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Abstract

With recent advances in approximate inference, Bayesian methods have proven success-
ful in larger datasets and more complex models. The central problem in Bayesian inference
is how to approximate intractable posteriors accurately and efficiently. Variational infer-
ence deals with this problem by projecting the posterior onto a simpler distribution space.
The projection step in variational inference is usually done by minimizing Kullback–Leibler
divergence, but alternative methods may sometimes yield faster and more accurate solu-
tions. Moments are statistics to describe the shape of a probability distribution, and one
can project the distribution by matching a set of moments. The idea of moment match-
ing dates back to the method of moments (MM), a simple approach to estimate unknown
parameters by enforcing the moments to match with estimation. While MM has been pri-
marily studied in frequentist statistics, it can lend itself naturally to approximate Bayesian
inference.

This thesis aims to better understand how to apply MM in general-purpose Bayesian
inference problems and the advantage of MM methods in Bayesian inference. We begin
with the simplest model in machine learning and gradually extend to more complex and
practical settings. The scope of our work spans from theory, methodology to applications.
We first study a specific algorithm that uses MM in mixture posteriors, Bayesian Moment
Matching (BMM). We prove consistency of BMM in a näıve Bayes model and then propose
an initializer to Boolean SAT solvers based on its extension to Bayesian networks. BMM
is quite restrictive and can only be used with conjugate priors. We then propose a new
algorithm, Multiple Moment Matching Inference (MMMI), a general-purpose approximate
Bayesian inference algorithm based on the idea of MM, and demonstrate its competitive
predictive performance on real-world datasets.
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Chapter 1

Introduction

In this chapter, we will review background knowledge and summarize the contributions of
the thesis. Section 1.1 reviews basic concepts in Bayesian inference. Section 1.2 discusses
the importance of approximate inference. Section 1.3 introduces method of moments in
both frequentist and Bayesian statistics. Section 1.4 summarizes the contributions of this
thesis.

1.1 Exact Bayesian Inference

The philosophical debate between frequentists and Bayesians has never ended in statistics.
The core differences between these two paradigms lie in their views of probabilities and
unknown parameters [9], as shown in Table 1.1.

Bayesians treat an unknown parameter θ as the random variable Θ. Θ is assumed to
follow a distribution P (Θ) called prior, representing our initial belief before seeing any

Frequentist Bayesian
Probability Long-run frequency of a ran-

dom event [69]
Quantification of a personal
belief [20]

Unknown Parameters Constant Random variable

Table 1.1: Views of probabilities and unknown parameters in frequentist and Bayesian
methods.
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evidence. The belief of θ will be updated according to Bayes’ theorem as evidence (data)
D := {Di}ni=1 comes:

P (Θ|D) =
P (Θ)P (D|Θ)

P (D)
(1.1)

The distribution P (Θ|D) is called posterior, which is the updated belief after seeing
D. P (D|Θ) is the likelihood, which represents the probability of seeing evidence D given
our current belief.

The posterior P (Θ|D) also allows us to make inference about the unseen observation
X by computing the predictive distribution:

P (X|D) =

∫
θ

P (θ,X|D)dθ

=

∫
θ

P (X|θ,D)P (θ|D)dθ

=

∫
θ

P (X|θ)P (θ|D)dθ

Compared with the frequentists, the prediction of Bayesians is a distribution rather
than a single value, which provides information on not only what the prediction is but also
how confident we are in the prediction.

In sequential Bayesian inference, the evidence D := {Di}ni=1 will come in batches. The
posterior P (Θ|Di) after seeing the current data point P (Θ|Di) will act as the prior for the
following data Di+1.

1.2 Approximate Bayesian Inference

The central problem in Bayesian inference lies in computing the posterior distribution in
Equation 1.1. The denominator P (D) is calculated by marginalizing over the numerator:

P (D) =

∫
θ

P (θ,D)dθ

=

∫
θ

P (θ)P (D|θ)dθ (1.2)

2



In general, the integral in Equation 1.2 is difficult to compute. However, if the likelihood
has conjugate priors, the posterior will be in the same distribution family as the prior,
and computing the denominator P (D) becomes easy. For the likelihood in the exponential
family, the conjugate prior exists, and it is usually also in the exponential family [71].
For example, a normal distribution with known variance is conjugate with itself, and the
Bernoulli distribution is conjugate with the Beta distribution.

However, in most cases, the likelihood function is quite complex, and we cannot find
a conjugate prior in the common distribution family. Therefore, we need to approximate
the posterior, and this problem is called approximate Bayesian inference.

Most approximate Bayesian inference methods fall into two categories: variational
inference and Markov chain Monte Carlo (MCMC).

Variational inference can be formulated as an optimization problem that projects the
posterior onto an approximation set. With stochastic gradient descent, variational inference
has been shown to scale well to large datasets [34]. The quality of variational inference
highly depends on the chosen approximation set. Small sets cannot approximate the true
posterior well, while larger sets may bear high computation costs. Therefore, variational
inference often requires case-by-case design to strike a good balance between accuracy and
computational cost.

MCMC, on the other hand, is a sampling algorithm that constructs a Markov chain
whose stationary distribution is the target posterior [64]. Even though samples are guar-
anteed to converge to the true posterior, it may take many iterations before convergence.
Recently, stochastic gradient variants of MCMC, such as stochastic gradient Langevin
dynamics [87], stochastic gradient Hamiltonian Monte Carlo [15] and stochastic gradient
thermostats [23], have begun to show promising performance in large datasets.

Another line of work focuses on developing new approximate inference algorithms that
combine scalability of variational inference and flexibility of MCMC. An outstanding rep-
resentative is stein variational gradient descent [51], which will be discussed in detail in
Chapter 4.

1.3 Method of Moments

Moments can be seen as a quantitative summary for the shape of a probability distri-
bution. More formally, the n−th order moment Mn of a distribution p(Θ) can be defined

3



Related Statistics Interpretation
M1 Expected value Where is the distribution centered?
M2 Variance How flat is the distribution?
M3 Skewness Is the distribution symmetric or skewed to one side?
M4 Kurtosis How heavy is the tail of the distribution?

Table 1.2: Interpretation of lower-order moments

as:

Mn := E[Θn] =

∫
θnp(θ)dθ (1.3)

The lower-order moments are closely related to statistics describing the shape of a
distribution. Their interpretations are summarized in Table 1.2.

While Equation 1.3 is difficult to compute, we can estimate the moments as the average
of samples {θi}ki=1:

Mn :≈ 1

k

k∑
i=1

θni (1.4)

It can be shown that Equation 1.4 is an unbiased estimator of Mn [35].

Moments can be seen as unique characteristics of a distribution function. In fact,
Hausdorff’s moment theorem states that moments of all orders (from 0 to ∞) uniquely
determine a distribution defined on a bounded region [32].

Method of moments (MM) is one of the simplest approaches for parameter estima-
tion. It enforces the constraint that population moments (function of unknown parameters)
are equal to sample moments (numeric values), turning the problem of parameter estima-
tion into solving a system of equations. Despite being simple, the method of moments is a
consistent estimator that offers an alternative to maximum likelihood estimation when we
do not have access to likelihood functions. In machine learning, the method of moments
has proven successful in learning mixture models, latent Dirichlet allocation and hidden
Markov models. [3]

As moments describe the shape of a distribution, the difference between moments can
be used to represent the distance of distributions. Maximum mean discrepancy (MMD)
with the kernel trick measures the distance between all moments of the two distributions

4



[28]. MMD has been used as a simple and effective metric of distance in several areas
of machine learning, such as generative models [46] [81], reinforcement learning [70] and
language embeddings [90].

While most studies on MM have been frequentist, MM can lend itself naturally to
approximate Bayesian inference. More specifically, we can project the posterior onto a
simpler distribution by matching a set of moments. In sequential Bayesian inference, when
the posterior is a mixture distribution, the number of components can grow exponentially.
Bayesian moment matching (BMM) deals with this problem by projecting the mixture
distribution to a distribution in the same family as the prior by matching a set of sufficient
moments. A detailed description of BMM can be found in Chapter 2. BMM has been
successfully applied in topic modelling [36], sum-product networks [74] and hidden Markov
models [39].

1.4 Contributions

This thesis studies the method of moments in approximate Bayesian inference. Our con-
tributions can be summarized in 3 areas: theory, application and methodology.

• Theory: While the frequentist’s method of moments has been proven to be consistent
under some mild conditions [31], the theoretical properties of its Bayesian counter-
part are largely unstudied. Starting from a simple setting, we prove consistency of
Bayesian Moment Matching (BMM) in a näıve Bayes model. This work corresponds
to Chapter 2.

• Application: The Boolean satisfiability problem (SAT) is one of the most funda-
mental problems in computer science. Despite its NP-complete nature, SAT solvers
are actually well-engineered and can solve large industrial instances efficiently. We
propose a BMM-based framework to solve the initialization problem in Boolean SAT
solvers. This work corresponds to Chapter 3.

• Methodology: BMM requires the posterior moments to have closed-form solutions.
However, this is impossible in most practical models, such as Bayesian logistic regres-
sion and Bayesian neural networks. To fill in this gap, we propose Multiple Moment
Matching Inference (MMMI), a general-purpose and flexible approximate Bayesian
inference algorithm based on the idea of moment matching. We further demonstrate
its competitive predictive performance on multiple real-world datasets. This work
corresponds to Chapter 4.
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Chapter 2

On the Näıve Bayes Model: Proof of
Consistency Properties

In this chapter, we study parameter estimation for a special näıve Bayes model using BMM,
as shown in Figure 2.1. This model serves as the foundation of the algorithm proposed in
Chapter 3. Section 2.1 introduces the problem and notation. Section 2.2 states the main
theorem. Section 2.3 introduces the main theoretical framework, stochastic approximation.
Section 2.4 outlines the proof of the main theorem. Section 2.5 presents the detailed proof.

2.1 Problem Setup

In Figure 2.1, Z is a binary hidden variable and X is a binary observable variable. Fur-
thermore, we assume that the conditional distribution P (X|Z) is fully known:

c1 := P (X = 0|Z = 0)

c2 := P (X = 0|Z = 1)

Here, c1 and c2 are assumed to be given.

Let θ represent the unknown probability associated with the hidden variable, i.e.

θ := P (Z = 0)

θ is the quantity we wish to infer from i.i.d. observations {X1, X2, . . . } in an online and
Bayesian fashion.

6



Figure 2.1: X is the observable variable. Z is the hidden variable. Θ is the unknown
quantity associated with Z. The goal is to infer the quantity Θ through observations of
X.

In Bayesian learning, the unknown quantities will be treated as random variables. In
this chapter, we use the big Θ to denote the random variable of θ in Bayesian learning,
and θ̂ to denote the true underlying value.

A beta distribution Beta(θ;α0, β0) is chosen as the initial prior over Θ:

P (Θ) = Beta(θ;α0, β0) =
1

B(α0, β0)
θα0−1(1− θ)β0−1

where B(α0, β0) represents the beta function of α0 and β0, which is defined as:

B(α0, β0) =

∫ 1

0

tα0−1(1− t)β0−1dt

We choose a beta distribution because its support is a probability simplex and it is also
conjugate with the likelihood [55]. The posterior after observing the first evidence X1 is:

7



P (Θ|X = 0) =
P (Θ)P (X = 0|Θ)

P (X = 0)

=
1

P (X = 0)

θα0−1(1− θ)β0−1

B(α0, β0)
(θc1 + (1− θ)c2)

=
1

P (X = 0)
(c1

θα0(1− θ)β0−1

B(α0, β0)
+ c2

θα0−1(1− θ)β0
B(α0, β0)

)

= a0
θα0(1− θ)β0−1

B(α0 + 1, β0)
+ b0

θα0−1(1− θ)β0
B(α0, β0 + 1)

P (Θ|X = 1) = a1
θα0(1− θ)β0−1

B(α0 + 1, β0)
+ b1

θα0−1(1− θ)β0
B(α0, β0 + 1)

,

(2.1)

where

1

P (X = 0)
=

1∫ 1

0
1

B(α0,β0)
θα0−1(1− θ)β0−1(θc1 + (1− θ)c2)dθ

=
α0 + β0

c1α0 + c2β0

a0 =
c1

P (X = 0)

B(α0 + 1, β0)

B(α0, β0)
=

c1α0

c1α0 + c2β0

b0 =
c2β0

c1α0 + c2β0

a1 =
d1α0

d1α0 + d2β0

b1 =
d2β0

d1α0 + d2β0

.

Note that conjugacy in Equation 2.1 relies on a nice property of the Beta function:

B(α + 1, β) = B(α, β)
α

α + β

B(α, β + 1) = B(α, β)
β

α + β

(2.2)

Equation 2.1 suggests that the posterior is a mixture of two beta distributions after ob-
serving the first point. In sequential inference, this posterior will act as the prior when the
next observation arrives. As we have more data points, the number of mixture components
in the posterior distributions will grow exponentially since the number of components dou-
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bles with each observation, making inference intractable. To solve this problem, BMM uses
a single beta distribution P̃ (Θ1) = Beta(Θ1;α1, β1) to approximate the mixture posterior
by matching the first and second moments after one observation. This way, we will always
end up with a posterior of two mixture components. Concretely, α1, β1 can be obtained by
solving 2.3:

EΘ1∼Beta(Θ1;α1,β1)[Θ1] := EΘ0∼P (Θ|X1)[Θ]

EΘ1∼Beta(Θ1;α1,β1)[Θ
2
1] := EΘ0∼P (Θ|X1)[Θ

2],
(2.3)

For Beta distributions, the first and second moments are rational functions:

EΘ∼Beta(Θ;α,β)[Θ] =
α

α + β

EΘ∼Beta(Θ;α,β)[Θ
2] =

α(α + 1)

(α + β)(α + β + 1)

(2.4)

Solving Equation 2.3 is equivalent to solving a system of linear equations. Furthermore,
the solution can be expressed in closed forms.

Without loss of generality, let’s assume the observation X1 = 0. Since the posterior is
a mixture of Beta distributions, the RHS of Equation 2.4 can be easily computed, denoted
by M1,M2:

M1 := a0
α0 + 1

α0 + β0 + 1
+ (1− a0)

α0

α0 + β0 + 1

M2 := a0
(α0 + 1)((α0 + 2))

(α0 + β0 + 1)(α0 + β0 + 2)
+ (1− a0)

α0(α0 + 1)

(α0 + β0 + 1)(α0 + β0 + 2)

One can show that the solution α1, β1 to Equation 2.4 is:

α1 =
(M2 −M1)M1

M2
1 −M2

β1 =
(M2 −M1)(1−M1)

M2
1 −M2

The above process is repeated for each new observation. The approximate Beta pos-
terior from the current step serves as the prior over Θ for the next step. Even though
some information is lost when we use a single beta distribution to approximate a mixture
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of betas, we can prove the consistency of the first moment in this setting by formulating
it as a stochastic approximation (SA) problem in this setting.

Please note that the purpose of this chapter is not to propose the simplest approach
to solve this problem. Instead, our goal is to use this setting to introduce the BMM
algorithm and study its consistency. One simple way to solve θ is using maximum likelihood
estimation (MLE), which gives us a consistent and unbiased estimator:

θ̃ =

∑n
i=1Xi
N

− c2

c1 − c2

(2.5)

2.2 Main Theorem

If we apply BMM n consecutive times with observations {X1, . . . , Xn}, our nth estimate
Θn will be by induction distributed according to Beta(Θ;αn, βn), for suitable αn, βn.

Let µn denote the mean of Θn :

µn :=
αn

αn + βn

τn denotes the precision of Θn:

τn := α0 + β0

and Xn+1 is the binary random variable for the next new instance. Note that due to
randomness of the observations X, µn and τn are also considered to be random variables.

Even though some information is lost when the posterior is projected onto a unimodal
distribution, we prove that µn is actually a consistent estimator of θ̂:

P ( lim
n→∞

µn = θ̂) = 1

.

Theorem 1 When performing BMM with the first and second moment in the näıve Bayes
model, the update in Eq. (2.7) for the first moment converges almost surely to the true
underlying θ̂ under three mild conditions:

1. θ̂ ∈ (0, 1)

10



2. c1, c2 ∈ (0, 1)

3. c1 6= c2

We provide a sketch for the proof of Theorem 1 in the next two sections.

2.3 Stochastic Approximation

Stochastic approximation (SA) algorithms use recursive updates to find roots for the noisy
function. If the objective function f is the gradient of another function, SA can also
be viewed as optimization algorithms. The field of SA begins with the celebrated Rob-
bins–Monro algorithm, which proposes an iterative scheme to find roots for some function
families through noisy observations with a guarantee of consistency [75].

In general, SA aims to find the solution θ∗ to:

f̂(θ∗) := EW (f(θ,W )) = 0

where W represents the noise.

SA is a mature field of numerical analysis, offering a theoretical framework to analyze
many modern machine learning algorithms, such as stochastic variational inference [34],
stochastic gradient langevin dynamics [87] and Q-learning [83].

Chen and Ryzhov propose a general form of SA updates: [16]:

xn+1 = xn − ψn(Qn(Wn+1, xn) + ζn(Wn+1, xn, ψn)) (2.6)

where (xn)∞n=0 ∈ <m, (ψn)∞n=0 is the step size (deterministic or stochastic), (Wn)∞n=0 is a
sequence of random variables, (Qn)∞n=0 and (ζn)∞n=0 are two sequences of real measurable
functions. The function ζn corresponds to the bias.

Based on the above notation, the following 2 terms are defined:

Fn = B(W1, ...,Wn, x1, ..., xn, ψ1, ..., ψn)

Rn(x) = E[Qn(Wn+1, x)|Fn]

where B denotes the Borel sigma-algebra.

Theorem 2 proves the sufficient conditions for SA algorithms to converge almost surely
[16].
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Theorem 2 Let xn be defined by Equation 2.6. Then xn → θ almost surely if the following
four conditions are met

1. For any n, the system of equations Rn(x) has a unique root θ, which doesn’t depend
on n.

2. For n = 1, 2, ... and any ε > 0,

inf
‖x−θ‖22>ε,n∈N

(x− θ)TRn(x) > 0.

3. There exist positive constants C1 and C2 such that:

• sup
n∈N

E[‖Qn(Wn+1, x)‖2
2|Fn] ≤ C1(1 + ‖x− θ‖2

2)

• sup
n∈N

E[‖ζn(Wn+1, x, ψn)‖2
2|Fn]/ψ2

n ≤ C2(1 + ‖x− θ‖2
2)

for all x.

4.
∑∞

n=0 ψn =∞,
∑∞

n=0 ψ
2
n <∞.

2.4 Proof Sketch

It has been observed that an approximate Bayesian update can be viewed as SA with the
addition of a “bias” term representing the difference between the frequentist and Bayesian
versions of the stochastic gradient [16]. We interpret the setting in Section 2.1 as an SA
problem and use Theorem 2 [16] to derive the consistency result.

For the problem described in Section 2.1, by matching the first two moments of the pos-
terior P (Θn|Xn+1) at step n+1 with the moments of a Beta distributionBeta(θ;αn+1, βn+1),
we get two recursive update equations, one for αn+1 and another for βn+1.

Equivalently, we can write the recursive update equations in terms of µn+1 and τn+1

using αn, βn, µn, τn (µn, τn are functions of αn, βn). For instance, the update equation for
µn+1 is:

µn+1 =µn +
1

τn + 1

[
(

c1αn
c1αn + c2βn

− µn)(1−Xn+1)

+ (
(1− c1)αn

(1− c1)αn + (1− c2)βn
− µn)Xn+1

]
.

(2.7)
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Equation 2.7 can be seen as an SA update, with stochasticity coming from the obser-
vations X.

Actually, one can show that Equation 2.7 can be written in the form of Equation
2.6. We prove consistency of Θn by showing that Equation 2.7 satisfies the four sufficient
conditions of Theorem 2. The detailed proof of each assumption is in Section 2.5.

2.5 Proof

2.5.1 SA Formulation

We define:

d1 := P (X = 1|Z = 0) = 1− c1

d2 := P (X = 1|Z = 1) = 1− c2

To avoid degenerate edge cases, we assume that θ̂ ∈ (0, 1) and c1 6= c2. Furthermore,
we consider that c1, c2 ∈ (0, 1), which trivially implies that d1, d2 ∈ (0, 1). We choose a
beta distribution Beta(θ0;α0, β0) as the initial prior over Θ.

After observing n binary i.i.d. observations {X1, . . . , Xn} and performing BMM, we
will have an estimate θn for Θ which is distributed as a Beta distribution Beta(θn;αn, βn).
The posterior after observing the (n+ 1)th point Xn+1 is:

P (θn+1|Xn+1 = 0) =
P (θn)P (Xn+1 = 0|θn)

P (Xn+1 = 0)

=
1

P (Xn+1 = 0)

θαn−1
n (1− θn)βn−1

B(αn, βn)
(θnc1 + (1− θn)c2)

=
1

P (Xn+1 = 0)
(c1

θαnn (1− θn)βn−1

B(αn, βn)
+ c2

θαn−1
n (1− θn)βn

B(αn, βn)
)

= an,0
θαnn (1− θn)βn−1

B(αn + 1, βn)
+ bn,0

θαn−1
n (1− θn)βn

B(αn, βn + 1)

P (θn+1|Xn+1 = 1) = an,1
θαnn (1− θn)βn−1

B(αn + 1, βn)
+ bn,1

θαn−1
n (1− θn)βn

B(αn, βn + 1)
,
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where

1

P (Xn+1 = 0)
=

1∫ 1

0
1

B(αn,βn)
θαn−1
n (1− θn)βn−1(θnc1 + (1− θn)c2)dθn

=
αn + βn

c1αn + c2βn

an,0 =
c1

P (Xn+1 = 0)

B(αn + 1, βn)

B(αn, βn)
=

c1αn
c1αn + c2βn

∈ (0, 1), since c1, c2 ∈ (0, 1) ∧ αn, βn > 0

bn,0 =
c2βn

c1αn + c2βn
∈ (0, 1)

an,1 =
d1αn

d1αn + d2βn
∈ (0, 1)

bn,1 =
d2βn

d1αn + d2βn
∈ (0, 1).

(2.8)

Let θn be a r.v. distributed according to the Beta distribution Beta(θn;αn, βn). We use
µn to denote the mean of θn, σ2

n to denote the variance of θn = αn + βn, τn to denote the
precision of θn, and λn to denote 1

τ2nσ
2
n
. In particular, the following equations hold (note

the first two are standard identities for the Beta distribution):

µn =
αn

αn + βn
∈ (0, 1) (since αn, βn > 0)

σn =
αnβn

(αn + βn)2(αn + βn + 1)
> 0

τn = αn + βn > 0

λn =
1

τ 2
nσ

2
n

> 0.

BMM approximates the mixture posterior P (θn+1|Xn+1) by a simpler Beta distribution
Beta(θn+1;αn+1, βn+1) by matching the first and second moments. The first moment of this

beta distribution is αn+1

αn+1+βn+1
= µn+1 while its second moment is αn+1(αn+1+1)

(αn+1+βn+1)(αn+1+βn+1+1)
.

By matching the first moments, we get the update equation of µn+1 as follows. The
equation incorporates the two cases that the observed instance In+1 is 0 or 1.
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µn+1 = (
c1αn

c1αn + c2βn

αn + 1

αn + βn + 1
+

c2βn
c1αn + c2βn

αn
αn + βn + 1

)(1−Xn+1)

+ (
(1− c1)αn

(1− c1)αn + (1− c2)βn

αn + 1

αn + βn + 1
+

(1− c1)βn
(1− c1)αn + (1− c2)βn

αn
αn + βn + 1

)Xn+1

=
1

τn + 1
[(

c1αn
c1αn + c2βn

(αn + 1) +
c2βn

c1αn + c2βn
αn)(1−Xn+1)

+ (
(1− c1)αn

(1− c1)αn + (1− c2)βn
(αn + 1) +

(1− c1)βn
(1− c1)αn + (1− c2)βn

αn)Xn+1]

=
1

τn + 1
[(αn +

c1αn
c1αn + c2βn

)(1−Xn+1) + (
(1− c1)αn

(1− c1)αn + (1− c2)βn
+ αn)Xn+1]

= µn +
1

τn + 1
[(αn +

c1αn
c1αn + c2βn

)(1−Xn+1) + (
(1− c1)αn

(1− c1)αn + (1− c2)βn
+ αn)Xn+1]− µn

= µn +
1

τn + 1
[(αn +

c1αn
c1αn + c2βn

)(1−Xn+1) + (
(1− c1)αn

(1− c1)αn + (1− c2)βn
+ αn)Xn+1 − µn(τn + 1)]

= µn +
1

τn + 1
[

c1αn
c1αn + c2βn

(1−Xn+1) +
(1− c1)αn

(1− c1)αn + (1− c2)βn
Xn+1 + αnµn(τn + 1)]

= µn +
1

τn + 1
[(

c1αn
c1αn + c2βn

− µn)(1−Xn+1) + (
(1− c1)αn

(1− c1)αn + (1− c2)βn
− µn)Xn+1]

= µn + λn[
σ2
nτ

2
n

τn + 1
(

c1αn
c1αn + c2βn

− µn)(1−Xn+1) +
σ2
nτ

2
n

τn + 1
(

(1− c1)αn
(1− c1)αn + (1− c2)βn

− µn)Xn+1].

(2.9)

It is straightforward to show that 0 < µn+1 < 1, given αn, βn > 0,∀n.

By matching the second moments we similarly get the update equation for the second
moment:

Mn+1,2 =
(µnτn + 1)(µnτn + c1αn

c1αn+c2βn
)

(τn + 1)(τn + 2)
(1−Xn+1) +

(µnτn + 1)(µnτn + c1αn
c1αn+c2βn

)

(τn + 1)(τn + 2)
(Xn+1)

(2.10)

But in this setting it is more convenient to use instead the first moment and the precision
(τn+1 := αn+1 + βn+1) (see also [16]). The update equation for precision is obtained by
first solving Eq. (2.9) and Eq. (2.10) in terms of αn+1 and βn+1 using the fact that
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µn+1 = αn+1

αn+1+βn+1
and Mn+1,2 = αn+1(αn+1+1)

(αn+1+βn+1)(αn+1+βn+1+1)
:

τn+1 = τn +
An,0(τn + 1)− τn(µnτn + c1αn

c1αn+c2βn
)Bn,0

Bn,0(µnτn + c1αn
c1αn+c2βn

)
(1−Xn+1) (2.11)

+
An,1(τn + 1)− τn(µnτn + (1−c1)αn

(1−c1)αn+(1−c2)βn
)Bn,1

Bn,1(µnτn + (1−c1)αn
(1−c1)αn+(1−c2)βn

)
(Xn+1), (2.12)

where we have defined:

An,0 = (µnτn +
c1αn

c1αn + c2βn
)2(τn + 2)− (µnτn +

c1αn
c1αn + c2βn

)(µnτn + 1)(µnτn + 2
c1αn

c1αn + c2βn
)

Bn,0 = (µnτn + 1)(µnτn + 2
c1αn

c1αn + c2βn
)(τn + 1)− (τn + 2)(µnτn +

c1αn
c1αn + c2βn

)2

An,1 = (µnτn +
(1− c1)αn

(1− c1)αn + (1− c2)βn
)2(τn + 2)

− (µnτn +
(1− c1)αn

(1− c1)αn + (1− c2)βn
)(µnτn + 1)(µnτn + 2

(1− c1)αn
(1− c1)αn + (1− c2)βn

)

Bn,1 = (µnτn + 1)(µnτn + 2
(1− c1)αn

(1− c1)αn + (1− c2)βn
)(τn + 1)

− (τn + 2)(µnτn +
(1− c1)αn

(1− c1)αn + (1− c2)βn
)2.

(2.13)

We finally derive the update equation for the variance below, using the standard formula
σ2
n+1 = Mn+1,2−µ2

n+1 together with Eq. (2.9) and Eq. (2.10). We will need this in Section
2.5.5.

σ2
n+1 =σ2

n +
1

(τn + 1)(τn + 2)
[(τn + 1)(µnτn + 1)(µnτn + 2

c1αn
c1αn + c2βn

)

− (µnτn +
c1αn

c1αn + c2βn
)2(τn + 2)− µn(1− µn)](τn + 1)2(τn + 2)(1−Xn+1)]

+
1

(τn + 1)2(τn + 2)
[(τn + 1)(µnτn + 1)(µnτn + 2

(1− c1)αn
(1− c1)αn + (1− c2)βn

)

− (µnτn +
(1− c1)αn

(1− c1)αn + (1− c2)βn
)2(τn + 2)− µn(1− µn)(τn + 1)(τn + 2)](Xn+1).

(2.14)
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We next define:

En :=
σ2
nτ

2
n

τn + 1
> 0,

Qn(Xn+1, En,
c1αn

c1αn + c2βn
,

(1− c1)αn
(1− c1)αn + (1− c2)βn

, µn)

:= −[En(
c1αn

c1αn + c2βn
− µn)(1−Xn+1) + En(

(1− c1)αn
(1− c1)αn + (1− c2)βn

− µn)Xn+1].

Then, the update rule in Equation (2.9) can be rewritten as:

µn+1 = µn − λn ·Qn(Xn+1, En,
c1αn

c1αn + c2βn
,

(1− c1)αn
(1− c1)αn + (1− c2)βn

, µn),

which has the general SA structure (2.6) with no bias term (ζn := 0) and λn as the step
size (ψn := λn).

We further define:

Fn := B(X1, ..., Xn, µ1, ..., µn, λ1, ..., λn)

Rn(x) := E[Qn(Xn+1, En,
c1αn

c1αn + c2βn
,

(1− c1)αn
(1− c1)αn + (1− c2)βn

, x)|Fn]

Also, we assume that the sequences (αn)∞n=0 and (βn)∞n=0 have positive lower bounds,
which is standard in many SA convergence proofs and also consistent with empirical ev-
idence. Then we can show that µn → θ almost surely by verifying the 4 assumptions
proposed by [16]. The proof for our setting shares elements with Proposition EC.1 for the
setting described in Section 4.5.1 of [16].
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2.5.2 Proof of Assumption 1

In our formulation

Rn(x) =E[Qn(Xn+1, En,
c1αn

c1αn + c2βn
,

(1− c1)αn
(1− c1)αn + (1− c2)βn

, x)|Fn]

=− En
(

c1x

c1x+ c2(1− x)
− x
)

(1− (θd1 + (1− θ)d2))

− En
(

d1x

d1x+ d2(1− x)
− x
)

(θd1 + (1− θ)d2))

it is easy to see that Rn(θ) = 0 for any n. We now show that θ is additionally the unique
root for x ∈ (0, 1). Given that En > 0, this is equivalent to showing:(

c1

c1x+ c2(1− x)
− 1

)
(1− (θd1 + (1− θ)d2)) +

(
d1

d1x+ d2(1− x)
− 1

)
(θd1 + (1− θ)d2) = 0

Indeed, we have:(
c1

c1x+ c2(1− x)
− 1

)
(1− (θd1 + (1− θ)d2)) +

(
d1

d1x+ d2(1− x)
− 1

)
(θd1 + (1− θ)d2) = 0

⇒ c1 − c1x− c2(1− x)

c1x+ c2(1− x)
(1− (θd1 + (1− θ)d2)) +

d1 − d1x− d2(1− x)

d1x+ d2(1− x)
(θd1 + (1− θ)d2) = 0

⇒ (c1 − c2)(1− x)

c1x+ c2(1− x)
(1− (θd1 + (1− θ)d2)) +

(d1 − d2)(1− x)

d1x+ d2(1− x)
(θd1 + (1− θ)d2) = 0
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Given c1 − c2 = −(d1 − d2) and x ∈ (0, 1), the last equation can be written as:

1

c1x+ c2(1− x)
(1− (θd1 + (1− θ)d2))− 1

d1x+ d2(1− x)
(θd1 + (1− θ)d2) = 0

⇒ 1− (θd1 + (1− θ)d2)

c1x+ c2(1− x)
=
θd1 + (1− θ)d2

d1x+ d2(1− x)

⇒ (1− (θd1 + (1− θ)d2))(d1x+ d2(1− x)) = (θd1 + (1− θ)d2)(c1x+ c2(1− x))

⇒ (1− (θd1 + (1− θ)d2))(d1 − d2)x+ (1− (θd1 + (1− θ)d2))d2

= (θd1 + (1− θ)d2)(c1 − c2)x+ (θd1 + (1− θ)d2)c2

⇒ (1− (θd1 + (1− θ)d2))d2 − (θd1 + (1− θ)d2)c2 = (c1 − c2)x

⇒ d2 − (θd1 + (1− θ)d2)d2 − (θd1 + (1− θ)d2)c2 = −(d1 − d2)x

⇒ d2 − (θd1 + (1− θ)d2) = (d2 − d1)x

⇒ (d2 − d1)θ = (d2 − d1)x

⇒ x = θ.

Note that the last step in the above derivation is valid since we have assumed c1 6= c2,
or equivalently, d1 6= d2.

Technically, note that there is also a root at x = 0, which is not in (0, 1). However,
it is not hard to show that x · Rn(x) < 0 in the neighborhood of x = 0 when θ ∈ (0, 1),
which implies that Assumption 2 is violated at x = 0, and the SA algorithm is repelled
from x = 0, provided that the initial x0 ∈ (0, 1) [11]. Similar arguments hold for x = 1.
Alternatively, we can use the previously mentioned update form (2.6) with a projection
operator ΠH that projects xn+1 into a suitable closed interval [Mlow,Mhigh] ⊂ (0, 1), where
0 < Mlow,Mhigh < 1, so that x0, θ ∈ H [44]. In that case, the equation Rn(x) = 0 has a
sole root in the interval H. Finally, given that µn ∈ (0, 1)∀n, we safely assume everywhere
in the proof that x ∈ (0, 1).

To simplify the proof, from now on we can assume a projection operator ΠH that
projects xn+1 into a suitable closed interval [Mlow,Mhigh] ⊂ (0, 1), as explained above.

2.5.3 Proof of Assumption 2

To show that Assumption 2 holds, it is sufficient to show that when x > θ, Rn(x) > 0 and
when x < θ, Rn(x) < 0 (for x ∈ (0, 1)).

Given that En > 0, it suffices to show that the following expression satisfies the property
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above:

− 1

1− x
[(

c1

(c1x+ c2(1− x))
− 1)(1− (θd1 + (1− θ)d2)) + (

d1

(d1x+ d2(1− x))
− 1)(θd1 + (1− θ)d2)]

= − 1

1− x
[

(c1 − c2)(1− x)

(c1x+ c2(1− x))
)(1− (θd1 + (1− θ)d2)) + (

(d1 − d2)(1− x)

(d1x+ d2(1− x))
)(θd1 + (1− θ)d2)]

= −[
(c1 − c2)

(c1x+ c2(1− x))
)(1− (θd1 + (1− θ)d2)) + (

(d1 − d2)

(d1x+ d2(1− x))
)(θd1 + (1− θ)d2)]

= −(c1 − c2)[
(1− (θd1 + (1− θ)d2))

(c1x+ c2(1− x))
)− (

(θd1 + (1− θ)d2)

(d1x+ d2(1− x))
)]

= −(c1 − c2)[
(1− (θd1 + (1− θ)d2))

1− (d1x+ d2(1− x))
)− (

(θd1 + (1− θ)d2)

(d1x+ d2(1− x))
)]

= −(c1 − c2)
(x− θ)(d1 − d2)

(1− (d1x+ d2(1− x)))((d1x+ d2(1− x)))

=
(x− θ)(d1 − d2)2

(1− (d1x+ d2(1− x)))((d1x+ d2(1− x)))

Given our assumption that d1 6= d2, the last expression suggests that for x ∈ (0, 1)
when x > θ, then Rn(x) > 0, and when x < θ, then Rn(x) < 0.

2.5.4 Proof of Assumption 3

Since the bias term is identically 0, it is trivial to show the second inequality of Assumption
3. For the first one, we have:

Qn(Xn+1, En,
c1αn

c1αn + c2βn
,

(1− c1)αn
(1− c1)αn + (1− c2)βn

, x)

= −[En(
c1αn

c1αn + c2βn
− x)(1−Xn+1) + En(

(1− c1)αn
(1− c1)αn + (1− c2)βn

− x)Xn+1].

We can show that En is upper bounded by 1
2

for any n as follows:

En =
σ2
nτ

2
n

τn + 1
=

αnβn
(αn + βn + 1)2

≤ αnβn
2αnβn

=
1

2
.
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Furthermore, given x, an,0, an,1 ∈ (0, 1)∀n, it is easy to see that the terms

sup
n∈N
|Qn(Xn+1, En,

c1αn
c1αn + c2βn

,
(1− c1)αn

(1− c1)αn + (1− c2)βn
, x)|

and

sup
n∈N
{Q2

n(Xn+1, En,
c1αn

c1αn + c2βn
,

(1− c1)αn
(1− c1)αn + (1− c2)βn

, x)}

are upper bounded.

Consequently, there exists a positive constant C1 such that:

sup
n∈N

E[Q2
n(Xn+1, En,

c1αn
c1αn + c2βn

,
(1− c1)αn

(1− c1)αn + (1− c2)βn
, x)|Fn] ≤ C1.

2.5.5 Proof of Assumption 4

We only consider the case where the observed term is Xn+1 = 0. The expression when
Xn+1 = 1 can be tackled in a similar manner.

By using Eq. (2.11) and (2.14) to replace τn+1 and σ2
n+1, and doing the tedious calcu-

lations, we get the following:

1

λn+1

− 1

λn
=σ2

n+1τ
2
n+1 − σ2

nτ
2
n

=Sn,1 + Sn,2 + Sn,3

(2.15)

where

Sn,1 =
µn(1− µn)

τn + 1
(
An,0(τn + 1)− τn(µnτn + c1αn

c1αn+c2βn
)Bn,0

Bn,0(µnτn + c1αn
c1αn+c2βn

)
)2

Sn,2 = 2
µn(1− µn)

τn + 1
τn
An,0(τn + 1)− τn(µnτn + c1αn

c1αn+c2βn
)Bn,0

Bn,0(µnτn + c1αn
c1αn+c2βn

)

Sn,3 = [
1

(τn + 2)
[(τn + 1)(µnτn + 1)(µnτn + 2

c1αn
c1αn + c2βn

)

− (µnτn +
c1αn

c1αn + c2βn
)2(τn + 2)− µn(1− µn)(τn + 1)(τn + 2)]

· ( An,0
Bn,0(µnτn + c1αn

c1αn+c2βn
)
)2.
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To prove Assumption 4, it suffices to show that Equation 2.15 has a positive upper
bound and positive lower bound. Indeed, if there exist positive constants γ∗, γ

∗ > 0 such
that for all n

γ∗ ≤
1

λn+1

− 1

λn
≤ γ∗,

then we must have by [16] that

1

λ0

+ nγ∗ ≤
1

λn
≤ 1

λ0

+ nγ∗.

The last inequality, in turn, implies that [16]

∞∑
n=0

λn =∞,
∞∑
n=0

λ2
n <∞,

which is what we want to show.

Positive Upper and Lower Bound

If we add the three terms Sn,1, Sn,2, Sn,3 in Eq. (2.15), it is simple to see that the de-
nominator is positive since τn ∈ (0,∞), µn ∈ (0, 1) ∧ an,0 ∈ (0, 1)∀n. Furthermore, if τn
approaches 0, it is simple to show that the denominator is lower bounded by a positive
constant assuming µn is projected to a closed interval with a projection operator ΠH , as
explained in Assumption 1.

Next, we show that the following expression corresponding to the numerator of the sum
is always positive:

µn(1− µn)(An,0(τn + 1)

− τn(µnτn +
c1αn

c1αn + c2βn
)Bn,0)2(τn + 2) + 2µn(1− µn)τn(An,0(τn + 2)

− τn(µnτn +
c1αn

c1αn + c2βn
)Bn,0)(τn + 2)(µnτn +

c1αn
c1αn + c2βn

)Bn,0)

+ [(3µ2
n − (2 + 2

c1αn
c1αn + c2βn

)µn + 2
c1αn

c1αn + c2βn
− c1αn
c1αn + c2βn

2

)τn

+ (2µ2
n − 2µn − 2

c1αn
c1αn + c2βn

2

+ 2
c1αn

c1αn + c2βn
)]A2

n,0(τn + 1).

(2.16)

Equation (2.16) can be viewed as a function of 3 free variables: µn,
c1αn

c1αn+c2βn
, τn. For
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simplicity, we let x := µn, y := c1αn
c1αn+c2βn

, z := τn. Then it suffices to show that (2.16) is

positive when x ∈ (0, 1), y ∈ (0, 1), z ∈ (0,∞). Note also that x 6= y, because we have
assumed that c1 6= c2.

We can factorize (2.16) as follows:

z2 ∗ (x ∗ z + 1) ∗ (x ∗ z − z − 1)

∗ (x− y)2

∗ (x2 ∗ z2 + 2 ∗ x ∗ y ∗ z − x ∗ z2 + y2 ∗ z − x ∗ z + 2 ∗ y2 − 2 ∗ y ∗ z − 2 ∗ y) ∗ (x ∗ z + y)2.

We can immediately see that the terms z2, (x ∗ z+ 1), (x− y)2, (x ∗ z+ y)2 are positive.
Hence it remains to show that the term (x ∗ z − z − 1)(x2 ∗ z2 + 2 ∗ x ∗ y ∗ z − x ∗ z2 + y2 ∗
z − x ∗ z + 2 ∗ y2 − 2 ∗ y ∗ z − 2 ∗ y) is also positive.

Given x ∈ (0, 1), z > 0, we have that

xz − z − 1 < z − z − 1 < 0.

It thus remains to show that (x2∗z2 +2∗x∗y∗z−x∗z2 +y2∗z−x∗z+2∗y2−2∗y∗z−2∗y)
is negative. Let’s rewrite this expression in terms of z:

x2 ∗ z2 + 2 ∗ x ∗ y ∗ z − x ∗ z2 + y2 ∗ z − x ∗ z + 2 ∗ y2 − 2 ∗ y ∗ z − 2 ∗ y
= (x2 − x) ∗ z2 + (y2 + (2 ∗ x− 2) ∗ y − x) ∗ z + 2 ∗ y2 − 2 ∗ y.

This is a quadratic function of z, where z ∈ (0,∞). Because x, y ∈ (0, 1), it is easy to
verify that the coefficients of degree 2 and degree 0 are negative. We can additionally show
that the coefficient of degree 1 is negative as follows:

y2 + (2x− 2)y − x
< y + (2x− 2)y − x
= y + 2xy − 2y − x
= 2xy − (x+ y)

< 2xy − (x2 + y2)

= −(x− y)2

< 0.

We have thus established that the sum Sn,1 +Sn,2 +Sn,3 is always positive. Next, we discuss
why it is also bounded above and below by positive constants.
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In this direction, we first notice that both the numerator and the denominator can
be viewed as polynomials of τn (or, z), with coefficients that are functions of µn (i.e., x)
and an,0 (i.e., y). Furthermore, assuming we do BMM with a projection operator ΠH that
projects µn into a suitable closed interval [Mlow,Mhigh] ⊂ [0, 1], where 0 < Mlow,Mhigh < 1
and θ ∈ H, we can see that the numerator can only be 0 if τn is 0. Since we showed that
Eq. (2.15) is positive for τ ∈ (0,∞), in order to show a lower and upper bound it suffices
to investigate the cases where τn → 0 or τn →∞.

We first show that, with probability 1, we cannot have that that τn → 0. From Eq.
(2.11) we get:

τn+1 =
An,0(τn + 1)

Bn,0(µnτn + c1αn
c1αn+c2βn

)
(1−Xn+1) +

An,1(τn + 1)

Bn,1(µnτn + (1−c1)αn
(1−c1)αn+(1−c2)βn

)
(Xn+1). (2.17)

Assuming that τn ≈ 0, we get the following approximation in the limit after we substitute
An,0, An,1, Bn,0, Bn,1 by (2.13):

An,0(τn + 1)

Bn,0(µnτn + c1αn
c1αn+c2βn

)
→ 1

2
(
µn
an,0

+
1− µn
1− an,0

) · τn, (2.18)

An,1(τn + 1)

Bn,1(µnτn + (1−c1)αn
(1−c1)αn+(1−c2)βn

)
→ 1

2
(
µn
an,1

+
1− µn
1− an,1

) · τn. (2.19)

Based on (2.17), (2.18) and (2.19), we then get for τn ≈ 0:

E[τn+1|Fn] ≈ 1

2
·
(

(c1θ+ c2(1−θ))( µn
an,0

+
1− µn
1− an,0

)+(d1θ+d2(1−θ))( µn
an,1

+
1− µn
1− an,1

)
)
· τn.

(2.20)
It holds that d1θ+ d2(1− θ) = (1− c1)θ+ (1− c2)(1− θ) = 1− (c1θ+ c2(1− θ)). Without
loss of generality, let’s assume that c1 < c2. Given θ ∈ (0, 1), we then trivially get for the
terms r = c1θ + c2(1− θ) and 1− r = d1θ + d2(1− θ):

c1 < r < c2 ∧ 1− c2 < 1− r < 1− c1. (2.21)

24



We then have for the term on the right hand side of Eq. (2.20):

1

2
·
(
r(
µn
an,0

+
1− µn
1− an,0

) + (1− r)( µn
an,1

+
1− µn
1− an,1

)
)

(2.22)

=
1

2
·
(
r
( 1

1+ν
1

1+
c2
c1
ν

+
ν

1+ν
ν

ν+
c1
c2

)
+ (1− r)

( 1
1+ν

1

1+
1−c2
1−c1

ν

+
ν

1+ν
ν

ν+
1−c1
1−c2

))

=
1

2
·
(
r
(1 + c2

c1
ν

1 + ν
+
ν + c1

c2

1 + ν

)
+ (1− r)

(1 + 1−c2
1−c1ν

1 + ν
+
ν + 1−c1

1−c2
1 + ν

))
, where ν =

βn
αn
∈ (0,∞).

(2.23)

We can now show that the term in (2.22) is greater than 1:

1

2
·
(
r
(1 + c2

c1
ν

1 + ν
+
ν + c1

c2

1 + ν

)
+ (1− r)

(1 + 1−c2
1−c1ν

1 + ν
+
ν + 1−c1

1−c2
1 + ν

))
> 1⇔

r
(

1 +
c2

c1

ν + ν +
c1

c2

)
+ (1− r)

(
1 +

1− c2

1− c1

ν + ν +
1− c1

1− c2

)
> 2 · (1 + ν)⇔

r
(c2

c1

ν +
c1

c2

)
+ (1− r)

(1− c2

1− c1

ν +
1− c1

1− c2

)
> 1 + ν ⇔

r
c1

c2

+ (1− r)1− c1

1− c2

+
(
r
c2

c1

+ (1− r)1− c2

1− c1

)
· ν > 1 + ν.

But the last inequality is true, since r c1
c2

+ (1− r)1−c1
1−c2 > 1 and r c2

c1
+ (1− r)1−c2

1−c1 > 1; this
is easy to show given c1 < r < c2 from our original assumption. In fact, both terms can
be bounded away from 1, given c1, c2, r are distinct (and fixed). As a result of this, Eq.
(2.20) gives for τn ≈ 0:

E[τn+1|Fn] > τn. (2.24)

The variance will also be finite, because if we assume that τn → 0, then τn must have
an upper bound. Furthermore, τn → 0 implies that there exists a positive constant K
such that |τn+1 − τn| ≤ K, ∀n. However, with these assumptions standard martingale
theory suggests that, with probability 1, τn does not converge to a zero limit [30], which
is a contradiction. Indeed, by Doob’s decomposition theorem, due to Eq. (2.24) τ can be
decomposed into a martingale M and an integrable predictable process A with A0 = 0 that
is almost surely increasing [30]. Since M converges to 0 almost surely by the martingale
central limit theorem and A is strictly increasing almost surely, it is straightforward to see
that, with probability 1, τn does not converge to a 0 limit.

Finally, we examine the case where τn →∞. In this direction, we observe that in Eq.
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(2.15) if we expand the sum Sn,1 + Sn,2 + Sn,3, both the numerator and the denominator
have the same degree. Given the leading coefficients are positive as well as lower and upper
bounded since we use a projection operator ΠH , we conclude that the sum must also be
positive as well as upper and lower bounded as τn →∞.

This concludes our proof that µn → θ̂ almost surely in the näıve Bayes setting.
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Chapter 3

On the Bayesian Network: Heuristics
based on Bayesian learning to
Initialize SAT Solvers

In this chapter, we model solving the Boolean satisfiability (SAT) instances as learning
Bayesian networks using Bayesian Moment Matching (BMM) and show how this perspec-
tive can help initialize SAT solvers. Section 3.1 reviews basic concepts of SAT and SAT
solvers, in addition to their connections to machine learning. Section 3.2 introduces the
initialization problem of conflict-driven-clause-learning (CDCL) SAT solvers. Section 3.3
illustrates our BMM framework on a small SAT instance. Section 3.4 derives the algorithm
for a general case. Section 3.2 discusses how to integrate our BMM initializer into CDCL
solvers. Section 3.6 presents results of experiments.

3.1 SAT, SAT solvers and Machine Learning

3.1.1 Boolean Satisfiability Problems

The Boolean satisfiability problem (SAT) is the decision problem where we ask if there
exists an assignment to each variable such that the Boolean formula evaluates to True (T).
Below we review some important terminologies of SAT.

Definition 1 Literal: A literal is either a (Boolean) variable (called positive literals) or
the negation of a variable (called negative literals).
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Definition 2 Clause: A clause is a disjunction of literals, say C : a1 ∨ · · · ∨ an, where
a1 ∨ · · · ∨ an are all literals.

In this chapter, we only study SAT formulas in conjunctive normal forms (CNF). A
SAT formula is in CNF if it is a conjunction of clauses or a single clause [18]. 3.1 is an
example of SAT instances in CNF forms, where C1, C2, C3, C4 are clauses and x, y, z are
variables.

C1 : x ∨ y ∨ ¬z
∧ C2 : x ∨ y ∨ z
∧ C3 : x ∨ ¬y ∨ z
∧ C4 : ¬x ∨ ¬y ∨ ¬z

(3.1)

SAT is the first problem proven to be NP-complete by Cook and Levin [17] [45]. This
implies that all problems falling in the NP class, such as the travelling salesman problem
and the graph coloring problem, are at most as hard as SAT [42]. There are no known
polynomial-time algorithms for general SAT instances, and whether such algorithms exist
belongs to the debate of P vs NP , one of the most famous open problems in computer
science.

Connections to Machine Learning

SAT occurs naturally in many areas of computer science, such as cryptography [61], formal
verification [7] and bioinformatics [53]. However, it may not seem immediately obvious
what is the connection between SAT and modern machine learning. In fact, there are
two-way connections between SAT and ML: some ML tasks can be encoded into the form
of SAT and solved efficiently by SAT solvers, while some components of traditional SAT
solvers can also be improved with the help of ML.

Later sections will focus on how ML can be used to improve SAT solvers. Below, we
present some examples of reframing ML problems in the form of SAT:

• SAT and supervised learning. Supervised learning fits a function on training data.
There is a clear connection between function fitting and constraint satisfaction: each
labelled data can be seen as one constraint on the function’s parameter. Mezard
and Mora [59] show that learning binary neural networks can be encoded as a SAT
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problem. Narodytska et al. [65] developed a SAT-based algorithm to construct the
smallest decision tree on a given dataset.

• SAT and causality. Ibrahim et al. [38] proposed a novel approach to check the
assumption of causality in acyclic binary models using SAT. This method is very
efficient and can scale to large models due to the recent progress of SAT solvers.
Another line of work is to use SAT in causal discovery by encoding all the available
information in a causal graph as constraints in propositional logic [37] [82] [24].

• SAT and fairness, robustness. Narodytska et al. [66] developed a rigorous way
to verify properties of robustness of neural networks by encoding them into Boolean
representations. Ghosh et al. [26] proposed a stochastic SAT framework that formally
verifies multiple fairness notions of machine learning algorithms.

3.1.2 SAT Solvers

Despite the NP-completeness nature of SAT, researchers have developed scalable SAT
solvers for instances involving tens of millions of variables and clauses by utilizing the
special logic structure in the problem. Most state-of-the-art SAT solvers are based on the
same paradigm, conflict-driven-clause-learning (CDCL) [58] [62].

The CDCL algorithm is based on the celebrated Davis–Putnam–Logemann–Loveland
(DPLL) algorithm [19]. DPLL is a backtracking algorithm making use of unit propagation.
At each branching step, a variable will be assigned to either T or F . Whenever a conflict
is found, backtracking is executed to undo branching steps until an unflipped branch is
reached [7].

CDCL solvers improve upon the DPLL algorithm by introducing clause learning. When
a conflict is found, CDCL solvers look at the guess made and its implications in an impli-
cation graph. Using this graph, CDCL is able to learn a new clause that helps the solver
avoid the same mistakes in the future. This newly learned clause will then be added to
the instance for future search [7].

Connections to Machine Learning

Recently, there have been many attempts to introduce ML algorithms to SAT solvers,
which can be roughly divided into two categories:
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• ML to assist existing SAT solvers: This line of work focuses on improving one or
more components of CDCL SAT solvers using ML algorithms. Haim and Walsh [29]
trained a machine-learning-based satisfiability classifier and runtime prediction model
to help choose the best restart strategies for CDCL solvers. Liang et al. [47] modeled
variable selection in branching heuristics as reinforcement learning problems. Xu et
al. [89] proposed an ML approach to construct algorithm portfolios for each SAT
instance to help select the best solver.

• ML as standalone SAT solvers: With recent advances in deep learning, some re-
searchers proposed end-to-end ML systems to solve SAT problems. NeuroSAT [78]
trains a graph neural network on the graph representation of a SAT instance to pre-
dict its satisfiability and variable assignment. SATNet [85] integrates the semidefinite
program of MAXSAT into end-to-end differentiable learning systems. Amizadeh et
al. [2] developed a graph embedding architecture to extract representations for SAT
instances and then trained the model using policy gradient methods. Even though
the empirical performance of these ML-based SAT solvers is not on par with CDCL
solvers on large instances, they provide fresh perspectives to look at SAT solvers.

3.2 Motivation

There has been lots of progress in the SAT community to improve different components
of CDCL solvers, such as branching heuristics [47], restarting [49] and clause learning [4].
However, few studies have focused on how to initialize the search of CDCL solvers, even
though solver developers have known for a long time that the initialization can have a
significant impact on the performance of CDCL SAT solvers.

The initialization problem for SAT solvers can be defined as follows: given a SAT
formula φ, compute an initial order over the variables and initial value for each of
them. More specifically, initial order means a total order over variables chosen by the
CDCL solver S, and by initial value we mean a mapping from variables to assignments at
the beginning of its search.

In the following sections, we will introduce an initialization algorithm to CDCL solvers
based on BMM.
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3.3 Bayesian Formulation

We introduce a novel Bayesian perspective to look at SAT, with the goal of finding an
assignment that satisfies as many clauses as possible.

As shown in Figure 3.1, in our Bayesian formulation, each variable in the SAT formula
is seen as a Bernoulli random variable with an unknown probability θi being assigned to
T and each clause is treated as evidence for the variables. The main idea is to update
our beliefs about θi after ”observing” each clause, hoping to improve the likelihood of the
clause being satisfied.

We shall illustrate our framework using the toy instance 3.1. We use θx, θy, θz to denote
P (x = T ), P (y = T ), P (z = T ) respectively:

θx := P (x = T )

θy := p(y = T )

θz := P (z = T )

The goal is to infer the values of θx, θy, θz using the information provided by C1, C2, C3, C4

sequentially.

To learn θx, θy, θz by Bayesian inference, we assume that each of them is a random
variable initially distributed according to a beta distribution and that they are mutually
independent. Concretely, the prior for the joint distribution is:

P (Θx,Θy,Θz) =
∏

i=x,y,z

Beta(θi;αi, βi).

Suppose our first observation is C1. We want to update our beliefs about θx, θy, θz by
computing the posterior P (Θx,Θy,Θz|C1)

To satisfy a clause, at least one of the literals needs to be satisfied, which can be done
in many different ways if we have many literals in a clause. However, there is only one way
to falsify the clause. Therefore, we compute the likelihood function as the complement
probability of falsifying the observed clause. For example, the only possible assignment to
falsify C1 is:

x := F, y := F, z := T
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Figure 3.1: We formulate SAT as a Bayesian network, where each variable is hidden and
each clause is observable. The conditional distributions associated with edges are fully
known based on the logic structure of a clause. The goal is to infer Θx,Θy,Θz from
C1, C2, C3, C4. This model is an extension of the näıve Bayesian model we studied in
Figure 2.1.
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Therefore, the likelihood of C1 being satisfied can be computed as:

P (C1|Θx,Θy,Θz) = 1− P (¬C1|Θx,Θy,Θz)

= 1− P (x = F, y = F, z = T |Θx,Θy,Θz)

= 1− (1−Θx) · (1−Θy) ·Θz

(3.2)

The posterior after seeing the first clause C1 is:

P (Θx,Θy,Θz|C1) ∝ P (Θx,Θy,Θz)P (C1|Θx,Θy,Θz)

∝ P (Θx,Θy,Θz)[1− (1−Θx)(1−Θy)Θz]

∝ P (Θx,Θy,Θz)− (1−Θx)(1−Θy)ΘzP (Θx,Θy,Θz)

(3.3)

Because of the conjugate properties (shown in Equation 2.2), Equation 3.3 can be
further written as:

P (Θx,Θy,Θz|C1) ∝ Beta(θx;αx, βx) ·Beta(θy;αy, βy) ·Beta(θz;αz, βz)

− βx
αx + βx

βy
αy + βy

αz
αz + βz

Beta(θx;αx, βx + 1)

·Beta(θy;αy, βy + 1) ·Beta(θz;αz + 1, βz)

(3.4)

We can also rewrite the likelihood P (C1|Θx,Θy,Θz) in Equation 3.4 as the sum of joint
probabilities of all the possible assignments to satisfy C1:

P (C1|Θx,Θy,Θz) = ΘxΘyΘz + ΘxΘy(1−Θz) + Θx(1−Θy)Θz + Θx(1−Θy)(1−Θz)

+ (1−Θx)ΘyΘz + (1−Θx)Θy(1−Θz) + (1−Θx)(1−Θy)(1−Θz)

(3.5)

Equation 3.5 suggests that the posterior is a mixture of products of Beta distribu-
tions. Therefore, an issue similar to the one in Chapter 2 will arise as more clauses are
encountered: exponential growth of the number of mixture components in the posterior.
To solve this intractability issue, we approximate the true mixture P (Θx,Θy,Θz|C1) using
a product of Beta distributions P̃ (Θ̃x, Θ̃y, Θ̃z):

P̃ (Θ̃x, Θ̃y, Θ̃z) =
∏

i=x,y,z

Beta(θ̃i; α̃i, β̃i)
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Θi = P (xi = T ) ∼ Beta(αi, βi),
for 1 ≤ i ≤ n

P (Ci = T |Θ1, · · · ,Θn)

P (Θi|Ci = T ),
for 1 ≤ i ≤ n

Pick a clause Ci

Bayes’ theorem

Project onto

Beta
distributions
by matching

moments

Figure 3.2: A Beta prior is assigned to each variable in the beginning. The posteriors are
then calculated each time when encountering a new clause. We project the posteriors back
to Beta distributions using BMM, which serves as priors for the next clause.

The parameters α̃x, β̃x, α̃y, β̃y, α̃z, β̃z are then computed by matching the first and second
moments of the marginal distribution of the posterior:

EΘ̃x∼Beta(θ̃x;α̃x,β̃x)[Θ̃x] := EΘx∼P (Θx|C1)[Θx]

EΘ̃x∼Beta(θ̃x;α̃x,β̃x)[Θ̃
2
x] := EΘx∼P (Θx|C1)[Θ

2
x]

EΘ̃y∼Beta(θ̃y ;α̃y ,β̃y)[Θ̃y] := EΘy∼P (Θy |C1)[Θy]

EΘ̃y∼Beta(θ̃]y;α̃y ,β̃y)[Θ̃
2
y] := EΘy∼P (Θy |C1)[Θ

2
y]

EΘ̃z∼Beta(θ̃z ;α̃z ,β̃z)[Θ̃z] := EΘz∼P (Θz |C1)[Θz]

EΘ̃z∼Beta(θ̃z ;α̃z ,β̃z)[Θ̃
2
z] := EΘz∼P (Θx|C1)[Θ

2
z]

(3.6)

It can be easily shown that each marginal posterior follows a mixture of Beta distri-
butions. Therefore, similar to Equation 2.3, Equation 3.6 is a system of linear equations
with a closed-form solution.

Subsequently, P̃ (Θ̃x, Θ̃y, Θ̃z) is used as the prior when C2 is observed. During one
epoch, the above update is repeated once for each clause. Figure 3.2 presents a road map
of our Bayesian framework.

I did a numerical experiment to show the effectiveness of our framework in the toy
example 3.1. Fig. 3.3 presents how the distributions for Θx,Θy,Θz are updated with more
epochs. We can see that eventually the posterior of each variable converges to a solution
that satisfies all of the clauses.
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Figure 3.3: The probability density functions of θx, θy and θz for the example in section
3 using BMM update. As the number of epochs increases, the densities of θy and θz are
shifting towards 0 while θx is shifting towards 1. This suggests an assignment x := T, y :=
F, z := F , which satisfies all clauses
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3.4 Algorithms

In this section, we derive the posterior distribution for a general SAT clause and then
present the pseudocode of our algorithm.

We consider a clause C, which is a disjunction of m literals. Without loss of generality,
we assume that all positive literals appear before negative literals in C, and there are h
(0 ≤ h ≤ m) positive literals:

C = (
∨

0≤i<h

li) ∨ (
∨

h≤j<m

¬lj).

Our goal is to infer the value of the random vector Θ, whose element represents the
probabilities of each literal being true:

Θ = {θk : 0 ≤ k < m, θk = P (lk = T )}.

We assign a factorized beta distributions as the prior for Θ:

P (Θ) =
∏

0≤k<m

Beta(θk;αk, βk)

The posterior after observing clause C can be computed as:

P (Θ|C) =
1

P (C)
(P (Θ)P (C|Θ))

=
1

P (C)
[
∏

0≤k<m

Beta(θk;αk, βk)(1−
∏

0≤i<h

(1− θi)
∏

h≤j<m

θj)]

=
1

P (C)
[
∏

0≤k<m

Beta(θk;αk, βk)−
∏

0≤i<h

Beta(θi;αi, βi)(1− θi)
∏

h≤j<m

Beta(θj;αj, βj)θj]

(3.7)

Due to conjugate properties, Equation 3.7 can be further expanded as:
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P (Θ|C) =
1

P (C)
[
∏

0≤k<m

Beta(θk;αk, βk)−
∏

0≤i<h

βi
αi + βi

Beta(θi;αi, βi + 1)

·
∏

h≤j<m

αj
αj + βj

Beta(θj;αj + 1, βj)]
(3.8)

Furthermore, we can define the value p as:

p :=
∏

0≤i<h

βi
αi + βi

∏
h≤j<m

αj
αj + βj

(3.9)

Then Equation 3.4 can be simplified as:

P (Θ|C) =
1

P (C)
[
∏

0≤k<m

Beta(θk;αk, βk)− p
∏

0≤i<h

Beta(θi;αi, βi + 1)
∏

h≤j<m

Beta(θj;αj + 1, βj)]

(3.10)

The denominator can also be expressed in clean forms after plugging in Equation :

P (C) =

∫
(0,1)m

P (Θ)P (C|Θ)dΘ

=

∫
(0,1)m

∏
0≤k<m

Beta(θk;αk, βk)− p
∏

0≤i<h

Beta(θi;αi, βi + 1)
∏

h≤j<m

Beta(θj;αj + 1, βj)dΘ

= 1−
∏

0≤i<h

βi
αi + βi

∏
h≤j<m

αj
αj + βj

.

Following the notation defined in Equation 3.9, the denominator P (C) can be rewritten
as:

P (C) = 1− p

We observe that the posterior is a mixture P (Θ|C) of products of Beta distributions.
The number of mixtures grows exponentially as more clauses are encountered. To address
this, we use BMM to approximate the true mixture P (Θ|C) by a single product of Beta
distributions:

P̃ (Θ̃) =
∏

0≤k<m

Beta(θ̃k; α̃k, β̃k).
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The parameters α̃k, β̃k for literal lk are then computed by matching the first and second
moments of the marginal distribution of θk (we proceed similarly for other literals):{

Eθ̃k∼Beta(θ̃k;α̃k,β̃k)[θ̃k] = Eθk∼Pθk (θk|C)[θk]

Eθ̃k∼Beta(θ̃k;α̃k,β̃k)[θ̃
2
k] = Eθk∼Pθk (θk|C)[θ

2
k]

⇐⇒

{
α̃k

α̃k+β̃k
= Eθk∼Pθk (θk|C)[θk]

α̃k(α̃k+1)

(α̃k+β̃k)(α̃k+β̃k+1)
= Eθk∼Pθk (θk|C)[θ

2
k]

.

In the above expression, we have used the fact that the first moment (mean) of the beta

distribution Beta(θ;α, β) is α
α+β

, while its second moment is α(α+1)
(α+β)(α+β+1)

[41]. Thus, this
projection procedure is equivalent to solving a system of linear equations. We will discuss
how to calculate the right side briefly below.

If the literal lk is positive in C, then:

Pθk(θk|C) =

∫
(0,1)m−1

P (Θ|C)dθ0...dθk−1dθk+1...dθm−1

=
1

1− p
[Beta(θk;αk, βk)− p ·Beta(θk;αk, βk + 1)].

If the literal lk is negative in C, then:

Pθk(θk|C) =

∫
(0,1)m−1

P (Θ|C)dθ0...dθk−1dθk+1...dθm−1

=
1

1− p
[Beta(θk;αk, βk)− p ·Beta(θk;αk + 1, βk)].

We thus get:

Eθk∼Pθk (θk|C)[θk] =

{
1

1−p( αk
αk+βk

− p · αk
αk+βk+1

), if lk is positive in C
1

1−p( αk
αk+βk

− p · αk+1
αk+βk+1

), if lk is negative in C.

Similarly, we get:

Eθk∼Pθk (θk|C)[θ
2
k] =

{
1

1−p( αk(αk+1)
(αk+βk)(αk+βk+1)

− p · αk(αk+1)
(αk+βk+1)(αk+βk+2)

), if lk is positive in C
1

1−p( αk(αk+1)
(αk+βk)(αk+βk+1)

− p · (αk+1)(αk+2)
(αk+βk+1)(αk+βk+2)

), if lk is negative in C.

Based on the above discussion, the pseudocode of BMM for SAT is given in Algorithm
3.4. The variable MaxEpochs denotes the number of epochs. During one epoch, we visit
each clause exactly once. As explained in the main document, we find empirically that as
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few as 10 epochs suffice for a good initialization.

3.5 Integration into CDCL Solvers

Look-back branching heuristics [6] are widely used in the modern CDCL SAT solvers.
Each variable maintains some scores to help the algorithm to answer two questions: which
unassigned variable to pick (Variable order) and what value to assign to that variable
(Polarity/Value selection). As described in Section 3.2, an important question is how to
set the initial score for variable order and value selection.

Our BMM framework, Algorithm 3.4, finds an assignment satisfying most clauses in a
short period of time. We can run this algorithm for several epochs before starting the SAT
solvers. The learned BMM posterior distribution for each variable can provide the CDCL
SAT solvers with useful information about the initial order and initial value.

Initial Value: The initial value of a variable is determined by the first moment of
the BMM posterior:

x =

{
T E(θx) > 0.5

F E(θx) ≤ 0.5

Initial Order: In CDCL solvers, a score s(x), called activity, is maintained for each
variable x. The variable with the highest activity will be picked as the decision variable.
Our algorithm assigns higher activities to the variables closer to 0 or 1, which implies we
are more confident about the initial assignment. For each variable x, the activity score
s(x) is defined to be a number in the range [0, 0.5] as follows:

s(x) =

{
E(θx), E(θx) < 0.5

1− E(θx), E(θx) ≥ 0.5

3.6 Results of Experiments

In this Section, we present the performance of our BMM initializer with other initialization
methods for different types of CDCL solvers over cryptographic benchmarks and applica-
tion benchmarks. We would like to thank Saeed Nejati for integrating BMM into multiple
SAT solvers [68].
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3.6.1 Baselines for Initialization Methods

• Default: Set the initial polarity to F and the initial activity score to 0 for each
variable.

• Random: Initial polarities are randomly assigned to be T or F with probabilities 0.5.
Initial activity scores are randomly sampled from the uniform distribution U(0.5, 1).

• Jeroslow-Wang [40]: This initialization method assigns a higher score to variables
appearing in shorter clauses. The intuition is that these variables, when assigned by
the solver, create unit clauses sooner than others.

• Survey Propagation [12]: A SAT instance can be encoded into a factor graph.
Then survey propagation finds the right assignment to each variable iteratively
through message passing.

3.6.2 Cryptographic Benchmarks

We used cryptographic instances encoding preimage of round reduced SHA-1 hash function.
We encoded 22 rounds of SHA-1 and used 50 randomly generated hash values to be inverted
[68]. All jobs were run on Intel Xeon E5-2667 CPUs at 3.20GHz and 8GB of RAM, with
a time limit of 4 hours.

We choose 3 top-performing solvers in cryptographic benchmarks as the base: Maple-
SAT [47], Glucose-4 [5] and CryptoMiniSAT-5 [80]. Table 3.1 shows the number of total
solved instances and average running time of 3 base solvers with 4 initialization methods.
We can see that for all three solvers, the BMM-initialization method solves more cases in 4
hours in a shorter time compared with other initializers. CryptoMiniSAT with BMM solves
all 50 instances with the shortest running time among the 15 settings, which is also nearly
50% shorter compared with the second-fastest one, MapleSAT with random initialization.

3.6.3 Application Benchmark

This benchmark is from the main track of the SAT competition 2018. The 400 instances
were collected from various application domains, such as scheduling, verification and plan-
ning [33]. We use the same time limit and memory limit as required in the SAT competi-
tion, 5000 seconds and 8GB. We choose the winners of SAT competitions 2017 and 2018,
MapleCOMSPS [48] and MapleLCMDistChronoBT [76], as base solvers.
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Table 3.1: The number of solved instances in 4 hours and average runtime of MapleSAT,
Glucose and CryptoMiniSAT with different initialization methods.

Initialization Method Total instances (out of 50) Avg. time (s)

M
a
p

le
S

A
T

Default 48 3645.08
Random 48 3180.42
Jeroslow-Wang 47 3389.27
Survey Propagation 40 3405.20
BMM 50 2238.85

G
lu

co
se

Default 33 4817.69
Random 32 5741.74
Jeroslow-Wang 32 6334.71
Survey Propagation 30 5386.74
BMM 38 4563.08

C
ry

p
to

M
in

iS
A

T Default 50 3475.06
Random 50 3223.48
Jeroslow-Wang 49 5387.20
Survey Propagation 41 3501.00
BMM 50 1706.63

Table 3.2 presents the number of solved instances and the average runtime of Maple-
COMSPS and MapleLCMDistChronoBT with different initialization methods. For both
solvers, BMM-initialization gives the most solved instances and the shortest running time.
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Table 3.2: Number of solved instances in 5000s and average runtime of MapleCOMSPS
and MapleLCMDistChronoBT with different initialization methods on SAT competition
2018 benchmark.

Initialization Total (out of 400) Avg. time (in seconds)

M
a
p

le
C

O
M

S
P

S Default 218 674.43
Random 214 678.09
Jeroslow-Wang 222 654.05
Survey Propagation 157 862.30
BMM 230 646.18

M
a
p

le
L

C
M

D
is

t Default 240 769.85
Random 232 673.02
Jeroslow-Wang 235 655.98
Survey Propagation 173 885.50
BMM 240 652.80
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Figure 3.4 BMM for SAT

Output: An assignment to all literals
initialize prior Beta(θk;αk, βk) for each literal lk; (we typically initialize αk and βk to
0.1)
for n = 1 to MaxEpochs do

for each clause C do
p := 1;
for each literal lk in C do

if lk is positive in C then
p := p · βk

αk+βk
;

else
p := p · αk

αk+βk
;

end if
end for
for each literal lk in C do

if lk is positive in C then
NewFirstMoment := 1

1−p( αk
αk+βk

− p · αk
αk+βk+1

);

NewSecondMoment := 1
1−p( αk(αk+1)

(αk+βk)(αk+βk+1)
− p · αk(αk+1)

(αk+βk+1)(αk+βk+2)
);

else
NewFirstMoment := 1

1−p( αk
αk+βk

− p · αk+1
αk+βk+1

);

NewSecondMoment := 1
1−p( αk(αk+1)

(αk+βk)(αk+βk+1)
− p · (αk+1)(αk+2)

(αk+βk+1)(αk+βk+2)
);

end if
Solve the following system of equations to compute the new αk, βk :

αk
αk + βk

= NewFirstMoment;

αk(αk + 1)

(αk + βk)(αk + βk + 1)
= NewSecondMoment;

end for
end for

end for
for each literal lk do

if αk > βk then
lk := T ;

else
lk := F ;

end if
end for 43



Chapter 4

On the Neural Network: Multiple
Moment Matching Inference

In this chapter, we will introduce Multiple Moment Matching Inference (MMMI), a general-
purpose sequential Bayesian inference algorithm using the idea of moment matching.
MMMI can be seen as an extension of BMM to general settings where likelihoods are
not conjugate with priors. In Section 4.1, we will discuss the limitations of the BMM
algorithm. Section 4.2 will present our new algorithm, Multiple Moment Matching Infer-
ence. Section 4.3 reviews the related work and discusses connections with MMMI. Section
4.4 will show the results of MMMI for Bayesian neural networks on multiple real-world
datasets.

4.1 Motivation

To apply BMM algorithms, we need to compute the posterior moments first, each of which
is defined by an integral over the posterior distribution:

EΘ∼P (Θ|X)[f(Θ)] =

∫
f(Θ)P (Θ|X)dΘ (4.1)

For a general posterior distribution, the integral in Equation 4.1 does not have a closed-
form solution. What is worse, for most Bayesian inference tasks, the posterior itself cannot
be expressed in closed form because of difficulties to marginalize for the denominator.
While we can estimate the moments as sample averages, generating posterior samples is a
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difficult task on its own. This severely prevents BMM from being applied in some of the
most common models, such as Bayesian logistic regression and Bayesian neural networks.

The likelihood for Bayesian logistic regression is:

P (y|x, θ) = yσ(xT θ) + (1− y)(1− σ(xT θ)) (4.2)

where y is the binary label, x is the feature vector, θ is the weight vector and σ() is the
sigmoid function.

The likelihood for Bayesian neural network for regression is :

P (y|x, θ) = N (y; f(x; θ), λ−1) (4.3)

where N () represents the normal distribution, f(x; θ) is the neural network function
parametrized by θ, and λ denotes the precision.

BMM cannot be applied to the likelihood function in Equations 4.2 and 4.3 because
they do not have conjugate priors. To solve this problem, we propose Multiple Moment
Matching Inference (MMMI), a general-purpose and flexible approximate Bayesian infer-
ence algorithm, without the need for conjugate priors.

4.2 Algorithms

We consider sequential Bayesian inference, where observations are streaming. Training
in batches is common in modern deep learning, and Bayesian methods lend themselves
naturally to online inference [13].

Our goal is to infer the unknown parameter Θ. For illustration purposes, we assume that
Θ is one-dimensional. The algorithm can be easily extended to multi-dimensions. Given
a set of particles (samples) {θi}ni=1 for the prior distribution P (Θ), we want to transform
them to match the posterior distribution P (Θ|X) without computing its analytical form.
A key observation is that the posterior moments can be estimated by reweighting the
samples of the prior distribution, as shown in Subsection 4.2.1. Then the particles will be
transformed in a direction that minimizes the discrepancy between the prior and posterior
moments with respect to a given function set, as shown in Subsection 4.2.2. Afterwards,
the transformed particles will represent the prior for the next observation.
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4.2.1 Estimation of Posterior Moments

Given particles {θi}ni=1 for the prior distribution P (Θ), we can estimate a prior moment
for the function fj

1 as a sample average:

EΘ∼P (Θ)[fj(Θ)] ≈
n∑
i=1

fj(θi) (4.4)

Directly applying Equation 4.4 to estimate posterior moments requires sampling from
the posterior distributions, which is a difficult task on its own. However, with some simple
derivations, we show that posterior moments of fj can be estimated using only prior samples
{θi}ni=1.

EΘ∼P (Θ|X)[fj(Θ)] =

∫
Θ

fj(Θ)P (Θ|X)dΘ

=

∫
Θ

fj(Θ)
P (X|Θ)P (Θ)

P (X)
dθ

=

∫
Θ
fj(Θ)P (X|Θ)P (Θ)dΘ∫

Θ
P (X|Θ)P (Θ)dΘ

=
EΘ[fj(Θ)P (X|Θ)]

EΘ[P (X|Θ)]

≈
∑n

i=1 fj(θi)P (X|θi)∑n
i=1 P (X|θi)

(4.5)

As shown in Figure 4.1, our estimation scheme for posterior moments can be interpreted
as a weighted average of prior samples, with weights being linearly proportional to the
likelihoods. The particles with higher likelihoods on the observation will contribute more
to the estimation of posterior moments.

4.2.2 Multi-objective Optimization

We use µ̂fj to denote the estimation of posterior moments µfj from Equation 4.5, i.e.,
µ̂fj ≈ EΘ∼P (Θ|X)[fj(Θ)]

1In this section, we use a generalized notion of moments. fj is not restricted to be power functions.
We only require fj to be differentiable.
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Figure 4.1: Left figure: When estimating prior moments, we use the unweighted average
of prior samples. Right figure: When estimating posterior moments, we use the weighted
average of prior samples, where weights are proportional to the likelihood. Note that the
1d-samples are drawn along their density curve for better visualization.

As a reminder, our goal is to transform the prior particles {θi}ni=1 to the posterior
particles {θ̃i}ni=1 through moment matching. In other words, we want the moments of
transformed particles 1

n

∑n
i=1 fj(θ̃i) to match the corresponding target value µ̂fj . Our

objective can be formulated as finding {θ̃i}ni=1 to minimize the discrepancy with µ̂fj :

min
θ̃:=(θ̂1···θ̂n)

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

fj(θ̃i)− µ̂fj

∣∣∣∣∣
∣∣∣∣∣
2

2

(4.6)

The gradient of the objective in Equation 4.6 is:

2

n

(
1

n

n∑
i=1

fj(θ̃i)− µ̂fj

)
∇fj(θ̃) (4.7)

Note that Equation 4.7 does not require computing the gradients of the likelihood.
Computing ∇fj(θ̃) is usually much easier than the gradient of the likelihood. The likeli-
hood function is usually parameterized by complex models, such as neural networks, while
f is chosen by the user and usually in a simple form.

On the contrary, most popular approximate inference methods, such as, stochastic
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variational inference [34], Laplace approximation [56], Hamiltonian Monte Carlo [67] and
SVGD [51], all require gradients of the likelihood. Computing gradients can be costly
for large and complex models. Furthermore, there are some cases where gradients are
not naturally defined (such as discrete objectives) or are not accessible to the user (such
as black-box models). Our method, MMMI, could have unique advantages on the above
occasions.

In most situations, we want to match more than one moment for different fj’s. Ac-
tually, only matching the first moment could lead to particle collapsing. The Hausdorff
moment theorem states that the moments of all orders (from 0 to∞) uniquely determine a
distribution defined on a bounded region [32]. Therefore, intuitively, the more moments are
matched, the better is the approximation. Matching multiple moments is a multi-objective
optimization problem, where each objective Sj corresponds to minimizing discrepancy for
one moment of function fj.

Multiple Gradient Descent Algorithm (MGDA)

Let {Si(θ)}mi=1, θ ∈ RN be the m smooth objective functions. Let ui(θ) denote the gradient
of each objective:

ui(θ) := ∇Si(θ), i = 1...m

The goal of multi-objective optimization is to find Pareto-optimality [60] of all objectives,
which is defined in Definition 3.

Definition 3 Pareto-optimality: A point θ̃ is said to reach Pareto-optimality for {Si(θ)}mi=1

if we cannot find another point θ ∈ RN such that ∀i = 1...m, Si(θ) ≤ Si(θ̃) and there exists
an objective Si(θ) such that Si(θ) < Si(θ̃).

In other words, Pareto-optimality implies that none of the objectives can be further
decreased without increasing some of the other objectives. We can think of the concept of
Pareto-optimality as a generalization of global optimality in single-objective optimization.
Likewise, we can generalize the concept of local optimality to multi-objective optimization,
which is Pareto-stationarity [60].

Definition 4 Pareto-stationarity: The point θ̄ is said to be at Pareto-stationarity if
there exists a convex combination of the gradient vectors {ui(θ̄)} that is equal to zero:

∃α > 0 ∧
n∑
i

αi = 1,
n∑
i

αiui(θ̄) = 0
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Theorem 3 [60] If a point θ̃ is at Pareto-optimality, then it is at Pareto-stationarity.
However, vice versa is not true.

Multiple Gradient Descent Algorithm (MGDA) is an iterative gradient-based multi-
objective optimization algorithm that updates the parameter in a direction that decreases
all objectives simultaneously [63] [25] [21] [79] with a guarantee of convergence to Pareto-
stationarity.

In each iteration, MGDA finds a vector w such that:

(ui(θ), w) ≥ 0, i = 1...m (4.8)

Namely, the angles between w and each gradient ui are smaller than 90◦. Therefore,
following the direction of −w, the value of all objective functions {Si(θ)}mi=1 will decrease
simultaneously. By Theorem 4, MGDA reduces the problem of finding the direction w to
finding the min-norm element of the convex hull formed by the gradients ui [21] [63] [25],
which has been studied extensively in computational geometry [57] [88] [77]. Figure 4.2
visualizes the intuition in 2d space.

Theorem 4 [63] [25][21] Let U denote the convex hull of the gradient vectors ui(θ0) at
point θ0:

U = {u ∈ Rn|u =
n∑
i=1

αiui(θ), αi ≥ 0,∀i = 1...n,
n∑
i=1

αi = 1}

Let w be the minimum-norm element in U :

w = argminu∈U ||u||

Since U is compact and convex, we can always find the unique minimum-element w. Then
two cases are possible:

• If w = 0, θ0 is already at Pareto-stationary.

• If w 6= 0, then for all u ∈ U , (u,w) ≥ ||w||2. Thus w defines a descent direction
common to all objective functions.
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Figure 4.2: Visualization of the minimum-norm element w in the convex hull U of u1 and
u2. By inspection, the angles between w and all elements in U are smaller than 90◦.

Finding the minimum-norm element w in a convex hull is quadratic programming:

min
α=(α1,...,αn)

||
n∑
i=1

αiui(θ)||22

s.t.αi > 0, ∀i = 1...n
n∑
i=1

αi = 1

(4.9)

Sener and Koltun [79] proposed a numerical method based on the Frank-Wolfe algo-
rithm to solve Equation 4.9 efficiently in high-dimension settings.

If the update is following the direction of Equation 4.9 iteratively, Désidéri proved that
the points would eventually converge to Pareto-stationarity under some constraints on the
step size.

4.2.3 Algorithm

The pseudocode for MMMI is in Algorithm 1. For each observation, we first estimate
posterior moments using Equation 4.5. Then we compute the gradient for each moment
according to 4.7. In the end, we apply MGDA to find a direction that minimizes the
discrepancy for each moment, which is then be applied to update the particles.

Particle-based algorithms are prone to have particle-collapse problems, i.e., most parti-
cles collapsing to one point. Traditional particle filters deal with this problem by resampling
after some iterations. The objective function of SVGD has a term that drives the particles
away from each other. Our algorithm, MMMI, prevent particle-collapse problems by im-
posing more than one optimization objectives and only doing partial optimization at each
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Algorithm 1 MMMI

Input: Particles θ := (θ1, · · · θi · · · , θn). Function set {fj}mj=1. Data {Xk}dk=1. Learning
rate λ. The likelihood function P (X|Θ).
for each data point Xk do

for each particle θi do
Li ← P (Xk|Θ = θi)

end for
for each function fj do

µ̂fj ←
∑n
i Lifj(θi)∑n
i fj(θi)

∇Sj ← 2
n

(
1
n

∑n
i fj(θi)− µ̂fj

)
∇fj(θ)

end for
w ←MGDA(∇S1, · · · ,∇Sm)
θ ← θ − λw

end for

step. We found our technique to be quite effective at solving particle-collapse problems
empirically.

4.3 Related Work

4.3.1 Particle-based Variational Inference

Our algorithm, MMMI belongs to the family of Particle-based Variational Inference (PVI)
algorithms, which perform deterministic updates on a set of particles to transform them
towards the posterior distribution. The motivation of particle transformation comes from
bridging the gap between variational inference and MCMC. Like variational inference,
those algorithms perform iterative deterministic updates to decrease the distance with the
target distribution, while having the advantage of being non-parametric and generic like
MCMC.

The representative of PVI algorithms is SVGD [51], which performs functional gradient
descent in kernel Hilbert space to minimize KL divergence. The update equation of SVGD
for one particle θj is:

θj ← θj − ε[
n∑
i=1

k(θ, θi)∇θ log q(θi|D) +∇θk(θi, θ)]
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, where k(θ, θi) is the chosen kernel function. The first term of the update equation can
be interpreted as driving the particles into high-likelihood areas, while the second term
is pushing the particles away from each other to encourage multi-modality. We will talk
about SVGD in detail in Subsection 4.3.2.

There is then lots of follow-up work on improving SVGD from different perspectives.
Stein Variational Newton method (SVN) [22] turns SVGD into a Newton-like iteration in
function space by incorporating second-order information. To solve the problem of mode
collapse in SVGD, Wang et al. proposed to use particles to represent functions directly
instead of samples [86], while message passing SVGD aims to reduce the high-dimensional
space into a set of local ones over the Markov blanket with lower dimensions [92].

Compared with other PVI methods, MMMI allows for more flexible priors and likeli-
hoods, which further widens the approximate set for posteriors and also extends its use to
black-box models.

• More flexible priors : MMMI does not require the prior to be specified in a parametric
form. Other methods, such as SVGD, need a parametric prior distribution to compute
the unnormalized posterior. Our prior in Bayesian neural networks can be generated
directly from well-studied initialization algorithms [27], which extend the potential
distribution family of priors and posteriors.

• More flexible likelihoods : Unlike most algorithms like SVGD, our method MMMI does
not require gradients of the likelihood function. This can speed up inference where
gradient computation is slow and expensive. Furthermore, our method MMMI can
be applied to the setting where gradients are undefined (such as discrete objectives)
or unknown (such as black-box models).

4.3.2 Stein Variational Gradient Descent

Stein Variational Gradient Descent (SVGD) [51] is the outstanding representative of PVI
family. Briefly, SVGD moves the particles {θi}ni=1 in the steepest direction that maximally
decrease the KL divergence with the posterior distribution in a unit ball of the reproducing
kernel Hilbert space (RKHS).

Let Θ be a continuous random variable. Given a set of particles {θi}ni=1 for the distribu-
tion p(Θ), we want to transform them to match the target distribution q(Θ). In Bayesian
inference, p is the prior and q is the posterior.
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Let k(θ, θ′) : X × X → R be a positive definite kernel, and H be its corresponding
reproducing kernel Hilbert space (RKHS):

H := {f : f(θ) =
m∑
i=1

aik(θ, θi), ai ∈ R,m ∈ N, θi ∈ X}

We use F to represent the unit ball of the vector-valued RKHS:

F := {φ ∈ H|||φ|| ≤ 1}

Let φ(θ) be a perturbation direction, and we define

p[εφ](θ) := θ + εφ(θ), θ ∼ p(Θ)

.

SVGD finds a perturbation direction φ∗ in F that maximally decreases the KL diver-
gence with the target distribution q in F :

φ∗ := argmaxφ∈F{−
∂

∂ε
KL(p[εφ]||q)|ε = 0} (4.10)

Liu et al. [50] showed that Equation 4.10 has a closed-form solution:

φ∗(θ′) = Eθ∼p[k(θ, θ′)∇θ log q(θ) +∇θk(θ, θ′)] (4.11)

In Bayesian inference, we want to transform the particles {θi}ni=1 representing the prior
distribution p(Θ) to the posterior distribution q(Θ|D), where Θ is the parameter of interest
and D is the observation. The expectation in Equation 4.11 can thus be estimated as:

φ∗(θ) ≈
n∑
i=1

k(θ, θi)∇θ log q(θi|D) +∇θk(θi, θ) (4.12)

Thus, during one iteration, SVGD transforms that particle θj follows:

θj ← θj − ε[
n∑
i=1

k(θ, θi)∇θ log q(θi|D) +∇θk(θi, θ)] (4.13)
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The update direction in Equation 4.12 has a nice interpretation: the first term k(θ, θi)∇θ log q(θi|D)
is driving the particles into high-likelihood areas, while the second term ∇θk(θi, θ) is push-
ing the particles away from each other to encourage multi-modality.

SVGD as moment matching

Liu and Wang showed that SVGD matches the moments of the posterior distribution
implicitly [52]. More formally, the fixed-point conditions of the SVGD updates guarantee
that the particles {θi}ni=1 are transformed to match the expectations of all the functions
in a stein matching set F ∗. However, unlike our algorithm MMMI, users cannot choose
which moment they want to match in SVGD. Choosing a specific moment f in SVGD is
equivalent to solving a differential equation with no guarantee of closed-form solutions.
The success of SVGD confirms the effectiveness of moment matching in general-purpose
approximate inference problems. Our algorithm MMMI further offers a more explicit, more
flexible and simpler approach to do moment matching in Bayesian learning.

4.4 Experiments

We compare our algorithm MMMI with backpropagation (BP) and SVGD on neural net-
works. We use 8 datasets from the paper of SVGD [51] plus 4 Kaggle datasets: Australia
Weather [91], IMDB [54], Tripadvisor [1] and covertype [10].

Preprocessing

The inputs of all datasets are standardized to mean 0 and variance 1. All datasets are
randomly split according to the ratio 90 : 10. The missing values are imputed by the mean
of the same column. All 3 algorithms perform 10 epochs for the 8 smaller datasets and
1 epoch for the Kaggle datasets. For Australia Weather, we split the date feature into 3
features: year, month and day. For IMDB and Tripadvisor, we transform the reviews to
100−dimension vectors using Sent2vec [72].

Implementation Details

We use a neural network of one hidden layer with 50 units and RELU as the activation
function. For Backpropagation, we use the PyTorch [73] implementation with Adam op-
timizer. For MMMI and SVGD, we use 200 particles for Banana, Diabetis, German plus
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N d BP SVGD MMMI
Banana 5300 2 0.847± 0.021 0.867± 0.015 0.874 ± 0.012
Diabetis 768 8 0.779± 0.044 0.785± 0.040 0.801 ± 0.042
German 1000 20 0.771± 0.046 0.778± 0.051 0.793 ± 0.043
Image 2086 18 0.898± 0.010 0.902 ± 0.013 0.899± 0.017
Ringnorm 7400 20 0.980± 0.003 0.982± 0.002 0.985 ± 0.003
Splice 2991 60 0.916± 0.025 0.926 ± 0.020 0.916± 0.026
Two norm 7400 20 0.975± 0.009 0.983± 0.006 0.987 ± 0.005
Waveform 5000 21 0.924± 0.009 0.929± 0.014 0.931 ± 0.017
Australia Weather 142193 24 0.846± 0.004 0.856 ± 0.007 0.847± 0.010
IMDB 50000 100 0.836± 0.005 0.839± 0.006 0.841 ± 0.006
Tripadvisor 18307 100 0.940 ± 0.008 0.935± 0.007 0.940 ± 0.005
Covertype 581012 54 0.812± 0.003 0.814± 0.007 0.828 ± 0.023

Table 4.1: Comparison of frequentist BP, SVGD, MMMI on the 8 classification datasets
for neural networks. We report the average and standard deviation of test accuracy over
10 random seeds.

Image, and 1000 for the other datasets. The implementation and the parameters for SVGD
are chosen to be the same as the original paper [51]. For MMMI, the prior particles are
generated from the PyTorch default weight initialization with Gaussian perturbations. We
match the first and second marginal moments. We find that running MGDA for only 1
iteration is sufficient to obtain good results. We also use Adam [43] to update the step size
of the gradients.

The performance averaged over 10 random trials is reported in Table 4.1. We find that
our algorithm MMMI achieves the best results for most datasets. The results of each run
are in Figure 4.5.

What distribution should we use to generate prior samples?

We did experiments to study the impact of prior distributions on the performance of
MMMI. More specifically, we compare the test accuracy of samples generated from uniform
distributions, normal distributions, PyTorch’s default weight initialization, and default
initialization plus Gaussian perturbations, while keeping other parameters the same. The
results over 10 random trials on 4 datasets are summarized in Figure 4.3. We find that
PyTorch’s default weight initialization plus Gaussian perturbations give the best results
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across all datasets. We think that it might be because the PyTorch’s initialization helps
the particles lie in the ”good” region while Gaussian perturbations improve the ”diversity”
of the samples.

What moments to match?

We also did experiments on the relationship between the type of moments matched and
predictive performance of MMMI. We compared the test accuracy of matching different
combinations of the first moment, the second moment and the third moment. The results
averaged over 10 random trials on 4 datasets are summarized in Figure 4.4. We find that
all combinations except only matching the second moment give similarly good performance
on these datasets.
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Figure 4.3: This figure shows the impact of distributions generating prior samples on test
accuracy. U(a, b) represents the uniform distribution on the interval [a, b]. N(µ, σ) repre-
sents the normal distribution with mean µ and standard deviation σ. Dft is the default
weight initialization in PyTorch, which is essentially customized uniform distributions for
each layer. Dft+N(0, 1) uses the default PyTorch initialization added with N(0, 1) Gaus-
sian noise. We find that Dft+N(0, 1) gives the best result across 4 datasets.
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Figure 4.4: This figure shows the impact of matched moments on test accuracy. The
first 3 columns M1,M2,M3 indicate that we only match the first, second, third moment
respectively. M1 + M2 means that we match the first and second moments. M2 + M3
means that we match the second and third moments. M1 + M2 + M3 means that we
match the first, second and third moments.
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Figure 4.5: Test accuracy of BP, SVGD, MMMI for neural networks on 12 datasets over
10 random seeds
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Chapter 5

Conclusions and Future Work

In the previous chapters, we study the method of moments(MM) in approximate Bayesian
inference from different perspectives. We hope this thesis will contribute to a better un-
derstanding of the following two questions:

• How to apply MM in approximate Bayesian inference? In Chapter 2 and 3, we show
how BMM can be applied to approximate mixture posteriors in both univariate and
multivariate settings. In these cases, BMM turns approximate inference into solving
a system of linear equations with closed-form solutions. In Chapter 4, we propose
MMMI to extend MM to general inference tasks. MMMI turns approximate infer-
ence into multi-objective optimization problems, minimizing discrepancy for different
moments.

• When to apply MM in approximate Bayesian inference? BMM is used when the
mixture components grow exponentially in sequential Bayesian inference. In Chapter
2 and 3, moments can be matched exactly and efficiently. However, other approximate
inference methods, such as variational inference, may suffer from local optimality
and need multiple iterations before convergence. MMMI in Chapter 4 is a flexible
particle-based sampling algorithm. It allows for more flexible priors and likelihoods
than other algorithms, which further improves its representation power and extends
potential application domains.

In the end, we will point out some directions for future work based on this thesis.

• In Chapter 2, We prove that BMM is consistent in the näıve Bayes model. However,
BMM is not consistent in the model of Chapter 3 because it does not always find a
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satisfiable solution when there exists one. Therefore, we want to develop a general
framework to analyze consistency of BMM, summarizing the sufficient and necessary
conditions for BMM to be consistent.

• It’s worthwhile exploring if BMM can be used to improve other components of CDCL
solvers besides initialization. What is more, is it possible to develop a standalone
SAT solver based on Bayesian inference?

• For MMMI, we hope to perform a theoretical analysis of MMMI, such as deriving
convergence properties and asymptotic behaviors. Also, we plan to apply MMMI on
larger models and more interesting applications.

61



References

[1] Md Hijbul Alam, Woo-Jong Ryu, and SangKeun Lee. Joint multi-grain topic senti-
ment: modeling semantic aspects for online reviews. Information Sciences, 339:206–
223, 2016.

[2] Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-
sat: An unsupervised differentiable approach. In International Conference on Learning
Representations, 2018.

[3] Animashree Anandkumar, Daniel Hsu, and Sham M Kakade. A method of moments
for mixture models and hidden markov models. In Conference on Learning Theory,
pages 33–1. JMLR Workshop and Conference Proceedings, 2012.

[4] Gilles Audemard, George Katsirelos, and Laurent Simon. A restriction of extended
resolution for clause learning sat solvers. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 24, 2010.

[5] Gilles Audemard and Laurent Simon. Glucose and syrup: Nine years in the sat
competitions. Proc. of SAT Competition, pages 24–25, 2018.

[6] Roberto J Bayardo Jr and Robert Schrag. Using csp look-back techniques to solve
real-world sat instances. In Aaai/iaai, pages 203–208. Providence, RI, 1997.

[7] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic model
checking without bdds. In International conference on tools and algorithms for the
construction and analysis of systems, pages 193–207. Springer, 1999.

[8] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability, volume
185. IOS press, 2009.

[9] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

62



[10] Jock A Blackard. Comparison of neural networks and discriminant analysis in pre-
dicting forest cover types. Colorado State University, 1998.

[11] V.S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge
University Press, 2008.
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[59] Marc Mézard and Thierry Mora. Constraint satisfaction problems and neural net-
works: A statistical physics perspective. Journal of Physiology-Paris, 103(1-2):107–
113, 2009.

[60] Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12. Springer Science
& Business Media, 2012.

[61] Ilya Mironov and Lintao Zhang. Applications of sat solvers to cryptanalysis of hash
functions. In International Conference on Theory and Applications of Satisfiability
Testing, pages 102–115. Springer, 2006.

[62] Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th annual
Design Automation Conference, pages 530–535. ACM, 2001.

[63] Hiroaki Mukai. Algorithms for multicriterion optimization. IEEE Transactions on
Automatic Control, 25(2):177–186, 1980.

[64] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[65] Nina Narodytska, Alexey Ignatiev, Filipe Pereira, Joao Marques-Silva, and IS RAS.
Learning optimal decision trees with sat. In IJCAI, pages 1362–1368, 2018.

[66] Nina Narodytska, Shiva Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv, and Toby
Walsh. Verifying properties of binarized deep neural networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32, 2018.

[67] Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain
monte carlo, 2(11):2, 2011.

[68] Saeed Nejati. Cdcl (crypto) and machine learning based sat solvers for cryptanalysis.
2020.

67



[69] Jerzy Neyman. Outline of a theory of statistical estimation based on the classical
theory of probability. Philosophical Transactions of the Royal Society of London.
Series A, Mathematical and Physical Sciences, 236(767):333–380, 1937.

[70] Thanh Tang Nguyen, Sunil Gupta, and Svetha Venkatesh. Distributional reinforce-
ment learning via moment matching. AAAI, 2021.

[71] Frank Nielsen and Vincent Garcia. Statistical exponential families: A digest with
flash cards. arXiv preprint arXiv:0911.4863, 2009.

[72] Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi. Unsupervised Learning of Sen-
tence Embeddings using Compositional n-Gram Features. In NAACL 2018 - Confer-
ence of the North American Chapter of the Association for Computational Linguistics,
2018.

[73] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
Pytorch: An imperative style, high-performance deep learning library. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett, editors,
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