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Abstract

This thesis investigates the application of various fields of artificial intelligence to the do-
main of sports management and analysis. The research in this thesis is primarily focussed
on the entry draft for the National Hockey League, though many of the models proposed
may be applied to other sports and leagues with minimal adjustments. A utility model
is proposed to define which players are preferred by which teams for a given draft. This
model allows for the consideration of how teams acting in a multiagent system may reason
about each other’s preferences, as well as how they might strategize and interact with one
another through trades. A trading scheme where agents may trade picks with each other to
change the picking order is established and an algorithm is proposed to find optimal trade
offers to propose under an imperfect knowledge setting. Through simulations based on
the National Hockey League Entry Draft data, the algorithms provide mutually beneficial
trades that also increase the social utility of the league over the course of the draft.

Machine learning classifiers are proposed to suggest which prospects will be successful
at the highest level of the sport over various metrics using statistics and scouting reports
from their draft year as features. The classifiers out-perform conventional draft selections
in the NHL and provide insights into which attributes of a player are important in de-
velopment. Clustering techniques are used to determine playstyles in the NHL and these
clusters are fed as annotations into additional classifiers to project which prospects will fall
into certain clusters later in their careers. These latter classifiers demonstrated promising
results but were ultimately limited by the availability of data.

A discussion of future avenues of artificial intelligence research in the young but grow-
ing field of sports analytics is carried throughout this thesis.
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Chapter 1

Introduction

This Master’s thesis investigates the results of several systems created with varying ele-
ments of artificial intelligence for the purpose of solving open questions concerning amateur
drafts in sports.

An amateur draft is an opportunity for teams to select young rising stars in the sport
to have exclusive rights to sign them to their team and bring them into the league. In
general a draft is broken down into rounds where each team gets one selection, where the
order within each round is usually related to the reverse standings in the previous season.
This allows worse teams to select before better teams and hopefully add better players
to their future rosters. As only a small fraction of players selected in any given year will
make an impact over the course of their careers and teams on average have seven chances
to select each year it is very important that teams efficiently use their picks to find future
players that will not only make an impact in general, but also that will work in the systems
and play-styles of their specific team. With new ways to study and understand the draft
at a deeper level, managers will be able to make decisions that more accurately reflect the
best interests of their franchises.

The findings for this thesis will be split into two main chapters which concern two im-
portant topics in the draft. The first will look at modeling the draft in terms of which
types of players each individual team is likely to select. This topic goes deeper into how
strategy can be developed from this information when teams are around the drafting table.
The second chapter concerns player projections. Specifically, machine learning techniques
will be used to classify prospective players into those which will be successful or not across
various metrics, as well as a classification for developing into one of eight common types
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of National Hockey League (NHL) players.

1.1 Formalizing the Draft

From a mathematical perspective the most basic form of the draft requires a set of avail-
able players P , a set of teams T , and a draft ordering O = 〈o1, o2, ..., on〉 such that
oi ∈ T ∀i ∈ [1..n], n ≤ |P |. The draft is defined recursively such that if o1 selects player
p ∈ P the draft continues with {P\p}, T , and 〈o2, ..., on〉.

This simple drafting framework is also studied as the “Picking Sequences” game in the
literature, where agents take turns selecting objects from a finite set and receive an asso-
ciated utility for each item they select [7]. The connection to sports drafts is made in [13],
though the game framework is simplified in that case with ordinal preferences and perfect
knowledge settings.

In Chapter 2 this framework will be extended and studied in further depth, including
ways to define how o1 comes to the decision of selecting player p based on the specific
needs of the team. The framework is also made more sophisticated by allowing for teams
to rearrange the ordering O through trades by negotiating with each other.

1.2 Contributions

This thesis intends to provide the following contributions:

1. Exploring several applications of artificial intelligence techniques to the field of sports
analytics, with specific focus on the sport of hockey. This field is still in its infancy
— especially with respect to leveraging artificial intelligence — and hopefully the
methods and results provided can form the ground work for future study. Throughout
the work, there are suggestions for future directions of research that go deeper into
specific topics.

2. An approach to calculating agents’ utility functions over a set of objects — or in
this case hockey prospects — from past decisions using linear programming is pro-
posed. Since linear programs can be solved relatively quickly, this method allows for
generation of tailored utility functions quickly.
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3. A pruning algorithm for trade offers in the picking sequences game is proposed to limit
the number of possible sequences that must be evaluated before the optimal trade
offer is identified. This algorithm can have applications outside of sports analytics
where the utility functions of agents with respect to picking order are positive and
monotonically decreasing. That is, any application where agents want to pick as
many times as possible and as early in the order as possible.

4. Classifiers are provided for determining the probability a player will play in the NHL
and in what capacity they might play. These classifiers can help predict if a future
prospect is likely to play professionally, which is important for management staff
making draft selections. There is also insight from the algorithms themselves as
to which attributes are likely predictors of future success, which can be incredibly
valuable information for development and coaching staff that are trying to make their
players the best that they can be.

1.3 Statistical and Scouting Data

Throughout the experiments in this thesis there will be many types of data used to de-
scribe each individual player. This data will mainly fall into either primary statistical data
that could be seen on a game scorecard or scouting ratings collected by the International
Scouting Services (ISS) scouts over the course of several trips throughout a season. Ide-
ally the scouting information provides an accurate and unbiased depiction of each player’s
strengths and weaknesses, whereas a player’s statistics show how productive a player was
with their current team and opponents.

The scouting information provided is over 10 attributes (skating, puck skills, shot, of-
fensive, defensive, physical, compete, sense, strength, explosiveness) which is too broad to
consider all of them in a meaningful analysis. Thus the data from this source is condensed
into 6 ”tools” to more concisely describe a player’s skill set.

1. Skating combines skating, compete, and explosiveness.

2. Shooting combines shot, puck skills, offensive, and strength.

3. Passing combines puck skills, offensive, and sense.

4. Defensive Ability combines defensive, compete, and sense.
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5. Grit, or Toughness, combines physical, compete, and strength.

6. Hockey Sense, which is a player’s general understanding of the game and the ability
to be in the right place at all times, combines offensive, defensive, compete, and
sense.

Data points representing a player’s skill in each specific tool were normalized to their z-
score among data points for that tool.

While scouting ratings show a direct description of a player’s skill set during the par-
ticular games they were scouted, the statistics they obtain over the course of a season can
provide evidence supporting high or low skill in each of the tools. Such relationships would
be that a player with a good shot is likely to score more goals, and similarly a good passer
with good hockey sense will likely set up other teammates very well leading to more op-
portunities to be credited with assists. Another example is a tougher player that is hitting
opponents often or getting into fights is likely to receive more penalty minutes. There are
benefits to using statistics over scouting data to make up for its indirect description of
player skill. Namely there are a limited number of scouting visits possible during a year so
the sample size of statistics that are tracked every game is far greater. In addition there
can be bias effects that appear in the human scouting reports, so statistics can show an
objective picture of how a player played during a season if their context is accounted for.

1.3.1 Additional Data Specification

When comparing statistical data from players in different leagues, it is important to account
for that context and degree of difficulty that each league poses. To account for this effect
in our experiments we use two different approaches. The first method is to simply group
leagues together by similarities. For example the Canadian major junior leagues (Ontario
Hockey League, Western Hockey League, and Quebec Major Junior Hockey League) are
very comparable to each other in difficulty for young players, but might be easier than
European professional leagues such as Finnish Liiga or the Swedish Hockey League where
prospects play against grown men. Then for classification using this approach a discrete
value could be used to denote 1 for Canadian major junior leagues, 2 for European profes-
sional leagues, and so on.

Another commonly used way to establish the context of a league’s difficulty is the statistic
known as NHLe. This statistic is calculated as the product of a difficulty modifier and
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a prospect’s points per game to result in an expected number of points scored by that
player had they been playing that year in the NHL. Thus the modifier can be viewed as a
quantitative value for Difficulty of prospect league

Difficulty of NHL
.

For established players in the NHL there are additional pieces of data tracked that can be
of use when analyzing the style and performance of players. Of particular note for Chap-
ter 5 will be the statistic known as Corsi or simply ”shot attempts”. This value tracks the
ratio of times a player’s team or the opposition makes an attempted shot that is on goal,
blocked, or a missed shot. It is a indicator of how often a player’s team is in the offensive
zone compared to the defensive zone, and is often used in favour of other options such as
plus minus (+/-) due to a larger sample size. For comparing player types Corsi is useful to
identify players that might not score many points, but contribute to the team by keeping
the opposition from having scoring chances of their own.

One appealing trove of information that is available for considering prospect players are
the qualitative descriptions that scouts provide. The distinction between this source and
the scouting ratings that will be used in this thesis is that when scouts write a report they
provide numerical values for each skill, but also a story in text explaining what stood out
about each player scouted in that game. By collecting all stories about a player over all
scouting visits, one can have a sizable corpus to use as input for various natural language
processing schemes. This idea has been touched on for some player projection work similar
to what is done in Section 4.2, but using data from the National Football League [18].

1.4 Literature Overview

The framing of the draft for game theory is comparable to past works in picking sequences
where agents select objects out of a pool of items [7], without perfect information in the
draft setting. Work by [7, 9] investigate how manipulations affect the picking sequences
game. It has been shown that teams acting strategically with perfect information concern-
ing ordinal preferences may cause Prisoner’s Dilemma situations [19, 8] in picking sequences
and drafts. The setting of the draft analysis of strategic picking covered in Section 2.5 dif-
fers from [19, 8] in that agents have imperfect knowledge of the others’ intended selections.
Some work exists comparing different orderings for picking strategies which ties into the
trade modelling done in this thesis [13].

Some work has been done in the direction of assigning utilities to draft picks, as Schuck-
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ers proposes assigning the expected career games played by players drafted at each pick
position [17]. If one considers each team assigning utility to pick positions in the draft,
extending on the work by [17], then the problem of pick trading could be framed as an
application of the resource allocation game, with work in [2, 16] being of relevance to this
framing of the problem. A final paper considers bidding strategies in fantasy drafts which
considers a draft as an auction where each team has a budget they may spend [1].

The application of artificial intelligence to sports analytics topics is a relatively new though
growing field of interest. Coupled with the infancy of hockey analytics as a whole, most re-
search pertaining to artificial intelligence in sports concerns sports such as soccer. Success
has been found using neural networks to isolate goal events in soccer videos [22, 23], which
could have applications for the media such as creating highlight reels. These solutions tend
to rely heavily on audio cues such as crowd noise as opposed to generating a deeper under-
standing of the sport, though they have incredible application value. One work focussing
on hockey used machine learning combined with natural language processing techniques
to first predict the winner of a single hockey game, then extend the idea to predict a best-
of-seven series of games between the opponents [21]. The analysis in [21] touches on the
important issue of bias with respect to textual input. In their case the input was pre-game
expert analysis stories, though the issue of bias could easily be present if using sentiment
analysis on textual scouting reports.

With respect to hockey analytics, the bulk of the work available has been done using pure
statistical methods as opposed to artificial intelligence techniques. While to our knowl-
edge there is no prior published work on applying artificial intelligence to the NHL Draft,
there are many pieces of research available on analyzing the draft in using other tools. A
common topic for research in the draft can be characterized as a search for ”market inef-
ficiencies.” These are characteristics that cause prospects to be overlooked by some teams
during the draft, allowing players with higher chances of succeeding in the NHL to be avail-
able ”cheaper with later picks than their probability of success would suggest. Two such
papers [3, 11] identified relative age as a characteristic causing a market inefficiency in that
players that were a few months younger than their draft peers were chosen significantly
later given their future production in the NHL. In fact [3] took the idea one step further
by indentifying a second market inefficiency of birthplace population size where prospects
born in smaller cities or towns were less commonly drafted or drafted later, possibly due
to less scouting exposure from a young age.
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1.5 Overview

Chapter 2 will investigate creating a multiagent model for framing the draft. This includes
generating utility functions for agents based on past decisions, as well as mechanics for
greedy and strategic drafting. Chapter 3 extends these notions by allowing agents to trade
picks resulting in a reordering of the draft. Processes for determining the best trade to
offer and the utility benefits to these trades is determined. Chapter 4 focusses on utilizing
decision trees to predict if a given prospect will have success at the NHL level given stats
and scouting data from their draft year. The findings from these decision trees are taken a
step further in Chapter 5 by using clustering techniques to annotate existing professional
players into similar groups of playstyles. These data points are then used to form training
data to enable predictions of which cluster a given prospect would fall into if they end up
playing professionally.
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Chapter 2

Multiagent Models for the Entry
Draft

This chapter focuses on developing a way to look at how individual teams will make
selections and develop their strategy during a draft. This is achieved by defining a utility
function for each of the 30 current NHL teams — not including Vegas — over the set of all
players available. These functions will be the driving factor for each decision that a team
makes in the simulations that will follow. While this chapter goes through generating utility
functions and determining player selection policies, Chapter 3 will explore an expanded
model that allows teams to interact with one another through trades.

2.1 Utility Function Specification

The ideal utility functions for describing teams in this model will be able to accurately
reflect how teams have made their decisions in the past, while also having the flexibility to
account for deviations from the standard type of selection. We propose three main factors
in determining how much a team t will like a certain player p:

1. Team’s preferences wt over the player’s skillset sp, denoted wt · sp. This calculation
considers the player p’s prowess at each skill multiplied by the importance of that
skill to the team t for each skill represented in the vectors wt and sp. Each element
in the vectors wt and sp maps to one of the 6 tools specified in 1.3.
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2. Balance of team t’s depth at each position pos, denoted dt,pos ∈ R+. For example, if
t has particularily few forwards (F ) then dt,F should be a larger value than average
to indicate that this is a position the team needs more players in.

3. A random aspect to encompass utility changes from other sources, denoted rt,p ∈ R+

This results in the following definition of the utility gained by t for drafting p:

Ut(p) = (wt · sp)dt,prt,p (E1)

The first term is the core of the idea for team utilities. Specifically, teams have inherent
likes and dislikes for types of players and playstyles. These profiles will be established as
the weight vector wt which is combined with the player’s skill vector sp with a dot product
to return a team’s base skill preference for that player. Due to differences in the skills
required for forwards and defensive players, teams will have a different weight vector for
each position. The values for the sp vector are found by taking scouting rankings from ISS
and combining them into six tools as described in Section 1.3. Determining the values that
make up wt will be covered in Section 2.1.1.

The second term exists to acknowledge the fact that a team will only play a certain number
of players at each position. In general this breakdown is 12 forwards and 6 defensemen for
a 2:1 ratio. By looking at how many prospects a team already has at each position it is
possible to find if the team will be unbalanced in the future, and managers may look to
draft players to fill scarcity to avoid a problem in the future. This can be a minor factor in
the decision making process, as drafting the player you feel is the best regardless of the po-
sition can still lead to trades where a team can balance their depth. The effect of dt,pos can
be seen as tipping the balance between two otherwise equally preferred players at different
positions. For the implementation, prospect depth was acquired from hockeysfuture.com
to find the number of forward (nt,F ) and defensive (nt,D) prospects. Then if p is a forward:

dt,F =
2nt,D

nt,F + 1

with a corresponding definition for defensive prospects:

dt,D =
nt,F

2nt,D + 1

To limit the extent of this factor in extreme cases where teams may have far more of one
position than the other a value of d′t,pos = (dt,pos)

1
3 is used in the following experiments.
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Since it is unlikely that dt,pos would ever be greater than 9, the factor d′t,pos should not
allow either position to be more than twice as preferred as the other.

The purpose of the rt,p term is to account for all the other factors influencing the draft deci-
sion that are not found in the data. For example, each team has its own scouting staff that
only has time to visit each prospect a limited number of times over the course of the year.
It is entirely possible that over a small sample size a player performed uncharacteristically
well or poorly, causing the team to have a skewed opinion of them. Other factors could be
that the franchise has ties to relatives of a player or the team they were recently playing
in, amoung other qualitative issues that could alter a team’s decision. The parameters
defining the distribution of rt,p were set to balance the importance of teams having their
own unique preferences from their weights and depth against allowing the utility functions
the flexibility to sometimes lead to other selections. In the implementation for this thesis,
rt,p ∼ Gaussian(1, 0.1).

2.1.1 Determining Weights

The goal for the team skill weights are to fairly represent what skills matter most to the
team using past draft selections as evidence. This will result in a vector
w = (wspeed, wshot, wpass, wdefensive, wgrit, wsense) where the sum of the elements is equal to
1. We also insist that all terms are non-negative. That is, no team will view any skill as
a bad quality. For example no team will actively prefer a slower player, but such effects
might be seen anyway if they prefer types of players with skills that negatively correlate
with speed. In such a case, the weight of speed may be low or even zero, but the reasoning
for the selection will be high rating in other skills, not specifically because the player is slow.

The data for identifying the team weights will be how that team has made draft deci-
sions in the past. We consider all past draft selections in the following way:

If t selects player p while player q is still available, we conclude that Ut(p) ≥ Ut(q).
(Rule 2.1)

If we consider pairs of players such that p and q play the same position (suppose forwards,
F without loss of generality) we can eliminate the effect of dt,F , and focus on the weights
specific to that position. When looking for the weights, we assume as much utility as
possible is driven by the team preferences and player skill, and we want to minimize the
effect of the random factor rt,p. By modifying the definition of Ut to use r′t,p as an additive
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factor we can set up a linear program by finding constraints using (Rule 2.1) and then
minimizing the summed values of r′t,p for each player pairing, calculated as r′t,p + (−r′t,q)
to demonstrate positive random utility associated with p and negative random utility as-
sociated with q. If r′t,p was negative or r′t,q was positive, this would only strengthen the
need for utility from the weight vector wt to ensure that Ut(p) ≥ Ut(q), so the worst case
is assumed. Pairs are formed between each player p selected by a team since 2012 and the
five players (q1, ..., q5) that were next selected at that position. For example, the Edmonton
Oilers selected forward Conner McDavid first overall in the 2015 draft, so if p is Conner
McDavid and t is the Edmonton Oilers then players (q1, ..., q5) would be forwards Jack
Eichel, Dylan Strome, Mitchell Marner, and Pavel Zacha who were selected second, third,
fourth, and sixth respectively in the 2015 draft (a defenseman was selected fifth). Consider
the simplified linear program for just p, q1, and q2:

min r′t,p + (−r′t,q1) + (−r′t,q2)
such that:
wt · (p− q1) + r′t,p − r′t,q1 ≥ 0
wt · (p− q2) + r′t,p − r′t,q2 ≥ 0
r′t,p ≥ 0
r′t,q1 ≤ 0
r′t,q2 ≤ 0∑

wt = 1
(wt)i ≥ 0 ∀(wt)i ∈ wt

(E2)

This can be simplified slightly by noting that the most efficient way to assign value to the
slack variables such as r′t,p and r′t,q1 will be to load as much utility as is required into r′t,p
leaving all of the r′t,qi values as 0. Therefore we only need to include the r′ terms that repre-
sent additional utility given to p instead of any utility that might be taken away from any qi.

To put things into a concrete example, consider the following data from the 2015 draft:
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Player Skating Shot Passing Defensive Grit Sense

MM 6.63 3.81 7.65 5.76 0.54 8.41

PZ 5.05 7.01 5.08 4.97 5.46 5.05
TM 1.33 3.65 2.32 2.31 3.67 2.71
MR 4.09 5.99 5.17 4.47 5.58 6.36
LC 3.30 5.33 1.42 3.96 6.69 2.81
DG 3.20 4.10 3.22 0.69 4.27 3.04

Table 2.1: Skill values of players in 2015 NHL Draft

For the team that selected MM while PZ, TM, MR, LC, and DG were still available, a
potential weight vector that satisfies all contraints could be (1

4
, 0, 1

4
, 1

4
, 0, 1

4
) which would

require a value of rt,MM = 0.

Another set of weights w0 was found by considering all players taken by all teams to
represent the general preferences of the league by using the linear program described with
all players drafted, not only those selected by a single team. To combat extreme weights
that would arise for some teams with relatively few historic picks to draw from, all weight
vectors were balanced with the general league weights. For the purposes of the experiments
performed, a value of w′t = 2wt+w0

3
was used in place of wt in the utility calculation (E1).

2.1.2 Bringing it All Together

With all of the parameters for the utility functions set, it is possible to evaluate how the
functions compare with two core ideas in mind. First of all the functions should reflect
individual preferences so that teams do not have identical values for their selections. If
this were the case the order of players selected would be identical regardless of the teams
drafting at each pick. Secondly, the individual differences in utility functions should not
be so great as to break implicit correlations in utility that can be found in reality. A way
to think about this point is that if team t1 likes player p a lot then it is likely that p is
actually a good player. If that is the case then it is also likely that team t2 likes p because
teams should tend to like good players. Of course the amount by which t1 and t2 prefer p
may vary, but it should not be the case that a player near the top of t1’s ordinal preferences
list is near the bottom of the list for t2.
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Figure 2.1: Skill preference weights assigned to Toronto, Ottawa, Montreal, and Edmonton.
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Figure 2.1 shows how several Canadian teams have valued skills of forwards and defence-
men historically. It is clear that there are definite differences in what teams look for in
draftees, and even differences in how teams evaluate players depending on their position.
For example with forwards the Toronto Maple Leafs value skating while the Montreal Cana-
diens look for passing skill most among potential forwards. For defencemen, the Maple
Leafs value shooting most and the Canadiens value grit. While this is suggestive that
teams have unique utility functions, further evidence is required to demonstrate this and
to also show that these utility functions do not go too far in weighting team preferences
to the point where teams would be willing to pass on top quality players. One noticeable
aspect from Figure 2.1 is that aside from Edmonton there is little to no value placed on the
attribute of hockey sense for either forward of defencemen. This was common in the full
results as well with very few utility functions putting any significant weight on hockey sense.

Next we consider both the ordinal preferences and the numerical utilities of these same
five teams for their favourite 10 players for the 2015 NHL Entry Draft.
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TOR OTT MTL WPG EDM

CM CM CM CM CM
69.9 57.7 48.1 48.7 68.1
JE JE JE NH JE

41.6 41.9 44.8 35.6 44.1
NH NH NH JE NH
37.7 40.9 38.9 33.7 34.5
PZ ZW MR ZW PZ
26.3 28.5 26.2 26.2 27.1
MM MB ZW MM MM
25.5 27.5 25.1 25.5 26.3
OK MM OK PZ MB
24.4 27.2 24.8 25.3 26.1
MB MR MM OK OK
24.2 25.6 23.5 25.0 24.7
MR OK MB MB MR
24.0 23.6 23.2 21.5 23.4
ZW PZ TK CW NM
23.3 23.3 22.6 20.2 22.4
NM CW CW MR DS
21.8 22.5 22.5 19.9 22.1

Table 2.2: Ordinal preferences and associated utilities from (E1) with weights from (E2) of
2015 draft prospects for Toronto, Ottawa, Montreal, Winnipeg, and Edmonton. Forwards
are shown in green and defencemen in red.

One of the most noticeable features of Table 2.2 is that all teams rank prospect CM higher
than any other, regardless of the differences seen in Figure 2.1. As this particular player
was generally considered to be a once-in-a-generation talent, this is to be expected. It
supports the second desired property where teams will still recognize top level skill instead
of having an elite player low on their list due to their skill breakdown.
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Figure 2.2: Utilities as a function of ordinal rank for Toronto, Ottawa, Montreal, Winnipeg,
and Edmonton.

2.2 Expected Utility

The most interesting questions to tackle with this utilitarian approach require teams to be
able to reason about the future consequences of actions they or others might take. For this
reason, we must introduce the ability for teams to calculate expected utility for themselves
or estimate the value for others considering the resulting draft that would occur if they
took various actions. The expected utility for team t over pick order o will be denoted
EUt(o). We use a Monte Carlo approach where for the values of wt and the r values of the
other 29 teams are drawn at random where rt,p ∼ Gaussian(1, 0.1) and each element of wt

is drawn uniformly from the set of values such that the constraints of (E2) are satisfied. A
draft is then simulated over the result of the action being considered where each team t’s
utility profile is generated from the drawn values of wt and rt,p. The average utility that
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the simulations give for team t is the expected utility of t for the action. In our simulations
for expected utility we limit the agents to be myopic in the sense that they will assume all
future selections will be made naively and without future pick trades occurring in order to
keep runtime manageable. If a simulation of 1000 naive drafts each with 99 picks takes one
second then 1000 drafts simulations each requiring 1000 subdrafts of 98 naive picks would
take 16.5 minutes, and so on for 68 more levels.

2.3 Utility Functions of New Teams

On occasion leagues have decided to expand their league by adding one or more teams at
the start of a future season. For the NHL, the example that will be looked at is the Vegas
Golden Knights which entered at the start of the 2017 - 2018 regular season. The main
problem with trying to develop a utility function for the Golden Knights is that prior to
the entry draft between June 23 and 24 there has been no draft history to draw upon for
setting their skill preference weights, so an alternate solution is required.

An important event that occurred before the 2017 NHL Entry Draft is known as the ex-
pansion draft. This is a special event that occurs when new teams enter the league to allow
them to create a roster of players by selecting one player from each team. The established
teams may all protect several of their most valuable players from the expansion draft, but
what remains still gives the Golden Knights plenty of options available to determine the
identity of their franchise. As such, it would be possible to generate a set of constraints
similar to the ones described above where instead of comparing players selected to those
selected later in the draft, the comparisons could be for each team the player that was
selected compared to all other exposed players from the same team. One main drawback
to this approach is that the expansion picks have more to them than judging skill sets
since the player’s contracts carry over to Vegas as well. Then it is entirely possible that
when choosing between a favourably skilled player with a poor contract and a different
player with a long term and cheap contract the decision might be made from a business
standpoint rather than which player fits their system the best.

Another approach to take is to consider the people who will be making the draft selections
for the Golden Knights. Each have been a part of the league with other teams for a long
time, often making the same types of draft decisions. By taking the union of the draft
selections made with other clubs over the years it might be possible to find a reasonable
picture of what these managers will be thinking when it comes to finding prospects for
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their new franchise. For our purposes we have chosen to follow this approach and use the
history of the Golden Knight’s general manager from when he was with the Washington
Capitals between 1997-2014 and the New York Islanders between 2015-2016.

2.4 Greedy Drafting

With team utility functions set, selection policies can be investigated. The first and most
basic policy is greedy drafting. According to this form of selection, at each pick the team
t will rank the remaining available players into ordinal preferences according to Ut(p) and
select the top option. Algorithm 1 is a recursive definition for how an entire draft would
be run if all teams picked according to the greedy policy. It takes the standard draft pa-
rameters as input and returns the list of drafted players in the order that they were selected.

Algorithm 1 greedyDraft(P, T, 〈o1, o2, ..., on〉)
Input: set of prospects P, set of teams T, draft order O
Output: list of drafted players
p∗ ← argmaxp∈PUo1(p)
return 〈p∗〉 + greedyDraft(P\{p∗}, T, 〈o2, ..., on〉)

With the greedy policy, teams are able to maximize the utility gained in the moment of
each individual selection.

Pick Team Predicted Utility Actual
Number Player Selection

1 Toronto Auston Matthews 46.0 Auston Matthews
2 Winnipeg Patrik Laine 32.9 Patrik Laine
3 Columbus Jakob Chychrun 37.4 Pierre-Luc Dubois
4 Edmonton Jesse Puljujarvi 43.5 Jesse Puljujarvi
5 Vancouver Dante Fabbro 31.7 Olli Juolevi
6 Calgary Max Jones 35.4 Matthew Tkachuk
7 Arizona Matthew Tkachuk 30.6 Clayton Keller
8 Buffalo Tyson Jost 33.4 Alexander Nylander
9 Montreal Clayton Keller 28.5 Mikhail Sergachev
10 Colorado Michael McLeod 25.7 Tyson Jost

Table 2.3: Predicted top 10 selections for 2016 NHL Draft
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Team Number Total
of Picks Utility

Anaheim 4 42.1
Arizona 3 58.7
Boston 3 49.4
Buffalo 5 64.9

Carolina 6 79.7
Calgary 5 69.2
Chicago 4 41.2
Colorado 3 46.9
Columbus 3 59.9

Dallas 2 23.4
Detroit 3 41.1

Edmonton 5 77.2
Florida 4 41.1

Los Angeles 1 12.0
Minnesota 1 22.7
Montreal 3 41.9
Nashville 4 44.1

New Jersey 4 53.2
NY Islanders 2 24.5
NY Rangers 2 10.6

Ottawa 2 37.1
Philadelphia 5 63.6
Pittsburgh 3 26.1
San Jose 1 9.7
St. Louis 3 40.2

Tampa Bay 5 56.1
Toronto 6 92.8

Vancouver 2 39.8
Washington 2 21.8
Winnipeg 4 65.8

Table 2.4: Predicted complete draft utilities for top 100 selections of 2016 NHL Draft

Table 2.3 shows how the model predicted the top 10 selections of the 2016 NHL Draft,
and how much utility would be gained by each team by the end of the top 100 selections.
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For consistency between results, the values indicating random utility between teams and
players, denoted as rt,p in Section 2.1, will be held constant for the experiments in the
remainder of the chapter.

2.5 Strategic Drafting

An important question in draft strategy is whether it is ever beneficial to select a player
other than your first ordinal preference, hoping that the player will be available for selection
with your next pick. This is known as ”strategic drafting” and it allows for the opportunity
for a team to select both of their top two favourite players at the risk that you may only
be left with your second choice when you could have had a player you preferred instead
if you had made the naive choice. In terms of the draft simulation, this is equivalent to
picking a player that results in higher expected utility that is not the same as the player
with maximal utility value. The major difference between Algorithms 1 & 2 is that the
strategic draft makes use of EUo1(p) in place of Uo1(p) where EU is the expected utility
function for picking p given order o1 and U is the utility of p in the context of order o1.

Algorithm 2 strategicDraft(P, T, 〈o1, o2, ..., on〉)
Input: set of prospects P, set of teams T, draft order O
Output: list of drafted players
p∗ ← argmaxp∈PEUo1(p)
return 〈p∗〉 + strategicDraft(P\{p∗}, T, 〈o2, ..., on〉)

Simulations were run on the first 100 picks of the 2016 NHL draft with Algorithm 2,
counting instances of strategic picks where a player p was selected in the context of order
o1 when there existed some other player q (p 6= q) for which Uo1(q) > Uo1(p). That is,
player p was selected when another player q would have been selected in that context with
Algorithm 1. It was found that the action that nearly always results in highest expected
utility is to draft naively, with strategic picks occurring on 4.2% of the 70 picks where
strategic drafting is possible (on a team’s last pick, the naive action is trivially optimal).
It is expected that this is due to the fact that for most picks the next pick owned by the
team is 30 selections later. Coupled with the inherent correlation between utility functions
of teams this means that if a player is one team’s favourite then he is likely good enough
to be drafted by another team before the team’s next pick.

This raises an interesting question of how close picks need to be for strategic drafting
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to become a legitimate option. To investigate this, we created drafts with n many teams
where picks were evenly distributed, so that each team makes a selection once every n
picks. Then by varying the value of n, we see the effect of pick density on the frequency
of strategic picks.

Figure 2.3: Results of Strategic Drafting Experiments. Left: Frequency of strategic picks
decreasing as picks become sparser. Right: Histogram showing the distribution of strategic
picking events on 2016 Entry Draft order.

As Figure 2.3 shows, strategic picking does become far more common when picks are closer
together. This data accounts for the fact that final picks for teams are always naive. Also
shown is that strategic picking is more common in the middle portion of the draft rather
than early when there are clearcut choices or late when teams begin to run out of picks.
The picks in the 61 to 70 range were owned by teams whose next picks were relatively far
away compared to other stretches, which accounts for notably few instances of strategic
picks.

2.6 Extensions to the Utility Model

This utility model could be expanded upon in several ways for future work. One way would
be to incorporate the concept of complimentary players. For example, if a team drafted
only players with high shot score but never a player known for being a strong passer, the
shooters would have a harder time getting a good opportunity. Thus teams often strive to
find a balance of skill sets when building their teams. A related extension would be having
teams address areas of weakness in their game. For example a team with the worst-ranked
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defense in terms of goals allowed would have incentive to draft a player with a higher score
in defensive attributes. Likewise, a team that struggles to score goals would possibly target
offensive-minded prospects.

A possible way to generate player attributes that was not investigated would be to lever-
age natural language processing with respect to written scouting reports as opposed to the
numerical grades assigned as a summary of the report. Generating the attributes through
this processing step might lead to similar ratings if the report summaries tend to match the
content of the report well, but otherwise could lead to interesting analysis of the differences
in the results. Using the qualitative data of the report could also enable more granular
utilities than the summaries provide. For example, two teams might target players with
high shot scores, but perhaps one prefers players with accurate shots and the other wants
players with extremely hard shots. Both attributes would lead to high shot scores, but
could be entirely different subsets of players. Knowledge of the difference on this dimen-
sion could increase performance in all draft experiments — including strategic drafting in
Section 2.5 and drafting with trades as will be covered in Chapter 3.
In terms of teams adopting a strategic drafting plan, an enhancement not covered in
the experiments is using the knowledge of picks within the current draft to shape each
agent’s predicted preferences as the draft unfolds. These picks could give a depiction of
each team’s immediate needs and preferences that historic picks do not, so could be given
greater weight.
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Chapter 3

Drafting with Pick Trades

In a real amateur draft there is often more happening at the event than teams announcing
who they will select next. Team managers are able to call each other and propose swapping
of team assets usually to move up or down in the draft order depending on when they believe
a particular player they are interested in will be available. In the actual draft these trades
could involve roster players, past draftees, or even picks in future drafts — though the focus
of this chapter will be on the exchange of picks for picks in the same draft. Being able
to evaluate trades and expected values for individual picks will be immensely important
as to judge what selections a team is willing to give up for the chance to draft next. As
a simplification, teams may only attempt a trade if it involves the upcoming pick in the
draft. This provides structure to the process as for each pick there can be a single round of
trade offers for the selection followed by one possible order change then a continuation of
the draft. The goal is that the system of agents will be able to identify and perform trades
which are mutually beneficial to the parties involved. The example in Table 3.1 between
teams x and y shows how a mutually beneficial trade could look in a simple 2-team 2-round
draft.

Prospect Ux Uy

A 11 10
B 6 8
C 5 7
D 4 1

Table 3.1: Example Utilities for Trading
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For the draft that follows O = 〈y, x, x, y〉, x would receive prospects {B,C} for 11
utility and y would get {A,D} for 11 utility. Now consider an O′ = 〈x, y, y, x〉 that x
might propose. This would result in x and y each receiving 15 utility, which is preferable
for both teams. In the 30-team setting for this chapter, finding trades like this becomes
considerably more complicated especially since teams will not have full knowledge of how
others view utility or what offers other teams are submitting.

3.1 Utility of a Trade Offer

By looking only at pick trades each trade offer can be seen as a unique draft order. From
the perspective of the agent that is receiving trade offers, it will have a choice of up to
one offer for each team in the draft plus the original draft order if it chooses to keep the
upcoming selection. From that point it is easy for the agent to calculate the expected
utility for each draft order through Monte Carlo simulations and select the most preferred
draft order. Algorithm 3 shows the general structure for the draft used in this chapter,
with a single trade round prior to each pick. The real challenge will be for the agents trying

Algorithm 3 draftWithTrades(P, T,O)

Input: set of prospects P, set of teams T,
draft order O = 〈o1, ..., on〉

Output: list of drafted players
offers← {O}
for t ∈ T such that t 6= o1 do

offers← offers ∪ {createOffert,o1(O)}
end for
O′ = 〈o′1, o′2, ..., o′n〉 ← argmaxl∈offers EUo1(P, T, l)
p∗ ← argmaxp∈PUo′1

(p)
return 〈p∗〉 + draftWithTrades(P\{p∗}, T, 〈o′2, ..., o′n〉)

to propose a trade offer as the expected utility for them will incorporate the probability
of their offer being accepted alongside the utility they expect to gain from the order they
are proposing. For a trade offer to′ from x to y resulting in draft order o′ from an original
order of o the expected utility for x submitting the offer is

EUx(to′) = Pr [y accepts o′] ∗ (EUx(o′)− EUx(o)) (E3)

Given that y is known to be a rational agent, it will accept whichever trade o∗ it is offered
that maximizes EUy(o

∗), including the non-trade state o. If T is the set of all trades offered
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to y aside from x’s offer of o′, then Pr [y accepts o′] = 1 if EUy(o
′) > maxo′′∈(T∪{o}) EUy(o

′′)
and 0 otherwise. Since neither T nor the utility profile of y is known to the agent x at the
time an offer, the probability term must be estimated by repeatedly drawing random utility
profiles for each agent in the manner described in Section 2.2 followed by calculating each
agent’s optimal trade offer. Then Pr [y accepts o′] is the average probability of o′ being
accepted in that Monte Carlo simulation.

3.2 Identifying Potential Trades

Since a pick trade is nothing more than a redistribution of picks between two agents, then
if team x who owns nx many selections wants to submit a trade offer to y who owns ny

picks then there are 2nx+ny many ways to do that redistribution. Since the first pick owned
by y is guaranteed to be in the trade offer, this leaves 2sx+sy−1 offers for x to potentially
consider submitting. This set of trade offers will be denoted as the trade space S. In a real
draft there is a tight time limit between picks, so calculating the expected utility of each
offer in S will be infeasible. Fortunately each trade offer can be related to others in such a
way that information gained about one offer can direct the agent towards better offers or
away from worse offers without the need to calculate all expected utilities. The key idea is
that some offers can be seen to be trivially preferred by one party over another related offer.

At this point, it will be beneficial to introduce a condensed notation for trade offers from
x to y where only the relative positioning of picks owned by x and y are considered. For
example 〈x, y, z, x, z, y〉 would become xyxy. The example in the previous paragraph could
have been written in the notation xxy �x yxx where �x denotes “x prefers”, though a
more precise definition of what �x means will be given. Condensed notation will be written
as a string whereas an absolute order will be written in the usual list notation.

Proposition 1. Expected utilities as a function of pick position (utility expected from a
specific pick position) are positive and monotonically decreasing.

Proof. Trivially the expected utilities of all pick positions must be positive as the utility
functions of all teams are positive for all prospects. Then consider picks at positions p1,
p2 such that p1 < p2. That is, p1 is an earlier pick than p2. Then the expected returns for
any team cannot possibly be any worse than that for p2 as every player that is available
for selection at p2 is also available at p1.
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There are two rules that can be defined to encapsulate how orders can be trivially preferred
which follow from Proposition 1. The first is called “Addition” and states that everything
else being equal, x would prefer to have a pick than not to since utilities are positive. As
an example xx �x xy. The second rule is known as “Promotion” and states that x would
prefer to swap a later pick for an earlier pick if everything else remains the same. An exam-
ple of this would be xy �x yx where x moves its pick from second in the pool of picks to first.

By combining the rules of Addition and Promotion, chains of dominance can be created
between orders that also imply trivial preference due to the transitivity of the preference
operation. For example xx �x xy �x yx �x yy. Thus, if O1 can be obtained from O2 only
using applications of the Addition or Promotion rules then O1 �x O2. As a result from
the chain above xx �x yy.

Proposition 2. In the context of a trade between x and y, O1 �x O2 iff O2 �y O1.

Proof. Consider the chain of rules 〈r1, ..., rk〉 for x’s benefit used to obtain O1 from O2.
Each rule ri has a start state si and an end state ei such that ei = si+1, s1 = O1, ek = O2.
If ri is Addition then si+1 differs from si by a single pick owned by either x in the case of
si+1 or y in the case of si. Then a change from state si+1 to si is an example of Addition
from y’s perspective. Similarly if ri is a Promotion rule then the only difference between
si and si+1 is a swapping of picks such that si has a pick owned by y in a higher position
than the corresponding pick in si+1, so transitioning from si+1 to si. Then to obtain O1

from O2, transition from O2 to sk followed by sk−1 until s1 = O1 is reached. Each such
transition will be either an Addition or Promotion rule as shown.

3.3 Searching the Trade Space

Consider a graph GS of the trade space S for offers from x to y with n = nx + ny picks
where nodes are the various trade states (2n−1 nodes). Then add a directed edge from node
s1 to s2 where s2 can be reached from s1 by a single application of Addition or Promotion
from x’s perspective. Then by the definition of domination chains, some state s2 is a
descendant of s1 iff s2 �x s1. By Proposition 2, s2 is an ancestor of s1 iff s2 �y s1. Further,
since every possible application of rules is represented in the graph, so must all dominance
relations through descendant relationships. To save on space required to store edges, only
the transitive reduction of the graph will be required in practice.
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Proposition 3. GS is acyclic and connected.

Proof. First assume that GS contains a cycle. Then there is some dominance chain s1 �x

s2 �x ... �x sk �x s1. Then by transitivity s2 �x s1, but s2 is acquired by applying either
Addition or Promotion to s1 so this cannot possibly be the case, implying a contradiction.

Consider the state r = xyyy.., and some arbitrary node si. si must take the form of
starting with x then a sequence of x’s and y’s. Then si can be obtained from r using a
chain of Addition rules changing y’s to x’s at the positions they are found in si. Then
there is a path from r to every node, so GS is connected.

There are two crucial pieces of information for speeding up the search through GS. The
first is that for any node si with order o′ where EUx(o′) ≤ EUx(o) then any trade offer
sj with order o′′ which is a descendant of s must also have an order with lower expected
utility than o so EUx(tsj) ≤ 0 where tsj is the action of submitting the offer sj. This
is because as a descendant of si it is the case that EUx(o′′) ≤ EUx(o′) ≤ EUx(o) which
implies that (EUx(o′′) − EUx(o)) ≤ 0. From Equation (E3), the probability term is ≥ 0
so the resulting expected utility must be non-positive. Therefore all descendants of nodes
with lower expected utility than the original ordering can be removed from consideration.
The second note is that for any node si with 0 probability of y accepting the deal, all
ancestors sj of the node must also have zero probability of acceptance. If this were not
the case then there would be some situation where sj could be accepted by y. Since si is
trivially preferred by y to sj as shown above through Proposition 2, in that same situation
y would accept si meaning the probability of acceptance could not possibly be zero. This
would be a contradiction. Then since the probability term of offering any such ancestor as
a trade offer would be zero, so would the overall expected utility for x of such an action,
meaning it would have nothing to gain by offering a trade corresponding to any of those
nodes.

By starting the search in the middle of GS and working outwards in each direction, eventu-
ally nodes will be found which cause either all ancestors or descendants to be disqualified
from consideration as trade offers.
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Figure 3.1: The graph GS where S is the space of 5 picks where X receives the first pick.
Arrows point in the direction of states more preferred by X and less preferred by Y.

This helps greatly reduce the amount of computation required to identify the optimal trade
offer action for each team. This can be summarized neatly into a table of actions as in
Table 3.2 to form an algorithm for identifying the optimal trade offer to submit.
Starting from an arbitrary node in the middle of the graph GS, nodes can be evaluated
from this point outwards to try to identify the edges of the valid space without the need
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to evaluate any additional nodes in the invalid region. In the event that the algorithm is
exhausted while there are still valid unviewed nodes in GS (for example if the first node
has Probability = 0 and EUx ≤ 0) then a valid unviewed node can be chosen at random
to continue from.

Probability > 0 Probability = 0

EUx > 0 Recurse on valid parents and children Ancestors invalid
Recurse on valid children

EUx ≤ 0 Descendants invalid Ancestors and children invalid
Recurse on valid parents

Table 3.2: Actions when evaluating trade graph node

Algorithm 4 createOffer(P, T,GS)

Input: set of prospects P , set of teams T , trade space graph GS

Output: s ∈ GS of proposed draft order
if GS is singleton s∗ then

return s∗

end if
for s ∈ GS do

Count number of ancestors as and descendants ds for state s
end for
s′ ← argmaxs∈GS

(min(as, ds))
p′ ← Pr[y accepts s′]
EU ′s ← p′ × EUx(s′)
if p′ = 0 then

Prune ancestors of s′ from GS

end if
if EUx(s′) ≤ 0 then

Prune descendants of s′ from GS

end if
s′′ ← createOffer(P, T,GS\{s′})
return argmaxs∗∈{s′,s′′}EUs∗

Algorithm 4 differs from the function called in Algorithm 3 in that it assumes preproccessing
is done to generate GS from the initial draft order.

29



3.4 Results

For this section, drafts are simulated using each algorithm over the first 91 picks of the
2015 NHL draft with a set of 181 players and 30 teams. Results will consider the value of
individual trades from the drafting model incorporating trades, and compare cumulative
social utilities between both algorithms over the course of the draft. All results listed
use aggregated data of 50 simulations of drafts. To add context to the data, recall from
Table 2.2 that first overall selections of superstar players provide utility between 45 and
70 units.

3.4.1 Benefits to Trading

This experiment considers the benefits gained by each participating team when a trade
occurs. Recall from Algorithm 3 that for every pick in the draft the current owner may
receive trade offers from every other team. A trade occurs if one of the proposed draft
orders results in a higher expected utility for the pick’s owner than the current draft order.
The trade chosen will be the draft order which maximizes that expected utility if multiple
trades are eligible. For each instance of a trade that occurs in the simulation two greedy
subdrafts are created. One uses the order after the trade and the other uses the original
order. The new owner of the pick after the trade will be known as the ”trading up” team
and the team that originally owned the pick will be called the ”trading down” team. A
trade is beneficial to either party if the subdraft run on the new order results in a higher
utility than the original order would have.

Average % of Trades
Utility Gain Beneficial

Trade Up 0.33 64.3
Trade Down 2.02 85.0

Table 3.3: Utility Gains from Trades

Table 3.3 demonstrates how resulting orders of a trade tend to be mutually beneficial to
the parties involved, though the team trading down often experiences a far larger utility
gain than the team trading up. This point makes sense considering that the teams offering
trades seek to maximize their peer’s utility to a degree in order to increase the probability
of an accepted trade, and the team trading down is able to choose its favourite of these
orders, most of which are likely in its best interest to begin with. Some trades lead to
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utility loss compared to if they did not occur, but this is an effect of how expectation can
differ from reality. For example, a trade may have occurred where a team believed they
would be able to draft prospect p with a pick they were receiving, but that player ended
up being drafted earlier than expected leaving the team with a less-preferred option and
potentially a utility loss. The important result from this experiment though is the fact that
through trades both the team trading up and the team trading down can expect positive
utility changes and social utility is expected to increase as a result.

3.4.2 Comparing Model Social Utilities

In this experiment, the greedy draft model from Algorithm 1 and the drafting with trades
model from Algorithm 3 are compared side-by-side in terms of the cumulative social utility
they achieve over the course of the draft, where social utility is defined as the sum of
utilities each team’s selection by the end of the draft. Each model runs using the same set
of utility functions to keep the comparisons consistent.

Social Average
Utility Social Utility

Greedy 1201.1 13.20
Draft w/ Trades 1249.2 13.73

Table 3.4: Comparing Cumulative Social Utility

Table 3.4 shows the cumulative social utilities of drafting with and without trading.
These results provide evidence that the model allowing pick trades is also better for the
league as a whole, increasing social utility by 4.0%. This extends the fact that trades are
mutually beneficial by showing that the gain in utility from the trade is not offset by a loss
in utility by all third-party teams.
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Chapter 4

Player Projection

Earlier chapters focused primarily on how teams should strategize and interact in a draft
based on utility functions generated from evidence from past drafts. To contrast, this chap-
ter will look at specific prospects and making predictions as to their quality and playstyle
for five years later. The importance of this type of work is to show teams which types of
players they should be targeting for the needs they predict they will have in the future.

The first major issue for drafting prospects is that many drafted players will never play for
the franchise’s NHL team, but will instead spend the majority of their careers in the minor
leagues providing little or no benefit to the franchise. The first goal will be to predict which
players will be of a quality to actually play in the NHL, which is investigated in Section 4.2.

Once this baseline has been set, predictions will shift towards finding impact players.
The reason that this is important is that if a player is of ”replacement” value they are not
providing any value over one of the many players in the minors system that they could be
cheaply replaced with, even if actually playing in the NHL. This leads to predictions in
Section 4.3 for players which not only will play games, but will be impactful in those games.

The final investigation will take things even further by looking at how existing NHL players
do not all play identically, and there are really a few styles that players can be grouped
into. Going back to some of the ideas in Chapter 2, teams may value players of different
styles differently. Thus, being able to predict what style a player will have if reaching the
NHL will be of immense value, which is what Chapter 5 will accomplish.
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4.1 Data and Method Overview

The experiments in this chapter will primarily focus on supervised learning methods. As
such, annotated training data will be required. The main portion of each instance will be
statistical or scouting data from the draftees of past drafts, who have now either estab-
lished themselves or not in the NHL.

Statistical data for players prior to their draft year is limited by the fact that a statis-
tic must be used by the vast majority if not all junior leagues to be included in enough
player instances to be of use. Since these leagues also do not generally have as much money,
they often track only minimal stats which require only a few employees or volunteers to
maintain. The statistics used for player instances from junior leagues are goal (G), assist
(A), points (P), penalty minutes (PIM), and plus minus (+/-). To account for some players
playing more or fewer games due to injury or the schedule length of each league, each of
these statistics is considered as a rate per game played. Age is also included in the data,
and is considered a discrete variable. Players are eligible for the draft if they will be at least
18 years old on September 15th of that year, and no older than 21. As the draft occurs in
June, it is possible for players to have age values ranging between 17 and 21, though the
vast majority are 18 years old. A final element included to give context to statistical data
is the league that they were in at the time. Since players come from leagues of entirely
different difficulty and style, this is important to do. As there are 30 source leagues in
the data, they are grouped together into similar types to form another discrete variable.
The league groupings are the Canadian major junior leagues (such as the Ontario Hockey
League and Quebec Major Junior Hockey League), NCAA leagues in the USA, European
professional leagues (such as the Finnish Liiga and Russian Kontinental Hockey League),
European junior leagues (versions of the professional leagues restricted to under-20 play-
ers), and North American midget leagues including the Alberta Junior Hockey League,
British Columbia Hockey League, and various high school prep leagues. Participation in
these league groupings is one-hot encoded in the features in implementation.

Other experiments will use scouting data in the form of the tools defined in Section 1.3
(skating, shooting, passing, defensive skill, grit, and hockey sense) when there are enough
data instances to draw meaningful conclusions. This is not always possible in cases where
statistical data would work as the instances with scouting data are a subset of those with
statistical data. For a player to be scouted they must have played games, so there is
statistical data available. However, not all players have relevant scouting data as there
are limited resources (scouts) available during the season meaning they can not watch all
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possible players.

For processing the data to learn the player projections, there are many machine learn-
ing techniques that could be applied. While deciding which technique to use it was im-
portant to consider the ultimate audience for these projections. Since the use case for
the recommendations made by these experiments would be assisting the decisions made
by a management team in a hockey franchise, the audience is likely one without formal
computer science and machine learning training. There would be a lot of value for these
recommendations to not only specify which players will reach certain thresholds, but also
what about them makes them particularly good or bad targets. It might not be sufficient
to state that a player fell above or below some function returned by a neural network or
support vector machine. However, with decision trees and their associated rules it can be
possible to explain recommendations in terms of thresholds reached by players in their sta-
tistical or scouting data in a similar way that a manager might think about these decisions
previously. For example a player could be recommended because ”they scored 100 points
in the Ontario Hockey League last season” or because ”they have excellent skating ability
and hockey sense.” The simplicity of decision trees could also make them easy to explain
to the intended audience and thereby more trustworthy to them.

The decisions trees in this chapter and Chapter 5 utilize CART as the basic algorithm
with the Gini impurity metric for determining where to create splits, and a forward prun-
ing policy which ensures all nodes have at least 50 samples to avoid over-fitting. For
Sections 4.2 & 4.3 each leaf of the decision trees created will contain a probability of the
player reaching a specific threshold. The leaves corresponding to the top 20% of samples
— ranked by predicted probability — were defined as the ”recommendations” of the result-
ing algorithm. This corresponds to minimum predicted success rates of 40% and 33% for
forwards and defensemen respectively in Section 4.2 and a minimum threshold of 20% for
Section 4.3. These recommendations will be thought of as predicted to reach the threshold
and those not included will be seen as predicted to fall below the experiment’s goal.

Each decision tree diagram can be found in Appendix A, but included in the body of
this chapter will be the relevant decisions rules for each. Summary statistics for perfor-
mance analysis of each tree against the others and against the average success rates of
drafted players in the NHL were applicable. Tree performance is estimated using a n-fold
cross-validation process where n is the size of the experiment’s data set.
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4.2 Baseline Projections

The first goal for any player drafted in the NHL Draft is to play in the big league. This
is not a certainty for any prospect, not even those drafted in the top five. Thus to give
a basic sense of a draftee providing value to a team, it is natural to consider which types
of players are likely to play a meaningful number of games in the NHL. These games may
or may not be played for the team that drafted them, but that does not matter as even if
they were traded to another team they still provided value to the team that drafted them
through what they received in return in the trade. The required number of games played
will be 164 in this chapter, which is equivalent to two full seasons of play.

The first pair of trees (A.1 & A.2) considers the baseline projections for forwards and de-
fensemen respectively from the basic statistical inputs including source league as a discrete
value as described in Section 4.1. Below are the decision rules leading to a recommended
player selection along with the proportion of draftees in the leaf who reached the 164 game
threshold.

Decision Rule Success Rate (%)

P/GP > 1.24, (+/-)/GP > 0, G/GP > 0.51 NOT in European Jr 56
P/GP > 1.03, (+/-)/GP > 0, G/GP < 0.51, height > 71.5” NOT in European Jr 50

0.86 < P/GP < 1.24, (+/-)/GP > 0, G/GP > 0.51 NOT in European Jr 46
P/GP > 0.86, (+/-)/GP < -0.08 NOT in European Jr 44

Table 4.1: Forward decision rules for Tree A.1

Decision Rule Success Rate (%)

P/GP > 1.37 in CHL 66.7
1.37 > P/GP > 0.91 P/GP and PIM/GP > 0.94 in CHL 55.6

P/GP > 0.66 in CHL 56
P/GP > 0.43 in NCAA 36

0.43 < P/GP < 0.66 and G/GP > 0.11 in CHL 34

Table 4.2: Defense decision rules for Tree A.2

Both of these decision rule sets demonstrate very well a few important uses for this type
of research. Firstly, if a manager were to ask a question such as ”What should I look for in
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a forward to ensure they will play for my team?” one could use Table 4.1 or even Tree A.1
to quickly respond ”Big players in college hockey who can score 0.86 P/GP” or ”I’d rec-
ommend anybody in the CHL that can score at least 1.2 P/GP.” The second important
take away somebody using this type of research could have is the immense importance of
point scoring in a player’s draft year as an indicator of playing in the NHL later in their
career.

There is a clear importance to point scoring as a standard indicator of future success
across all source leagues, though with greatly differing threshold values depending on the
difficulty of the league. This leads to a question of whether similar results can be found if
the data associated with point scoring and source league is combined into one statistic that
takes the league difficulty into account. Of course this statistic would be NHLe as described
in Section 1.3 as the product of point production with a league scoring difficulty modifier
to give a single value that is comparable across players from all leagues. One potential ben-
efit of this approach rather than using discrete league competition level groupings is that
some groupings contain far more prospects than others, and in projecting player success
the rare future star that is in a lower tier league might be seen as a potential failure based
on their participation in a league which has produced worse players on average in the past.
In contrast it does not make sense to reward players for having high point production in
a league where scoring is far easier. So using a single value to consider both league level
and production should allow useful information for players of all leagues while giving each
prospect’s production an even ground to be compared along. Trees A.3 and A.4 show how
games played projection probabilities can be found using statistics where goal scoring and
point production are replaced with their NHLe counterparts. As NHLe incorporates source
league information in its definition, the league splits seen in Trees A.1 and A.2 were not
allowed. Below are decision rules for recommendations that follow from the trees.

Decision Rule Success Rate (%)

eP > 0.36, height > 71.5” 69
0.27 < eP < 0.36, weight > 189.5lbs 44

eP > 0.36, height < 71.5” 43

Table 4.3: Forward decision rules for Tree A.3 using NHLe
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Decision Rule Success Rate (%)

eP > 0.17, weight > 189.0lbs 60
eP > 0.17, weight < 189.0lbs 34

0.11 > eP > 0.14 33

Table 4.4: Defense decision rules for Tree A.4 using NHLe

The next consideration is how well a scout’s ratings over a player’s skill set can predict if
that draftee will have a future in the NHL. Due to the constraints of data set containing
scouting information the sample size is smaller and even too small to produce useful insights
for defensemen. Instead the focus will be strictly on forwards for Tree A.5, which uses a
minimum leaf size of 10 samples to overcome the smaller data set.

Decision Rule Success Rate (%)

Sense > 3.79 in CHL 71
Sense < 3.79, 3.43 < Shot < 3.45 58

Sense > 3.79, Shot < 3.82, not in CHL 50
Sense > 3.79, Shot > 3.82, Skating > 3.99, not in CHL 40

Table 4.5: Forward decision rules for Tree A.5 with scouting data

One note that is particularly interesting is the importance of the ”hockey sense” skill as
a predictor of success. Recall from the analysis as part of Section 2.1 that hockey sense
is not generally weighted as important historically in drafts by nearly all teams. However
according to Tree A.5 from the initial split of data players with a sense rating over 3.78
have a 43% chance to reach the NHL for a relevant period of time, whereas those who fail
to reach the 3.78 threshold only play in the majors 14% of the time. In fact, if the players
with a high ”hockey IQ” happen to also be from the CHL leagues, then they have a 71%
chance of playing in the NHL. Clearly there is an inefficiency in how teams are drafting
in terms of that skill. This could be leveraged by teams with this knowledge. Another
interesting piece of information to be learned from this tree is how a player with a good
shot needs other skills such as skating or defensive play to complement shooting ability to
be successful at higher levels. A way to think about why this might be is that if a player
is a one-dimensional shooter it is possible they are scoring in ways that might work in
lower competition, but as the level of opposing defensemen increases the shooter may find
themselves unable to score in the same ways as in junior leagues. If such players are unable
to overcome this fact with strong skating speed to get past the defensemen or contribute
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with responsible defensive play, having a strong shot in the juniors and getting away with
not developing a multi-faceted game appears to be more of a curse than a blessing at times.

Looking at the n-fold cross-validation results for the decision trees in this section it is
clear that the machine learning recommendations perform far better than the comparable
average success rate present in the NHL, especially for forwards. By using the recommen-
dations formed by data utilizing the NHLe statistic, one could expect nearly half of the
recommended forwards to play in the NHL. The recommendations from the classifier using
scouting data (Tree A.5) led to successful picks 1.95 times more often than the NHL av-
erage success rate for the same sample, and recommendations generated by Tree A.3 were
successful 45.1% of the time. Using basic statistics was the best for defensemen, though
there was not enough scouting data available to run a defenseman experiment.

Forwards Defensemen
Input Tree Estimated Tree Estimated
Type Diagram Accuracy (%) Diagram Accuracy (%)

Basic Statistics A.1 36.7% A.2 28.5%
Statistics with NHLe A.3 45.1% A.4 23.2%

Scouting Ratings A.5 36.3% — —
NHL Average /w Stats — 23.4% — 20.9%
NHL Average /w NHLe — 25.9% — 21.9%

NHL Average /w Scouting — 18.6% — —

Table 4.6: Summary statistics for baseline projection trees.

Past work by [17] has shown that the expected number of NHL games played for a player
by their draft position drops rapidly and is near to zero after the first sixty to ninety picks.
Given this knowledge it can be of value to see if there is any difference in players predicted
to reach the 164 game threshold based on whether they are an early or late draft selection.
For this experiment, separate decision trees were generated using players picked in the
first 90 selections of their draft year as ”early selections” and any picks after 91 as ”late
selections.” As the league size and draft length have changed over the years this is a more
consistent definition than splitting on the first three rounds as the number of picks per
round was shorter in earlier years with fewer teams.
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4.3 Forward Upside Projections

It might not be enough to know that a player will play games in the NHL to believe that
they will be an impactful addition to a franchise. Many players are of a skill level that
is easily replaceable through ways other than the draft, such as signing an older player
at that skill level during the offseason. Consider an extreme example where a manager
is picking between drafting player A and player B with the following projections. The
manager is certain that player A will make the team. but will always be at a replaceable
level. Player B has only a 10% chance of ever playing in the NHL, but will be a superstar
if he reaches that potential. The manager might be tempted to go with the higher risk
player against what Section 4.2 would recommend if they viewed replacement level skill as
not much better than nothing.

This creates a need for a recommendation model that accounts for performance after reach-
ing the NHL. It would not be practical to look for superstars as that would lead to far too
few ”success” annotations in the dataset, so instead the target will be players that perform
in the top half of the league. For forwards as primarily offensive players, performance can
be simply rated by points (P) scored per game played. With 30 teams each playing with
12 forwards, a successful forward should be in the top 180 players ranked by points (P)
per game. From the statistics kept on NHL.com, the threshold to achieve a ranking in the
top 50% of forwards is approximately 0.6 points (P) per game. Then for the decision trees
in this section, the class will be 1 if a player played at least 164 NHL games and scored at
a rate of at least 0.6 points (P) per game, and 0 otherwise.

As this problem suffers from a class imbalance where only 5.7% of classes are labeled
”success” in the statistics data set and 3.2% for the data set with scouting information,
the trees needed to train deeper to maximize the cross-validation projected success rate.
Thus Trees A.6 & A.8 continue the node expansion process to a minimum size of 10 and 5
samples respectively. Both trees use a minimum predicted success rate of 20% to generate
a recommendation in the evaluation process, contrasting the 40% value used in Section 4.2.

Comparing Trees A.1 & A.6 there are some common themes such as the importance of
point production which would suggest that the difference between a forward who plays
in the NHL and one who plays and scores many points is producing at a higher rate in
junior leagues. The clearest example of this is the initial split of 0.86 P/GP in the baseline
tree (A.1) and 1.15 P/GP in the tree, which also predicts major league point production
(A.6). However one difference is in how the predictive behaviour of draft year goal scoring
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changes when looking at point production. For the experiments in Section 4.2, goal scoring
was often not very important in predicting games played at the NHL level. Coupled with
the findings from Tree A.6 that goal scoring is a positive predictor of forwards with high
production ceilings, this suggests that these players are high risk in the sense that there
are better things to look for to ensure a draftee reaches the NHL, but high reward players
that can create a major impact if they are among the ones who make it. This type of
player could be attractive to certain types of decision makers that are willing to make that
gamble, but perhaps not worth the price required to more conservative managers.

Similar to the trees projecting games played from NHLe statistics in Section 4.2, Tree A.7
is dominated by the point production of each forward in predicting success. There is an-
other common split into age brackets, often as older or younger than 17 or 18. Intuitively,
scoring in junior leagues is easier when a player is older and more developed physically as
a 17 year old is still growing into their frame. This is shown in the data as when an age
split occurs the child node corresponding to a younger group of players always has a higher
proportion of successful players than the child node with older players. This notion could
lead to a further extension of the NHLe methodology to place players on common ground
for their age.

There are a few interesting pieces of information that might be valuable to a decision
maker in Tree A.8 where scouting ratings predict success or lack thereof for forwards to
score impactful points for a team. The most obvious note is the importance of passing in
determining the success. Having a passing rating of at least 4.5 (where 5 is a perfect score)
increases the predicted probability of success from the baseline 3% up to a 50% success
rate. Only 2.8% of prospects reach that high of a rating, but more evidence to support this
fact is seen one step further down the tree on the opposite side. If a player has a passing
rating below 4.5 they have a 2% chance of being an impactful point producing forward in
the NHL. However for the 75.4% who do not reach 3.8 passing rating — which is still a
strong score — there is a 0.48% chance that they will make that type of impact. There
are two notable scouting dimensions not present as predictors in Tree A.8. First recall
the importance of ”hockey sense” as a predictor from Section 4.2, specifically Tree A.1.
A possible analysis to be derived from this information is that the skill to generally be in
the right place at the right time and understanding the way the game works can be useful
both offensively and defensively in terms of knowing where an opposing player might want
to pass to or shoot. Then a larger proportion of players that reach the NHL based on their
”hockey IQ” skill could take on more defensive forward roles than those with exceptional
skill in a more offensive dimension such as passing. The other notable absence is arguably
the most purely-offensive skill of the 6 tools, shooting ability. Intuitively shooting ability
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should be a strong predictor of scoring a goal (G), which made up 37.4% of points scored in
the 2016-2017 NHL season according to statistics tracked on Nhl.com. However, following
the analysis from Section 4.2 with reference to shooting ability as a predictor of playing
in the NHL, perhaps it is the case that what is seen by scouts as a good shot is a player
taking advantage of some situations that might not work against more skilled and mature
defensemen at the professional level. This line of reasoning would suggest that a strong
passer and playmaker is more likely to see that success carry over to the next level of com-
petition than a player that relies on their shooting ability to generate points. This would
appear contradictory to the findings of Tree A.6 which shows that goal scoring in one’s
draft year is a predictor of future success along the same definition as success is measured
in Tree A.8, as shooting ability should be tied to goal scoring. However it is not necessarily
the case that goals are generated solely by shooting ability. Recall that those players who
are deemed future successes for this section were also seen to have scored many points
in their draft year as part of Tree A.6, which might point to them being good at more
than just shooting. It is entirely possible that the goals for those future successful players
were scored due in part to high skating or hockey sense scores, which would also be crucial
in the high point production rates which incorporate high assist totals that those players
attained in their draft years.

Input Tree Estimated NHL
Type Diagram Accuracy Average

Basic Statistics A.6 17.7% 5.70%
NHLe A.7 25.2% 6.82%

Scouting Data A.8 9.52% 3.16%

Table 4.7: Summary of approaches to predict forwards scoring many points.

The best decision tree in for this section was the one using NHLe as input, though all out-
perform the average NHL success rates for their data sets by at least three times according
to the n-fold cross validation results. Recall from Section 4.2 that with the forwards de-
cision trees for predicting only games played, the NHLe tree had the largest success rate,
but with scouting data input there was greater gains compared to the average NHL success
rate in the data set. It makes sense that when considering success in terms of offensive
production the most direct view of production across all league difficulties would be the
best predictor of future success. The scouting data was of particular use in the games
played success predictions from Section 4.2 as that definition of success includes forwards
who contribute in ways which might not be seen on the score sheet every game. Identifying
these types of players will be part of the next step in player projections in Chapter 5.
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Chapter 5

Projecting Player Type

The previous chapters of this thesis have focused on determining if a player will reach
certain milestones or levels of performance in their career. While there is clear value in
this information and it may be exactly what some decision makers are interested in, it does
not cover the fact that players have different play styles and what is seen as ”successful”
could be very subjective to the case of each player. It is also important to consider that a
team is unlikely to have 12 identical forwards and 6 identical defensemen, but groupings
which are seen to compliment each other such as a strong passer with a goal scorer. This
chapter will look at how to project what type of player each draftee will develop into at the
professional level if they make it that far. Due to sample size constraints, only forwards
using basic statistics as input were possible for this experiment, as opposed to the settings
possible in Chapter 4.

5.1 Annotations for Player Style

The primary challenge with this task is deriving a set of annotations to be placed on es-
tablished players to encapsulate their style of play. Those who follow the NHL closely
would likely find it easy to describe how their favourite players of league stars play, such
as Steven Stamkos as a ”sniper” (or goal scorer) or Joe Thornton the ”playmaker” (some-
body who often uses passes to create scoring opportunities for teammates), but labelling
each of the 600 skaters in the league each year over the period of a decade is unrealistic,
especially when the majority of those players are not given much thought on a day-to-day
basis. Grouping players into identifiable archetypes is an appealing route to creating anno-
tations, but must be done in an automated fashion which still seems correct to an onlooker
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that is knowledgeable in the sport.

The natural approach to take is through a clustering algorithm. Players can be clus-
tered in a space where dimensions are statistics known to be correlated with styles of
play. For example, players with a better shot will generate goals at a higher rate, and
players with an aggressive style will accumulate more hits. For forwards, a space with 5
dimensions <points per game (P/GP), goals per point (G/P), shots per game (S/GP),
hits per game (H/GP), blocks per game (B/GP)> was chosen. Though many different
clustering algorithms were tested, this analysis will focus on the k-means algorithm. Dis-
tances along each dimension are determined by standard deviations for that particular
dimension to account for the fact that a difference in five goals between two players is far
more relevant than five penalty minutes, which could be considered a difference of one fight.

Clustering figures for forwards are projected to points per game along the x-axis, goals
per point along the y-axis, and hits per game determining the size of the points to give
the illusion of depth where larger points indicate a player with more hits. Defensemen
clusterings are projected into shots per game along the x-axis, blocks per game along the
y-axis, and hits per game for the point size. Linkage-based algorithms were considered for
the annotation task, however the data tended to form one large central cluster surrounded
by small outlier clusters as seen in the average-linkage results shown in Figure 5.1. This
lead to annotations that would not give much meaningful information, so only the k-means
clusters were used.
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Figure 5.1: Resulting average-linkage clustering of forwards projected to a (P/GP, G/P,
H/GP) space
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Figure 5.2: Resulting 7-means clustering of forwards projected to a (P/GP, G/P, H/GP)
space
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Figure 5.3: Resulting 3-means clustering of defensemen projected to a (S/GP, Blk/GP,
H/GP) space

In the end it was found that the 7-means for forwards and 3-means for defensemen resulted
in clusters that made the most sense and are listed below in Tables 5.1 & 5.2 along with
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two notable NHL players from each cluster.

# Play Fig 5.2 Notable
Style Colour Players

1 Playmaker Black Joe Thornton
Henrik Sedin

2 Sniper Red Steven Stamkos
Patrick Kane

3 Passing Power Blue Ryan Johansen
Forward Sean Monahan

4 Two Way Green Wendel Clark
Forward Trevor Linden

5 Grinder Purple Curtis Lazar
Marin Hanzal

6 Shooting Power Orange Alex Ovechkin
Forward Gabriel Landeskog

7 Playmaker 2 Grey Ryan Nugent-Hopkins
Nicklas Backstrom

Table 5.1: List of play style annotations for forwards.

# Play Fig 5.3 Notable
Style Colour Players

1 Heavy Hitters Black Erik Gudbranson
Marc Methot

2 Offensive D Red Erik Karlsson
Victor Hedman

3 Defensive D Blue Marc-Edouard Vlasic
Jay Bouwmeester

Table 5.2: List of play style annotations for defensemen.

5.2 Style Projections

Using the annotations from the clustering process described above, the same process can
be followed as the projections in Sections 4.2 & 4.3 except with either three or seven
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discrete categories instead of binary classification. The decision trees are built using the
standard entropy formula, without any indication that certain classes are ”closer” than
others. One could certainly argue that errors with the two playmaker classes are smaller
than ”Grinder” and ”Sniper”, but for the following analysis — both for the entropy and
error calculations — all classes are seen to be equally distant from each other. For error
calculation, players are assigned the class that has the most instances in their assigned leaf.

Actual Class Predicted Class Sum (Recall)

PLY SNP PPF TWF GRN SPF PLY2
PLY 0 3 5 0 8 8 4 28 (0%)
SNP 0 31 20 0 7 2 22 82 (38%)
PPF 0 26 32 0 14 4 21 97 (33%)
TWF 0 10 4 0 4 9 3 30 (0%)
GRN 0 13 10 0 35 6 15 79 (44%)
SPF 0 14 19 0 11 21 6 71 (30%)
PLY2 0 18 31 0 7 2 36 94 (38%)

Sum (Precision) 0 (-) 115 (27%) 121 (26%) 0 (-) 86 (41%) 52 (40%) 107 (34%)

Table 5.3: Confusion Matrix for Forward Play Style predictor

One clear issue that arises is the non-homogeneity in the leaves of the trees. Classes with
smaller representation in the data set are never the majority class at a leaf and therefore
are never the predicted class. This leads to a lower overall n-fold cross validation suc-
cess rate of 32.2%. One obvious solution would be to expand the leaves further, but this
would result in over-fitting. Instead, if the idea of a player’s style is broadened to allow
for mixtures of archetypes, it becomes clearer what the decision trees are demonstrating.
For a leaf with 50% Snipers and 50% Power-Forwards it is possible that all players in that
leaf are in fact somewhere along the border between the two clusters and were assigned
their annotation by little more than luck. Investigating the confusion matrix closer sup-
ports this theory as instances of misclassification tend to exist between intuitively similar
classes. For example 53% of misclassified players in ”Playmaker 2” were predicted to be
”Passing Power Forwards”, as were 36% of misclassified points from the ”Shooting Power
Forward” class. Since the passing power forward class is intuitively very similar to both
playmaking and the shooting power forward class, these are likely small errors involving
points on the borders between clusters. With this perspective, two new approaches can
be taken. One option would be to alter the annotations to describe players where they
fit in the spectrum of play-styles by considering their relative distances to each cluster’s
centroid. A second approach would be to remove the idea of the play-styles all together
and instead use a machine learning approach to group players in such a way that minimized
average distance between each other in the clustering space. Then each leaf could be seen
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as a small cluster of players, but would also be reachable through their draft year data.
This approach would not label future draftees as ”snipers” or ”playmakers”, but would offer
lists of players that have comparable careers to what can be expected of the given prospect.

Actual Class Predicted Class Sum (Recall)

HH OFD DFD
HH 38 30 9 77 (49%)

OFD 30 34 16 80 (43%)
DFD 26 15 41 82 (50%)

Sum (Precision) 94 (40%) 79 (43%) 66 (62%)

Table 5.4: Confusion Matrix for Defenseman Play Style predictor

For the defensive projections, the actual size of each class in the data is relatively con-
sistent. However the data available for prospect leagues is limited and it can be difficult
to predict important stats such as shots, blocks, and hits at the NHL level without any
of those data points from their pre-draft careers as input. As seen in the related decision
tree diagram (Tree A.10), goals can be used as a strong predictor of shots as more goals
would be proportional to more shots indicative of an offensive defenseman. Likewise, a
larger number of penalty minutes can mean the player is making more hits leading to the
prediction of the heavy hitter class. Even with these correlations, there is a limit to what
the decision trees can do with the restricted inputs, so there is room to improve upon the
47.3% n-fold cross validation success rate.

5.3 Alternative Direction

While not studied as a part of this research, a viable alternative to the annotation process
outlined in Section 5.1 would be to frame the problem as semi-supervised clustering. This
can be done by leveraging domain knowledge to mark out particular players as prototypical
of each play style. Then by using either constraint based techniques by grouping similarly
annotated players together, or learning a distance function to minimize the distance be-
tween those players one could possibly find clusters which lead to stronger classifiers [4, 6, 5].
A further option would be to use domain knowledge to give feedback to the learner if clus-
ters do not appear ideal, as done in [10]. One potential pitfall to avoid for this method
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is the temptation to select the prototypical players as only the most popular or ”best”
players of that archetype as this type of sample could make it difficult to cluster the far
more numerous players of lower skill levels.
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Chapter 6

Conclusions

The goal of this thesis was to explore several ways that methods in artificial intelligence
can be leveraged to improve decision making in sports amateur drafts. The experiments
focused on two broad areas of the draft. Chapters 2 and 3 were concerned with strategies
for executing draft selections in a multiagent setting to maximize an individual or league-
wide utility. Chapters 4 and 5 investigated a machine learning approach to determining
a prospect’s probability of success in the professional league and what style of play they
would have upon reaching their prime.

The results of these experiments were very promising as they demonstrated in each field
ways that artificial intelligence could out-perform the current processes teams adhere to in
the draft. The ideas presented also open out new avenues to further improve the results
and tackle related problems that were not covered. One such improvement would be to
run strategic drafts in a world where all agents assumed a proportion of other agents were
also taking a strategic drafting approach. By overcoming limitations to this research such
as the availability of new forms of data like interview results, a new group of applications
could be studied. One example would be the topic of the characteristics of a team captain.
While this would be difficult to see in numbers such as how many goals the player scored,
insights could potentially be found using Natural Language Processing techniques on cer-
tain interview responses.

With a few important changes, these ideas could even be applied to sports management
concepts outside of the draft. Free agency is a concept present in many sports where teams
may offer contracts to players not currently on a roster, similar to how companies might
compete for the services of an unemployed skilled software developer. One could make
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minor changes to the utility model introduced in Section 2.1 to infer which teams would
likely offer a given player a contract and even estimate how much the team would be willing
to pay the player. Taking this idea one step further could lead to applications in contract
negotiation models completely outside the scope of the sports industry.

One final thought is that none of the ideas, methods, or results of this work should be
seen as something to replace the value and expertise of scouts and decision makers in
teams. To the contrary, these ideas should be used in conjunction with existing practices
to increase their effectiveness. Projecting a player’s future using machine learning does
not eliminate the value of a scout being able to identify a player’s attributes, and in some
settings the scout is a requirement. What these experiments do provide is context to the
scout’s information such as the relative importance of speed to grit on metrics like the prob-
ability of playing in the major leagues or the likelihood of the player being a goal-scorer.
These approaches are intended to work hand-in-hand with human expertise to further our
understanding of the sport.
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Appendix A

Decision Trees for Player Projections

P/GP <= 0.8643
gini = 0.3589

samples = 100.0%
value = [0.77, 0.23]

P/GP <= 0.1452
gini = 0.2768

samples = 54.6%
value = [0.83, 0.17]

True

LOC5 <= 0.5
gini = 0.4327

samples = 45.4%
value = [0.68, 0.32]

False

gini = 0.0333
samples = 3.7%

value = [0.98, 0.02]

height <= 74.5
gini = 0.2908

samples = 50.9%
value = [0.82, 0.18]

weight <= 204.5
gini = 0.3158

samples = 39.4%
value = [0.8, 0.2]

G/GP <= 0.2837
gini = 0.1928

samples = 11.5%
value = [0.89, 0.11]

P/GP <= 0.5426
gini = 0.3005

samples = 36.0%
value = [0.82, 0.18]

gini = 0.4403
samples = 3.4%

value = [0.67, 0.33]

weight <= 192.5
gini = 0.2416

samples = 15.4%
value = [0.86, 0.14]

G/GP <= 0.368
gini = 0.3397

samples = 20.6%
value = [0.78, 0.22]

PIM/GP <= 0.6577
gini = 0.1826

samples = 11.6%
value = [0.9, 0.1]

gini = 0.3829
samples = 3.8%

value = [0.74, 0.26]

gini = 0.2975
samples = 5.5%

value = [0.82, 0.18]

gini = 0.0588
samples = 6.1%

value = [0.97, 0.03]

PIM/GP <= 1.5205
gini = 0.3739

samples = 14.4%
value = [0.75, 0.25]

gini = 0.2428
samples = 6.1%

value = [0.86, 0.14]

PIM/GP <= 0.893
gini = 0.3416

samples = 11.3%
value = [0.78, 0.22]

gini = 0.4608
samples = 3.1%

value = [0.64, 0.36]

P/GP <= 0.6789
gini = 0.3988

samples = 7.4%
value = [0.72, 0.28]

gini = 0.1975
samples = 3.9%

value = [0.89, 0.11]

gini = 0.455
samples = 3.7%

value = [0.65, 0.35]

gini = 0.32
samples = 3.7%
value = [0.8, 0.2]

P/GP <= 0.3519
gini = 0.2366

samples = 7.7%
value = [0.86, 0.14]

gini = 0.0935
samples = 3.8%

value = [0.95, 0.05]

gini = 0.1107
samples = 3.2%

value = [0.94, 0.06]

gini = 0.31
samples = 4.5%

value = [0.81, 0.19]

(+/-)/GP <= 0.007
gini = 0.4534

samples = 38.2%
value = [0.65, 0.35]

PIM/GP <= 1.4184
gini = 0.2604

samples = 7.3%
value = [0.85, 0.15]

(+/-)/GP <= -0.0789
gini = 0.3989

samples = 18.5%
value = [0.72, 0.28]

G/GP <= 0.5145
gini = 0.4856

samples = 19.7%
value = [0.58, 0.42]

gini = 0.4925
samples = 3.5%

value = [0.56, 0.44]

G/GP <= 0.6833
gini = 0.3612

samples = 14.9%
value = [0.76, 0.24]

P/GP <= 1.0334
gini = 0.2838

samples = 9.1%
value = [0.83, 0.17]

gini = 0.4468
samples = 5.9%

value = [0.66, 0.34]

gini = 0.3848
samples = 3.1%

value = [0.74, 0.26]

gini = 0.2188
samples = 6.0%

value = [0.88, 0.12]

height <= 71.5
gini = 0.4457

samples = 11.1%
value = [0.66, 0.34]

P/GP <= 1.2414
gini = 0.4994

samples = 8.6%
value = [0.48, 0.52]

gini = 0.375
samples = 4.0%

value = [0.75, 0.25]

P/GP <= 1.0302
gini = 0.4724

samples = 7.1%
value = [0.62, 0.38]

gini = 0.4137
samples = 4.0%

value = [0.71, 0.29]

gini = 0.5
samples = 3.1%
value = [0.5, 0.5]

gini = 0.4962
samples = 3.5%

value = [0.54, 0.46]

gini = 0.4926
samples = 5.1%

value = [0.44, 0.56]

gini = 0.3306
samples = 4.2%

value = [0.79, 0.21]

gini = 0.1472
samples = 3.1%

value = [0.92, 0.08]

Figure A.1: Decision tree for forward baseline projections using basic statistics.
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P/GP <= 0.4275
gini = 0.3306

samples = 100.0%
value = [0.79, 0.21]

G/GP <= 0.0206
gini = 0.2599

samples = 54.2%
value = [0.85, 0.15]

True

isCHL <= 0.5
gini = 0.3983

samples = 45.8%
value = [0.73, 0.27]

False

isCHL <= 0.5
gini = 0.1327

samples = 12.3%
value = [0.93, 0.07]

(+/-)/GP <= 0.2315
gini = 0.292

samples = 41.9%
value = [0.82, 0.18]

gini = 0.0726
samples = 5.8%

value = [0.96, 0.04]

gini = 0.1827
samples = 6.5%
value = [0.9, 0.1]

G/GP <= 0.0377
gini = 0.2661

samples = 36.0%
value = [0.84, 0.16]

gini = 0.417
samples = 5.9%
value = [0.7, 0.3]

gini = 0.375
samples = 6.1%

value = [0.75, 0.25]

P/GP <= 0.2246
gini = 0.2396

samples = 29.9%
value = [0.86, 0.14]

gini = 0.112
samples = 9.2%

value = [0.94, 0.06]

G/GP <= 0.1047
gini = 0.2882

samples = 20.7%
value = [0.83, 0.17]

isCHL <= 0.5
gini = 0.3367

samples = 13.8%
value = [0.79, 0.21]

gini = 0.1723
samples = 6.9%
value = [0.9, 0.1]

gini = 0.3885
samples = 7.9%

value = [0.74, 0.26]

gini = 0.2524
samples = 5.9%

value = [0.85, 0.15]

isNCAA <= 0.5
gini = 0.319

samples = 26.9%
value = [0.8, 0.2]

P/GP <= 0.6559
gini = 0.4719

samples = 18.9%
value = [0.62, 0.38]

weight <= 180.5
gini = 0.2294

samples = 19.0%
value = [0.87, 0.13]

gini = 0.4614
samples = 7.9%

value = [0.64, 0.36]

gini = 0.3599
samples = 5.6%

value = [0.76, 0.24]

PIM/GP <= 1.1711
gini = 0.1629

samples = 13.5%
value = [0.91, 0.09]

gini = 0.0392
samples = 5.5%

value = [0.98, 0.02]

gini = 0.2364
samples = 8.0%

value = [0.86, 0.14]

G/GP <= 0.1135
gini = 0.3951

samples = 11.7%
value = [0.73, 0.27]

gini = 0.4927
samples = 7.2%

value = [0.44, 0.56]

gini = 0.3153
samples = 5.6%
value = [0.8, 0.2]

gini = 0.4483
samples = 6.1%

value = [0.66, 0.34]

Figure A.2: Decision tree for defensemen baseline projections using basic statistics.
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eP <= 0.2729
gini = 0.3842

samples = 100.0%
value = [0.74, 0.26]

eP <= 0.1028
gini = 0.2894

samples = 69.0%
value = [0.82, 0.18]

True

eP <= 0.3616
gini = 0.4941

samples = 31.0%
value = [0.55, 0.45]

False

eG <= 0.0244
gini = 0.1139

samples = 16.8%
value = [0.94, 0.06]

PIM/GP <= 1.6957
gini = 0.3347

samples = 52.2%
value = [0.79, 0.21]

gini = 0.0278
samples = 7.2%

value = [0.99, 0.01]

gini = 0.1732
samples = 9.6%
value = [0.9, 0.1]

weight <= 191.5
gini = 0.308

samples = 43.3%
value = [0.81, 0.19]

gini = 0.4365
samples = 8.9%

value = [0.68, 0.32]

weight <= 185.5
gini = 0.3457

samples = 26.6%
value = [0.78, 0.22]

weight <= 204.5
gini = 0.2399

samples = 16.8%
value = [0.86, 0.14]

(+/-)/GP <= -0.0253
gini = 0.3051

samples = 20.0%
value = [0.81, 0.19]

gini = 0.4409
samples = 6.5%

value = [0.67, 0.33]

gini = 0.4012
samples = 5.5%

value = [0.72, 0.28]

eG <= 0.0786
gini = 0.2604

samples = 14.5%
value = [0.85, 0.15]

gini = 0.1551
samples = 6.0%

value = [0.92, 0.08]

gini = 0.3228
samples = 8.5%
value = [0.8, 0.2]

PIM/GP <= 0.9237
gini = 0.1443

samples = 11.7%
value = [0.92, 0.08]

gini = 0.4032
samples = 5.1%

value = [0.72, 0.28]

gini = 0.088
samples = 6.6%

value = [0.95, 0.05]

gini = 0.2112
samples = 5.1%

value = [0.88, 0.12]

weight <= 189.5
gini = 0.4654

samples = 19.3%
value = [0.63, 0.37]

height <= 71.5
gini = 0.4891

samples = 11.7%
value = [0.43, 0.57]

eP <= 0.3085
gini = 0.4283

samples = 10.5%
value = [0.69, 0.31]

gini = 0.492
samples = 8.9%

value = [0.56, 0.44]

gini = 0.4699
samples = 5.4%

value = [0.62, 0.38]

gini = 0.3648
samples = 5.1%

value = [0.76, 0.24]

gini = 0.4913
samples = 5.4%

value = [0.57, 0.43]

gini = 0.4251
samples = 6.3%

value = [0.31, 0.69]

Figure A.3: Decision tree for forward baseline projections using basic statistics and NHLe.
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eP <= 0.1706
gini = 0.3424

samples = 100.0%
value = [0.78, 0.22]

eP <= 0.1097
gini = 0.2631

samples = 79.9%
value = [0.84, 0.16]

True

weight <= 189.0
gini = 0.4985

samples = 20.1%
value = [0.53, 0.47]

False

eP <= 0.0344
gini = 0.2

samples = 52.8%
value = [0.89, 0.11]

eP <= 0.1366
gini = 0.3645

samples = 27.1%
value = [0.76, 0.24]

gini = 0.0677
samples = 10.6%

value = [0.96, 0.04]

height <= 74.5
gini = 0.2294

samples = 42.2%
value = [0.87, 0.13]

PIM/GP <= 0.9071
gini = 0.1539

samples = 22.1%
value = [0.92, 0.08]

PIM/GP <= 1.408
gini = 0.3018

samples = 20.1%
value = [0.81, 0.19]

gini = 0.2112
samples = 9.3%

value = [0.88, 0.12]

gini = 0.1092
samples = 12.8%

value = [0.94, 0.06]

gini = 0.2413
samples = 10.6%

value = [0.86, 0.14]

gini = 0.3599
samples = 9.5%

value = [0.76, 0.24]

gini = 0.4444
samples = 13.4%

value = [0.67, 0.33]

gini = 0.2531
samples = 13.8%

value = [0.85, 0.15]

gini = 0.4486
samples = 9.9%

value = [0.66, 0.34]

gini = 0.48
samples = 10.2%
value = [0.4, 0.6]

Figure A.4: Decision tree for defensemen baseline projections using basic statistics and
NHLe.

60



sense <= 3.7875
gini = 0.3028

samples = 100.0%
value = [0.81, 0.19]

shot <= 3.4265
gini = 0.2344

samples = 82.8%
value = [0.86, 0.14]

True

isCHL <= 0.5
gini = 0.4898

samples = 17.2%
value = [0.57, 0.43]

False

shot <= 3.1625
gini = 0.0958

samples = 41.8%
value = [0.95, 0.05]

shot <= 3.4545
gini = 0.3457

samples = 41.1%
value = [0.78, 0.22]

defense <= 3.0965
gini = 0.1938

samples = 16.1%
value = [0.89, 0.11]

sense <= 3.5085
gini = 0.027

samples = 25.6%
value = [0.99, 0.01]

skate <= 3.1485
gini = 0.2778

samples = 10.5%
value = [0.83, 0.17]

gini = 0.0
samples = 5.6%
value = [1.0, 0.0]

gini = 0.1172
samples = 5.6%

value = [0.94, 0.06]

gini = 0.4082
samples = 4.9%

value = [0.71, 0.29]

gini = 0.0
samples = 21.4%
value = [1.0, 0.0]

gini = 0.1528
samples = 4.2%

value = [0.92, 0.08]

gini = 0.4875
samples = 6.7%

value = [0.42, 0.58]

defense <= 3.438
gini = 0.2593

samples = 34.4%
value = [0.85, 0.15]

grit <= 3.474
gini = 0.182

samples = 27.7%
value = [0.9, 0.1]

gini = 0.4654
samples = 6.7%

value = [0.63, 0.37]

isNCAA <= 0.5
gini = 0.2378

samples = 20.4%
value = [0.86, 0.14]

gini = 0.0
samples = 7.4%
value = [1.0, 0.0]

grit <= 3.238
gini = 0.2825

samples = 16.5%
value = [0.83, 0.17]

gini = 0.0
samples = 3.9%
value = [1.0, 0.0]

grit <= 3.085
gini = 0.213

samples = 11.6%
value = [0.88, 0.12]

gini = 0.4082
samples = 4.9%

value = [0.71, 0.29]

grit <= 2.847
gini = 0.32

samples = 7.0%
value = [0.8, 0.2]

gini = 0.0
samples = 4.6%
value = [1.0, 0.0]

gini = 0.18
samples = 3.5%
value = [0.9, 0.1]

gini = 0.42
samples = 3.5%
value = [0.7, 0.3]

shot <= 3.816
gini = 0.4043

samples = 11.2%
value = [0.72, 0.28]

gini = 0.4152
samples = 6.0%

value = [0.29, 0.71]

gini = 0.5
samples = 3.5%
value = [0.5, 0.5]

skate <= 3.993
gini = 0.2975

samples = 7.7%
value = [0.82, 0.18]

gini = 0.0
samples = 4.2%
value = [1.0, 0.0]

gini = 0.48
samples = 3.5%
value = [0.6, 0.4]

Figure A.5: Decision tree for forward baseline projections using scouting ratings.
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A.1 Forward Upside Trees

P/GP <= 0.9082
gini = 0.1677

samples = 100.0%
value = [0.91, 0.09]

isEuroPro <= 0.5
gini = 0.0662

samples = 57.9%
value = [0.97, 0.03]

True
isCHL <= 0.5
gini = 0.2852

samples = 42.1%
value = [0.83, 0.17]

False

weight <= 165.5
gini = 0.0468

samples = 49.1%
value = [0.98, 0.02]

weight <= 177.0
gini = 0.1663

samples = 8.8%
value = [0.91, 0.09]

gini = 0.2524
samples = 1.7%

value = [0.85, 0.15]

PIM/GP <= 0.5035
gini = 0.0384

samples = 47.4%
value = [0.98, 0.02]

age <= 17.5
gini = 0.0913

samples = 9.1%
value = [0.95, 0.05]

P/GP <= 0.6966
gini = 0.0255

samples = 38.4%
value = [0.99, 0.01]

weight <= 175.5
gini = 0.0241

samples = 5.1%
value = [0.99, 0.01]

PIM/GP <= 0.4135
gini = 0.1699

samples = 4.0%
value = [0.91, 0.09]

gini = 0.0907
samples = 1.3%

value = [0.95, 0.05]

gini = 0.0
samples = 3.8%
value = [1.0, 0.0]

G/GP <= 0.24
gini = 0.0887

samples = 2.7%
value = [0.95, 0.05]

gini = 0.3084
samples = 1.3%

value = [0.81, 0.19]

gini = 0.18
samples = 1.2%
value = [0.9, 0.1]

gini = 0.0
samples = 1.4%
value = [1.0, 0.0]

weight <= 174.5
gini = 0.0099

samples = 25.0%
value = [1.0, 0.0]

isNCAA <= 0.5
gini = 0.0543

samples = 13.3%
value = [0.97, 0.03]

gini = 0.0605
samples = 2.0%

value = [0.97, 0.03]

weight <= 211.5
gini = 0.0054

samples = 23.1%
value = [1.0, 0.0]

gini = 0.0
samples = 20.1%
value = [1.0, 0.0]

PIM/GP <= 2.2644
gini = 0.0416

samples = 2.9%
value = [0.98, 0.02]

gini = 0.0
samples = 1.7%
value = [1.0, 0.0]

gini = 0.095
samples = 1.2%

value = [0.95, 0.05]

PIM/GP <= 0.6414
gini = 0.0233

samples = 10.5%
value = [0.99, 0.01]

weight <= 187.5
gini = 0.162

samples = 2.8%
value = [0.91, 0.09]

gini = 0.0868
samples = 1.4%

value = [0.95, 0.05]

height <= 71.5
gini = 0.0134

samples = 9.2%
value = [0.99, 0.01]

gini = 0.0799
samples = 1.5%

value = [0.96, 0.04]

gini = 0.0
samples = 7.7%
value = [1.0, 0.0]

gini = 0.0
samples = 1.3%
value = [1.0, 0.0]

gini = 0.2778
samples = 1.5%

value = [0.83, 0.17]

gini = 0.05
samples = 2.4%

value = [0.97, 0.03]

PIM/GP <= 0.7557
gini = 0.2059

samples = 6.4%
value = [0.88, 0.12]

PIM/GP <= 0.2808
gini = 0.254

samples = 4.2%
value = [0.85, 0.15]

gini = 0.1049
samples = 2.2%

value = [0.94, 0.06]

gini = 0.0907
samples = 1.3%

value = [0.95, 0.05]

P/GP <= 0.3737
gini = 0.3147

samples = 2.9%
value = [0.8, 0.2]

gini = 0.2449
samples = 1.3%

value = [0.86, 0.14]

gini = 0.3648
samples = 1.5%

value = [0.76, 0.24]

weight <= 195.5
gini = 0.2221

samples = 24.4%
value = [0.87, 0.13]

G/GP <= 0.5643
gini = 0.3588

samples = 17.7%
value = [0.77, 0.23]

PIM/GP <= 0.7404
gini = 0.1786

samples = 20.6%
value = [0.9, 0.1]

G/GP <= 0.6827
gini = 0.4061

samples = 3.7%
value = [0.72, 0.28]

age <= 17.5
gini = 0.264

samples = 7.1%
value = [0.84, 0.16]

P/GP <= 1.0143
gini = 0.1281

samples = 13.5%
value = [0.93, 0.07]

G/GP <= 0.5698
gini = 0.3898

samples = 3.0%
value = [0.73, 0.27]

height <= 71.5
gini = 0.14

samples = 4.1%
value = [0.92, 0.08]

gini = 0.4835
samples = 1.4%

value = [0.59, 0.41]

gini = 0.2524
samples = 1.7%

value = [0.85, 0.15]

gini = 0.2509
samples = 2.1%

value = [0.85, 0.15]

gini = 0.0
samples = 2.0%
value = [1.0, 0.0]

gini = 0.2449
samples = 2.2%

value = [0.86, 0.14]

PIM/GP <= 1.0102
gini = 0.1033

samples = 11.3%
value = [0.95, 0.05]

P/GP <= 1.3986
gini = 0.2014

samples = 2.7%
value = [0.89, 0.11]

LOC4 <= 0.5
gini = 0.0694

samples = 8.6%
value = [0.96, 0.04]

gini = 0.0868
samples = 1.4%

value = [0.95, 0.05]

gini = 0.2975
samples = 1.4%

value = [0.82, 0.18]

P/GP <= 1.2049
gini = 0.0354

samples = 6.9%
value = [0.98, 0.02]

gini = 0.1913
samples = 1.7%

value = [0.89, 0.11]

gini = 0.1078
samples = 2.2%

value = [0.94, 0.06]

gini = 0.0
samples = 4.7%
value = [1.0, 0.0]

gini = 0.3261
samples = 2.4%

value = [0.79, 0.21]

gini = 0.4898
samples = 1.3%

value = [0.57, 0.43]

age <= 17.5
gini = 0.2735

samples = 12.9%
value = [0.84, 0.16]

age <= 18.5
gini = 0.4882

samples = 4.8%
value = [0.58, 0.42]

P/GP <= 1.0941
gini = 0.3696

samples = 5.8%
value = [0.76, 0.24]

height <= 71.5
gini = 0.1744

samples = 7.1%
value = [0.9, 0.1]

G/GP <= 0.4403
gini = 0.2659

samples = 3.5%
value = [0.84, 0.16]

gini = 0.4704
samples = 2.3%

value = [0.62, 0.38]

gini = 0.375
samples = 2.2%

value = [0.75, 0.25]

gini = 0.0
samples = 1.3%
value = [1.0, 0.0]

P/GP <= 1.0962
gini = 0.0444

samples = 2.7%
value = [0.98, 0.02]

height <= 73.5
gini = 0.2449

samples = 4.3%
value = [0.86, 0.14]

gini = 0.095
samples = 1.2%

value = [0.95, 0.05]

gini = 0.0
samples = 1.5%
value = [1.0, 0.0]

PIM/GP <= 0.8602
gini = 0.3427

samples = 2.5%
value = [0.78, 0.22]

gini = 0.0666
samples = 1.8%

value = [0.97, 0.03]

gini = 0.42
samples = 1.2%
value = [0.7, 0.3]

gini = 0.2449
samples = 1.3%

value = [0.86, 0.14]

P/GP <= 1.4714
gini = 0.4986

samples = 3.5%
value = [0.47, 0.53]

gini = 0.2449
samples = 1.3%

value = [0.86, 0.14]

gini = 0.4753
samples = 2.2%

value = [0.61, 0.39]

gini = 0.3628
samples = 1.3%

value = [0.24, 0.76]

Figure A.6: Decision tree for forward point upside projections using basic statistics.

eP <= 0.3616
gini = 0.127

samples = 100.0%
value = [0.93, 0.07]

eP <= 0.2517
gini = 0.0603

samples = 88.3%
value = [0.97, 0.03]

True

age <= 17.5
gini = 0.4537

samples = 11.7%
value = [0.65, 0.35]

False

weight <= 189.5
gini = 0.0352

samples = 62.5%
value = [0.98, 0.02]

eP <= 0.2555
gini = 0.118

samples = 25.8%
value = [0.94, 0.06]

weight <= 187.5
gini = 0.0612

samples = 29.0%
value = [0.97, 0.03]

weight <= 205.5
gini = 0.0121

samples = 33.5%
value = [0.99, 0.01]

PIM/GP <= 0.355
gini = 0.0443

samples = 27.0%
value = [0.98, 0.02]

eP <= 0.156
gini = 0.255

samples = 2.0%
value = [0.85, 0.15]

(+/-)/GP <= 0.1468
gini = 0.1298

samples = 4.4%
value = [0.93, 0.07]

weight <= 165.5
gini = 0.0267

samples = 22.6%
value = [0.99, 0.01]

(+/-)/GP <= -0.066
gini = 0.0588

samples = 3.4%
value = [0.97, 0.03]

gini = 0.32
samples = 1.0%
value = [0.8, 0.2]

gini = 0.18
samples = 1.0%
value = [0.9, 0.1]

gini = 0.0
samples = 2.3%
value = [1.0, 0.0]

gini = 0.142
samples = 1.3%

value = [0.92, 0.08]

height <= 74.5
gini = 0.019

samples = 21.3%
value = [0.99, 0.01]

age <= 18.5
gini = 0.0106

samples = 19.1%
value = [0.99, 0.01]

PIM/GP <= 1.0079
gini = 0.0907

samples = 2.1%
value = [0.95, 0.05]

gini = 0.0
samples = 15.1%
value = [1.0, 0.0]

(+/-)/GP <= 0.0952
gini = 0.0487

samples = 4.1%
value = [0.98, 0.02]

gini = 0.0
samples = 2.4%
value = [1.0, 0.0]

gini = 0.1172
samples = 1.6%

value = [0.94, 0.06]

gini = 0.18
samples = 1.0%
value = [0.9, 0.1]

gini = 0.0
samples = 1.1%
value = [1.0, 0.0]

gini = 0.0
samples = 1.0%
value = [1.0, 0.0]

gini = 0.42
samples = 1.0%
value = [0.7, 0.3]

gini = 0.0
samples = 23.9%
value = [1.0, 0.0]

(+/-)/GP <= 0.0617
gini = 0.0416

samples = 9.6%
value = [0.98, 0.02]

gini = 0.0
samples = 6.8%
value = [1.0, 0.0]

(+/-)/GP <= 0.1459
gini = 0.1372

samples = 2.7%
value = [0.93, 0.07]

gini = 0.32
samples = 1.0%
value = [0.8, 0.2]

gini = 0.0
samples = 1.7%
value = [1.0, 0.0]

gini = 0.42
samples = 1.0%
value = [0.7, 0.3]

eG <= 0.1149
gini = 0.1009

samples = 24.8%
value = [0.95, 0.05]

age <= 17.5
gini = 0.1823

samples = 7.0%
value = [0.9, 0.1]

height <= 74.5
gini = 0.0662

samples = 17.8%
value = [0.97, 0.03]

eP <= 0.2729
gini = 0.3107

samples = 2.6%
value = [0.81, 0.19]

eP <= 0.2769
gini = 0.0887

samples = 4.4%
value = [0.95, 0.05]

gini = 0.1653
samples = 1.1%

value = [0.91, 0.09]

gini = 0.3911
samples = 1.5%

value = [0.73, 0.27]

gini = 0.2188
samples = 1.6%

value = [0.88, 0.12]

gini = 0.0
samples = 2.7%
value = [1.0, 0.0]

PIM/GP <= 0.8013
gini = 0.0384

samples = 15.6%
value = [0.98, 0.02]

(+/-)/GP <= 0.0152
gini = 0.2355

samples = 2.2%
value = [0.86, 0.14]

eP <= 0.281
gini = 0.0935

samples = 6.2%
value = [0.95, 0.05]

gini = 0.0
samples = 9.4%
value = [1.0, 0.0]

gini = 0.2604
samples = 1.3%

value = [0.85, 0.15]

(+/-)/GP <= 0.4014
gini = 0.0408

samples = 4.9%
value = [0.98, 0.02]

gini = 0.0
samples = 3.9%
value = [1.0, 0.0]

gini = 0.18
samples = 1.0%
value = [0.9, 0.1]

gini = 0.42
samples = 1.0%
value = [0.7, 0.3]

gini = 0.0
samples = 1.2%
value = [1.0, 0.0]

PIM/GP <= 0.9791
gini = 0.4861

samples = 3.7%
value = [0.42, 0.58]

(+/-)/GP <= 0.5889
gini = 0.3653

samples = 8.0%
value = [0.76, 0.24]

(+/-)/GP <= 0.2692
gini = 0.4992

samples = 2.5%
value = [0.52, 0.48]

gini = 0.2975
samples = 1.1%

value = [0.18, 0.82]

gini = 0.3967
samples = 1.1%

value = [0.73, 0.27]

gini = 0.4592
samples = 1.4%

value = [0.36, 0.64]

eG <= 0.1937
gini = 0.2882

samples = 6.4%
value = [0.83, 0.17]

gini = 0.5
samples = 1.6%
value = [0.5, 0.5]

PIM/GP <= 0.72
gini = 0.1528

samples = 3.7%
value = [0.92, 0.08]

age <= 18.5
gini = 0.417

samples = 2.7%
value = [0.7, 0.3]

gini = 0.375
samples = 1.2%

value = [0.75, 0.25]

gini = 0.0
samples = 2.4%
value = [1.0, 0.0]

gini = 0.4983
samples = 1.7%

value = [0.53, 0.47]

gini = 0.0
samples = 1.0%
value = [1.0, 0.0]

Figure A.7: Decision tree for forward point upside projections using basic statistics and
NHLe.
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pass <= 4.4535
gini = 0.0612

samples = 100.0%
value = [0.97, 0.03]

pass <= 3.826
gini = 0.0354

samples = 97.2%
value = [0.98, 0.02]

True

gini = 0.5
samples = 2.8%
value = [0.5, 0.5]

False

grit <= 3.6905
gini = 0.0093

samples = 75.4%
value = [1.0, 0.0]

skate <= 3.364
gini = 0.1207

samples = 21.8%
value = [0.94, 0.06]

gini = 0.0
samples = 63.2%
value = [1.0, 0.0]

grit <= 3.748
gini = 0.0555

samples = 12.3%
value = [0.97, 0.03]

gini = 0.32
samples = 1.8%
value = [0.8, 0.2]

gini = 0.0
samples = 10.5%
value = [1.0, 0.0]

gini = 0.4082
samples = 2.5%

value = [0.71, 0.29]

weight <= 167.5
gini = 0.0701

samples = 19.3%
value = [0.96, 0.04]

gini = 0.375
samples = 2.8%

value = [0.75, 0.25]

gini = 0.0
samples = 16.5%
value = [1.0, 0.0]

Figure A.8: Decision tree for forward point upside projections using scouting ratings.
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PIM/GP <= 1.0245
gini = 0.836

samples = 481
value = [28, 82, 97, 30, 79, 71, 94]

class = PPF

P/GP <= 1.3764
gini = 0.8021
samples = 264

value = [11, 50, 58, 9, 35, 24, 77]
class = PLY2

True

PIM/GP <= 2.4193
gini = 0.8363
samples = 217

value = [17, 32, 39, 21, 44, 47, 17]
class = SPF

False

weight <= 189.5
gini = 0.8128
samples = 214

value = [11, 34, 54, 9, 33, 20, 53]
class = PPF

PIM/GP <= 0.6764
gini = 0.6528
samples = 50

value = [0, 16, 4, 0, 2, 4, 24]
class = PLY2

G/GP <= 0.4571
gini = 0.7889
samples = 126

value = [6, 23, 31, 8, 15, 4, 39]
class = PLY2

weight <= 194.5
gini = 0.8125
samples = 88

value = [5, 11, 23, 1, 18, 16, 14]
class = PPF

G/GP <= 0.3589
gini = 0.7774
samples = 93

value = [6, 10, 24, 6, 12, 3, 32]
class = PLY2

gini = 0.742
samples = 33

value = [0, 13, 7, 2, 3, 1, 7]
class = SNP

weight <= 180.5
gini = 0.7578
samples = 68

value = [4, 10, 16, 2, 8, 2, 26]
class = PLY2

gini = 0.7808
samples = 25

value = [2, 0, 8, 4, 4, 1, 6]
class = PPF

gini = 0.795
samples = 31

value = [2, 6, 6, 0, 6, 2, 9]
class = PLY2

gini = 0.6954
samples = 37

value = [2, 4, 10, 2, 2, 0, 17]
class = PLY2

gini = 0.7889
samples = 30

value = [3, 1, 5, 0, 9, 5, 7]
class = GRN

isCHL <= 0.5
gini = 0.7979
samples = 58

value = [2, 10, 18, 1, 9, 11, 7]
class = PPF

gini = 0.8054
samples = 31

value = [2, 7, 8, 1, 2, 7, 4]
class = PPF

gini = 0.749
samples = 27

value = [0, 3, 10, 0, 7, 4, 3]
class = PPF

gini = 0.5728
samples = 25

value = [0, 6, 1, 0, 2, 1, 15]
class = PLY2

gini = 0.6816
samples = 25

value = [0, 10, 3, 0, 0, 3, 9]
class = SNP

weight <= 191.5
gini = 0.8357
samples = 187

value = [14, 30, 34, 19, 27, 46, 17]
class = SPF

gini = 0.6311
samples = 30

value = [3, 2, 5, 2, 17, 1, 0]
class = GRN

P/GP <= 0.8301
gini = 0.8178
samples = 103

value = [4, 21, 28, 6, 16, 16, 12]
class = PPF

P/GP <= 1.0414
gini = 0.7971
samples = 84

value = [10, 9, 6, 13, 11, 30, 5]
class = SPF

gini = 0.7663
samples = 26

value = [2, 3, 4, 2, 10, 5, 0]
class = GRN

G/GP <= 0.5392
gini = 0.7941
samples = 77

value = [2, 18, 24, 4, 6, 11, 12]
class = PPF

gini = 0.705
samples = 38

value = [2, 5, 18, 0, 1, 6, 6]
class = PPF

gini = 0.7982
samples = 39

value = [0, 13, 6, 4, 5, 5, 6]
class = SNP

P/GP <= 0.6256
gini = 0.7272
samples = 50

value = [8, 0, 4, 9, 6, 22, 1]
class = SPF

gini = 0.8183
samples = 34

value = [2, 9, 2, 4, 5, 8, 4]
class = SNP

gini = 0.6624
samples = 25

value = [2, 0, 2, 5, 3, 13, 0]
class = SPF

gini = 0.7648
samples = 25

value = [6, 0, 2, 4, 3, 9, 1]
class = SPF

Figure A.9: Decision tree for forward play style projections using basic statistics.
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PIM/GP <= 1.1041
gini = 0.6664
samples = 239

value = [77, 80, 82]
class = DFD

G/GP <= 0.16
gini = 0.6078
samples = 117

value = [18, 41, 58]
class = DFD

True

G/GP <= 0.1637
gini = 0.6252
samples = 122

value = [59, 39, 24]
class = HH

False

P/GP <= 0.3349
gini = 0.5613
samples = 82

value = [15, 18, 49]
class = DFD

isCHL <= 0.5
gini = 0.4947
samples = 35

value = [3, 23, 9]
class = OFD

PIM/GP <= 0.6763
gini = 0.666
samples = 32

value = [11, 10, 11]
class = HH

PIM/GP <= 0.8672
gini = 0.3904
samples = 50

value = [4, 8, 38]
class = DFD

gini = 0.5938
samples = 16

value = [2, 6, 8]
class = DFD

gini = 0.5859
samples = 16

value = [9, 4, 3]
class = HH

weight <= 192.0
gini = 0.4343
samples = 35

value = [2, 8, 25]
class = DFD

gini = 0.2311
samples = 15

value = [2, 0, 13]
class = DFD

gini = 0.335
samples = 20

value = [1, 3, 16]
class = DFD

gini = 0.5244
samples = 15

value = [1, 5, 9]
class = DFD

gini = 0.405
samples = 20

value = [2, 15, 3]
class = OFD

gini = 0.5511
samples = 15

value = [1, 8, 6]
class = OFD

PIM/GP <= 1.5165
gini = 0.5816
samples = 84

value = [48, 18, 18]
class = HH

age <= 17.5
gini = 0.5859
samples = 38

value = [11, 21, 6]
class = OFD

G/GP <= 0.0765
gini = 0.6368
samples = 31

value = [12, 13, 6]
class = OFD

PIM/GP <= 2.4337
gini = 0.4785
samples = 53

value = [36, 5, 12]
class = HH

gini = 0.5547
samples = 16

value = [8, 7, 1]
class = HH

gini = 0.6578
samples = 15

value = [4, 6, 5]
class = OFD

weight <= 201.5
gini = 0.3771
samples = 35

value = [27, 3, 5]
class = HH

gini = 0.5864
samples = 18

value = [9, 2, 7]
class = HH

gini = 0.5
samples = 18

value = [12, 3, 3]
class = HH

gini = 0.2076
samples = 17

value = [15, 0, 2]
class = HH

gini = 0.3047
samples = 16

value = [3, 13, 0]
class = OFD

gini = 0.6612
samples = 22

value = [8, 8, 6]
class = HH

Figure A.10: Decision tree for defenseman play style projections using basic statistics.
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Glossary

assist (A) Awarded to up to the last two players excluding the goal scorer to touch touch
the puck prior to a goal. Assists are only given if the scoring team maintained
possession of the puck between the assisting player’s touch and the goal. 33

Corsi A ratio indicating the number of shot attempts for versus against while a player is
on the ice. Shot attempts may be shots on goal, missed shots, or blocked shots. 5

goal (G) Awarded to the player who directed the puck into the opponent’s net 33, 41

penalty minutes (PIM) Record of how many minutes a player spent penalized for var-
ious infractions such as tripping or fighting. 33

plus minus (+/-) When a goal is scored players on the ice for the scoring team are
awarded +1, opposition players receive -1. Plus minus is not recorded for power play
goals. 5, 33

points (P) The sum of a player’s goals and assists. 33, 39
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Abbreviations

ISS International Scouting Services 3, 9

NHL National Hockey League 2, 3, 5, 7, 8, 14, 17, 32, 33, 35–42, 47

NHLe NHL Equivalency viii, ix, 4, 36–38, 40, 41, 59, 60, 62
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