problem.

The variable elimination algorithm is outlined in Algorithm 2.1. It takes as inputs a set of

factors F and an ordered set O of the variables. The algorithm iterates over O and for each

v ∈ O it constructs a new factor by multiplying all the factors that involve v, summing out the

variable v, then remove all the factors that involve v from F.

Algorithm 2.1: Variable Elimination

Input: F: Set of local probablistic models

O: Elimination order

foreach v ∈ O do

relatedF← {f ∈ F : v ∈ Scope(f)};

otherF← F− relatedF;

newf ←
∑

v

∏
f∈relatedF f ;

F← otherF ∪ {newf};

return

∏
f∈F f
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2.2. Network Polynomials

A

B C

(a)

A ΘA

a θa
ā θā

A B ΘB|A
a b θb|a
a b̄ θb̄|a
ā b θb|ā
ā b̄ θb̄|ā

A C ΘC|A
a c θc|a
a c̄ θc̄|a
ā c θc|ā
ā c̄ θc̄|ā

(b)

Figure 2.4 – The Bayesian network that is used in Example 2.3, (a) shows the structure

of the network, and (b) the conditional probability tables for the variables A, B, and C

from left to right.

2.2 Network Polynomials

A network polynomial Darwiche (2000) is a function that encodes a joint distribution such

that it can be evaluated in order to answer probabilistic queries. The next example demonstrates

this idea by showing a function that encodes the joint distribution of three variables.

Example 2.3 (A Function That Encodes A Joint Distribution)

Consider the Bayesian network in Figure 2.4. The network has three binary random vari-
ables. The figure shows the structure and also shows the conditional probability tables for the
three variables. We used the notation x and x̄ to denote the true and false values of variable
X , respectively. The joint distribution table is the result of the Cartesian product of the three
conditional probability tables:
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2.2. Network Polynomials

A B C P (A,B,C)

a b c θa · θb|a · θc|a

a b c̄ θa · θb|a · θc̄|a

a b̄ c θa · θb̄|a · θc|a

a b̄ c̄ θa · θb̄|a · θc̄|a

ā b c θā · θb|ā · θc|ā

ā b c̄ θā · θb|ā · θc̄|ā

ā b̄ c θā · θb̄|ā · θc|ā

ā b̄ c̄ θā · θb̄|ā · θc̄|ā
For each variable we can introduce two indicators Ix and Ix̄, where every indicator can take
either the value of 1 or 0. Using these indicators we can write a function that encodes the joint
distribution table as follows:

f = Ia · Ib · Ic · θa · θb|a · θc|a

+ Ia · Ib · Ic̄ · θa · θb|a · θc̄|a

+ Ia · Ib̄ · Ic · θa · θb̄|a · θc|a

+ Ia · Ib̄ · Ic̄ · θa · θb̄|a · θc̄|a

+ Iā · Ib · Ic · θā · θb|ā · θc|ā

+ Iā · Ib · Ic̄ · θā · θb|ā · θc̄|ā

+ Iā · Ib̄ · Ic · θā · θb̄|ā · θc|ā

+ Iā · Ib̄ · Ic̄ · θā · θb̄|ā · θc̄|ā

(2.1)
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θa θa θā θāθb|a θb|a θb�|a θb�|aθc|a θc̄|a θc|a θc̄|aa a ā āb b b� b�c cc̄ c̄

+

× × × × ...

Figure 2.5 – An arithmetic circuit of the function in Equation 2.1

The previous function was obtained by multiplying each row in the probability table of the
joint distribution with the indicators that are consistent with the row. To use the previous
function for inference, we can simply replace each indicator with the value of the evidence.
For example, if we want to compute P (a, b, c̄) we will set Ia, Ib, and Ic̄ to 1 and set all the
other indicators to 0. The result a�er evaluating the function will be θa ·θb|a ·θc̄|a, which is the
probability of the assignment according to the Bayesian network. The function in Equation 2.1
can be graphically represented using an arithmetic circuit as shown in Figure 2.5.

A multi-linear function that encodes a joint distribution, similar to the one in Equation. 2.1,

is called a network polynomial Darwiche (2003). Darwiche shows that many probabilistic queries

can be obtained in a time that is linear in the size of the network polynomial by evaluating the

network polynomial or evaluating its partial derivatives with respect to the indicators. However,

the size of the network polynomial itself will grow exponentially in the number of variables if it

was constructed naively as in the previous example. In the same work, Darwiche proposes the use

of arithmetic circuits as a graphical representation of the network polynomial. He also proposes

the use of the junction tree algorithm as a mean to construct compact arithmetic circuits. This

process is known in the literature as compilation. Although this process can produce arithmetic

circuits that are more compact than those obtained by straight forward evaluation, it suffers from

two major drawbacks. First, it assumes that the structure and the parameters are known. Second,

the compilation process has an exponential time and space complexity in the size of the cliques
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of the junction tree; hence, it is prone to becoming intractable.

A method that focuses on learning arithmetic circuits directly from data was developed in Lowd

and Domingos (2012). The method is based on the search-and-score technique, with a score

function that prefers compact models by penalizing models that have more edges. The method

avoided the need to compile the Bayesian network for each candidate structure by incrementally

building the arithmetic circuit.

2.3 Sum-Product Networks

Sum-product networks (SPN) Poon and Domingos (2011) have recently emerged as a new

class of tractable probabilistic graphical models. Unlike Bayesian and Markov networks where

inference may be exponential in the size of the network as shown above, inference in SPNs is lin-

ear in the size of the network. Also, contrary to Bayesian networks and Markov networks where

we have separate representations and inference algorithms, SPNs can be seen as both graphi-

cal representations and inference machines at the same time. An SPN is defined using a rooted

DAG whose internal nodes are either sum or product nodes, and the leaves are indicators of the

random variables. Each child of a sum node has an associated weight.

Definition 2.3 (Sum-Product Network Poon and Domingos (2011))

A sum-product network (SPN) over n binary variablesX1, ..., Xn is a rooted directed
acyclic graph whose leaves are the indicators Ix1 , ..., Ixn and Ix̄1 , ..., Ix̄n , and whose
internal nodes are sums and products. Each edge (i, j) emanating from a sum node
i has a non-negative weight, wij . The value of a product node is the product of the
values of its children. The value of a sum node is∑j∈Ch(i) wijvj , where Ch(i) is the
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2.3. Sum-Product Networks

set of children of i and vj is the value of node j. The value of an SPN is the value of
its root.

The scope of a node is the set of variables that appear in the sub-SPN rooted at that node.

The scope of a leaf node is the variable that the indicator refers to and the scope of an interior

node is the union of the scopes of its children.

The value of an SPN could be seen as the output of a network polynomial whose variables

are the indicator variables and the coefficients are the weights Darwiche (2003). This polyno-

mial represents a joint probability distribution over the variables involved if the SPN satisfies

the following two properties Poon and Domingos (2011):

Definition 2.4 (Completeness Poon and Domingos (2011))

An SPN is complete i� all children of the same sum node have the same scope, where
the scope is the set of variables that are included in a child.

Definition 2.5 (Decomposability Poon and Domingos (2011))

An SPN is decomposable i� no variable appears in more than one child of a product
node.

An SPN that is both complete and decomposable is valid, and it correctly computes a joint

distribution over the variables in its scope. The next example shows several basic distributions

represented as SPNs.

Example 2.4 (Basic distributions encoded as SPNs)

Several basic distributions are encoded by SPNs exhibiting simple structures. For instance, a
univariate distribution can be encoded using an SPN whose root node is a sum that is linked
to each indicator of a single variable X (see Fig. 2.6(a)). A factored distribution over a set of
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2.3. Sum-Product Networks

variables X1, ..., Xn is encoded by a root product node linked to univariate distributions for
each variableXi (see Fig. 2.6(b)). A naive Bayes model is encoded by a root sum node linked
to a set of factored distributions (see Fig. 2.6(c)).

2.3.1 Inference in Sum-Product Networks

Inference about the joint probability of the variables in the scope of an SPNs can be answered

by replacing the indicators with either 0 or 1 then perform a bottom up pass. If the value of a

variable X = True, then we set the corresponding indicator Ix = 1 and the other indicator

Ix̄ = 0. IfX = False, then we set Ix = 0 and Ix̄ = 1. If we want to marginalize out a variable

X , then we set Ix = 1 and Ix̄ = 1. Conditional inference queries Pr(X = x|Y = y) can be

answered by taking the ratio of the values obtained by two bottom up passes of an SPN. In the

first pass, we initialize Ix = 1, Ix̄ = 0, Iy = 1, Iȳ = 0 and set all remaining indicators to 1 in

order to compute a value proportional to the desired query. In the second pass, we initialize Iy =

1, Iȳ = 0 and set all remaining indicators to 1 in order to compute the normalization constant.

The linear complexity of inference in SPNs is an appealing property given that inference for

other models such as Bayesian networks is exponential in the size of the network in the worst

case.

2.3.2 Learning Sum-Product Networks

Poon and Domingo Poon and Domingos (2011) propose two algorithms to directly learn the

parameters of SPNs from data: expectation-maximization and gradient descent. The expectation-

maximization algorithm relies on interpreting the sum nodes as latent random variables. The

gradient descent algorithm uses the partial derivatives of the network polynomial encoded by
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the SPN. These partial derivatives can easily be obtained by performing a bottom-up pass fol-

lowed by a top-down pass, where in the first pass we perform inference as described in the pre-

vious subsection and in the second pass we apply the chain rule of derivatives. A discriminative

parameter learning algorithm has been proposed in Gens and Domingos (2012) and a Bayesian

learning algorithm has also been recently proposed in A. Rashwan (2016). A discussion about

these two algorithms is presented in Section 4.2. Several algorithms have been proposed to learn

the structure of SPNs Rooshenas and Lowd (2014); Gens and Domingos (2013). In Section 5.4.1

we develop a structure learning algorithm that generalizes LearnSPN() to decision problems.

LearnSPN() is a recursive top-down structure learning algorithm for SPNs. Given a dataset,

LearnSPN() tries first to partition the random variables into independent subsets using an in-

dependence statistical test, such as χ2
or G-test. If such a partitioning is found, the algorithm

introduces a product node, where each child of the product node correspond to one of the found

subsets. If no independent subsets are found, the algorithm introduces a sum node and clusters

the dataset into similar instances; each cluster will be associated with one of the sum node’s chil-

dren. The algorithm recursively repeats these steps until only one variable is left in the dataset,

at which point it introduces a univariate distribution over that variable.
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Ix I x̄

+

(a)

Ix Ix̄

+

Iy Iȳ
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Iz Iz̄

+

×

(b)

Ix Ix̄ Iy Iȳ Iz Iz̄

+ + +

×

+ + +

×

+

(c)

Figure 2.6 – Basic distributions encoded as SPNs. (a) shows an SPN that encodes a

univariate distribution over a binary variablex. (b) shows an SPN that encodes factored

distribution over three binary variables x, y, and z. (c) is an SPN that encodes a naive

Bayes model over three binary variables x, y, and z. The root sum node corresponds to

a the hidden class variable.
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Chapter 3

Dynamic Sum-Product Networks

3.1 Introduction

This chapter presents Dynamic Sum-Product Networks (DynamicSPNs), an extension to

SPNs that model sequence data of varying length. The time for inference in DynamicSPNs is

guaranteed to always be linear in the size of the network even if some or all the random variables

were not observed. Similar to Dynamic Bayesian networks (DBNs) Dean and Kanazawa (1989);

Murphy (2002), DynamicSPNs consist of a template network that repeats as many times as the

length of a data sequence. I describe an invariance property for the template network that is suf-

ficient to ensure that the resulting DynamicSPN is valid (i.e., encodes a joint distribution) by

being complete and decomposable. Since existing structure learning algoritms for SPNs assume

a fixed set of variables and fixed-length data, they cannot be used to learn the structure of a Dy-

namicSPN. This chapter presents a general anytime search-and-score framework with a specific

local search technique to learn the structure of the template network that defines aDynamicSPN

based on data sequences of varying length. I demonstrate the advantages of DynamicSPNs over
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static SPNs, DBNs, and HMMs with synthetic and real sequence data.

3.2 Related Models

3.2.1 Dynamic Arithmetic Circuits

An extension to network polynomials for DBNs was given in Brandherm and Jameson (2004).

The proposed procedure compiles a DBN into a recursive network polynomial, where each net-

work polynomial for time step t is a function of the network polynomial of time step t − 1.

The output of each time step’s network polynomial is a table over the Cartesian product of the

values of the variables in the belief state (the nodes at time step t − 1 that are parents of nodes

at time step t). The recursive network polynomial can, essentially, be obtained by performing

variable elimination with a specified order on the DBN. The recursive network polynomial can

be represented with a special AC that has multiple roots and placeholders to plug the roots of

the previous time step’s network polynomial. I call this representation Dynamic Arithmetic Cir-

cuits (Dynamic ACs). Dynamic ACs are compiled representations, which means that we have to

start from a known DBN and then convert it to a Dynamic AC. There is a risk that the compiled

Dynamic AC will be intractable because of the the size of the output table or the internal repre-

sentation. For the output table, the authors proposed to use the Boyen-Koller Boyen and Koller

(1998) method to approximate the large output table with several smaller ones. The internal rep-

resentation, on the other hand, may still suffer of an exponential blow up since it depends on the

variable elimination order and have the same complexity as the variable elimination algorithm.

Thus, compiling a DBN to a Dynamic AC does not reduce the complexity of inference, but

only makes it linear in the size of the compiled Dynamic AC, which could be intractable. In this
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work I present a model that can be learned directly from data and present a structure learning

algorithm that guarantees to find tractable models.

3.2.2 Dynamic Bayesian Networks

As we have seen in Section 2.1, Bayesian networks are defined over a fixed number of vari-

ables. Dynamic Bayesian Networks (DBNs) extend Bayesian networks to the dynamic setting

by defining a template structure that can be instantiated for sequences of varying lengths Mur-

phy (2002); Koller and Friedman (2009). A DBN is defined as a pair 〈B1,B→〉, where B1 is a

Bayesian network that defines the initial distribution, and B→ is a two-time-slice Bayesian net-

work (2TBN) that defines the conditional distribution of the random variables at time step t

given the variables at time step t − 1. Parameters learning in DBNs can be done by tying the

parameters across time slices. REVEAL Liang et al. (1998) is a greedy search-and-score structure

learning algorithm for DBNs that focuses on capturing the dynamics of the variables between

the time steps. Given a data instance of length T , inference can be done by unrolling the DBN

for T time slices. The unrolled version is a regular Bayesian networks; hence, we can use any of

the inference algorithms for Bayesian networks. The problem with this approach is of two folds.

First, T can be arbitrarily large, which would make the unrolled Bayesian network large as well.

Second, common inference tasks in DBNs require maintaining a belief state over time, which

is a distribution over the variables at time step t given all the previous observations. The exact

representation of the belief state is exponentially large in the number of hidden variables. Some

inference algorithms, such as Boyen-Koller Boyen and Koller (1998) and the factored frontier

algorithm Murphy and Weiss (2001), tackle this problem by approximating the belief state using

a product of marginals of some cluster of variables.
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3.3. Dynamic Sum-Product Networks

3.3 Dynamic Sum-Product Networks

Sequence data such as time series data is typically generated by a dynamic process. Such data

is conveniently modeled using structure that may be repeated as many times as the length of the

process and a way to model the dependencies between the repeated structure. In this context,

we propose dynamic SPNs (DynamicSPNs) as a generalization of SPNs for modeling sequence

data of varying length. This is motivated by the fact that if a DynamicSPN is a valid SPN, then

inference queries can be answered in linear time thereby providing a way to perform tractable

inference on sequence data.

As an example, consider temporal sequence data that is generated byn variables (or features)

over T time steps:

〈
〈X1, X2, . . . , Xn〉1 , 〈X1, X2, . . . , Xn〉2 , . . . , 〈X1, X2, . . . , Xn〉T

〉

whereXi, i = 1 . . . n is a random variable in one time slice and T may vary with each sequence.

Note that non-temporal sequence data such as sentences (sequence of words) can also be repre-

sented by sequences of repeated features. We will label the set of repeating variables as a slice and

we will index slices by t even if the sequence is not temporal, for uniformity.

A DynamicSPN models sequences of varying length with a fixed number of parameters by

using a template that is repeated at each slice. This is analogous to DBNs where the template

corresponds to the network that connects two consecutive slices. We define the template SPN

for each slice 〈X1, X2, . . . , Xn〉T as follows.
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3.3. Dynamic Sum-Product Networks

Definition 3.1 (Template network)

A template network for a slice of n binary variables at time t, 〈X1, X2, . . . , Xn〉t, is
a directed acyclic graph with k roots and k+ 2n leaf nodes. The 2n leaf nodes are the
indicator variables, Ixt1 , Ixt2 , . . . , Ixtn , Ix̄t1 , Ix̄t2 , . . . , Ix̄tn . The remaining k leaves and
an equal number of roots are interface nodes to and from the template for the previous
and next slices, respectively. The interface and interior nodes are either sum or product
nodes. Each edge (i, j) emanating from a sum node i has a non-negative weight wij
as in a SPN. Furthermore, we define a bijective mapping f between the input and
output interface nodes.

A generic template network is shown in Fig. 3.1.

Ix Ix̄ Iy Iȳ Iz Iz̄× ×

+ + + + +

×

+ + +

×

Figure 3.1 – An example of a generic template network. Notice the interface nodes in

red.

In addition to the above, we define two special networks.
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3.3. Dynamic Sum-Product Networks

Definition 3.2 (Bottom network)

A bottom network for the first slice of n binary variables, 〈X1, X2, . . . , Xn〉1, is a
directed acyclic graph with k roots and 2n leaf nodes. The 2n leaf nodes are the
indicator variables, Ix11 , Ix12 , . . . , Ix1n , Ix̄11 , Ix̄12 , ..., Ix̄1n . The k roots are interface nodes
to the template network for the next slice. The interface and interior nodes are either
sum or product nodes. Each edge (i, j) emanating from a sum node i has a non-
negative weight wij as in a SPN.

Definition 3.3 (Top network)

Define a top network as a rooted directed acyclic graph composed of sum and product
nodes with k leaves. The leaves of this network are interface nodes, which were intro-
duced previously. Each edge (i, j) emanating from a sum node i has a non-negative
weight wij as in a SPN.

A DynamicSPN is obtained by stacking as many copies of the template network of Def. 3.1

as the number of slices in a sequence less 1 on top of a bottom network. This is capped by a top

network. Two copies of the template are stacked by merging the input interface nodes of the up-

per copy with the output interface nodes of the lower copy. A template is stacked on a bottom

network by merging the output interface nodes of the bottom network with the input inter-

face nodes of the template. Analogously, the top network is stacked on a template by merging

the input interface nodes of the top network with the output interface nodes of the template.

Figure 3.2 shows an example with 3 slices of 2 variables each.

While a DynamicSPN conforms to the structure required of a SPN, we note that the bot-

tom, template and top networks are not SPNs when considered separately. The bottom and
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Ix,0 Ix,0 Iy,0 Iȳ,0 Iz,0 Iz,0

+ + +

×

+ + +

×

+ +

Ix,1 Ix,1 Iy,1 Iȳ,1 Iz,1 Iz,1

+ + +

×

+ + +

×

+ +

Ix,2 Ix,2 Iy,2 Iȳ,2 Iz,2 Iz,2

+ + +

×

+ + +

×

+

Figure 3.2 – A generic example of a complete DynamicSPN unrolled over 3 time slices.

Template network is stacked on the bottom network and capped by the top network.

template networks have multiple roots while an SPN has a single root. The template and top

networks also have leaves that are not indicator variables while all the leaves of an SPN are indi-

cator variables.

As we mentioned previously, completeness and decomposability are sufficient to ensure the

validity of an SPN. While one could check that each sum node in the DynamicSPN is complete
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3.3. Dynamic Sum-Product Networks

and each product node is decomposable, we provide a simpler way to ensure that any Dynam-

icSPN is complete and decomposable. In particular, we describe an invariance property for the

template network that can be verified directly in the template without unrolling the Dynamic-

SPN. This invariance property is sufficient to ensure that completeness and decomposability are

satisfied in the DynamicSPN for any number of slices.

Definition 3.4 (Invariance)

A template network over 〈X1, ..., Xn〉t is invariant when the scope of each input
interface node excludes variables {X t

1, ..., X
t
n} and for all pairs of input interface

nodes, i and j, the following properties hold:

• scope(i) = scope(j) ∨ scope(i) ∩ scope(j) = ∅

• scope(i) = scope(j) ⇐⇒ scope(f(i)) = scope(f(j))

• scope(i)∩scope(j) = ∅ ⇐⇒ scope(f(i))∩scope(f(j))=∅

• all interior and output sum nodes are complete

• all interior and output product nodes are decomposable

Here f is the bijective mapping that indicates which input nodes correspond to
which output nodes in the interface.

Intuitively, a template network is invariant if we can assign a scope to each input interface node

such that each pair of input interface nodes have the same scope or disjoint scopes, and the same

relation holds between the scopes of the corresponding output nodes. Scopes of pairs of corre-

sponding interface nodes must be the same or disjoint because a product node is decomposable
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when its children have disjoint scopes and a sum node is complete when its children have iden-

tical scope. Hence, verifying the identity or disjoint relation of the scopes for every pair of input

interface nodes helps us in verifying the completeness and decomposability of the remaining

nodes in the template. Note that the invariance property is only concerned with the validity of

the resulting unrolled SPNs and it does not imply that the process is stationarity. Theorem 3.1

below shows that the invariance property of Def. .1 can be used to ensure that the corresponding

DynamicSPN is complete and decomposable.

Theorem 3.1

If (a) the bottom network is complete and decomposable, (b) the scopes of all pairs of
output interface nodes of the bottom network are either identical or disjoint, (c) the
scopes of the output interface nodes of the bottom network can be used to assign scopes
to the input interface nodes of the template and top networks in such a way that the
template network is invariant and the top network is complete and decomposable, then
the corresponding DynamicSPN is complete and decomposable.

Proof. Below, I sketch a proof by induction (see Appendix A for more details). For the base case,

consider a single-slice DynamicSPN that contains the bottom and top networks only. The bot-

tom network is complete and decomposable by assumption. Since the interface output nodes

of the bottom network are merged with the input interface nodes of the top network, they are

assigned the same scope, which ensures that the top network is also complete and decompos-

able. Hence a single-slice DynamicSPN is complete and decomposable. For the induction step,

assume that a DynamicSPN of T slices is complete and decomposable. Consider a Dynamic-

SPN of T + 1 slices that shares the same bottom network and the same first T − 1 copies of

the template network as the DynamicSPN of T slices. Hence the bottom network and the first
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T − 1 copies of the template network in the DynamicSPN of T + 1 slices are complete and

decomposable. Since the next copy of the template network is invariant when its input interface

nodes are assigned the scopes with the same identity and disjoint relations as the scopes of the

output interface nodes of the bottom network, it is also complete and decomposable. Similarly

the top network is complete and decomposable since its interface nodes inherit the scopes of

the interface nodes of the template network which have the same identity and disjoint relations

as the output interface nodes of the bottom network. Hence DynamicSPNs of any length are

complete and decomposable.

In summary, a DynamicSPN is an SPN with a repeated structure and tied parameters spec-

ified by the template. The likelihood of a data sequence can be computed by instantiating the

indicator variables accordingly and propagating the values to the root. Hence inference can be

performed in linear time with respect to the size of the network.

3.4 Structure Learning of DynamicSPNs

As a DynamicSPN is an SPN, we could ignore the repeated structure and learn an SPN

for the number of variables corresponding to the longest sequence. Shorter sequences could

be treated as sequences with missing data for the unobserved slices. Unfortunately, this is in-

tractable for very long sequences because the inability to model the repeated structure implies

that the SPN will be very large and the learning computationally intensive. This approach may

be feasible for datasets that contain only short sequences, nevertheless the amount of data needed

may be prohibitively large because in the absence of a repeating structure the number of param-

eters is much higher. Furthermore, the SPN could be asked to perform inference on a sequence

that is longer than any of the training sequences, and it is likely to perform poorly.
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Alternately, it is tempting to apply existing algorithms to learn the repeated structure of the

DynamicSPN. Unfortunately, this is not possible. As existing algorithms assume a fixed set of

variables, one could break data sequences into fixed-length segments corresponding to each slice.

An SPN can be learned from this dataset of segments. However, it is not clear how to use the

resulting SPN to construct a template network because a regular SPN has a single root while the

template network has multiple roots and an equal number of input leaves that are not indicator

variables. One would have to treat each segment as independent data instances and could not

answer queries about the probability of some variables in one slice given the values of other

variables in other slices.

This section presents an anytime search-and-score framework to learn the structure of the

template SPN in a DynamicSPN. Algorithm 3.1 outlines the local search technique that itera-

tively refines the structure of the template SPN. It starts with an arbitrary structure and then

generates several neighbouring structures. It ranks the neighbouring structures according to a

scoring function and selects the best neighbour. These steps are repeated until a stopping crite-

rion is met. This framework can be instantiated in multiple ways based on the choice for the ini-

tial structure, the neighbour-generation process, the scoring function and the stopping criterion.

We proceed with the description of a specific instantiation below, although other instantiations

are possible.

Without loss of generality, we propose to use product nodes as the interface nodes for both

the input and output of the template network.
1

I also propose to use a bottom network that

is identical to the template network after removing the nodes that do not have any indicator

1
WLOG assume that the DynamicSPN alternates between layers of sum and product nodes. Since a Dynam-

icSPN consists of a repeated structure, there is flexibility in choosing the interfaces of the template. I chose the

interfaces to be at layers of product nodes, but the interfaces could be shifted by one level to layers of sum nodes

or even traverse several layers to obtain a mixture of product and sum nodes. These boundaries are all equivalent

subject to suitable adjustments to the bottom and top networks.
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Algorithm 3.1: LearnDynamicSPN(): Anytime Search-and-Score Framework for Dy-

namicSPNs

Input: data,

〈X1, ..., Xn〉: set of variables for a slice

Output: templNet: template network

templNet← initialStructure(data, 〈X1, ..., Xn〉) ;

repeat

templNet← neighbour(templNet, data);

until stopping criterion is met;

variable as descendent. This way we can design a single algorithm to learn the structure of the

template network since the bottom network will be automatically determined from the learned

template. I also propose to fix the top network to a root sum node directly linked to all the input

product nodes. For the template network, we initialize the SPN rooted at each output product

node to a factored model of univariate distributions. Figure 3.1 shows an example of this ini-

tial structure with two interface nodes and three variables. Each output product node has four

children where each child is a sum node corresponding to a univariate distribution. Three of

those children are univariate distributions linked to the indicators of the three variables, while

the fourth sum node is a distribution over the interface input nodes. On merging the interface

nodes for repeated instantiations of the template, we obtain a hierarchical mixture model. We

begin with a single interface node and iteratively increase their number until the score produced

by the scoring function stops improving. Algorithm 3.2 summarizes the steps to compute the

initial structure. It is worth noting that any template network that satisfies the invariant prop-

erty can be used as an initial structure. Hence, one can easily develop a version of the structure

learning algorithm with random restarts by having different initial structures and wrapping Al-

gorithm 3.1 inside a loop for the restarts.

A simple scoring function is to use the likelihood of the data since exact inference inDynam-
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Algorithm 3.2: Initial Structure

Input: trainSet
validationSet
〈X1, ..., Xn〉: set of variables for a slice

Output: templNet: Initial Template Network Structure

f ← factoredDistribution(〈X1, ..., Xn〉);

newTempl← train(f, trainSet);

repeat

templNet← newTmpl;
newTempl← train(templNet ∪ {f}, trainSet);

until

likelihood(newTempl, validationSet) < likelihood(templNet, validationSet);

icSPNs can be done quickly. If the goal is to produce a generative model of the data, then the

likelihood of the data is a natural criterion. If the goal is to produce a discriminative model for

classification, then the conditional likelihood of some class variables given the remaining vari-

ables is a suitable criterion. For a given structure, parameters can be estimated using various

parameter learning algorithms including gradient ascent Poon and Domingos (2011) and expec-

tation maximization Poon and Domingos (2011); Peharz (2015).

The neighbour generation process begins by sampling a product node uniformly and re-

placing the sub-SPN rooted at that product node by a new sub-SPN. Note that to satisfy the

decomposability property, a product node must partition its scope into disjoint scopes for each

of its children. Also note that different partitions of the scope can be seen as different conditional

independencies between the variables Gens and Domingos (2013). Hence, the search space of a

product node generally corresponds to the set partitions of its scope, where the blocks of a set

partition correspond to the scope of the children of the product node. We can use the ’restricted

growth string (RGS)’ encoding of partitions to define a lexicographical order of the set of all

possible partitions Knuth (2006). Using RGS, we can select the next partition according to the
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lexicographic ordering, or by defining a distribution over all possible partitions, then sample a

partition from it. The distribution can be uniform in the absence of prior domain knowledge,

or an informed one otherwise.

Since the search space is exponential in the number of variables in the scope of the product

node, we utilize a simple method to reduce it if the number of variables in the scope exceeds

a threshold. The method is similar to that of Gens and Domingos Gens and Domingos (2013),

where we apply greedy pairwise independence tests to split the scope into mutually independent

subsets. If more than one subset is found, we recursively partition each subset and utilize their

union as the partition. In case no independent subsets were found, we pick a partition at ran-

dom from the space of possible partitions. If the number of variables in the scope is less than the

threshold, we select the next partition according to the lexicographic ordering, which leads to a

locally differing sub-SPN. Alg. 3.4 describes the process of finding the next partition at random

or according to the lexicographic ordering. Based on this new partition, we construct a product

of naive Bayes models where each naive Bayes model has two children that encode factored dis-

tributions. Algorithm 3.3 describes this process where we repeatedly seek to improve a product

node by replacing its partition with another one. On finding an improvement we continue to

search for better partitions in the local neighbourhood by enumerating the partitions according

to a lexicographic ordering. Fig. 3.3 shows an example where the sub-SPN of a product node

is replaced by a new sub-SPN corresponding to a product of naive Bayes models. This may in-

crease or decrease the size of the template network depending on whether the original sub-SPN

is bigger or smaller than the new product of naive Bayes models.

Since constructing the new template, learning its parameters, and computing its score can be

done in a time that is linear in the size of the template network and the dataset, each iteration of

the anytime search-and-score algorithm also scales linearly with the size of the template network
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and the amount of data.

Algorithm 3.3: Neighbour

Input: trainSet,
validationSet,
templNet

Output: templNet
repeat

n← sample product node uniformly from templNet;
newPartition← GetPartition(n);

n′ ← construct product of NaiveBayes models based on newPartition;

newTempl← replace n by n′ in templNet;
until

likelihood(newTempl, validationSet) < likelihood(templNet, validationSet);

Algorithm 3.4: GetPartition

Input: product node n
Output: nextPartition
if |scope(n)| > threshold then

{s1, ..., sn} ← partition scope(n) into indep. subsets;

if n > 1 then

return∪ni=1GetPartition(si)
else

return random partition of scope(n)

else

return next lexicographic partition of scope(n) according to the RGS encoding

Theorem 3.2

The network templates produced by Algorithms 3.2 and 3.3 are invariant.

Proof. Let the scope of all input interface nodes be identical. The initial structure of the template

network is a collection of factored distributions over all the variables. Hence the output interface

nodes all have the same scope (which includes all the variables). Hence, Alg. 3.2 produces an
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Figure 3.3 – The SPN of the root product node in (a) is replaced by a product of naive

Bayes models in (b).

initial template network that is invariant. Alg. 3.3 replaces the sub-SPN of a product node by a

new sub-SPN, which does not change the scope of the product node. This follows from the fact

that the new partition used to construct the new sub-SPN has the same variables as the original

partition. Since the scope of the product node under which we change the sub-SPN does not

change, all nodes above that product node, including the output interface nodes, preserve their

scope. Hence Alg. 3.3 produces neighbour template networks that are invariant.

3.5 Experiments

I evaluate the performance of our anytime search-and-score method for DSPNs on several

synthetic and real-world sequence datasets. In addition, I measure how well the DSPNs model
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the data by comparing the negative log-likelihoods with those of static SPNs learned using Learn-

SPN (Gens and Domingos, 2013), and with other dynamic models such as Hidden Markov Mod-

els (HMM), DBNs and recurrent neural networks (RNNs).

The synthetic datasets include three dynamic processes with different structures: sequences

of observations sampled from (i) an HMM with one hidden variable, (ii) the well-known Wa-

ter DBN (Jensen et al., 1989) and (iii) the Bayesian automated taxi (BAT) DBN (Forbes et al.,

1995). I also evaluate DSPNs with 5 real-world sequence datasets from the UCI repository (Lich-

man, 2013). They include applications such as online handwriting recognition (Alimoglu and

Alpaydin, 1996) and speech recognition (Hammami and Sellam, 2009; Kudo et al., 1999).

I first compare DSPNs to the true model on the synthetic datasets. As LearnSPN cannot be

used with data of variable length, I include it in the synthetic datasets experiment only, where

I sample sequences of fixed length. Table 3.1 shows the negative log-likelihoods based on 10-

fold cross validation for the synthetic datasets. In all three synthetic datasets, DSPN learned

generative models that exhibited likelihoods that are close to that of the true models. It also

outperforms LearnSPN in all three cases.

Next, I compare DSPNs to classic HMMs with parameters learned by Baum-Welch (Baum

et al., 1970), HMM-SPNs where each observation distribution is an SPN (Peharz et al., 2014b),

fully observable DBNs whose structure is learned by the Reveal algorithm (Liang et al., 1998)

from the BayesNet Toolbox (Murphy, 2001), partially observable DBNs, whose structure and

hidden variables are learned by search and score (Friedman et al., 1998), and RNNs with one

input node, one hidden layer consisting of long short term memory (LSTM) units (Hochreiter

and Schmidhuber, 1997) and one output sigmoid unit with a cross-entropy loss function. We se-

lect LSTM units due to their popularity and success in sequence learning (Sutskever et al., 2014).

The input node corresponds to the value of the current observation and the output node to the
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Dataset HMM-Samples Water BAT

(#i, length, #oVars) (100, 100, 1) (100, 100, 4) (100, 100, 10)

True model 62.2± 0.8 249.6± 1.0 628.2± 2.0

LearnSPN 65.4± 0.7 270.4± 0.9 684.4± 1.3

DSPN 62.5± 0.7 252.4± 0.9 641.6± 1.1

Table 3.1 – Mean negative log-likelihood and standard error based on 10-fold cross val-

idation for the synthetic datasets. (#i,length,#oVars) indicates the number of data in-

stances, length of each sequence and number of observed variables. Lower likelihoods

are better.

Dataset ozLevel PenDigits ArabicDigits JapanVowels ViconPhysic

(#i,length,#oVars) (2533,24,2) (10992,16,7) (8800,40,13) (640,16,12) (200,3026,27)

HMM 56.7± 1.1 74.2± 0.1 327.5± 0.4 94.3± 0.3 40862± 369

HMM-SPN 49.8± 0.9 67.7± 0.6 305.8± 1.8 89.8± 1.2 38410± 440

RNN 16.2± 0.7 68.7± 1.3 303.6± 6.4 78.8± 2.3 57217± 873

Search-Score DBN 40.2± 4.7 67.3± 2.3 263.7± 4.6 75.6± 2.5 -

Reveal DBN 52.4± 2.5 74.4± 0.2 260.2± 1.0 71.3± 1.2 -

DSPN 33.0± 1.0 63.5± 0.3 257.9± 0.5 68.8± 0.3 36385± 682

Table 3.2 – Mean negative log-likelihood and standard error based on 10-fold cross val-

idation for the real world datasets. (#i,length,#oVars) indicates the number of data in-

stances, average length of the sequences and number of observed variables.

predicted value of the next observation in the sequence. We train the network by backpropaga-

tion through time (bptt) truncated to 20 time steps (Williams and Peng, 1990) with a learning

rate of 0.01. Our implementation is based on the Theano library (Theano Development Team,

2016) in Python.

Table 3.2 shows the results for the real datasets. DSPNs outperform the other approaches

except for one dataset where the RNN achieved better results. DSPNs are more expressive than

classic HMMs and HMM-SPNs since our search and score algorithm has the flexibility of learn-

ing a suitable structure with multiple interface nodes for the transition dynamics where as the

structure of the transition dynamics is fixed with a single hidden variable in classic HMMs and
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HMM-SPNs. DSPNs are also more expressive than the fully observable DBNs found by Reveal

since the sum nodes in the template networks implicitly denote hidden variables. DSPNs are

as expressive as the partially observable DBNs found by search and score, but better results are

achieved by DSPNs because their linear inference complexity allows us to explore a larger space

of structures more quickly. DSPNs are less expressive than RNNs since DSPNs are restricted to

sum and product nodes while RNNs use sum, product, max and sigmoid operators. Neverthe-

less, RNNs are notoriously difficult to train due to the non-convexity of their loss function and

the possible divergence of bptt. This explains why RNNs did not outperform DSPNs on 4 of

the 5 datasets.

Table 3.3 shows the time to learn and do inference with the DBN, RNN and DSPN models

(the HMM models are omitted since they do not learn any structure for the transition dynamics

and therefore are not as expressive). All models were trained till convergence or up to two days.

I report the total time for learning with Reveal and the time per iteration for learning with the

other algorithms since they are anytime algorithms. Learning DSPNs is generally faster than

training RNNs and search-and-score DBNs. The time to do inference for all the sequences in

each dataset when one variable is observed and the other variables are hidden is reported in the

Dataset

Learning Time (Seconds) Inference Time (Seconds)

Reveal

Per Iteration

Reveal RNN SS DBN DSPN

RNN SS DBN DSPN

ozLevel 952 56 108 54 6.3 0.1 15.6 0.1

PenDigits 3,977 558 1,463 475 15.0 0.2 30.7 0.1

ArabicDigits 16,549 2572 14,911 2,909 53.6 2.5 465.8 2.9

JapaneseVowls 516 55 363 51 15.2 0.2 69.2 0.5

ViconPhysical - 4705 - 6734 - 2274 - 1825

Table 3.3 – Comparisons of the learning and inference times of the networks learned by

Reveal, RNN, Search-Score DBN (SS DBN) and DSPN.
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right hand side of the table. DSPNs and RNNs are fast since they allow exact inference in linear

time with respect to the size of their network, while the DBNs obtained by Reveal and search-

and-score are slow because inference may be exponential in the number of hidden variables if

they all become correlated.

3.6 Conclusion

Existing methods for learning SPNs become inadequate when the task involves modeling

sequence data such as time series data points. The specific challenge is that sequence data could

be composed of instances of differing lengths. Motivated by dynamic Bayesian networks, we

presented a new model called dynamic SPN, which utilized a template network as a building

block. I also defined a notion of invariance and showed that invariant template networks can

be composed safely to ensure that the resulting DynamicSPN is valid. I provided an anytime

algorithm based on the framework of search-and-score for learning the structure of the template

network from data. As our experiments demonstrated, a DynamicSPN fits sequential data bet-

ter than static SPNs (produced by LearnSPN). I also showed that the DynamicSPNs found by

our search-and-score algorithm achieves higher likelihood than competing HMMs and DBNs

on several temporal datasets. While approximate inference is typically used in DBNs to avoid an

exponential blow up, inference can be done exactly in linear time with DynamicSPNs.
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Chapter 4

Online Discriminative Bayesian

Learning for Selective SPNs

4.1 Introduction

This chapter presents a new online discriminative Bayesian learning algorithm called Dis-

cBays for Selective Sum-Product Networks (SSPNs). SSPNs Peharz et al. (2014a) are a special

type of SPNs for which all sum nodes marginalize model variables. In other words, SSPNs are

SPNs with no latent variables. The notion of discriminative learning refers to approaches that

focus on directly learning the conditional distribution Pr(Y|X), in contrast to generative learn-

ing, where the focus is on learning the joint distrubtion Pr(Y,X). While discriminative learning

generally performs better than generative learning Gens and Domingos (2012), online techniques

for discriminative learning such as stochastic gradient descent are not data efficient and therefore

suffer from a loss of accuracy. As will be shown in the experiment section of this chapter, Dis-

cBaysprovides a more accurate approach and it lends itself naturally to distributed learning (un-
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like stochastic gradient descent) since the data can be divided into subsets based on which partial

posteriors are computed by different machines and combined into a single posterior. The algo-

rithm relies on a novel approximate Bayesian learning technique that is inspired by a popular

parameter estimation method called moment matching. Since there is no known closed form

for computing the moments of the exact Bayesian posterior in the discriminative case, DiscBays

exploits the fact that the posterior is unimodal and uses the mode of the exact posterior to ap-

proximate the intractable posterior with another one from a tractable family. Section 4.2 covers

the background and also discusses some of the related works. Section 4.3 presents the DiscBays

algorithm, then Section 4.4 provides a brief discussion of how to use DiscBays in a distributed

fashion. Section 4.5 reports some experimental results whereDiscBays is compared to generative

and (non-Bayesian) discriminative learning algorithms.

4.2 Background and Related Work

4.2.1 Selective Sum-Product Networks

In SPNs, the sum nodes can be interpreted as marginalization operators with respect to some

variables. In some cases, the marginalized variables are model variables and in other cases they

are implicit latent variables. When at least one sum node marginalizes a latent variable, then

parameter learning by maximum likelihood does not have a closed form solution and iterative

techniques such as gradient descent or expectation maximization must be employed. In contrast,

when all sum nodes marginalize model variables, it means that there is no latent variable and

parameter learning by maximum likelihood has a closed form solution. SPNs in which the sum

nodes marginalize only model variables are known as selective sum-product networks (SSPNs).

49



4.2. Background and Related Work

This notion of selectivity is equivalent to the notion of determinism in the literature Darwiche

(2000). Let us formally define an SSPN in terms of selectivity and support.

Definition 4.1 (Support)

The support of a node is the set of joint assignments of the variables in the scope of that
node that have non-zero probability for some setting of the weights.

In decomposable and complete SPNs, the support of a node can be computed according to the

following recursive rule:

support(n) =


X = x if n is leaf IX=x

∪c∈children(n) support(c) if n is a sum

⊗c∈children(n) support(c) if n is a product

(4.1)

where ⊗ denotes the cross product of sets of variable assignments (e.g., {x, x̄} ⊗ {y, ȳ} =

{xy, xȳ, x̄y, x̄ȳ}).

Definition 4.2 (Selectivity)

A sum node is selective when the supports of its children do not intersect.

∀c 6= c′ ∈ children(sum), support(c) ∩ support(c′) = ∅ (4.2)

An SPN is selective when all its sum nodes are selective. In other words, we say that an SPN

is selective if each sum node has at most one child with strictly positive output for each possible

input. We can exploit selectivity to obtain a simple parameter learning algorithm. Maximizing

the likelihood of the data corresponds to setting the weight of each child of a sum node to the

number of data instances that are compatible with the support of that child.
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Some algorithms in this chapter require a symbolic evaluation of SPNs; hence, the notation

for evaluating SPNs is slightly different in this chapter than the previous ones. We use S[x] to

indicate a symbolic evaluation of the SPN after replacing the indicators according to x. This

symbolic evaluation is similar to the typical bottom up evaluation pass in SPNs, except that the

output is a function in a set of weights. This function can be obtained by transcribing the op-

erations performed in a bottom up pass. When the weights are also given, e.g. S[x|w], then

the notation indicates a bottom up pass after replacing the indicators according to x and set the

weights of the SPN to w. The result in this case is the probability of x when the SPN has w as

its parametrization.

4.2.2 Discriminative Learning

Discriminative learning refers to the approaches that focus on directly learning the condi-

tional probability distribution Pr(Y|X), where Y is the class or the label, and X is the features

vector. Gens and Domingos proposed a discriminative learning algorithm for SPNs Gens and

Domingos (2012). Their algorithm utilizes the gradient descent algorithm, where at each itera-

tion the algorithm uses the partial derivative of the conditional log-likelihood instead of the joint

likelihood. More formally, in the generative case the partial derivative of the SPN with respect

to the weights takes the following form:

∆w =α
∂

∂w
Pr(x,y)

=α
∂

∂w
S[x,y]

where α is the learning rate. On the other hand, the partial derivative with respect to the
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weights in the discriminative case takes the following form:

∆w =α
∂

∂w
log Pr(y|x)

=α
∂

∂w
log Pr(x,y)− log Pr(x)

=α
1

S[x,y]

∂S[x,y]

∂w
− 1

S[x]

∂S[x]

∂w

The algorithm can be adapted to an online setting by using the stochastic gradient descent (SGD)

algorithm, where instead of dealing with the entire training set, a mini-batch of instances (or a

single instance) is used at each iteration to estimate the gradient. This means that it will also

inherit all the known shortcomings of the SGD algorithm, such as the need to define the num-

ber instances in each mini-batch and the number of iterations. Moreover, using SGD in a dis-

tributed setting is, to the best of our knowledge, still an open problem, because each machine

could converge to a different estimation and there is no existing sound technique to combine

these estimates.

4.2.3 Generative Bayesian Moment Matching for SPNs

Bayesian learning is a paradigm where one expresses uncertainty about the model parameters

by defining a prior probability distribution over them. The posterior probability distribution,

which represents the updated belief about the parameters, is then computed by combining the

likelihood of the data and the prior using Bayes’ theorem. More formally, let w be the set of

parameters and Pr(w) be a prior distribution defined overw. Given some dataD, the posterior
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distribution can be obtained using Bayes’ theorem:

Pr(w|D) ∝ Pr(w) · Pr(D|w) (4.3)

Unfortunately, in the case of SPNs, computing the exact Bayesian posterior is computation-

ally intractable, because after each data instance the resulting posterior will be exponential in the

number of sum nodes and if the posterior update is repeated for the entire dataset, the posterior

will grow doubly exponentially with the number of sum nodes.

An approximate algorithm, called oBMM, has been proposed in A. Rashwan (2016). The

oBMM algorithm utilizes the popular technique of moment matching (also known as Method
of Moments). In moment matching, estimating parameters of a distribution is done by solving

a system of equations, in which the theoretical moments of the distribution are equated to the

empirical moments of the dataset. For example, to estimate a distribution that has k parameters

we construct k equations:

E
[
X i
]

=
1

N

N∑
j=1

xij,

for i = 1, 2, ..., k. The same technique was used in A. Rashwan (2016) to approximate the poste-

rior distribution after processing each data instance by matching the moments of the intractable

posterior to the moments of another distribution that is from a tractable family.

4.3 Discriminative Bayesian Learning for SSPNs

Moment matching is an attractive technique to approximate the exact Bayesian posterior. It

scales better than other numerical approximation techniques (e.g. Markov Chain Monte Carlo).

One of the reasons that moment matching works in the generative case is that when choosing
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a proper prior distribution, the moments of the posterior will have a closed form. Unfortu-

nately, in the discriminative case, there is no known closed form and one would need to resort to

numerical approximation techniques; hence, moment matching can not be used directly in the

discriminative case. This is mainly due to the fact that the likelihood term Pr(d|w), d ∈ D in

the discriminative case is a ratio between the joint probability Pr(x, y), and the marginal Pr(x),

i.e., the posterior takes the following form:

Pr(w|d) ∝ Pr(w) · Pr(yd|xd)

= Pr(w) · Pr(xd, yd)

Pr(xd)
,

(4.4)

where xd denotes the feature vector of the data instance d and yd denotes the label of the data

instance. However, under the condition that the SPN is selective, the posterior distribution

is unimodal and its mode can easily be found using the gradient ascent method. We exploit this

observation and develop a discriminative Bayesian learning algorithm (DiscBays) that usesmode
matching to approximate the posterior after processing each data instance. For each data instance

d, the DiscBays algorithm involves three main steps:

1. It finds the mode of the posterior.

2. It computes the height of the posterior at the mode for each sum node.

3. It solves a system of linear equations to match the mode of the posterior with the mode

of a distribution from a tractable family.

Algorithm 4.1 outlines these steps and below we describe each step in more details.

In the first step, our goal is to find the mode of the posterior. Equation 4.4 shows the form

of the posterior. Let us start by defining the first term, i.e. the prior. Although the parameters
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Algorithm 4.1: DiscBays(): An online Bayesian Discriminative Learning Algorithm for

SSPNs

Input: S: a selective sum-product network

α← initialize the Dirichlet hyper-parameters for each sum node in S ;

while data stream is active do

d← get the next data instance from the stream;

ŵ← findMode(S, α, d);

α← modeMatching(S, ŵ);

end

in SPNs are allowed to be any non-negative number, it has been shown that any SPN can equiv-

alently be re-parameterized such that the parameters are normalized Zhao et al. (2015), i.e., for

each child j of a sum node i, the weight wi,j ≥ 0 and

∑
j wi,j = 1. An SPN that has nor-

malized weights is called a normal SPN. Restricting ourselves to normal SPNs allows us to treat

sum nodes as multinomial random variables. Consequently, we can use a Dirichlet distribution

as the prior over the weights of each sum node:

Pr(w) =
∏

i∈sumNodes

Dirichlet(wi|αi), (4.5)

where Dirichlet is the Dirichlet distribution that is defined as:

Dirichlet(wi|αi) ∝
∏
j

(wi,j)
ai,j−1 ∀j ∈ children(i)

and αi is a set of hyper-parameters.

The likelihood term
Pr(xd,yd)

Pr(xd)
can directly be obtained by two bottom up passes of the SPN,

i.e.,

Pr(xd, yd)

Pr(xd)
=
S[xd, yd]

S[xd]
(4.6)
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Algorithm 4.2: findMode()

Input: S: a selective sum-product network; α: hyper-parameters; d: data instance

Output: ŵ: the mode of the posterior

ŵ← initial estimation or previous mode;

likelihood← S[xd,yd]
S[xd]

;

f ← likelihood · Pr(w|α);

while not convergence do

ŵ← ŵ + α∇f(ŵ);

end

return ŵ

Note that these two bottom up passes are symbolic as described in the background section. Since

the SPNs that we are considering in this work are selective, the numerator in the previous equa-

tion is a product of weights, and the denominator is a summation of products of weights.

We can now find the mode of the posterior ŵ by solving the following optimization prob-

lem:

ŵ = argmax
w

Pr(w) · S[xd, yd]

S[xd]
(4.7)

This objective function is concave; hence its global optimum can be found by following the

direction of the gradient using an algorithm like gradient ascent. The procedure findMode() in

Algorithm 4.2 summarizes how to find the mode of the posterior.

Once the mode ŵ is computed, we can match it with the mode of a product of Dirichlets.

The mode of a single Dirichlet is

mode(Dirichlet(wi|αi)) =

〈
αi,1 − 1∑J
j=1 αi,j − J

, ...,
αi,J − 1∑J
j=1 αi,j − J

〉
, (4.8)
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4.3. Discriminative Bayesian Learning for SSPNs

where J is the number of children of a sum node i. By setting

ŵi = mode(Dirichlet(wi|αi)),

we obtain the following system of equations

ŵi,j =
αi,j − 1∑J

j′=1 αi,j′ − J
∀i ∈ sumNodes,∀j ∈ children(i) (4.9)

Unfortunately, this system of equations is not sufficient to determine all the hyperparameters

αi,j . We can obtain additional constraints by considering the height of the posterior at the mode;

the notion of height in this context refers to the resulting value that we get when evaluating the

posterior. Therefore, the goal of the next step is to find the height of the posterior at the mode

for each Dirichlet. As we have seen above, the posterior is a ratio, where the numerator is a

product of Dirichlet distributions and the denominator is a mixture of products of Dirichlet

distributions. More formally, the posterior takes the following form:

Pr(w|d) ∝
∏

i∈sumNodes Dirichlet(wi|α′i)
S[xd]

(4.10)

Since we are interested in matching the height of each Dirichlet distribution, we can simply take

theN th-squareroot of the denominator for each Dirichlet, whereN is the number of sum nodes

in the SPN:

Pr(w|d) ∝
(

Dirichlet(w1|α′1)
N
√
S[xd]

)
︸ ︷︷ ︸

H1

(
Dirichlet(w2|α′2)

N
√
S[xd]

)
︸ ︷︷ ︸

H2

. . .

(
Dirichlet(wN|α′N)

N
√
S[xd]

)
︸ ︷︷ ︸

HN

(4.11)
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Algorithm 4.3: findHeight()

Input: S: a selective sum-product network; i: a sum node in S; ŵ: the mode of the

posterior;

Output:Hi: the height for the Dirichlet of i at the mode

N ← number of sum nodes in S;

α′ ← α;

foreach j ∈ children(i) do

if wi,j appears in S[xd, yd] then

a′i,j ← a′i,j + 1

end

end

Hi ←
(Dirichlet(ŵiα

′
i)

N
√
S[xd|w=ŵ]

)
;

returnHi

We can now match the height of each Dirichlet with its corresponding height in the previous

equation:

∏
j

(wi,j)
ai,j−1 =

(
Dirichlet(wi|α′i)

N
√
S[xd]

)
∀i ∈ sumNodes,∀j ∈ children(i) (4.12)

The right hand side is evaluated by setting w = ŵ. We can linearize this system of equations by

taking the log of both sides. This linear system of equations along with the system of equations

in Equation 4.9 are sufficient to determine all hyperparameters αi,j . Algorithm 4.3 uses the de-

composition that we showed in Equation 4.9 to find the height that will be used in the matching

step. Algorithm 4.4 summarizes the matching step; it returns a set of updated hyper-parameters.

4.4 Distributed DiscBays

One of the attractive properties of using the Bayesian paradigm is that it lends itself naturally

to distributed learning (unlike stochastic gradient descent). Since the data instances are assumed
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Algorithm 4.4: modeMatching()

Input: S: a selective sum-product network; ŵ: the mode of the posterior; α:

hyper-parameters;

Output: α: updated hyper-parameters

foreach sum node i in S do

Solve the following linear system of equations for αi,1, αi,2, . . . , αi,J :

ŵi,j =
αi,j−1∑J

j′=1 αi,j′−J
∀j ∈ children(i);

(ai,1 − 1) log(wi,1) + (ai,2 − 1) log(wi,2) . . . (ai,J − 1) log(wi,J) =
findHeight(S, i, ŵ) ∀j ∈ children(i)

end

to be independent and identically distributed, we can write the posterior as follows:

Pr(w|D) ∝ Pr(w) · Pr(D|w) = Pr(w) ·
∏
d∈D

Pr(d|w)︸ ︷︷ ︸
L

(4.13)

The L term in the previous equation can be distributed over several machines. We can think of

the datasetD as a collection of mini-batches, where the posterior of each batch can be computed

on a different machine. More formally, assume that we have M machines and M ·N instances

in D. Let each machine be indexed by a number m ∈ 1, . . . ,M , the posterior computed by

machine m is Prm(w|D(m)), where D(m) = {D(m−1)N , . . . ,DmN}. These posteriors can be

combined as follows:

Pr(w|D) ∝ Pr(w) ·
M∏
m=1

Prm(w|D(m))

Pr(w)
(4.14)
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Figure 4.1 – Experimental results of comparing DiscBays to generative and (non-

Bayesian) discriminative learning algorithms. The X-axis shows the percentage of data

used for training and the Y-axis shows the conditional log-likelihood of the testing

dataset.
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4.5 Experimental Results

To evaluate the performance of DiscBays, I conducted experiments on 8 real-life datasets,

where the performance of DiscBayswas compared to generative and (non-Bayesian) discrimina-

tive learning algorithms. The statistics of the datasets are shown in Table. 4.1. The datasets were

partitioned into training (90%) and testing (10%) sets. The training instances were iteratively

streamed to each algorithm one at a time to simulate an online environment. In the prepro-

cessing step, all the real-value random variables were binarized by testing whether the values are

above or below the empirical median value of the random variable.

In the generative case, learning can be done in a closed form as shown in Peharz et al. (2014a);

hence, the online version of the generative algorithm basically counts the number of times each

child of each sum node was active. Each weight is updated each time its corresponding count

is incremented. I used stochastic gradient descent with mini-batches for the (non-Bayesian) dis-

criminative learning algorithm as described in Gens and Domingos (2012). For each dataset, a

random selective SPN was generated and used for all learning algorithms.

Figure 4.1 shows the results of the experiments. The training dataset is streamed to the learn-

ing algorithms and the conditional log-likelihood of the testing set is reported at different in-

tervals of time during the training sessions. Given enough data and assuming that the learning

algorithms are consistent, the learning algorithms are expected to converge to the same param-

eters. This was the case in six of the datasets, where the three learning algorithms converged to

the same region. However, as can be seen in Figure 4.1, DiscBays outperformed the other two

algorithms in the early phases of the training sessions in all the datasets except one. This type of

behaviour is appealing for real online environments where data is scarce at the beginning and it

is in our interest to have learning algorithms that converge early.
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Table 4.1 – Statistics of the datasets used in the experiments.

Dataset #Variables #Instances

Diabetes 9 768

Heart 14 270

Sonar 19 208

German 25 1000

Ionsphere 35 351

NLTCS 16 21574

Planets 69 23215

Jester 100 14116

4.6 Conclusion

This chapter presented a new online discriminative Bayesian learning algorithm for selective

SPNs, called DiscBays. Discriminative learning is the approach where the focus is on learning

the conditional distribution Pr(Y|X) and Bayesian learning is the approach that allows us to

express the uncertainty about the parameters by defining probability distributions over them.

Bayesian learning is often intractable and the discriminative likelihood makes the situation even

worse. Previous work proposed the use of a popular estimation technique called moment match-

ing to approximate the intractable distribution after processing each data instance with a distri-

bution from a tractable family. Unfortunately, in the discriminative case, computing the mo-

ments is difficult, due to the fact that the moments of the exact Bayesian posterior has no known

closed form. The algorithm presented here uses a novel technique, named mode matching, to

match the mode of the intractable distribution with a new tractable one. The experiments in this

chapter show thatDiscBays outperforms generative and (non-Bayesian) discriminative learning

algorithms and converges faster than them.
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Chapter 5

Decision Sum-Product-Max Networks

5.1 Introduction

Influence diagrams (IDs) have been the graphical language of choice for probabilistically

modeling decision-making problems Shachter (1986); Tatman and Shachter (1990). IDs extend

the probabilistic inference of Bayesian networks with decision and utility nodes to allow the

computation of expected utility and decision rules. IDs present a general language that can rep-

resent factored decision-making problems such as completely- or partially-observable decision

problems Smallwood and Sondik (1973); Kaelbling et al. (1998). However, unlike Bayesian net-

works that have witnessed a rich portfolio of algorithms to automatically learn their structure

from data Tsamardinos et al. (2006); Friedman et al. (1998); Friedman and Koller (2003), no al-

gorithms exist to the best of my knowledge for learning the structure and parameters of IDs from

data.

This chapter presents an extension of sum-product networks to a new class of problems that

involve probabilistic decision making. To enable this, the new model introduces two new types
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of nodes: max nodes to represent the maximization operation over different possible values of a

decision variable, and utility nodes to represent the utility values. I refer to the resulting network

as a decision sum-product-max network (DecisionSPMN), whose solution provides a decision

rule that maximizes the expected utility. Making decisions using DecisionSPMNs is guaranteed

to be linear in the size of the network even if some or all the random variables are not observed.

The semantics of the max node is that its output is the decision that leads to the maximal value

among all decisions. Analogously to sum-product networks, I introduce a set of properties that

guarantee the validity of the DecisionSPMN, such that the solution of a DecisionSPMN will

correspond to the expected utility obtained from a valid embedded probabilistic model and a

utility function that are encoded by the network. The chapter also presents algorithms to learn

both the structure and the parameters of DecisionSPMNs directly from data. These algorithms

concern model-based offline decision making and reinforcement learning problems, where there

is no trade-off between exploration and exploitation.

Also in this chapter I present a method to learn the structure and parameters of valid De-

cisionSPMNs from decision-theoretic data. Such data not only consists of instances of the ran-

dom state variables but also possible decision(s) and the corresponding valuation(s). To evaluate

new methods for learningDecisionSPMNs in this paper and in the future, we establish an initial

testbed of datasets each reflecting a realistic sequential non-stationary decision-making problem.
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5.2 Related Work

5.2.1 Decision Circuits

A DC extends an AC with max nodes for optimized decision making. In other words, a DC is

a directed acyclic graph where the interior nodes are sums, products and max operators, while the

leaves are numerical values and indicator variables. Bhattacharjya and Shachter [Bhattacharjya

and Shachter (2007)] proposed DCs as a representation that ensures exact evaluation and solu-

tion of IDs in time linear in the size of the network. However, similar to ACs, DCs are obtained

by compiling IDs, which may yield an exponential blow up in their size. More recently, separa-

ble value functions and conditional-independence between subproblems in IDs is exploited to

produce more compact DCs Shachter and Bhattacharjya (2010).

5.2.2 Influence Diagrams

Influence Diagrams (ID) are a special type of PGM that concern decision making prob-

lems Nielsen and Jensen (2009). IDs are represented using directed acyclic graphs with three

types of nodes: chance, decision, and utility nodes. Chance nodes correspond to random vari-

ables and denoted by circle shaped nodes. Decision nodes are denoted by rectangle shaped nodes.

Utility nodes denoted by diamond shaped nodes and they are not allowed to have children.

Chance and utility nodes have associated functions, which correspond to conditional distribu-

tions and utility functions, respectively. A solution of an ID is a set of rules that map each deci-

sion variable to one of its possible values, such that this set of rules maximizes the expected utility.

The variable elimination algorithm can easily be generalized to work with IDs by introducing a

maximization operation over the decision variables. IDs can also be converted to regular Bayesian
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networks using a process called Cooper transformation Cooper (1998). Inference algorithms for

BNs can then by used on the resulting model.

5.3 Sum-Product-Max Networks

In this section, I introduce DecisionSPMNs and establish their equivalence with DCs.

5.3.1 Definition and Solution

DecisionSPMNs generalize SPNs Poon and Domingos (2011) by introducing two new types

of nodes to an SPN: max and utility nodes. We begin by defining a DecisionSPMN.

Definition 5.1 (DecisionSPMN)

ADecisionSPMN over decision variablesD1, . . . , Dm, random variablesX1, . . . , Xn,
and utility functions U1, . . . , Uk is a rooted directed acyclic graph. Its leaves are either
binary indicators of the random variables or utility nodes that hold constant values.
An internal node of a DecisionSPMN is either a sum, product or max node. Each
max node corresponds to one of the decision variables and each outgoing edge from a
max node is labeled with one of the possible values of the corresponding decision vari-
able. Value of a max node i is maxj∈Children(i) vj , where Children(i) is the set of
children of i, and vj is the value of the subgraph rooted at child j. The sum and
product nodes are defined as in the SPN.

Figure 5.1 shows a generic example DecisionSPMN for a decision-making problem with a

single decisionD and binary random variableX1. Indicator nodesX = T andX = F return

a 1 and 0 respectively, when the random variableX is true, and vice versa ifX is false.
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Figure 5.1 – ExampleDecisionSPMN for one decision and one random variable. Notice

the rectangular max node and the utility nodes (diamonds) in the leaves.

We now turn to recall the concepts of information sets and partial ordering. The informa-

tion sets I0, . . . , Im are subsets of the random variables such that the random variables in the

information set Ii−1 are observed before the decision associated with variable Di, 1 ≤ i ≤ m,

is made. Any information set may be empty and variables in Im need not be observed before

some decision node. An ordering between the information sets may be established as follows:

I0 ≺ D1 ≺ I1 ≺ D2 ≺ ... ≺ Dm ≺ Im. This is a partial order, denoted by P≺, because

variables within each information set may be observed in any order.

Next, we define a set of properties to ensure that a DecisionSPMN encodes a function that

computes the maximum expected utility (MEU) given some partial order between the variables

and some utility function U .

Definition 5.2 (Completeness of Sum Nodes)

ADecisionSPMN is sum-complete i� all children of the same sum node have the same
scope.
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The scope of a node is the set of all random variables associated with indicators and decision

variables associated with max nodes that appear in the DecisionSPMN rooted at that node.

Definition 5.3 (Decomposability of Product Nodes)

A DecisionSPMN is decomposable i� no variable appears in more than one child of
a product node.

Definition 5.4 (Completeness of Max Nodes)

A DecisionSPMN is max-complete i� all children of the same max node have the
same scope, where the scope is as defined previously.

Definition 5.5 (Uniqueness of Max Nodes)

A DecisionSPMN is max-unique i� each max node that corresponds to a decision
variable D appears at most once in every path from root to leaves.

Together, these properties allow us to define a valid DecisionSPMN.

Definition 5.6 (Validity)

A DecisionSPMN is valid if it is sum-complete, decomposable, max-complete, and
max-unique.

A DecisionSPMN is evaluated by setting the indicators that are consistent with the evidence

to 1 and the rest to 0. Then, we perform a bottom-up pass of the network during which operators

at each node are applied to the values of the children. The optimal decision rule is found by

tracing back (i.e., top-down) through the network and choosing the edges that maximize the

decision nodes.
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We may obtain the maximum expected utility of an ID representing a decision problem with

a partial orderP≺ and utility functionU by using the Sum-Max-Sum rule Koller and Friedman

(2009), in which we alternate between summing over the variables in an information set and

maximizing over the decision variable that requires the information set. Theorem 5.1 makes a

connection between DecisionSPMNs and the maximum expected utility as obtained from ap-

plying the Sum-Max-Sum rule. We use the notation S(e) to indicate the value of a Decision-

SPMN when evaluated with evidence e.

Theorem 5.1

The value of a valid DecisionSPMN S is identical to the maximum expected utility
obtained from applying the Sum-Max-Sum rule that utilizes the partial order on the
random and decision variables: S(e) = MEU(e | P≺,U).

Proof of this theorem involves establishing by induction that the bottom-up evaluation of a valid

DecisionSPMN corresponds exactly to applying an instance of the Sum-Max-Sum rule and is

given in tes (2016).

5.3.2 Equivalence of DecisionSPMNs and DCs

DecisionSPMNs and DCs are syntactically and structurally different, but we establish that

they are semantically equivalent. The main difference is that all numerical values in DCs appear

at the leaves whereas edges emanating from sum nodes are labeled with weights in Decision-

SPMNs. We can convert a DecisionSPMN into a DC by inserting a product node at the end of

each weighted edge and moving the edge weight to a leaf under the newly created product node

– this adds two nodes in the corresponding DC for each labeled edge. Hence, DecisionSPMNs

are more compact than DCs because they contain fewer nodes, but are semantically equivalent.
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However, the transformation is linear with respect to the number of edges in theDecisionSPMN

because it involves adding precisely two nodes per labeled edge. In the worst case, the size of the

corresponding DC in terms of nodes will be at most thrice the total number of nodes in the

DecisionSPMN – this increase is proportional.

5.4 Learning DecisionSPMNs

This section proposes methods to learn the structure and parameters of DecisionSPMNs

from data. Since these methods generalize existing ones for SPNs, it will be easier to describe

how to learn DecisionSPMNs, but with the understanding that DCs can be readily obtained

from DecisionSPMNs as we discussed previously. The learning algorithms proposed here can

be viewed as offline batch reinforcement learning for short non-stationary sequential decision

making problems where the utility values correspond to the values of the terminal rewards. Since

there is no opportunity to interact with the environment (offline batch learning), there is no ex-

ploration/exploitation tradeoff. Furthermore, the resulting model models do not assume full

observability since the sum nodes may implicitly correspond to latent variables. These algo-

rithms are model based since they will effectively estimate the structure and the parameters of

the decision process.

5.4.1 Structure Learning

Our method for learningDecisionSPMNs labeled as LearnDecisionSPMN generalizes Learn-

SPN Gens and Domingos (2013), which is a recursive top-down learning method for SPNs. This

allows automated learning of computational models of decision-making problems from appro-

priate data. LearnDecisionSPMN extends LearnSPN to generate the two new types of nodes
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Figure 5.2 – Similar to LearnSPN, LearnDecisionSPMN is a recursive algorithm that

respects the partial order and extends it to work with max and utility nodes.

introduced in DecisionSPMNs: max and utility nodes. Equally important, the generalization

also requires modifying a core part of LearnSPN so that the learned structure respects the con-

straints that are imposed by the partial orderP≺ on variables involved in the decision problem.

Algorithm 5.1 describes the structure-learning method and Fig. 5.2 visualizes how the algorithm

proceeds.

LearnDecisionSPMN takes as input a dataset D and a partial order P≺. Each utility vari-

able in the data is first converted into a binary random variable, say U , independent from other

utility variables by using the well-known Cooper transformation Cooper (1998).
1

Specifically,

Pr(U = true|Parents(U)) = u−umin

umax−umin
where umin and umax are the minimum and max-

imum values for that utility variable in the data and Parents(U) is a joint assignment of the

variables that U depends on. Next, we duplicate each instance a fixed number of times and re-

place the utility value of each instance by an i.i.d. sample of true or false from the corresponding

distribution over U . Consequently, utility variables may be treated as traditional random vari-

1
The same Cooper transformation also plays a key role in solving IDs as a probabilistic inference problem.
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Algorithm 5.1: LearnDecisionSPMN

input :D: instances, V: set of variables, i: infoset index,P≺: partial order

output :

if |V| = 1 then

if the variable V in V is a utility then

u← estimatePr(V = True) fromD;

return a utility node with the value u
end

else

return smoothed univariate distribution over V
end

end

else

rest← P≺[i+ 1...];
if P≺[i] is a decision variable then

for v ∈ decision values of P≺[i] do

Dv ← subset ofD whereP≺[i] = v
end

return MAXv LearnDecisionSPMN(Dv, rest, i + 1,P≺)
end

else

Try to partition V into independent subsets Vj while keeping rest in one partition;

if a partition is found then

return

∏
j LearnDecisionSPMN(D,Vj, i,P≺)

end

else

partitionD into clustersDj of similar instances;

return

∑
j
|Dj |
|D| × LearnDecisionSPMN(Dj,V, i,P≺)

end

end

end

ables in the learning method.

Algorithm 5.1 iterates through the partial order P≺. For each decision variable D, a corre-

sponding max node is created. For each set V of random variables in an information set of the

partial order, the algorithm constructs an SPN of sum and product nodes by recursively par-
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Algorithm 5.2: DecisionSPMN Parameter Learning

input : S: DecisionSPMN,D: Dataset

output : DecisionSPMN with learned parameters

S ← learnUtilityValues(S,D);

S ← DecisionSPMN− EM(S,D);

titioning the random variables in non-correlated subsets and by partitioning the dataset into

clusters of similar instances. As in the original LearnSPN, LearnDecisionSPMN can be imple-

mented using any suitable method to partition the variables and the instances. For example, a

pairwise χ2
or G-test can be used to find, approximately, a partitioning of the random variables

into independent subsets. Clustering algorithms such as EM and K-means can be used to parti-

tion the dataset into clusters of similar instances.

Figure 5.3 shows an example DecisionSPMN learned using our structure learning algorithm

from decision-making data as described above. The dataset is one of those utilized later in the

paper for evaluation.

5.4.2 Parameter Learning

Let D be a dataset with |D| instances, where each instance ei is a tuple of values of ob-

served random variables denoted as x, values of decision variables denoted as d, and a single

utility value u that represents the utility of the joint assignment of values for x and d; i.e.,

ei = 〈x,d, U(x,d) = u〉. Algorithm 5.2 gives an overview of the parameter-learning method.

The method is split into two subtasks: (i) Learning the values of the utility nodes, and (ii) learn-

ing the embedded probability distribution.
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Figure 5.3 – An example DecisionSPMN learned from the Computer Diagnosti-

cian dataset using LearnDecisionSPMN. The partial order used is {SysSt} ≺
RDecision ≺ {LogicFail, IOFail, ROutcome}. Three different indicators used

for ROutcome because it is a ternary random variable.

5.4.2.1 Learning the Values of the Utility Nodes

The first subtask is to learn the values of the utility nodes in theDecisionSPMN. We start by

introducing the notion of specific-scope. The specific-scope for an indicator node is the value of the

random variable that the indicator represents; for all other nodes the specific-scope is the union of

their childrens’ specific-scopes. For example, an indicator node Ix forX = x has the specific-scope
{x}, while an indicator node Ix̄ for X = x̄ has the specific-scope {x̄}. A sum node over Ix and

Ix̄ has the specific-scope {x, x̄}.
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A product node that has two children, one with specific-scope {x, x̄} and another one with

specific-scope{y}, will have the specific-scope{x, x̄, y}. A simple procedure that performs a bottom-

up pass and propagates the specific-scope of each node to its parents can be used to define the

specific-scope of all the sum and product nodes in a DecisionSPMN.

Next, for each unique instance ei inD we perform a top-down pass where we follow all the

nodes whose values in ei are consistent with their specific-scopes. If we reach a utility node, then

we increment a counter associated with the value (true or false) of that utility variable in the data.

Once all instances are processed, we set each utility node to the ratio of true values (according

to the counters) since this denotes the normalized utility based on Cooper’s transformation (see

Sec. 5.4.1).

5.4.2.2 Learning the Embedded Probability Distribution

The second subtask is to learn the parameters of the embedded probability distribution.

In particular, we seek to learn the weights on the outgoing edges from the sum nodes. This is

done by extending an expectation-maximization (EM) based technique for learning parameters

of SPNs Peharz (2015) to make it suitable forDecisionSPMNs. For each instance ei in the dataset,

we set the indicators to their values inxi (the observed values of the random variables in instance

ei). This is followed by computing the expected utility by evaluating the DecisionSPMN using

a bottom-up pass as described in Section 5.3. To integrate the decisions di, each max node will

multiply the value of its children with either 0 or 1 depending on the value of the corresponding

decision in the instance. This multiplication is equivalent to augmenting the DecisionSPMN

with indicators for max nodes. Since our concern is the weights of the sum nodes only in this

subtask, all utility nodes may be treated as hidden variables with fixed probability distributions,

where summing them out will always result in value 1.
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Algorithm 5.3: DecisionSPMN EM Up

input : S: DecisionSPMN, ek: instance

output : DecisionSPMN with upward-evaluation values for all nodes

- Set S indicators according to ek;

for node i in a bottom-up order of S do

if i is a sum node then

Si(k)←
∑

j∈Children(i) Sj(k)

end

if i is a product node then

Si(k)←
∏
j∈Children(i) Sj(k)

end

if i is a max node then

Si(k)←
∑

j∈Children(i) Iek[i]=jSj(k)

end

end

We also perform a top-down pass to compute the gradient of the nodes. The expected counts

of each child of a sum node is maintained using a counter for each child. We normalize and assign

those values to the edges from the sum nodes at the end of each iteration. This process is repeated

until the weights converge. Algorithm 5.5 gives the algorithm for EM.

5.5 Experimental Results

We evaluate the LearnDecisionSPMN algorithm by applying it to a testbed of 10 data sets

whose attributes consist of state and decision variables and corresponding utility values. Three

of the datasets were created by simulating a randomly generated directed acyclic graph of nodes

whose conditional probability tables and utility tables were populated by values from symmet-

ric Dirichlet distributions. Consequently, these are strictly synthetic data sets with no connec-

tion to real-world decision-making problems. The other seven data sets represent real-world

decision-making situations in fields spanning different disciplines including health informatics,

IT support, and trading. Each of these data sets was obtained by simulating an expert system
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Algorithm 5.4: DecisionSPMN EM Down

input : S: DecisionSPMN after bottom-up evaluation, ek: instance

output : DecisionSPMN with partial derivatives values for all nodes

for node i in a top-down order of S do

if i is a sum node then

for j ∈ Children(i) do

∂S
∂Sj
← ∂S

∂Sj
+ wi,j

∂S
∂Si

;

end

end

if i is a max node then

for j ∈ Children(i) do

∂S
∂Sj
← ∂S

∂Sj
+ Iek[i]=j

∂S
∂Si

;

end

end

if i is a product node then

for j ∈ Children(i) do

∂S
∂Sj
← ∂S

∂Sj
+
∏
k∈Children(i)−j Sk;

end

end

end

ID. Table 5.1 gives some descriptive statistics for these data sets such as the number of decision

variables in each, the sizes of the data sets, the complexity of solving the underlying expert ID.

The real-world datasets and associated metadata are available for download tes (2016).

We applied LearnDecisionSPMN described in the previous section on each of these datasets.

The last column of Table 5.1 reports the size of the DecisionSPMN that was learned for each

dataset. While the size is usually larger than the total representational complexity of the cor-

responding ID, we emphasize that the run time complexity of DecisionSPMN is linear in the

size of the network. Furthermore, DecisionSPMNs analogous to SPNs tend to have deep struc-

tures that are particularly suited to model the hidden variables. On the other hand, the run time

complexity of solving the ID may be exponential in the size of the ID.

To evaluate the correctness of the learned representation, we exploit the fact that the true
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Algorithm 5.5: DecisionSPMN-EM

input : S: DecisionSPMN,D: Dataset

output : DecisionSPMN with learned weights

S ← randomInitilization(S);

repeat

for ek ∈ D do

S ← DecisionSPMNEMUp(S, ek);

S ← DecisionSPMNEMDown(S, ek);

Ni,j ← 0 For each child j of sum node i;

Ni,j ← Ni,j +
1

S(k)
∂S
∂i + Si(k)Wi,j ;

end

Wi,j =
Ni,j∑

l∈Chd(N)Ni,l

until convergence;

Dataset #Dec var |ID| |Dataset| |DecisionSPMN|

Random-ID 1 3 116 100K 730

Random-ID-2 5 283 100K 922

Random-ID 3 8 580 100K 2940

Export textiles 1 10 10K 73

Powerplant airpollu 2 17 10K 158

HIV screening 2 46 50K 213

Computer diagnostician 1 50 50K 186

Test strep 2 71 200K 205

Lungcancer staging 3 314 200K 274

Car Evaluation 1 3457 100K 8466

Table 5.1 – Problem, datasets, and learned models statstics. #Dec var is the number

of decisions variables in the problem, |ID| is the total representational size of the in-

fluence diagram (total clique size + sepsets), |Dataset| is the size of the dataset, and

|DecisionSPMN| is the size of the learned DecisionSPMN.

model – the expert ID – is also available to us. However, we note that this may not be the case

in practice. Subsequently, we solve the DecisionSPMN bottom up to compute the MEU and

compare it with the MEU as obtained from the IDS. We report this comparison in Table 5.2.

Notice that the MEU from the learned DecisionSPMN differs from that obtained from the ID.
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MEU

Data set ID DecisionSPMN ID EU ∆ %

Random-ID 1 0.6676 0.6188 0.6676 0

Random-ID 2 0.8159 0.7617 0.8159 0

Random-ID 3 0.9035 0.8832 0.8428 10.30

Export textiles 0.7068 0.6487 0.7068 0

Powerplant airpollu 0.7480 0.7281 0.6280 5.39

HIV screening 0.9497 0.9420 0.9497 0

Computer diagnostician 0.6740 0.6254 0.6740 0

Test strep 0.9987 0.9586 0.9987 0

Lungcancer staging 0.7021 0.6635 0.6957 7.63

Car Evaluation 0.5267 0.4814 0.5267 0

Table 5.2 – Comparison of MEUs of the expert ID (true model) and learned Decision-
SPMN. The second and third columns are the MEU from the true model and Decision-

SPMN, respectively. The optimal decision rule is obtained from the learned Decision-
SPMN then plugged into the true model; the resulting EU of the true model is shown

in the fourth column. In the case where there is a discrepancy between the ID’s MEU

(second column) and EU (fourth column), then that means that the DecisionSPMN’s

decision rule does not match the one from the ID. In such cases, further analysis is per-

formed to obtain the percentage of discrepancy, which is reported in the last column.

MEU for DecisionSPMN is the mean of 10-fold cross-validation. The largest std. error

across the folds among all the datasets was 0.00012.

This is expected because theDecisionSPMN is learned from a finite set of data that is necessarily

an approximate representation of a probabilistic decision-making problem. However, the opti-

mal decision rule may still coincide with that from the ID. Therefore, we enter the decision rule

from the DecisionSPMN into the ID and report on the obtained EU in the fourth column as

well. Notice that it coincides with the MEU from the ID for all but 3 of the datasets. A deeper

analysis of the DecisionSPMN’s decision rule reveals that it differed from the optimal decisions

by a percentage that is less than or about 10% as reported in the fifth column. We obtained the

difference between the two decision rules by executing both for all possible states and noting the
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MEU time (ms)

Data set Learning (s) DecisionSPMN ID

Random-ID 1 18.20 1.43 39.47

Random-ID-2 22.66 1.92 29.44

Random-ID 3 69.20 4.21 20.76

Export textiles 1.84 0.21 16.26

Powerplant airpollu 1.30 0.40 17.44

HIV screening 8.80 0.57 40.37

Computer diagnostician 5.69 0.35 17.51

Test strep 18.93 0.52 16.35

Lungcancer staging 16.28 0.53 20.70

Car Evaluation 201.87 9.81 27.29

Table 5.3 – Learning time for DecisionSPMNs in seconds and a comparison between

the MEU computation time of DecisionSPMNs and the expert ID in milliseconds.

difference in decisions.

Finally, we report on the time taken to learn the DecisionSPMN and to compute the MEU

by both the DecisionSPMN and the expert IDs in Table 5.3. A comparison between the times

for the two decision-making representations demonstrates more than an order of magnitude in

speed up in computing the MEU by theDecisionSPMN given that the two models are available.

5.6 Conclusion

DecisionSPMNs offer a new model for decision making whose solution complexity is lin-

ear in the size of the model representation. They generalize SPNs to decision-making problems

and are reducible to DCs. This chapter presented algorithms to learn DecisionSPMNs from

short non-stationary sequential decision-making data. These algorithms learns valid Decision-

SPMNs, which also satisfy any problem-specific partial ordering on the variables. Experiments
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on a new testbed of decision-making data reveal that the optimal decision rules from the learned

DecisionSPMNs often coincide with those from the true model. Importantly, the time taken to

compute the maximum expected utility is more than an order of magnitude less compared to

the time taken by IDs. I conclude that DecisionSPMN is a viable decision-making model that is

significantly more tractable than previous models such as IDs. DecisionSPMNs can be learned

directly from data, which is critically needed for pragmatic applications of automated decision

making at a time when large datasets are pervasive.
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Chapter 6

Conclusion

Inference in traditional probabilistic graphical models (PGMs), such as Bayesian Networks,

Markov Networks, Dynamic Bayesian Networks, and Influence Diagrams is known to be com-

putationally hard (#P-Hard). Recent work has focused on exploiting additional structure such

as sparsity and context specific independence to reduce the running time. However, this is not

always sufficient to guarantee polynomial time. One approach that tackles this problem is infer-

ence modeling, in which learning algorithms directly learn models that encode the computations

needed to answer probabilistic queries. This thesis follows this approach to develop two new

probabilistic graphical models: Dynamic Sum-Product Networks (DynamicSPNs) and Deci-

sion Sum-Product Max Networks (DecisionSPMNs), where the former is suitable for problems

with sequence data of varying length and the latter is for problems with decision and utility vari-

ables. These two new models can be learned directly from data with guaranteed tractable exact

inference and decision making in the resulting models. The thesis also presents a new discrim-

inative Bayesian learning technique for a special class of tractable models called Selective Sum-

Product Networks (SSPNs). Previous work A. Rashwan (2016) proposes the use of an approxi-
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mation technique called moment matching to develop a generative Bayesian learning algorithm

for SPNs. Unfortunately, this approximation technique is not feasible in the discriminative case.

Instead, the thesis presents a novel approximation technique that relies on the mode of the dis-

tribution, which is easy to find in the discriminative case when considering SSPNs. This new

technique can be used when data is presented in an online fashion and can easily be extended to

a distributed learning setting.

6.1 Future Work

The subsections below list some of the directions for future work for each of the models and

the learning algorithm that I developed in this thesis.

6.1.1 Dynamic Sum-Product Networks

One of the immediate directiosn for future work is to explore the use of DSPNs as an alter-

native to some of the prominent Dynamic PGMs. Examples include: Factorial HMMs Ghahra-

mani and Jordan (1997), Coupled HMMs Brand et al. (1997) and Hierarchical HMMs Fine

et al. (1998). Also, studying the relathionship between DynamicSPNs and dynamic Bayesian

networks, similar to the work that study the relathionship between SPNs and Bayesian Net-

works Zhao et al. (2015), would be beneficial for a deeper understanding of both DynamicSPNs

and dynamic Bayesian networks.

Bayesian non-parametric is a modeling paradigm that allows one to define models that auto-

matically grow the number of parameters as the complexity of the data set grows. This paradigm

has attracted some attention in the PGM community (See Ghahramani (2013) for a brief survey

of the topic). However, to the best of my knowledge, only one paper Lee et al. (2014) that pro-
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poses the use of a non-parametric prior over the structure of SPNs; the paper reported some

preliminary work lland no experimental results have been reported yet. Developing a Bayesian

non-parametric treatment for DynamicSPNs is an interesting direction for future work; such

work could focus on defining a proper prior over the template networks that satisfy the invari-

ance property. This would not only allowDynamicSPNs to naturally be used in online settings,

but also to make them more adaptive to the complexity of the data.

6.1.2 Online Discriminative Bayesian Learning

An immediate direction for future work is to extend the DiscBays algorithm to work with

general SPNs that have latent variables. This task is not trivial and might require developing new

approximation techniques. The main problem in the case of general SPNs is that the likelihood

will be exponential in the number of sum nodes after processing each data instance. Unfor-

tunately, both approximation techniques (i.e., moment matching, and mode matching) will be

rendered unfeasible in the discriminative case for general SPNs. One possible way to tackle this

problem is to consider variational methods to approximate the posterior.

6.1.3 Decision Sum-Product-Max-Networks

The presented formulation for DecisionSPMN in this thesis is for short non-stationary se-

quential decision problems. A future work can consider extending DecisionSPMN to make it

suitable for decision making in long stationary sequential settings. Such an extension would

yield models that are comparable to partially observable Markov decision processes (POMDPs).

The learning algorithms that I presented in this thesis concern the offline batch-mode setting

of reinforcement learning and decision making problems. One direction for future work is to
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6.1. Future Work

develop learning algorithms that make DecisionSPMN work for online reinforcement learning

and multi-armed bandit problems. In these settings agents have to balance between exploring

the environment (exploration) and exploiting the knowledge that they collect (exploitation).

These problems are challenging not only because they are conducted in online settings, but also

because the amount of feedback is limited.
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Chapter

Appendix A

This appendix provides a detailed proof of Theorem 3.1. For convenience, I repeat the def-

inition of Invariance and then introduce three lemmas and one corollary that are necessary to

prove Theorem 3.1.

Definition .1 (Invariance)

A template network over 〈X1, ..., Xn〉t is invariant when we can assign a scope that
excludes variables {X t

1, ..., X
t
n} to each input interface node and for all pairs of input

interface nodes, i and j, the following properties hold:

1. scope(i) = scope(j) ∨ scope(i) ∩ scope(j) = ∅

2. scope(i) = scope(j) ⇐⇒ scope(f(i)) = scope(f(j))

3. scope(i) ∩ scope(j) = ∅ ⇐⇒ scope(f(i)) ∩ scope(f(j)) = ∅

4. all interior and output sum nodes are complete
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5. all interior and output product nodes are decomposable

Here f is the bijective mapping that indicates which input nodes correspond to which
output nodes in the interface.

Lemma .1 shows that the scope of any node is the union of the input nodes of the subnetwork

rooted at that node. This will be useful in Lemma .2 to show how the scope of different nodes

relate to each other.

Lemma .1 (Scope Union)

The scope of a node i is the union of the scopes of the input nodes of the subnetwork
rooted at i:

scope(i) = ∪k∈inputs(i) scope(k) (.1)

Proof. We give a proof by induction based on the level of each node. For the base case, consider

input nodes (level 1). Since an input node only has itself as input, it satisfies Eq. .1. For the

induction step, assume that all nodes up to level l satisfy Eq. .1. Since the scope of a node at level

l + 1 is the union of the scopes of its children at lower levels, then

scope(i) = ∪child∈children(i) scope(child) (.2)

= ∪child∈children(i) [∪k∈inputs(child) scope(k)] (.3)

= ∪k∈inputs(i) scope(k) (.4)
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When the scopes of the input nodes of a network are either identical or disjoint then Lemma

.2 shows that changing the scopes of the input nodes in a way that preserves their identity and

disjoint relations ensures that the identity and disjoint relations are also preserved for any pair

of nodes in the network. This will be useful in Corollary .1 to show that completeness and

decomposability are also preserved.

Lemma .2 (Preservation of scope identity and disjoint relations)

Let g be a scope relabeling function that applies only to the scope of the input nodes. If
for all pairs i, j of input nodes the following properties hold

scope(i) = scope(j) ∨ scope(i) ∩ scope(j) = ∅ (.5)

scope(i) = scope(j)→ g(scope(i)) = g(scope(j)) (.6)

scope(i) ∩ scope(j) = ∅ → g(scope(j)) ∩ g(scope(j)) = ∅ (.7)

then for all pairs i, j of nodes the following properties hold

scope(i) = scope(j)→ scopeg(i) = scopeg(j) (.8)

scope(i) ∩ scope(j) = ∅ → scopeg(i) ∩ scopeg(j) = ∅ (.9)

Here scopeg(i) = ∪j∈inputs(i) g(scope(j)) where inputs(i) is the set of input nodes
for the subnetwork rooted at i.

Proof. Proof of Eq. .8: Suppose scope(i) = scope(j) then

∪k∈inputs(i) scope(k) = ∪l∈inputs(j) scope(l) (by Lemma .1) (.10)
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Since the scope of each pair of inputs is either identical or disjoint (by Eq. .5), there exists a

function h that maps each input of i to the set of inputs of j with the same scope:

h(k) = {l|scope(l) = scope(k), l ∈ inputs(j)}∀k ∈ inputs(i) (.11)

Furthermore this function covers the inputs of j:

∪k∈inputs(i) h(k) = inputs(j) (.12)

We can then show that

scopeg(i) = ∪k∈inputs(i) g(scope(k)) (.13)

= ∪k∈inputs(i) g(∪l∈h(k) scope(l)) (by Eq. .11) (.14)

= ∪k∈inputs(i) ∪l∈h(k) g(scope(l)) (by Eq. .6) (.15)

= ∪l∈inputs(j) g(scope(l)) (by Eq. .12) (.16)

= scopeg(j) (.17)

Proof of Eq. .9: Suppose scope(i) ∩ scope(j) = ∅ then

scope(k) ∩ scope(l) = ∅ ∀k ∈ inputs(i), l ∈ inputs(j) (.18)
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We can then show that

scopeg(i) ∩ scopeg(j) (.19)

= (∪k∈inputs(i) g(scope(k))) ∩ (∪l∈inputs(j) g(scope(l))) (.20)

= ∪k∈inputs(i),l∈inputs(j) g(scope(k)) ∩ g(scope(l)) (.21)

= ∪k∈inputs(i),l∈inputs(j) ∅ (by Eq. .18 and .7) (.22)

= ∅ (.23)

When the scopes of the input nodes of a network are either identical or disjoint then Corol-

lary .1 shows that changing the scopes of the input nodes in a way that preserves their identity

and disjoint relations ensures completeness and decomposability is preserved throughout the

network. This will be useful in Lemma .3 to show that composing multiple template networks

preserves their invariance.

Corollary .1 (Preservation of completeness and decomposability)

Let g be a scope relabeling function that applies only to the input nodes. If for all pairs
i, j of input nodes the following properties hold

• scope(i) = scope(j) ∨ scope(i) ∩ scope(j) = ∅

• scope(i) = scope(j)→ g(scope(i)) = g(scope(j))

• scope(i) ∩ scope(j) = ∅ → g(scope(j)) ∩ g(scope(j)) = ∅

then decomposability and completeness are preserved.
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Proof. According to Lemma .2, all pairs of nodes that have the same scope still have the same

scope after relabeling the scopes with g. Hence complete sum nodes (i.e., children all have the

same scope) are still complete after relabeling the scopes with g. Similary, according to Lemma

.2, all pairs of nodes that have disjoint scopes still have the disjoint scopes after relabeling the

scopes with g. Hence decomposable product nodes (i.e., children have disjoint scopes) are still

decomposable after relabeling the scopes with g.

When a template network is invariant, Lemma .3 shows that composing any number of

template networks preserves invariance. This result is the key to proving Theorem 3.1.

Lemma .3

If a template network is invariant then a stack of arbitrarily many copies of this tem-
plate network is also invariant.

Proof. We give a proof by induction based on the number of copies of the template network. For

the base case, consider a stack of one copy of the template network. Since the template network

is invariant, then a stack of one copy of the template network is invariant. For the induction step,

assume that n copies of the template network are invariant. This means that there is a bijective

function f that maps each input of the first template to an output of the nth template such that

for all pairs i, j of inputs to the first template, the following properties hold:

scope(i) = scope(j) ⇐⇒ scope(f(i)) = scope(f(j)) (.24)

scope(i) ∩ scope(j) = ∅ ⇐⇒ scope(f(i)) ∩ scope(f(j)) = ∅ (.25)

scope(f(i)) = scope(f(j)) ∨ scope(f(i)) ∩ scope(f(j)) = ∅ (.26)
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Let g be a function that maps the scope of each input i of the first template to the scope of the

output of the nth template according to f :

g(scope(i)) = scope(f(i)) (.27)

Since assigning the scopes of the output nodes of the bottom network to the input nodes of the

n+ 1th template ensures that the n+ 1th template is complete and decomposable and g can be

viewed as a relabeling of those scopes, then by Eq. .26, Lemma .2 and Corollary .1, the n+ 1th

template is also invariant. As a result, the entire stack of n+ 1 templates is invariant.

We are now ready to prove the main theorem.

Theorem .1

If (a) the bottom network is complete and decomposable, (b) the scopes of all pairs of
output interface nodes of the bottom network are either identical or disjoint, (c) the
scopes of the output interface nodes of the bottom network can be used to assign scopes
to the input interface nodes of the template and top networks in such a way that the
template network is invariant and the top network is complete and decomposable, then
the corresponding DSPN is complete and decomposable.

Proof. The bottom network is complete and decomposable by assumption. Since we also as-

sume that the scopes of all pairs of the output interface nodes of the bottom network are either

identical or disjoint and the output interface nodes of the bottom network can be used to assign

scopes to the interface nodes of the template network, then by Lemma .3 a stack of any number

of template networks is invariant (and therefore complete and decomposable). Finally we show

that the top network is also complete and decomposable. Let f be a bijective function that asso-
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ciates each input of the first template to an output of the last template such that for all pairs i, j

of inputs to the first template, the following properties hold:

scope(i) = scope(j) ⇐⇒ scope(f(i)) = scope(f(j)) (.28)

scope(i) ∩ scope(j) = ∅ ⇐⇒ scope(f(i)) ∩ scope(f(j)) = ∅ (.29)

scope(f(i)) = scope(f(j)) ∨ scope(f(i)) ∩ scope(f(j)) = ∅ (.30)

Let g be a function that maps the scope of each input i of the first template to the scope of the

output of the last template according to f :

g(scope(i)) = scope(f(i)) (.31)

Since assigning the scopes of the output nodes of the bottom network to the input nodes of the

top network ensures that the top network is complete and decomposable and g can be viewed as

a relabeling of those scopes, then by Eq. .26 and Corollary .1, the top network is complete and

decomposable.
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