
Generalization on Text-based Games
using Structured Belief Representations

by

Ashutosh Devendrakumar Adhikari

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2020

© Ashutosh Devendrakumar Adhikari 2020

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of
Contributions included in the thesis. This is a true copy of the thesis, including any required
final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public

ii

Statement of Contributions

This thesis consists in part of the author’s work done as an intern at Mila (Quebec AI
Institute) in collaboration with Microsoft Research Montreal, which was accepted as a
poster for NeurIPS 2020 [1].

The work is co-first authored by Ashutosh Adhikari, Xingdi Yuan and Marc-Alexandre Côté.
Ashutosh Adhikari developed the pre-training approaches, the unsupervised version of the
graph-aided transformer agent (GATA) and the probing methods. Marc-Alexandre Côté
provided the games and the datasets for pre-training and probing methods and visualization
of graphs. Xingdi Yuan scaled the experiments to a large number of games and came up
with the supervised version of GATA. All the co-first authors jointly maintained the code
base and performed the code reviews.

iii

Abstract

Text-based games are complex, interactive simulations where a player is asked to
process the text describing the underlying state of the world to issue textual commands
for advancing in a game. Playing these games can be formulated as acting in a partially
observable Markov decision process (POMDP), as the player needs to issue actions to reach
the goal, by optimizing rewards, given textual observations that may not fully describe the
underlying state. Previous art has focused on developing agents to achieve high rewards
or faster convergence to the optimal policy for single games. However, with the recent
advances in reinforcement learning and representation learning for language we argue it is
imperative to start looking for agents that can play a set of games drawn from a distribution
of games rather than single games at a time.

In this work, we will be looking at TextWorld [17] as a testbed for developing generalizable
policies and benchmarking them against previous work. TextWorld is a sandbox environment
for training and evaluating reinforcement learning agents on text-based games. TextWorld
is suitable to check the generalizability of agents as it enables us to generate hundreds
of unique games with varying levels of difficulties. Difficulty in text-based games are
determined by a variety of factors like the number of locations in the environment and
length of the optimal walkthrough to name a few. Playing text-based games requires skills
in sequential decision making and processing language. In this thesis we evaluate the learnt
control policies by training them on a set of games and then observing their scores on
unseen games during the training phase. We check for the quality of the policies learnt,
their ability to generalize on a distribution of games and their ability to transfer on games
from different distributions. We define game distributions based on the difficulty level
parameterized by the number of locations in the game, number of objects, etc.

We propose generalizable and transferrable policies by extracting structured information
from the raw textual observations describing the state. Additionally, our agents learn these
policies in a purely data-driven fashion without using any handcrafted component – a
common practice found in prior work. Specifically, we learn dynamic knowledge graphs
from raw text to represent our agents’ beliefs. The dynamic belief graphs a) allow agents to
extract relevant information from text observations and, b) act as memory to act optimally
in the POMDP. Experiments on 500+ different games from the TextWorld suite show that
our best agent outperforms previous baselines by an average of 24.2%.

iv

Acknowledgements

First and foremost, I would like to thank my advisors, Professor Jimmy Lin and Professor
Pascal Poupart, for their constant support, supervision and guidance during the course of
my masters. Prof. Jimmy has inspired me to have a great work ethic to carry out research,
and I have learnt to always strive for clarity in research from Prof. Pascal.

I would also like to Professor William L. Hamilton, who has taught me to be more
confident and ambitious when it comes to motivating and pursuing ideas. The work done
in this thesis would not have been possible without his support. I also would like to thank
my collaborators from Microsoft Research, especially Xingdi Yuan, Marc-Alexandre Côté,
Romain Laroche and Adam Trischler.

I would also like to thank Professor Jesse Hoey and Professor Yaoliang Yu for their
comments, and agreeing to be reviewers on my thesis.

I would also like to thank my collaborators from the Data Systems Group, Achyudh
Ram and Raphael Tang for the projects done outside the scope of this thesis.

Finally, I would like to thank my family, especially my mom, dad and sister for their
constant support during my masters.

v

Dedication

The thesis is dedicated to my parents and my sister for their constant support, advice
and love.

vi

Table of Contents

List of Figures x

List of Tables xiii

1 Introduction 1

1.1 Problem Statement . 2

1.2 Contributions . 3

1.3 Thesis Organization . 3

2 Background and Related Work 5

2.1 A brief review of Reinforcement Learning (RL) 5

2.1.1 Markov Decision Processes and RL 6

2.1.2 Value functions . 7

2.1.3 How to learn Q-values? . 7

2.2 Deep Reinforcement Learning . 8

2.2.1 Deep Q-Networks (DQN) . 8

2.2.2 Double Deep Q-Networks . 9

2.2.3 Prioritized Experience Replay . 10

2.3 Text-based Games . 10

2.3.1 Formats of Text-based Games . 11

2.3.2 What makes Text-based Games Challenging? 11

vii

2.3.3 TextWorld Learning Environment 12

2.4 Problem Setting . 13

2.5 Playing Text-based Games . 13

2.6 The FTWP dataset . 14

2.7 Graphs and Text-based Games . 14

2.7.1 Extracting Ground-truth Graphs from FTWP Dataset 15

2.8 Graph Representation Learning . 15

2.8.1 Relational Graph Convolutional Networks 15

2.8.2 Dynamic graph extraction . 19

3 Graph-Aided Transformer Agent (GATA) 21

3.1 Belief Graph . 21

3.2 Graph Updater . 22

3.2.1 Graph Encoder . 23

3.2.2 Text Encoder . 23

3.2.3 Representation Aggregator . 24

3.3 Training the Graph Updater . 25

3.3.1 Observation Generation . 25

3.3.2 Contrastive Observation Classification (COC) 27

3.4 Action Selector . 28

3.4.1 Graph Encoder . 28

3.4.2 Text Encoder . 29

3.4.3 Representation Aggregator . 29

3.4.4 Scorer . 29

3.5 Training the Action Selector . 30

3.6 Variants Using Ground-Truth Graphs . 31

3.6.1 GATA-GTP: Pre-training a discrete graph updater using ground-
truth graphs . 32

3.6.2 GATA-GTF: Training the action selector using ground-truth graphs 36

viii

4 Experiments and Analyses 38

4.1 Experimental Setup and Baselines . 38

4.2 Additional Results . 41

4.2.1 Performance on Graph Encoder Pre-training Tasks 42

4.2.2 Training Scores . 47

4.2.3 Test Results . 47

4.2.4 Probing Task and Belief Graph Visualization 51

5 Conclusion 57

5.1 Future Directions . 57

References 59

ix

List of Figures

1.1 GATA playing a text-based game by updating its belief graph. In response
to action At−1, the environment returns text observation Ot. Based on Ot

and Gt−1, the agent updates Gt and selects a new action At. In the figure,
blue box with squares is the game engine, green box with diamonds is the
graph updater, red box with slashes is the action selector. 3

2.1 An agent interacts with the environment by issuing an action to receive next
state and reward. 6

2.2 Slice of a ground-truth adjacency tensor representing the is relation. . . . 16

2.3 A sequence of Gseen extracted after issuing three consecutive actions in a
FTWP game. 17

2.4 Gfull at the start of a FTWP game. 18

3.1 GATA in detail. The coloring scheme is same as in Figure 1.1. The graph
updater first generates ∆gt using Gt−1 and Ot. Afterwards the action selector
uses Ot and the updated graph Gt to select At from the list of action
candidates Ct. Purple dotted line indicates a detached connection (i.e.,
no back-propagation through such connection). 22

3.2 Observation generation model. 26

3.3 Contrastive observation classification model. 28

3.4 GATA-GTP in detail. The coloring scheme is same as in Figure 1.1. The
discrete graph updater first generates ∆gt using Gt−1 and Ot. Afterwards the
action selector uses Ot and the updated graph Gt to select At from the list
of action candidates Ct. Purple dotted line indicates a detached connection
(i.e., no back-propagation through such connection). 32

x

3.5 Command Generation Model. 34
3.6 Action Prediction Model. 35
3.7 State Prediction Model. 35
3.8 Deep Graph Infomax Model. 36

4.1 Left: Training curves on 20 level 2 games (averaged over 3 seeds). Right:
Density comparison between a ground-truth graph (binary) and a belief
graph G generated by the COC pre-training procedure. Both matrices are
slices of adjacency tensors corresponding the is relation. 41

4.2 GATA’s training curves (averaged over 3 seeds, band represents standard
deviation). Columns are difficulty levels 1/2/3/4/5. The upper two rows are
GATA using belief graphs generated by the graph updater pre-trained with
observation generation task; The lower two rows are GATA using belief graphs
generated by the graph updater pre-trained with contrastive observation
classification task. In the 4 rows, the presence of text observation are
False/True/False/True. In the figure, blue lines indicate the graph encoder in
action selector is randomly initialized; orange lines indicate the graph encoder
in action selector is initialized by the pre-trained observation generation and
contrastive observation classification tasks. Solid lines indicate 20 training
games, dashed lines indicate 100 training games. 44

4.3 The text-based baseline agents’ training curves (averaged over 3 seeds, band
represents standard deviation). Columns are difficulty levels 1/2/3/4/5, rows
are Tr-DQN, Tr-DRQN and Tr-DRQN+, respectively. All of the three agents
take text observation Ot as input. In the figure, blue solid lines indicate the
training set with 20 games; orange dashed lines indicate the training set with
100 games. 45

4.4 GATA-GTP and GATA-GTF’s training curves (averaged over 3 seeds, band
represents standard deviation). Columns are difficulty levels 1/2/3/4/5. The
upper two rows are GATA-GTF when text observation is absent and present
as input; the lower two rows are GATA-GTP when text observation is absent
and present as input. In the figure, blue/orange/green indicate the agent’s
graph encoder is initialized with AP/SP/DGI pre-training tasks. Red lines
indicate the graph encoder is randomly initialized. Solid lines indicate 20
training games, dashed lines indicate 100 training games. 46

4.5 Adjacency tensor’s slices for G generated by GATA, pre-trained with OG
task (top) and COC task (bottom). 55

xi

4.6 Adjacency tensor’s slices after subtracting the mean for G generated by
GATA, pre-trained with OG task (top) and COC task (bottom). 56

xii

List of Tables

3.1 Update operations matching the transition in Figure 1.1. 33

4.1 Games statistics (averaged across all games within a difficulty level). 39

4.2 Agents’ normalized test scores and averaged relative improvement (% ↑)
over Tr-DQN across difficulty levels. An agent m’s relative improvement over
Tr-DQN is defined as (Rm − RTr-DQN)/RTr-DQN where R is the score. All
numbers are percentages. ♢represents ground-truth full graph; ♣represents
discrete Gt generated by GATA-GTP; ♠represents Ot. ⋆and∞are continuous
Gt generated by GATA, when the graph updater is pre-trained with OG and
COC tasks, respectively. 40

4.3 Test performance of models on all pre-training tasks. 43

4.4 Agents’ Max performance on Training games, averaged over 3 random
seeds. In this table, ♠, ♢represent Ot and Gfull

t , respectively. ♣represents
discrete belief graph generated by GATA-GTP (trained with ground-truth
graphs of FTWP). ⋆and ∞indicate continuous belief graph generated by
GATA, pre-trained with observation generation (OG) task and contrastive
observation classification (COC) task, respectively. Light blue shadings
represent numbers that are greater than or equal to Tr-DQN; light yellow
shading represent number that are greater than or equal to all of Tr-DQN,
Tr-DRQN and Tr-DRQN+. 49

xiii

4.5 Agents’ performance on test games, model selected using best validation
performance. Boldface and underline represent the highest and second
highest values in a setting (excluding GATA-GTF which has access to the
ground-truth graphs of the RL games). In this tabel, ♠, ♢represent Ot and
Gfull
t , respectively. ♣represents discrete belief graph generated by GATA-

GTP (pre-trained with ground-truth graphs of FTWP). ⋆and ∞indicate
continuous belief graph generated by GATA, pre-trained with observation
generation (OG) task and contrastive observation classification (COC) task,
respectively. Light blue shadings represent numbers that are greater than
or equal to Tr-DQN; light yellow shading represent number that are greater
than or equal to all of Tr-DQN, Tr-DRQN and Tr-DRQN+. Note that this
table is an elaborate version of Table 4.2 to compare amongst the pre-training
methods. 50

4.6 Probing task results showing that belief graphs obtained from OG and COC
do contain information about the game dynamics, i.e. node relationships. . 52

xiv

Chapter 1

Introduction

Text-based games are complex, interactive simulations in which the game state is described
with text and players act using simple text commands (e.g., chop carrot with knife).
They serve as a proxy for studying how agents can exploit language to comprehend and
interact with the environment. Text-based games are a useful challenge in the pursuit of
intelligent agents that communicate with humans (e.g., in customer service systems).

Playing text-based games requires a combination of reinforcement learning (RL) and
natural language processing (NLP) techniques. For example : a player has to process textual
observations to optimize rewards and make a recipe by collecting all the ingredients and
processing them correctly. However, inherent challenges like partial observability, long-term
dependencies, sparse rewards, and combinatorial state-action spaces make these games very
difficult. For instance, [29] show that a state-of-the-art model achieves a mere 2.56% of
the total possible score on a curated set of text-based games for human players [11]. On
the other hand, while text-based games exhibit many of the same difficulties as linguistic
tasks like open-ended dialogue, they are more structured and constrained. Furthermore,
the idea behind solving these games is to potentially yield agents which can understand
their environments purely by language-informed interactions. However at the current stage,
the results obtained on these games should not be directly extended to any real-world
application(s), owing to the relative simplicity of these games compared to interactions in
the real-world.

To design successful agents for text-based games, previous works have relied largely on
heuristics that exploit games’ inherent structure. For example, several works have proposed
rule-based components that prune the action space or shape the rewards according to
a priori knowledge of the game dynamics [81, 44, 2, 78]. More recent approaches take

1

advantage of the graph-like structure of text-based games by building knowledge graph
(KG) representations of the game state: Ammanabrolu et al., 2019 [6] and Ammanabrolu
et al., 2020 [5], for example, use hand-crafted heuristics to populate a KG that feeds into
a deep neural agent to inform its policy. They use off-the-shelf open domain information
extraction tools (OpenIE [8]) to obtain triplets from text observations at every time step.
The set of triplets thus obtained contain many irrelevant triplets which calls for using
handcrafted filters for pruning the obtained knowledge graphs. Furthermore, handcrafted
components are also required for maintaining the dynamic knowledge graphs to preserve
the information from previous time steps – not a functionality provided by OpenIE. Despite
progress along this line, we expect more general, effective representations for text-based
games to arise in agents that learn and scale more automatically, which replace heuristics
with learning [65].

This work investigates how we can learn graph-structured state representations for text-
based games in an entirely data-driven manner. We propose the graph-aided transformer
agent (GATA) that, in lieu of heuristics, learns to construct and update graph-structured
beliefs1 and use them to further optimize rewards. We introduce two self-supervised
learning strategies—based on text reconstruction and mutual information maximization by
contrastive learning—which enable our agent to learn latent graph representations without
direct supervision or hand-crafted heuristics.

We benchmark GATA on 500+ unique games generated by TextWorld [17] (a sandbox
environment for text-based games), evaluating performance in a setting that requires
generalization across different game configurations. We show that GATA outperforms
strong baselines, including text-based models with recurrent policies. In addition, we
compare GATA to agents with access to ground-truth graph representations of the game
state. We show that GATA achieves competitive performance against these baselines
even though it receives only partial text observations of the state. Our findings suggest,
promisingly, that graph-structured representations provide a useful inductive bias for
learning and generalizing in text-based games.

1.1 Problem Statement

A graph-aided transformer agent (GATA), generalizes on distributions of text-based games
better than previous baselines using purely data-driven unsupervised learning regimes.

1Text-based games are partially observable environments.

2

Figure 1.1: GATA playing a text-based game by updating its belief graph. In response to
action At−1, the environment returns text observation Ot. Based on Ot and Gt−1, the agent
updates Gt and selects a new action At. In the figure, blue box with squares is the game
engine, green box with diamonds is the graph updater, red box with slashes is the action
selector.

1.2 Contributions

The main contributions of this work can be summarized as follows :

• We propose a novel graph-aided transformer agent (GATA) which extracts dynamic
belief graphs in an end-to-end manner using unsupervised training regimes, to optimize
rewards on distributions of text-based games;

• We propose two unsupervised training regimes, contrastive learning and self-supervised
learning-based, to extract and maintain dynamic knowledge graphs from unstructured
textual sequences;

• We empirically benchmark all the methods discussed in the work on a wide variety of
games to test for their generalization abilities.

• We also probe the dynamic knowledge graph embeddings extracted by GATA to study
the nature of information encoded by them.

1.3 Thesis Organization

The thesis is organized as follows, in Chapter 2, we go over related works on playing
text-based games, reinforcement learning, graph representation learning, unsupervised

3

representation learning. Chapter 3, the main chapter, describes the model architecture of
GATA and the unsupervised training regimes, followed by details about experiments in
Chapter 4. In Chapter 5, we summarize the main contributions of the thesis and discuss
potential future work.

4

Chapter 2

Background and Related Work

The approaches discussed in this work are an amalgamation of graph representation learning,
deep reinforcement learning, representation learning and text-based games. In this chapter,
we first discuss the relevant topics to explain our methodology in Chapter 3.

2.1 A brief review of Reinforcement Learning (RL)

The essence of reinforcement learning is learning through interaction. An RL agent interacts
with its environment and learns to optimize rewards by altering its behavior based on these
interactions. Such trial-and-error learning has its roots in behavioral psychology which
forms one of the core foundations of RL [66]. In an RL setting, an agent observes a state
St from the environment at gamestep t. The agent then issues an action at to interact with
the environment based on which it receives a reward Rt+1 from the environment. The goal
of an agent is learn a policy π to maximize the expected return. This goal of an RL agent
draws parallels with the literature in optimal control. However, unlike in optimal control,
the state transition dynamics of the environment aren’t accessible by the agent. As a result,
the agent has to rely heavily on the trial-and-error mechanism to learn the consequences
of its actions. Every action issued by the agent yields information from the environment,
which the agent uses to update its knowledge. See the perception-action-learning loop in
Figure 2.1.

5

Agent

Environment
St
at
e

R
ew

ar
d

Action

Figure 2.1: An agent interacts with the environment by issuing an action to receive next
state and reward.

2.1.1 Markov Decision Processes and RL

Playing games can be represented as a Markov decision process (MDP) parameterized by
< S, p, A, T,R, γ >. Here, S is a set of states, p(s0) is a distribution of starting states,
A is the set of actions, T (st+1∣st, at) are the state transition dynamics, R(st, at, st+1) is
the reward function and γ ∈ [0, 1] is the discount factor where lower values yield myopic
returns.

An agent’s policy π maps states to a probability distribution over actions : π ∶ S →
p(A = a∣S). In case of episodic MDPs, the state is reset after reaching the terminal state.
Further, the sequence of states, actions and rewards is called a rollout of the policy. Every
rollout results in a return R defined as : R = ∑T−1

t=0 γ
t
rt+1. The goal in RL is to find an

optimal policy π∗ to achieve the maximum expected return : π∗ = argmaxπE[R∣π]. In
case of non-episodic MDPs (T =∞), γ < 1 prevents infinite returns.

As per the Markov property, the current state st is solely dependent on the previous state
st−1. As a result of this property, in RL, actions at−1 are chosen by just observing the current
state st−1. Formulating RL as an MDP requires the environment to be fully observable,
which may not be the case. Text-based games for instance are partially observable. Partially
observable Markov decision processes (POMDPs) are thus a more general formulation of
MDPs which can be used to model partially observable models as well.

In POMDPs the agent receives an observation ot ∈ Ω which is dependent on the current
state and the previous action as per the observation probability distribution, p(ot+1∣st+1, at).

6

Algorithms for POMDPs maintain belief over the current state conditioned upon the
belief of the previous state, previous action and the current observation. Typically, in a
deep learning setting, recurrent neural networks are used to tackle POMDPs as they are
dynamical systems [53, 28, 32].

2.1.2 Value functions

In RL, there are two main approaches to achieve an optimal policy: estimating value
functions or carrying out policy search. In this work, we mainly rely on value function-based
algorithms and hence we restrict the review [10] to only this class of RL algorithms. The
state-value function V π(s) is defined as the expected return when starting in state s and
following the policy π.

V
π(s) = E[R∣s, π] (2.1)

The optimal policy π∗(s) has the state-value function V ∗(s) (and vice-versa) defined as :

V
∗(s) = maxπV π(s) ∀s ∈ S. (2.2)

Access to V
∗(s) yields the optimal policy as the agent can choose the action a that

maximises Est+1∼T (st+1∣st,a)[V
∗(st+1)] at every time step. Similar to the state-value function

V (s), we construct the state-action value or quality function Qπ(s, a). We do so, as the
transition dynamics T (st+1∣st, at) are not accessible by the agent. The Qπ(s, a) is given as :

Q
π(s, a) = E[R∣s, a, π] (2.3)

Given a Q
π(s, a), the agent chooses the action a with highest value in every state :

argmaxaQ
π(s, a).

2.1.3 How to learn Q-values?

Q-values are learnt by leveraging the Markov property using the Bellman equation [14].
The Bellman equation adapted for Q-values looks as follows:

Q
π(s, a) = Est+1[rt+1 + γQ

π(st+1, π(st+1))]. (2.4)

The recursive Bellman equation 2.4 allows us to iteratively improve our Qπ values. Such
updates forms the core of Q-learning [74] and the state-action-reward-state-action (SARSA)
[57] algorithms. Typically the Q-values are updated as :

Q
π(st, at)← Q

π(st, at) + αδ, (2.5)

7

where α is the learning rate, δ = Y −Qπ(st, at) is the temporal difference and Y are the
targets.

SARSA is an on-policy learning algorithm which uses the transitions by the behavioral
policy (derived from Q

π) to improve the Q-value estimates. In SARSA, the targets are thus
written as : Y = rt + γQ

π(st+1, at+1). In Q-learning, targets are necessarily obtained by the
behavioral policy, instead, it generally formulates targets as : Y = rt + γmaxaQ

π(St+1, a);
which estimate Q∗.

The optimal Q∗ is achieved from any arbitrary Qπ at an intermediate stage by using
generalized policy iteration methods. The policy iteration method generally consists of two
phases, policy evaluation and policy improvement. The policy evaluation phase aims at
iteratively achieving better estimates of the Q-values by minimizing the TD errors. Better
Q-value estimates from policy evaluation helps in achieving improved policy (during policy
improvement). Generalised policy iteration methods interleave the policy iteration and
policy improvement steps for faster convergence to an optimal policy. In a tabular RL
setting, generalized policy iteration methods converge Qπ to the optimal Q∗ as the we
increase the number of iterations.

2.2 Deep Reinforcement Learning

The previous chapter describes an RL setting in a tabular form. However, as we move
away towards large state and action spaces, it becomes increasingly intractable to learn
Q-values for each state-action pair. As a result, we use deep reinforcement learning where
value functions q(s, a), v(s) and policies π(s, a) are represented by neural networks–whose
parameters are trained by gradient descent optimizers. Thus the Q-value estimates are now
dependent on the parameters θ of the neural network (or any other function representation),
and are defined as, Q(s, a; θ) ≈ Q∗(s, a).

2.2.1 Deep Q-Networks (DQN)

DQN [51] successfully combined deep neural networks and reinforcement learning to predict
action values for a given state St. Specifically, they use convolutional neural networks
to encode the states of an Atari game (stack of frames of raw pixels) to predict Q value
for every action at every time step t. Further, at each game step t, the agent selects an
action in an ε-greedy manner and adds a transition tuple < St, At, Rt+1, γt+1, St+1 > to a

8

Algorithm 1 Training DQN
1: Initialize replay buffer B
2: Initialize the Q-network with random weights
3: for episode = 1, M do
4: Initialise sequence s1 = {x1} and preprocessed sequence φ1 = φ(s1)
5: for t=1, T do
6: With probability ε select a random action at
7: or select at = maxaQ

∗(φ(st), at; θ)
8: Execute action at to receive reward rt and next image xt+1

9: Set next state st+1 = st, xt+1, at and preprocess it as φt+1 = φ(st+1)
10: Store transition < φt, at, rt, φt+1 > in B
11: Sample random batch < φj , aj , rj , φj+1 > from B
12: if φt+1 is terminal then
13: yj = rj
14: else
15: yj = rj + γmaxa′Q(φj+1, a

′
; θ)

16: end if
17: Perform a gradient descent step on (yj −Q(φj , aj ; θ))2

18: end for
19: end for

replay buffer [45]. The replay buffer is used to sample transitions to optimize the DQN by
minimizing the loss

(Rt+1 + γt+1maxa′qθ̄(St+1, a
′) − qθ(St, At))2

, (2.6)

where Y = Rt+1 + γt+1maxa′qθ̄(St+1, a
′) are the targets, and θ̄ are the parameters of the

target network–a frozen copy of the behavioral network θ from a few iterations of the policy
iteration before. Algorithm 2 explains the training procedure of the DQN [51] in detail.

2.2.2 Double Deep Q-Networks

The maximizaton step in Equation 2.6 leads to an overestimation bias that can further lead
to sub-optimal policies [26]. Double Q-Learning [26] addresses this bias by decoupling the
selection of action from its evaluation. In deep Q-learning setting, this is done by using the
greedy action from the online network to get the estimated target Q-value from the target
network. This can be formulated as:

(Rt+1 + γt+1qθ̄(St+1, argmaxa′qθ(St+1, a
′)) − qθ(St, At))2

. (2.7)

9

Doing this was experimentally demonstrated to reduce overestimations to avoid suboptimal
policies on Atari games [25].

2.2.3 Prioritized Experience Replay

Naive DQN uniformly samples a batch from the replay buffer B to optimize the Q-network.
A DQN with prioritized experience replay [58] samples transitions from which there is a
much to learn with higher priority than other transitions. Prioritized experience replay
uses the following variant of the temporal difference (TD) error [66], to sample a transition
with a probability pt :

pt ∝ ∣Rt+1 + γt+1maxa′qθ̄(St+1, a
′) − qθ(St, At)∣w. (2.8)

The intuition here is to sample transitions with higher TD-errors more frequently to
capture the correct state-representations and Q-values rapidly.

2.3 Text-based Games

Text adventure games or interactive fiction (IF) games are interactive simulations where
text describes the states of the game, and require players to enter textual commands in order
to progress. IF games form a useful testing ground for grounding in natural language and
reinforcement learning policies. Formally, text-based games can be described as partially
observable Markov decision processes (POMDPs) [17] as the text-only observations, Ot,
provided by the game engine at time step t may not fully describe the underlying game
state St for the agent. Note that the observations Ot are deterministic given the state
St in the games explored in this work. However, same Ot can be generated for more
than one St. Using Ot, the agent interacts with its environment by issuing short text
commands At as actions—based on which rewards Rt are provided at every time step.
Figure 1.1 depicts an agent interacting with its environment by issuing go west command
to receive next observation Ot. During training an agent learns from the rewards provided
by the environment to achieve the highest possible score (total rewards). The agent is then
evaluated based on the total score it achieves on the testing game (which is different from
the game(s) used for training, in this work). A game is considered solved (or won) if the
agent achieves 100% score, or in other words the maximum score. When evaluating on a
distribution of games, we report the average of the fraction of the maximum possible score
achieved by the agent (during both training and testing).

10

2.3.1 Formats of Text-based Games

Depending upon the type of inputs At expected by the game engine, text-based games can
be classified into the following three types: [31]:

• Parser-based Games : Here, the agent types the short textual commands At word
by word at every time step to receive the next observation Ot+1.

• Choice-based Games : Here, the agent has to choose an action At from a list of
multiple actions provided along with the current observation Ot.

• Hyptertext-based Games : The observations Ot consist of clickable links em-
bedded inside them. The agent then clicks on one of these links to progress in the
game.

Note that hypertext-based games can be dealt as choice-based games as the hyperlinks
can just end up being choices for the agent to choose an action from [83]. Further, even
parser-based games with finite number (although large) of actions can be converted to
choice-based games, where an agent can choose from all the possible actions at every time
step [52]. The agents discussed in this work (are adapted to) deal with choice-based games.

2.3.2 What makes Text-based Games Challenging?

Text-based games come in all genres (e.g. cooking games, treasure hunting games, Zork,
etc.), which dictate the content of actions, rewards and observations. Further, even within
a genre, one can differentiate games based on their parameters which decide a game’s
difficulty.

Partial Observability

The textual observations provided by the game engine describes only the locality (temporal
and/or spatial) of the agent and are almost always insufficient to convey the entire informa-
tion about the underlying state to the agent. Thus, text-based games can be seen as discrete
partially observable Markov decision processes [38, 17] (POMDPs) defined by the tuple
< S, T,A,Ω, O,R, γ >. Here S is the set of environment states, A are the textual commands,
T is the conditional transition function between states, Ω is the set of observations, O are
conditional observation probabilities, R ∶ S ×A→ R is the reward function, with γ ∈ [0, 1]
being the discount factor.

11

Large State and Action Space

While there have been a lot of work to find [51, 33, 60] optimal policies in non-tabular
environments, it still is a fairly active area of research. In TextWorld, the space of all word
strings can be quite large resulting into rich state and action spaces. Further, the validity
of commands depends on the current underlying state–which is not characteristic of other
game environments like the Atari benchmark used for evaluating RL algorithms.

A widely-used approach to alleviate the issue of large action space in text-based games
is to use a list of admissible commands Ct at every game step for the agent to choose from.
We adopt the same approach for training the agents in this work.

Sparse Rewards and Long term Credit Assignment

Sparse rewards are an inherent property of text-based games. Sparse rewards also lead to
the long-term credit assignment problem–where an agent needs to know which action in the
past led to the sparse positive (or negative) reward. For example, dropping an unnecessary
ingredient to be able to pick up the right ingredient might be essential to make a recipe.

2.3.3 TextWorld Learning Environment

In this paper, we use TextWorld [17] as a testbed for conducting our experiments. TextWorld
is a sandbox Python framework that enables generation of game distributions parametrized
by the number of objects, the size of the map, size of the action space, richness of textual
descriptions. These parameters dictate the difficulty and the distribution of games in
this work (and not the genre of the games), as we aim to evaluate for in-distribution
generalization. Generalization across genres or even difficulty levels. Refer to Table 4.1
for how we leverage TextWorld to generate a distribution of games based on the difficulty
levels.

While TextWorld’s ability to generate a large number of games is desirable for our work,
the textual observations Ot are generated using templates (refer [17]). Templated language
is not as rich and diverse as natural language making these games a bit limited compared
to their natural language counterparts. Jericho [27], a Python-based environment which
provide human-made IF games can be a possible alternative to TextWorld in the future.
However, Jericho’s ability to contain large number of games is extremely limited (50 games)
compared to TextWorld–making it unfit for our work. Further, Hausknecht at al. 2019 [29],
show that previous state-of-the-art agents perform very poorly on the Jericho framework
(achieving a mere score of 2.56% of the maximum possible score).

12

2.4 Problem Setting

The focus of this work is to evaluate (and train) agents on a distribution of text-based games.
Text-based games have a variety of difficulty levels determined mainly by the environment’s
complexity (i.e., how many locations in the game, and how many objects are interactive),
the game length (i.e., optimally, how many actions are required to win), and the verbosity
(i.e., how much text information is irrelevant to solving the game).

We use TextWorld [17] to generate unique choice-based games of varying difficulty.
All games share the same overarching theme: an agent must gather and process cooking
ingredients, placed randomly across multiple locations, according to a recipe it discovers
during the game. The agent earns a point for collecting each ingredient and for processing
it correctly, and finally for completing the recipe. The game is won upon completing the
recipe. Processing any ingredient incorrectly terminates the game (e.g., slice carrot when
the recipe asked for a diced carrot). To process ingredients, an agent must find and use
appropriate tools (e.g., a knife to slice, dice, or chop; a stove to fry, an oven to roast).

We divide generated games, all of which have unique recipes and map configurations,
into sets for training, validation, and test. Adopting the supervised learning paradigm
for evaluating generalization, we tune hyperparameters on the validation set and report
performance on a test set of previously unseen games. Testing agents on unseen games
(within a difficulty level) is uncommon in prior RL work, where it is standard to train and
test on a single game instance. Our approach enables us to measure the robustness of
learned policies as they generalize (or fail to) across a “distribution” of related but distinct
games. Throughout the paper, we use the term generalization to imply the ability of a
single policy to play a distribution of related games (within a particular difficulty level).

2.5 Playing Text-based Games

Recent years have seen a host of work on playing text-based games. Various deep learning
agents have been explored [52, 31, 27, 82, 36, 5, 83, 77]. Fulda et al., 2017 [21] use pre-
trained embeddings to reduce the action space. Other works [82, 62, 36] explicitly condition
an agent’s decisions on game feedback. Most of this literature trains and tests on a single
game without considering generalization. Urbanek et al., 2019 [69] use memory networks
and ranking systems to tackle adventure-themed dialog tasks. Yuan et al., 2018 [81] propose
a count-based memory to explore and generalize on simple unseen text-based games. For
baselines which only use text observations Ot to optimize rewards, we introduce Tr-DRQN

13

which is a DQN-based version with a transformer to encode Ot and Tr-DRQN+ based on
Yuan et al., 2018 [81] which used count-based memory. We also introduce Tr-DQN, which
is basically LSTM-DQN [52], but with a transformer model to represent Ot. Madotto et al.,
2020 [48] use GoExplore [19] with imitation learning to generalize. Adolphs and Hofmann
2019 [2] and Yin and May 2019 [78] also investigate the multi-game setting. These methods
rely either on reward shaping by heuristics, imitation learning, or rule-based features as
inputs. We aim to minimize hand-crafting, so our action selector is optimized only using raw
rewards from games while other components of our model are pre-trained on related data.
Recent works [6, 5, 78] leverage graph structure by using rule-based, untrained mechanisms
to construct KGs to play text-based games.

2.6 The FTWP dataset

Previously, Trichler et al., 2019 [68] presented the First TextWorld Problems (FTWP)
dataset, which consists of TextWorld games that follow a cooking theme across a wide
range of difficulty levels. Although this dataset is analogous to what we use in this work,
it has only 10 games of cooking genre per difficulty level. This is insufficient for reliable
experiments on generalization, so we generate new game sets for our work. As we will
explain in Section 3.3, we use a set of transitions collected from the FTWP dataset. To
ensure the fairness of using this dataset, we make sure there is no overlap between the
FTWP and the games we use to train and evaluate our action selector.

2.7 Graphs and Text-based Games

We expect graph-based representations to be effective for text-based games because the
state in these games adheres to a graph-like structure. The essential content in most
observations of the environment corresponds either to entity attributes (e.g., the state of the
carrot is sliced) or to relational information about entities in the environment (e.g., the
kitchen is north_of the bedroom). This information is naturally represented as a dynamic
graph Gt = (Vt, Et), where the vertices Vt represent entities (including the player, objects,
and locations) and their current conditions (e.g., closed, fried, sliced), while the edges
Et represent relations between entities (e.g., north_of, in, is) that hold at a particular
time-step t. By design, in fact, the full state of any game generated by TextWorld can be
represented explicitly as a graph of this type [84]. For example, the image in Figure 2.2
shows the adjacency tensor for the is relation at an intermediate stage in the game. The

14

aim of our model, GATA, is to estimate the game state by learning to build graph-structured
beliefs from raw text observations. In our experiments, we benchmark GATA against
models with direct access to the ground-truth game state rather than GATA’s noisy estimate
thereof inferred from text.

2.7.1 Extracting Ground-truth Graphs from FTWP Dataset

Under the hood, TextWorld relies on predicate logic to handle the game dynamics. Therefore,
the underlying game state consists of a set of predicates, and logic rules (i.e. actions) can
be applied to update them. TextWorld’s API allows us to obtain such underlying state
St at a given game step t for any games generated by the framework. We leverage St to
extract both Gfull

t and Gseen
t .

In which, Gfull
t is a discrete KG that contains the full information of the current state at

game step t; Gseen
t is a discrete partial KG that contains information the agent has observed

from the beginning until step t.

Figure 2.3 shows an example of consecutive Gseen
t as the agent explores the environment

of a FTWP game. Figure 2.4 shows the Gfull extracted from the same game.

2.8 Graph Representation Learning

In this section, we review the graph representation learning approaches which become
relevant once we have extracted the (belief or ground-truth) graphical representations of
the underlying states.

Graph neural networks (GNNs) based on neural message passing [15, 41] between nodes
to learn high-dimensional representations have been shown as effective graph representation
learning methods. As shown in the figures 2.4 and 2.3, the underlying graphs are multi-
relational. As a result we decide to use the relational graph convolutional networks (RGCNs)
[59] which are a relation-aware version of the graph convolutional networks (GCNs) [41, 15].

2.8.1 Relational Graph Convolutional Networks

Relational Graph Convolutional Network (RGCN) [59] augment the aggregation function
for message passing in GCNs to be relation-aware as :

15

pl
ay

er
in

ve
nt

or
y

ch
op

pe
d

ro
as

te
d

di
ce

d
bu

rn
ed

op
en

fri
ed

gr
ille

d
co

ns
um

ed
clo

se
d

sli
ce

d
ex

it
ki

tc
he

n
pa

nt
ry

liv
in

gr
oo

m
ba

th
ro

om
ba

ck
ya

rd
be

dr
oo

m
ga

rd
en

sh
ed

dr
iv

ew
ay

st
re

et
co

rri
do

r
su

pe
rm

ar
ke

t
bb

q
ba

na
na

ba
rn

 d
oo

r
be

d
bl

ac
k

pe
pp

er
bl

oc
k

of
 c

he
es

e
ca

rro
t

ch
ick

en
 b

re
as

t
ch

ick
en

 le
g

ch
ick

en
 w

in
g

cil
an

tro
co

m
m

er
cia

l g
la

ss
 d

oo
r

co
ok

bo
ok

co
uc

h
co

un
te

r
eg

g
fib

er
gl

as
s d

oo
r

flo
ur

fri
dg

e
fro

nt
 d

oo
r

fro
st

ed
-g

la
ss

 d
oo

r
gr

ee
n

ap
pl

e
gr

ee
n

be
ll

pe
pp

er
gr

ee
n

ho
t p

ep
pe

r
ki

tc
he

n
isl

an
d

kn
ife

le
ttu

ce
m

ilk
m

ea
l

ol
iv

e
oi

l
or

an
ge

 b
el

l p
ep

pe
r

ov
en

pa
rs

le
y

pa
tio

 c
ha

ir
pa

tio
 d

oo
r

pa
tio

 ta
bl

e
pe

an
ut

 o
il

pl
ai

n
do

or
po

rk
 c

ho
p

pu
rp

le
 p

ot
at

o
ra

w
re

cip
e

bo
ok

re
cip

e
re

d
ap

pl
e

re
d

be
ll

pe
pp

er
re

d
ho

t p
ep

pe
r

re
d

on
io

n
re

d
po

ta
to

re
d

tu
na

re
fri

ge
ra

to
r

sa
lt

sc
re

en
 d

oo
r

sh
el

f
sh

ow
ca

se
sli

di
ng

 d
oo

r
sli

di
ng

 p
at

io
 d

oo
r

so
fa

st
ov

e
su

ga
r

ta
bl

e
to

ile
t

to
m

at
o

to
ol

bo
x

un
cu

t
ve

ge
ta

bl
e

oi
l

wa
te

r
wh

ite
 o

ni
on

wh
ite

 tu
na

wo
od

en
 d

oo
r

wo
rk

be
nc

h
ye

llo
w

ap
pl

e
ye

llo
w

be
ll

pe
pp

er
ye

llo
w

on
io

n
ye

llo
w

po
ta

to

player
inventory
chopped
roasted

diced
burned

open
fried

grilled
consumed

closed
sliced

exit
kitchen
pantry

livingroom
bathroom
backyard
bedroom

garden
shed

driveway
street

corridor
supermarket

bbq
banana

barn door
bed

black pepper
block of cheese

carrot
chicken breast

chicken leg
chicken wing

cilantro
commercial glass door

cookbook
couch

counter
egg

fiberglass door
flour

fridge
front door

frosted-glass door
green apple

green bell pepper
green hot pepper

kitchen island
knife

lettuce
milk

meal
olive oil

orange bell pepper
oven

parsley
patio chair
patio door
patio table
peanut oil
plain door
pork chop

purple potato
raw

recipe book
recipe

red apple
red bell pepper
red hot pepper

red onion
red potato

red tuna
refrigerator

salt
screen door

shelf
showcase

sliding door
sliding patio door

sofa
stove
sugar
table
toilet

tomato
toolbox

uncut
vegetable oil

water
white onion
white tuna

wooden door
workbench

yellow apple
yellow bell pepper

yellow onion
yellow potato

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.2: Slice of a ground-truth adjacency tensor representing the is relation.

16

(a) Gseen
0 after starting the

game. (b) Gseen
1 after go east. (c) Gseen

2 after go west.

(d) Gseen
3 after go south that leads to the kitchen which contains many objects.

Figure 2.3: A sequence of Gseen extracted after issuing three consecutive actions in a FTWP
game.

17

Figure 2.4: Gfull at the start of a FTWP game.

18

h̃i = σ
⎛
⎜
⎝
∑
r∈R

∑
j∈N r

i

1
ci,r

W
l
rh

l
j +W

l
0h

l
i

⎞
⎟
⎠
, (2.9)

where W l
r is the learnable weight matrix for the l(th) layer and relation r ∈ R, N r

i is the
set of neighbouring nodes for the ith node for the relation r ∈ R. ci,r is the normalizing
constant which can be chosen or learnt.

As described in Equation 2.9, the RGCN accumulates messages for every node per
relation–making it relation aware. However, this makes naive RGCNs vulnerable to
overfitting as the number of relations increase as they have weights W for every relation.
Schlichtkrull et al., 2017 [59] provide two regularization methods to address the issue
described below:

Block-diagonal Decomposition: In block-diagonal, each W l
r is defined as a direct

sum over a set of low-dimensional matrices given by

W
l
r = ⊕

B
b=1Q

l
br, (2.10)

whereW l
r are block-diagonal matrices given as diag(Ql

1r, . . . , Q
l
Br) and Ql

br ∈ R(dl+1/B)×(dl/B).

Basis decomposition: In basis regularization, each W
l
r is decomposed as a linear

combination of basis transformations V l
b ∈ Rd

l+1×dl . The decomposition can be formulated
as :

W
l
r =

B

∑
b=1

a
l
rbV

l
b (2.11)

where alrb are the coefficients to combine the basis vectors.

2.8.2 Dynamic graph extraction

Numerous recent works have focused on constructing graphs to encode structured represen-
tations of raw data, for various tasks. Kipf et al., 2020 [40] propose contrastive methods to
learn latent structured world models (C-SWMs) as state representations for vision-based
environments. Their work, however, does not focus on learning policies to play games or to
generalize across varying environments. Das et al., 2018 [18] leverage a machine reading
comprehension mechanism to query for entities and states in short text passages and use
a dynamic graph structure to track changing entity states. Fan et al., 2019 [20] propose
to encode graph representations by linearizing the graph as an input sequence in NLP

19

tasks. Johnson 2016 [37] construct graphs from text data using gated graph transformer
neural networks. Yang et al., 2018 [76] learn transferable latent relational graphs from
raw data in a self-supervised manner. Compared to the existing literature, our work aims
to infer multi-relational KGs dynamically from partial text observations of the state and
subsequently use these graphs to inform general policies. Concurrently, Srinivas et al., 2020
[63] propose to learn state representations with contrastive learning methods to facilitate
RL training. However, they focus on vision-based environments and they do not investigate
generalization.

More generally, we want to note that compared to traditional knowledge base construction
(KBC) works, our approach is more related to the direction of neural relational inference
[39]. In particular, we seek to generate task-specific graphs, which tend to be dynamic,
contextual and relatively small, whereas traditional KBC focus on generating large, static
graphs.

20

Chapter 3

Graph-Aided Transformer Agent
(GATA)

In this chapter, we introduce GATA, a novel transformer-based neural agent that can infer a
graph-structured belief state and use that state to guide action selection in text-based games.
As shown in Figure 3.1, the agent consists of two main modules: a graph updater and an
action selector. Note that the graph updater and action selector share some structures
but not their parameters (unless specified). At game step t, the graph updater extracts
relevant information from text observation Ot and updates its belief graph Gt accordingly.
The action selector issues action At conditioned on Ot and the belief graph Gt. Figure 1.1
illustrates the interaction between GATA and a text-based game.

3.1 Belief Graph

We denote by G a belief graph representing the agent’s belief about the true game state
according to what it has observed so far. We instantiate G ∈ [−1, 1]R×N×N as a real-valued
adjacency tensor, where R and N indicate the number of relation types and entities. Each
entry {r, i, j} in G indicates the strength of an inferred relationship r from entity i to entity
j. We select R = 10 and N = 99 to match the maximum number of relations and entities
in our TextWorld-generated games. In other words, we assume that GATA has access to
the vocabularies of possible relations and entities but it must learn the structure among
these objects, and their semantics, from scratch.

21

Action Selector Graph Updater

Representation

Aggregator

𝑂𝑡

𝐶𝑡

Scorer 𝐴𝑡𝐺𝑡

𝑂𝑡 , 𝐴𝑡−1

ℎ𝑡−1

𝛥𝑔𝑡fΔ

Text

Encoder

Graph

Encoder

ℎ𝑡−1

𝐺𝑡−1

ℎ𝑡
𝐺𝑡f𝑑

f𝑑

Text

Encoder

Graph

Encoder Text

Encoder

Figure 3.1: GATA in detail. The coloring scheme is same as in Figure 1.1. The graph
updater first generates ∆gt using Gt−1 and Ot. Afterwards the action selector uses Ot and
the updated graph Gt to select At from the list of action candidates Ct. Purple dotted line
indicates a detached connection (i.e., no back-propagation through such connection).

3.2 Graph Updater

The graph updater constructs and updates the dynamic belief graph G from text observations
Ot. Rather than generating the entire belief graph at each step t, we generate a graph
update, ∆gt, that represents the change of the agent’s belief after receiving a new observation.
This is motivated by the fact that observations Ot typically communicate only incremental
information about the state’s change from time step t − 1 to t. The relation between ∆gt
and G is given by

Gt = Gt−1 ⊕∆gt, (3.1)

where ⊕ is a graph operation function that produces the new belief graph Gt given Gt−1

and ∆gt. We formulate the graph operation function ⊕ using a recurrent neural network
(e.g., a GRU [16]) as:

∆gt = f∆(hGt−1
, hOt

, hAt−1
);

ht = RNN(∆gt, ht−1);
Gt = fd(ht).

(3.2)

The function f∆ aggregates the information in Gt−1, At−1, and Ot to generate the graph
update ∆gt. hGt−1

denotes the representation of Gt−1 from the graph encoder. hOt
and hAt−1

are outputs of the text encoder (refer to Figure 3.1, left part). The vector ht is a recurrent
hidden state from which we decode the adjacency tensor Gt; ht acts as a memory that
carries information across game steps—a crucial function for solving POMDPs [28]. The
function fd is a multi-layer perceptron (MLP) that decodes the recurrent state ht into a
real-valued adjacency tensor (i.e., the belief graph Gt).

22

3.2.1 Graph Encoder

GATA utilizes a graph encoder which is based on the R-GCN [59]. Further, to better
leverage information from relation labels, when computing each node’s representation, we
also condition it on a relation representation E:

h̃i = σ
⎛
⎜
⎝
∑
r∈R

∑
j∈N r

i

W
l
r[hlj;Er] +W l

0[hli;Er]
⎞
⎟
⎠
, (3.3)

in which, l denotes the l-th layer of the R-GCN, N r
i denotes the set of neighbor indices

of node i under relation r ∈ R, R indicates the set of different relations, W l
r and W

l
0 are

trainable parameters. Since we use continuous graphs, N r
i includes all nodes (including

node i itself). To stabilize the model and preventing from the potential explosion introduced
by stacking R-GCNs with continuous graphs, we use Tanh function as σ (in contrast with
the commonly used ReLU function).

As the initial input h0 to the graph encoder, we concatenate a node embedding vector
and the averaged word embeddings of node names. Similarly, for each relation r, Er is the
concatenation of a relation embedding vector and the averaged word embeddings of r’s
label. Both node embedding and relation embedding vectors are randomly initialized and
trainable.

To further help our graph encoder to learn with multiple layers of R-GCN, we add
highway connections [64] between layers:

g = L
sigmoid(h̃i),

h
l+1
i = g ⊙ h̃i + (1 − g)⊙ h

l
i,

(3.4)

where ⊙ indicates element-wise multiplication.

We use a 6-layer graph encoder, with a hidden size H of 64 in each layer. The node
embedding size is 100, relation embedding size is 32. The number of bases we use is 3.

3.2.2 Text Encoder

We use a transformer-based text encoder, which consists of a word embedding layer and a
transformer block [72]. Specifically, word embeddings are initialized by the 300-dimensional
fastText [50] word vectors trained on Common Crawl (600B tokens) and kept fixed during
training in all settings.

23

The transformer block consists of a stack of 5 convolutional layers, a self-attention layer,
and a 2-layer MLP with a ReLU non-linear activation function in between. In the block,
each convolutional layer has 64 filters, each kernel’s size is 5. In the self-attention layer, we
use a block hidden size H of 64, as well as a single head attention mechanism. Layernorm
[12] is applied after each component inside the block. Following standard transformer
training, we add positional encodings into each block’s input.

We use the same text encoder to process text observation Ot and the action candidate
list Ct. The resulting representations are hOt

∈ RLOt×H and hCt
∈ RNCt×LCt×H , where LOt

is the number of tokens in Ot, NCt
denotes the number of action candidates provided, LCt

denotes the maximum number of tokens in Ct, and H = 64 is the hidden size.

3.2.3 Representation Aggregator

The representation aggregator aims to combine the text observation representations and
graph representations together. Therefore this module is activated only when both the
text observation Ot and the graph input Gt are provided. In cases where either of them is
absent, for instance, when training the agent with only Gbelief as input, the aggregator will
be deactivated and the graph representation will be directly fed into the scorer.

For simplicity, we omit the subscript t denoting game step in this subsection. At
any game step, the graph encoder processes graph input G, and generates the graph
representation hG ∈ RNG×H . The text encoder processes text observation O to generate text
representation hO ∈ RLO×H . NG denotes the number of nodes in the graph G, LO denotes
the number of tokens in O.

We adopt a standard representation aggregation method from question answering
literature [79] to combine the two representations using attention mechanism.

Specifically, the aggregator first uses an MLP to convert both hG and hO into the
same space, the resulting tensors are denoted as h′G ∈ RNG×H and h′O ∈ RLO×H . Then, a
trilinear similarity function [61] is used to compute the similarities between each token in
h
′
O with each node in h′G. The similarity between ith token in h′O and jth node in h′G is

thus computed by:
Sim(i, j) = W (h′Oi

, h
′
Gj
, h

′
Oi
⊙ h

′
Gj
), (3.5)

where W is trainable parameters in the trilinear function. By applying the above computa-
tion for each pair of h′O and h′G, a similarity matrix S ∈ RLO×NG is resulted.

Softmax of the similarity matrix S along both dimensions (number of nodes NG and
number of tokens LO) are computed, producing SG and SO. The information contained in

24

the two representations are then aggregated by:

hOG = [h′O;P ;h
′
O ⊙ P ;h

′
O ⊙Q],

P = SGh
′⊤
G ,

Q = SGS
⊤
Oh

′⊤
O ,

(3.6)

where hOG ∈ RLO×4H is the aggregated observation representation, each token in text
is represented by the weighted sum of graph representations. Similarly, the aggregated
graph representation hGO ∈ RNG×4H can also be obtained, where each node in the graph is
represented by the weighted sum of text representations. Finally, a linear transformation
projects the two aggregated representations to a space with size H of 64:

hGO = L(hGO),
hOG = L(hOG).

(3.7)

3.3 Training the Graph Updater

We pre-train the graph updater using two self-supervised training regimes to learn structured
game dynamics. After pre-training, the graph updater is fixed during GATA’s interaction
with games; at this time it provides belief graphs G to the action selector. We train the
action selector subsequently via RL. Both pre-training tasks share the same goal: to ensure
that Gt encodes sufficient information about the environment state at game step t. For
training data, we gather a collection of transitions by following walkthroughs in FTWP
games. To ensure variety in the training data, we also randomly sample trajectories off the
optimal path. Next we describe our pre-training approaches for the graph updater.

3.3.1 Observation Generation

Our first approach to pre-train the graph updater involves training a decoder model to
reconstruct text observations from the belief graph. Conditioned on the belief graph, Gt,
and the action performed at the previous game step, At−1, the observation generation
task aims to reconstruct Ot = {O1

t , . . . , O
LOt

t } token by token, where LOt
is the length

of Ot. We formulate this task as a sequence-to-sequence (Seq2Seq) problem and use a
transformer-based model [72] to generate the output sequence. Specifically, conditioned on

25

Gt and At−1, the transformer decoder predicts the next token Oi
t given {O1

t , . . . , O
i−1
t }. We

train the Seq2Seq model using teacher-forcing to optimize the negative log-likelihood loss:

LOG = −
LOt

∑
i=1

log pOG(Oi
t∣O1

t , ..., O
i−1
t ,Gt, At−1), (3.8)

where pOG is the conditional distribution parametrized by the observation generation model.

As shown in Figure 3.2, given a transition (Ot−1, At−1, Ot), we use the belief graph Gt
and At−1 to reconstruct Ot. Gt is generated by the graph updater, conditioned on the
recurrent information ht−1 carried over from previous data point in the transition sequence.

Text

Encoder

Graph

Encoder

Representation

Aggregator

Observation

Generator𝐺𝑡

𝐴𝑡−1

Graph

Updater

(§3.2)

ℎ𝑡−1

𝐴𝑡−1

𝑂𝑡

ℎ𝑡

𝑂𝑡

Discriminator

Text

Encoder

Graph

Encoder

Representation

Aggregator𝐺𝑡

𝐴𝑡−1

Graph

Updater

(§3.2)

ℎ𝑡−1

𝐴𝑡−1

𝑂𝑡

ℎ𝑡

𝑙𝑎𝑏𝑒𝑙

Figure 3.2: Observation generation model.

Observation Generator Layer

The observation generator is a transformer-based decoder. It consists of a word embedding
layer, a transformer block, and a projection layer.

Similar to the text encoder, the embedding layer is frozen after initializing with the
pre-trained fastText [50] word embeddings. Inside the transformer block, there is one self
attention layer, two attention layers and a 3-layer MLP with ReLU non-linear activation
functions in between. Taking word embedding vectors and the two aggregated represen-
tations produced by the representation aggregator as input, the self-attention layer first
generates a contextual encoding vectors for the words. These vectors are then fed into the
two attention layers to compute attention with graph representations and text observation
representations respectively. The two resulting vectors are thus concatenated, and they are
fed into the 3-layer MLP. The block hidden size of this transformer is H = 64.

Finally, the output of the transformer block is fed into the projection layer, which is a
linear transformation with output size same as the vocabulary size. The resulting logits
are then normalized by a softmax to generate a probability distribution over all words

26

in vocabulary. Following common practice, we also use a mask to prevent the decoder
transformer to access “future” information during training.

3.3.2 Contrastive Observation Classification (COC)

Inspired by the literature on contrastive representation learning [70, 34, 73, 13], we refor-
mulate OG mentioned above as a contrastive prediction task. We use contrastive learning
to maximize mutual information between the predicted Gt and the text observations Ot.
Specifically, we train the model to differentiate between representations corresponding to
true observations Ot and “corrupted” observations Õt, conditioned on Gt and At−1. To
obtain corrupted observations, we sample randomly from the set of all collected observations
across our pre-training data. We use a noise-contrastive objective and minimize the binary
cross-entropy (BCE) loss given by

LCOC =
1

K

K

∑
t=1

(EO [logD (hOt
, hGt

)] + EÕ [log (1 −D (hÕt
, hGt

))]) . (3.9)

Here, K is the length of a trajectory as we sample a positive and negative pair at each step
and D is a discriminator that differentiates between positive and negative samples. The
motivation behind contrastive unsupervised training is that one does not require to train
complex decoders. Specifically, compared to OG, the COC’s objective relaxes the need for
learning syntactical or grammatical features and allows GATA to focus on learning the
semantics of the Ot.

The contrastive observation classification task shares the same goal of ensuring the
generated belief graph Gt encodes the necessary information describing the environment
state at step t. However, instead of generating Ot from Gt, it requires a model to differentiate
the real Ot from some Õt that are randomly sampled from other data points. In this task,
the belief graph does not need to encode the syntactical information as in the observation
generation task, rather, a model can use its full capacity to learn the semantic information
of the current environmental state.

We illustrate our contrastive observation classification model in Figure 3.3. This model
shares most components with the previously introduced observation generation model,
except replacing the observation generator module by a discriminator.

27

Text

Encoder

Graph

Encoder

Representation

Aggregator

Observation

Generator𝐺𝑡

𝐴𝑡−1

Graph

Updater

(§3.2)

ℎ𝑡−1

𝐴𝑡−1

𝑂𝑡

ℎ𝑡

𝑂𝑡

Discriminator

Text

Encoder

Graph

Encoder

Representation

Aggregator𝐺𝑡

𝐴𝑡−1

Graph

Updater

(§3.2)

ℎ𝑡−1

𝐴𝑡−1

𝑂𝑡

ℎ𝑡

𝑙𝑎𝑏𝑒𝑙

𝑂𝑡
~

𝑂𝑡

Figure 3.3: Contrastive observation classification model.

3.4 Action Selector

The graph updater discussed in the previous section defines a key component of GATA that
enables the model to maintain a structured belief graph based on text observations. The
second key component of GATA is the action selector, which uses the belief graph Gt and
the text observation Ot at each time-step to select an action. As shown in Figure 3.1, the
action selector consists of four main components: the text encoder and graph encoder convert
text inputs and graph inputs, respectively, into hidden representations; a representation
aggregator fuses the two representations using an attention mechanism; and a scorer ranks
all candidate actions based on the aggregated representations.

3.4.1 Graph Encoder

GATA’s belief graphs, which estimate the true game state, are multi-relational by design.
Therefore, we use relational graph convolutional networks (R-GCNs) [59] to encode the
belief graphs from the updater into vector representations. We also adapt the R-GCN
model to use embeddings of the available relation labels, so that we can capture semantic
correspondences among relations (e.g., east_of and west_of are reciprocal relations). We
do so by learning a vector representation for each relation in the vocabulary that we
condition on the word embeddings of the relation’s name. We concatenate the resulting
vector with the standard node embeddings during R-GCN’s message passing phase. Our
R-GCN implementation uses basis regularization [59] and highway connections [64] between
layers for faster convergence.

28

3.4.2 Text Encoder

We adopt a transformer encoder [72] to convert text inputs from Ot and At−1 into contextual
vector representations. The architecture of the text encoder used for the action selector is
same as the one for graph updates as described in Section 3.2.2.

3.4.3 Representation Aggregator

To combine the text and graph representations, GATA uses a bi-directional attention-based
aggregator [79, 61]. Attention from text to graph enables the agent to focus more on nodes
that are currently observable, which are generally more relevant; attention from nodes
to text enables the agent to focus more on tokens that appear in the graph, which are
therefore connected with the player in certain relations. The representation aggregator’s
model remains the same as in the graph updater (Section 3.2.3).

3.4.4 Scorer

The scorer consists of a self-attention layer cascaded with an MLP layer. First, the self-
attention layer reinforces the dependency of every token-token pair and node-node pair in the
aggregated representations. The resulting vectors are concatenated with the representations
of action candidates Ct (from the text encoder), after which the MLP generates a single
scalar for every action candidate as a score.

The scorer consists of a self-attention layer, a masked mean pooling layer, and a two-layer
MLP. As shown in Figure 3.1 and described above, the input to the scorer is the action
candidate representation hCt

, and one of the following game state representation:

st =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

hGt
if only graph input is available,

hOt
if only text observation is available, this degrades GATA to a Tr-DQN,

hGOt
, hOGt

if both are available.

First, a self-attention is applied to the game state representation st, producing ŝt. If st
includes graph representations, this self-attention mechanism will reinforce the connection
between each node and its related nodes. Similarly, if st includes text representation, the
self-attention mechanism strengthens the connection between each token and other related
tokens. Further, masked mean pooling is applied to the self-attended state representation
ŝt and the action candidate representation hCt

, this results in a state representation vector

29

and a list of action candidate representation vectors. We then concatenate the resulting
vectors and feed them into a 2-layer MLP with a ReLU non-linear activation function in
between. The second MLP layer has an output dimension of 1, after squeezing the last
dimension, the resulting vector is of size NCt

, which is the number of action candidates
provided at game step t. We use this vector as the score of each action candidate.

3.5 Training the Action Selector

We use Q-learning [74] to optimize the action selector on reward signals from the training
games. Specifically, we use Double DQN [71] combined with multi-step learning [66] and
prioritized experience replay [58]. To enable GATA to scale and generalize to multiple
games, we adapt standard deep Q-Learning by sampling a new game from the set of training
games to collect an episode. Consequently, the replay buffer contains transitions from
episodes of different games.

The overall training procedure of GATA’s action selector is shown in Algorithm 2.
We report two strategies that we empirically find effective in DQN training. First, we

discard the underachieving trajectories without pushing them into the replay buffer (lines
10–12). Specifically, we only push a new trajectory that has an average reward greater than
τ ∈ R+0 times the average reward for all transitions in the replay buffer. We use τ = 0.1,
since it keeps around some weaker but acceptable trajectories and does not limit exploration
too severely. Second, we keep track of the best performing policy Π on the validation games.
During training, when GATA stops improving on validation games, we load Π back to the
training policy π and resume training. After training, we report the performance of Π on
test games. Note these two strategies are not designed specifically for GATA; rather, we
find them effective in DQN training in general.

We use a prioritized replay buffer with memory size of 500,000, and a priority fraction
of 0.6. We use ε-greedy, where the value of ε anneals from 1.0 to 0.1 within 20,000 episodes.
We start updating parameters after 100 episodes of playing. We update our network after
every 50 game steps (update frequency F in Algorithm 2) Note that 50 is the total steps
performed within a batch. For instance, when the batch size is 1, we update per 50 steps;
whereas when the batch size is 10, we update per 5 steps. Note the batch size here refers
to the parallelization of the environment, rather than the batch size for backpropagation.
During update, we use a mini-batch of size 64. We use a discount γ = 0.9. We update
target network after every 500 episodes. For multi-step learning, we sample the multi-step
return n ∼ Uniform[1, 3]. We refer readers to Rainbow-DQN [33] for more information
about different components of DQN training.

30

Algorithm 2 Training Strategy for GATA Action Selector
1: Input: games X , replay buffer B, update frequency F , patience P , tolerance τ , evaluation

frequency E.
2: Initialize counters k ← 1, p ← 0, best validation score V ← 0, transition cache C, policy π,

checkpoint Π.
3: for e← 1 to NB_EPISODES do
4: Sample a game x ∈ X , reset C.
5: for i← 1 to NB_STEPS do
6: play game, push transition into C, k ← k + 1
7: if k%F = 0 then sample batch from B, Update(π)
8: if done then break
9: end for

10: if average score in C > τ ⋅ average score in B then
11: for all item in C do push item into B
12: end if
13: if e%E ≠ 0 then continue
14: v ← Evaluate(π)
15: if v >= V then Π← π, p← 0, continue
16: if p > P then π ← Π, p← 0
17: else p← p + 1
18: end for

In our implementation of the Tr-DRQN and Tr-DRQN+ baselines, following Yuan et
al., 2018 [81], we sample a sequence of transitions of length 8, use the first 4 transitions to
estimate reasonable recurrent states and use the last for to update. For counting bonus, we
use a γc = 0.5, the bonus is scaled by an coefficient λc = 0.1.

For all experiment settings, we train agents for 100,000 episodes (NB_EPISODES in
Algorithm 2). For each game, we set maximum step of 50 (NB_STEPS in Algorithm 2).
When an agent has used up all its moves, the game is forced to terminate. We evaluate
them after every 1,000 episodes (evaluation frequency E in Algorithm 2). Patience P and
tolerance τ in Algorithm 2 are 3 and 0.1, respectively. The agents are implemented using
PyTorch [54].

3.6 Variants Using Ground-Truth Graphs

In GATA, the belief graph is learned entirely from text observations. However, the
TextWorld API also provides access to the underlying graph states for games, in the format

31

Action Selector Discrete Graph Updater

Text

Encoder

Graph

Encoder Representation

Aggregator

𝑂𝑡
Text

Encoder
𝐶𝑡

Scorer 𝐴𝑡

𝐺𝑡

Command

Generator

𝑂𝑡

𝐺𝑡−1

𝛥𝑔𝑡
Representation

Aggregator

Text

Encoder

Graph

Encoder

𝐺𝑡−1

𝐺𝑡

Figure 3.4: GATA-GTP in detail. The coloring scheme is same as in Figure 1.1. The discrete
graph updater first generates ∆gt using Gt−1 and Ot. Afterwards the action selector uses Ot

and the updated graph Gt to select At from the list of action candidates Ct. Purple dotted
line indicates a detached connection (i.e., no back-propagation through such connection).

of discrete KGs. Thus, for comparison, we also consider two models that learn from or
encode ground-truth graphs directly.

3.6.1 GATA-GTP: Pre-training a discrete graph updater using
ground-truth graphs

We first consider a model that uses ground-truth graphs to pre-train the graph updater,
in lieu of self-supervised methods. GATA-GTP uses ground-truth graphs from FTWP
during pre-training, but infers belief graphs from the raw text during RL training of the
action selector to compare fairly against GATA. Here, the belief graph Gt is a discrete
multi-relational graph. To pre-train a discrete graph updater, we adapt the command
generation approach proposed by Zelinka et al., 2019 [84].

The GATA-GTP has the same action scorer as GATA, but equipped with a discrete
graph updater. We show the overview structure of GATA-GTP in Figure 3.4.

Discrete Graph Updater

In the discrete graph setting, following Zelinka et al., 2019 [84], we update Gt with a set of
discrete update operations that act on Gt−1. In particular, we model the (discrete) ∆gt as a
set of update operations, wherein each update operation is a sequence of tokens. We define
the following two elementary operations so that any graph update can be achieved in k ≥ 0
such operations:

• add(node1, node2, relation): add a directed edge, named relation, between node1 and
node2.

32

• delete(node1, node2, relation): delete a directed edge, named relation, between node1
and node2. If the edge does not exist, ignore this command.

Given a new observation string Ot and Gt−1, the agent generates k ≥ 0 such operations to
merge the newly observed information into its belief graph.

Table 3.1: Update operations matching the transition in Figure 1.1.

<s> add player shed at <|> add shed backyard west_of <|> add wooden door shed
east_of <|> add toolbox shed in <|> add toolbox closed is <|> add workbench
shed in <|> delete player backyard at </s>

We formulate the update generation task as a sequence-to-sequence (Seq2Seq) problem
and use a transformer-based model [72] to generate token sequences for the operations. We
adopt the decoding strategy from [49], where given an observation sequence Ot and a belief
graph Gt−1, the agent generates a sequence of tokens that contains multiple graph update
operations as subsequences, separated by a delimiter token <|>.

Since Seq2Seq set generation models are known to learn better with a consistent output
ordering [49], we sort the ground-truth operations (e.g., always add before delete) for
training. For the transition shown in Figure 1.1, the generated sequence is shown in
Table 3.1.

Pre-training Discrete Graph Updates

As described above, we frame the discrete graph updating behavior as a language generation
task. We denote this task as command generation (CG). Similar to the continuous version of
graph updater in GATA, we pre-train the discrete graph updater using transitions collected
from the FTWP dataset. It is worth mentioning that despite requiring ground-truth KGs
in FTWP dataset, GATA-GTP does not require any ground-truth graph in the RL game
to train and evaluate the action scorer.

For training discrete graph updater, we use the Gseen type of graphs provided by the
TextWorld API. Specifically, at game step t, Gseen

t is a discrete partial KG that contains
information the agent has observed from the beginning until step t. It is only possible to
train an agent to generate belief about the world it has seen and experienced.

In the collection FTWP transitions, every data point contains two consecutive graphs,
we convert the difference between the graphs to ground-truth update operations (i.e., add

33

and delete commands). We use standard teacher forcing technique to train the transformer-
based Seq2Seq model. Specifically, conditioned on the output of representation aggregator,
the command generator is required to predict the kth token of the target sequence given
all the ground-truth tokens up to time step k − 1. The command generator module is
transformer-based decoder, similar to the observation generator described in Section ??.
Negative log-likelihood is used as loss function for optimization. An illustration of the
command generation model is shown in Figure 3.5.

Graph

Encoder

Representation

Aggregator

𝐺𝑡−1

𝐺𝑡

Text

Encoder
𝐴𝐶𝑡

Action

Scorer
𝐴𝑡

Graph

Encoder

Graph

Encoder

Representation

Aggregator

𝐺𝑡−1

𝐺𝐶𝑡

Text

Encoder
𝐴𝑡−1

Graph

Scorer
𝐺𝑡

Graph

Encoder

Text

Encoder

Graph

Encoder

Representation

Aggregator

Command

Generator

𝑂𝑡

𝐺𝑡−1

𝛥𝑔𝑡

Graph

Encoder
𝐺 Discriminator 𝑙𝑎𝑏𝑒𝑙

Figure 3.5: Command Generation Model.

During the RL training of action selector, the graph updater is detached without any
back-propagation performed. It generates token-by-token started by a begin-of-sequence
token, until it generates an end-of-sequence token, or hitting the maximum sequence length
limit. The resulting tokens are consequently used to update the discrete belief graph.

Pre-training a Discrete Graph Encoder for Action Scorer

In the discrete graph setting, we take advantage of the accessibility of the ground-truth
graphs. Therefore we also consider various pre-training approaches to improve the perfor-
mance of the graph encoder in the action selection module. Similar to the training of graph
updater, we use transitions collected from the FTWP dataset as training data.

In particular, here we define a transition as a 6-tuple < Gt−1, Ot−1, Ct−1, At−1,Gt, Ot >.
Specifically, given Gt−1 and Ot−1, an action At−1 is selected from the candidate list Ct−1;
this leads to a new game state St, thus Gt and Ot are returned. Note that Gt in transitions
can either be Gfull

t that describes the full environment state or Gseen
t that describes the part

of state that the agent has experienced.

In this section, we start with providing details of the pre-training tasks and their
corresponding models, and then show these models’ performance for each of the tasks.

Action Prediction (AP) Given a transition < Gt−1, Ot−1, Ct−1, At−1,Gt, Ot, rt−1 >, we
use At−1 as positive example and use all other action candidates in Ct−1 as negative examples.

34

A model is required to identify At−1 amongst all action candidates given two consecutive
graphs Gt−1 and Gt.

Graph

Encoder

Representation

Aggregator

𝐺𝑡−1

𝐺𝑡

Text

Encoder
𝐶𝑡

Scorer 𝐴𝑡

Graph

Encoder

Graph

Encoder

Representation

Aggregator

𝐺𝑡−1

𝐺𝐶𝑡

Text

Encoder
𝐴𝑡−1

Graph

Scorer
𝐺𝑡

Graph

Encoder

Text

Encoder

Graph

Encoder

Representation

Aggregator

Command

Generator

𝑂𝑡

𝐺𝑡−1

𝛥𝑔𝑡

Graph

Encoder
𝐺 Discriminator 𝑙𝑎𝑏𝑒𝑙Figure 3.6: Action Prediction Model.

We use a model with similar structure and components as the action selector of GATA.
As illustrated in Figure 3.6, the graph encoder first converts the two input graphs Gt−1

and Gt into hidden representations, the representation aggregator combines them using
attention mechanism. The list of action candidates (which includes At−1 and all negative
examples) are fed into the text encoder to generate action candidate representations. The
scorer thus takes these representations and the aggregated graph representations as input,
and it outputs a ranking over all action candidates.

In order to achieve good performance in this setting, the bi-directional attention between
Gt−1 and Gt in the representation aggregator needs to effectively determine the difference
between the two sparse graphs. To achieve that, the graph encoder has to extract useful
information since often the difference between Gt−1 and Gt is minute (e.g., before and after
taking an apple from the table, the only change is the location of the apple).

Graph

Encoder

Representation

Aggregator

𝐺𝑡−1

𝐺𝑡

Text

Encoder
𝐴𝐶𝑡

Action

Scorer
𝐴𝑡

Graph

Encoder

Graph

Encoder

Representation

Aggregator

𝐺𝑡−1

𝐺𝐶𝑡

Text

Encoder
𝐴𝑡−1

Graph

Scorer
𝐺𝑡

Graph

Encoder

Text

Encoder

Graph

Encoder

Representation

Aggregator

Command

Generator

𝑂𝑡

𝐺𝑡−1

𝛥𝑔𝑡

Graph

Encoder
𝐺 Discriminator 𝑙𝑎𝑏𝑒𝑙

Figure 3.7: State Prediction Model.

State Prediction (SP) Given a transition (Gt−1, Ot−1, Ct−1, At−1,Gt, Ot, rt−1), we use Gt
as positive example and gather a set of game states by issuing all other actions in Ct−1

except At−1. We use the set of graphs representing the resulting game states as negative

35

samples. In this task, a model is required to identify Gt amongst all graph candidates GCt
given the previous graph Gt−1 and the action taken At−1.

As shown in Figure 3.7, a similar model is used to train both the SP and AP tasks.
Graph

Encoder

Representation

Aggregator

𝐺𝑡−1

𝐺𝑡

Text

Encoder
𝐴𝐶𝑡

Action

Scorer
𝐴𝑡

Graph

Encoder

Graph

Encoder

Representation

Aggregator

𝐺𝑡−1

𝐺𝐶𝑡

Text

Encoder
𝐴𝑡−1

Graph

Scorer
𝐺𝑡

Graph

Encoder

Text

Encoder

Graph

Encoder

Representation

Aggregator

Command

Generator

𝑂𝑡

𝐺𝑡−1

𝛥𝑔𝑡

Graph

Encoder
𝐺 Discriminator 𝑙𝑎𝑏𝑒𝑙

Figure 3.8: Deep Graph Infomax Model.

Deep Graph Infomax (DGI) This pre-training method is inspired by Velickovic et al.,
2018 [73]. Given a transition < Gt−1, Ot−1, Ct−1, At−1,Gt, Ot, rt−1 >, we map the graph Gt
into its node embedding space. The node embedding vectors of Gt is denoted as H. We
randomly shuffle some of the node embedding vectors to construct a “corrupted” version of
the node representations, denoted as H̃.

Given node representations H = {−→h1,
−→
h2, ...,

−→
hN} and corrupted representations of these

nodes H̃ = {−̃→h1,
−̃→
h2, ...,

−̃→
hN}, where N is the number of vertices in the graph, a model

is required to discriminate between the original and corrupted representations of nodes.
As shown in Figure 3.8, the model is composed of a graph encoder and a discriminator.
Specifically, following [73], we utilize a noise-contrastive objective with a binary cross-
entropy (BCE) loss between the samples from the joint (positive examples) and the product
of marginals (negative examples). To enable the discriminator to discriminate between Gt
and the negative samples, the graph encoder must learn useful graph representations at
both global and local level.

3.6.2 GATA-GTF: Training the action selector using ground-truth
graphs

To get a sense of the upper bound on performance we might obtain using a belief graph, we
also train an agent that uses the full ground-truth graph Gfull during action selection. This
agent requires no graph updater module; we simply feed the ground-truth graphs into the
action selector (via the graph encoder). The use of ground-truth graphs allows GATA-GTF
to escape the error cascades that may result from inferred belief graphs. Note also that
the ground-truth graphs contain full state information, relaxing partial observability of
the games. Consequently, we expect more effective reward optimization for GATA-GTF

36

compared to other graph-based agents. GATA-GTF’s comparison with text-based agents is
a sanity check for our hypothesis—that structured representations help learning general
policies.

37

Chapter 4

Experiments and Analyses

We conduct experiments on generated text-based games (Section 2.3) to answer two key
questions:
Q1: Does the belief-graph approach aid GATA in achieving high rewards on unseen games
after training? In particular, does GATA improve performance compared to SOTA text-
based models?
Q2: How does GATA compare to models that have access to ground-truth graph represen-
tations?

4.1 Experimental Setup and Baselines

We divide the games into four subsets with one difficulty level per subset. Each subset
contains 100 training, 20 validation, and 20 test games, which are sampled from a distribution
determined by their difficulty level. To elaborate on the diversity of games: for easier games,
the recipe might only require a single ingredient and the world is limited to a single location,
whereas harder games might require an agent to navigate a map of 6 locations to collect and
appropriately process up to three ingredients. We also test GATA’s transferability across
difficulty levels by mixing the four difficulty levels to build level 5. We sample 25 games
from each of the four difficulty levels to build a training set. We use all validation and test
games from levels 1 to 4 for level 5 validation and test. In all experiments, we select the
top-performing agent on validation sets and report its test scores; all validation and test
games are unseen in the training set. Statistics of the games are shown in Table 4.1.

As baselines, we use our implementation of LSTM-DQN [52] and LSTM-DRQN [81],
both of which use only Ot as input. Note that LSTM-DRQN uses an RNN to enable

38

Table 4.1: Games statistics (averaged across all games within a difficulty level).

Level Recipe Size #Locations Max Score Need Cut Need Cook #Action Candidates #Objects

1 1 1 4 3 7 8.9 17.1
2 1 1 5 3 3 8.9 17.5
3 1 9 3 7 7 4.9 34.1
4 3 6 11 3 3 10.8 33.4

5 Mixture of levels {1,2,3,4}

an implicit memory (i.e., belief); it also uses an episodic counting bonus to encourage
exploration [81]. This draws an interesting comparison with GATA, wherein the belief
is extracted and updated dynamically, in the form of a graph. For fair comparison, we
replace the LSTM-based text encoders with a transformer-based text encoder as in GATA.
We denote those agents as Tr-DQN and Tr-DRQN respectively. We denote a Tr-DRQN
equipped with the episodic counting bonus as Tr-DRQN+. These three text-based baselines
are representative of the current top-performing neural agents on text-based games.

Additionally, we test the variants of GATA that have access to ground-truth graphs (as
described in Section 3.6). Comparing with GATA, the GATA-GTP agent also maintains its
belief graphs throughout the game; however, its graph updater is pre-trained on FTWP
using ground-truth graphs—a stronger supervision signal. GATA-GTF, on the other hand,
does not have a graph updater. It directly uses ground-truth graphs as input during game
playing.

Q1: Performance of GATA compared to text-based base-
lines

In Table 4.2, we show the normalized test scores achieved by agents trained on either 20
or 100 games for each difficulty level. The normalized test scores are basically average
of the fraction of the maximum possible scores achieved by an agent on a testing set.
Equipped with belief graphs, GATA significantly outperforms all text-based baselines.
The graph updater pre-trained on both of the self-supervised tasks (Section 3.2) leads
to better performance than the baselines (⋆ and ∞). We observe further improvements
in GATA’s policies when the text observations (♠) are also available. We believe the
text observations guide GATA’s action scorer to focus on currently observable objects
through the bi-attention mechanism. The attention may further help GATA to counteract
accumulated errors from the belief graphs. In addition, we observe that Tr-DRQN and

39

Table 4.2: Agents’ normalized test scores and averaged relative improvement (% ↑) over
Tr-DQN across difficulty levels. An agent m’s relative improvement over Tr-DQN is defined
as (Rm−RTr-DQN)/RTr-DQN where R is the score. All numbers are percentages. ♢represents
ground-truth full graph; ♣represents discrete Gt generated by GATA-GTP; ♠represents
Ot. ⋆and ∞are continuous Gt generated by GATA, when the graph updater is pre-trained
with OG and COC tasks, respectively.

20 Training Games 100 Training Games Avg.

Difficulty Level 1 2 3 4 5 % ↑ 1 2 3 4 5 % ↑ % ↑

Agent Text-based Baselines

Tr-DQN 66.2 26.0 16.7 18.2 27.9 —– 62.5 32.0 38.3 17.7 34.6 —- —-

Tr-DRQN 62.5 32.0 28.3 12.7 26.5 +10.3 58.8 31.0 36.7 21.4 27.4 -2.6 +3.9

Tr-DRQN+ 65.0 30.0 35.0 11.8 18.3 +10.7 58.8 33.0 33.3 19.5 30.6 -3.4 +3.6

Input GATA

⋆ 70.0 20.0 20.0 18.6 26.3 -0.2 62.5 32.0 46.7 27.7 35.4 +16.1 +8.0

⋆♠ 66.2 48.0 26.7 15.5 26.3 +24.8 66.2 36.0 58.3 14.1 45.0 +16.1 +20.4

∞ 73.8 42.0 26.7 20.9 24.5 +27.1 62.5 30.0 51.7 23.6 36.0 +13.2 +20.2

∞♠ 68.8 33.0 41.7 17.7 27.0 +34.9 62.5 33.0 46.7 25.9 33.4 +13.6 +24.2

GATA-GTP

♣ 56.2 26.0 40.0 17.3 17.7 +16.6 37.5 31.0 45.0 13.6 18.7 -18.9 -1.2

♣♠ 65.0 32.0 41.7 12.3 23.5 +24.6 62.5 32.0 51.7 21.8 23.5 +5.2 +14.9

GATA-GTF

♢ 48.7 61.0 46.7 23.6 28.9 +64.2 95.0 95.0 70.0 37.3 52.8 +99.0 +81.6

Tr-DRQN+ outperform Tr-DQN, with 3.9% and 3.6% relative improvement (% ↑). This
suggests the implicit memory of the recurrent components improves performance. We also
observe GATA substantially outperforms Tr-DQN when trained on 100 games, whereas the
DRQN agents struggle to optimize rewards on the larger training sets.

Q2: Performance of GATA compared to models with ac-
cess to the ground-truth graph

Table 4.2 also reports test performance for GATA-GTP (♣) and GATA-GTF (♢). Consistent
with GATA, we find GATA-GTP also performs better when given text observations (♠) as

40

0.0

0.2

0.4

0.6

0.8

1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 4.1: Left: Training curves on 20 level 2 games (averaged over 3 seeds). Right:
Density comparison between a ground-truth graph (binary) and a belief graph G generated by
the COC pre-training procedure. Both matrices are slices of adjacency tensors corresponding
the is relation.

additional input to the action scorer. Although GATA-GTP outperforms Tr-DQN by 14.9%
when text observations are available, its overall performance is still substantially poorer than
GATA. Although the graph updater in GATA-GTP is trained with ground-truth graphs,
we believe the discrete belief graphs and the discrete operations for updating them make
this approach vulnerable to an accumulation of errors over game steps, as well as errors
introduced by the discrete nature of the predictions (e.g., round-off error). In contrast, we
suspect that the continuous belief graph and the learned graph operation function (Eqn. 3.2)
are easier to train and recover more gracefully from errors.

Meanwhile, GATA-GTF, which uses ground-truth graphs Gfull during training and
testing, obtains significantly higher scores than does GATA and all other baselines. Because
Gfull turns the game environment into a fully observable MDP and encodes accurate
state information with no error accumulation, GATA-GTF represents the performance
upper-bound of all the Gt-based baselines. The scores achieved by GATA-GTF reinforce
our intuition that belief graphs improve text-based game agents. At the same time, the
performance gap between GATA and GATA-GTF invites investigation into better ways to
learn accurate graph representations of text.

4.2 Additional Results

We also show the agents’ training curves and examples of the belief graphs G generated
by GATA. Figure 4.1 (Left) shows an example of all agents’ training curves. We observe
consistent trends with the testing results of Table 4.2 — GATA outperforms the text-based
baselines and GATA-GTP, but a significant gap exists between GATA and GATA-GTF
(which uses ground-truth graphs as input to the action scorer). Figure 4.1 (Right) highlights

41

the sparsity of a ground-truth graph compared to that of a belief graph G. Since generation
of G is unsupervised by any ground-truth graphs, we do not expect G to be interpretable nor
sparse. Further, since the self-supervised models learn belief graphs directly from text, some
of the learned features may correspond to the underlying grammar or other features useful
for the self-supervised tasks, rather than only being indicative of relationships between
objects. However, we show G encodes useful information for a relation prediction probing
task in Section 4.2.4.

We report the training curves of all our mentioned experiment settings. Figure 4.2
shows the GATA’s training curves. Figure 4.3 shows the training curves of the three
text-based baseline (Tr-DQN, Tr-DRQN, Tr-DRQN+). Figure 4.4 shows the training curve
of GATA-GTF (no graph updater, the action scorer takes ground-truth graphs as input)
and GATA-GTP (graph updater is trained using ground-truth graphs from the FTWP
dataset, the trained graph updater maintains a discrete belief graph throughout the RL
training).

4.2.1 Performance on Graph Encoder Pre-training Tasks

We provide test performance of all the models described above for graph representation
learning. We fine-tune the models on validation set and report their performance on test
set.

Additionally, as mentioned in Section 3.4, we adapt the original R-GCN to condition the
graph representation on additional information contained by the relation labels. We show
an ablation study for this in Table 4.3, where R-GCN denotes the original R-GCN [59] and
R-GCN w/ R-Emb denotes our version that considers relation labels.

Note, as mentioned in previous sections, the dataset to train, valid and test these four pre-
training tasks are extracted from the FTWP dataset. There exist unseen nodes (ingredients
in recipe) in the validation and test sets of FTWP , it requires strong generalizability to get
decent performance on these datasets.

From Table 4.3, we show the relation label representation significantly boosts the
generalization performance on these datasets. Compared to AP and SP, where relation
label information has significant effect, both models perform near perfectly on the DGI
task. This suggests the corruption function we consider in this work is somewhat simple,
we leave this for future exploration.

42

Table 4.3: Test performance of models on all pre-training tasks.

Task Graph Type R-GCN R-GCN w/ R-Emb

Accuracy

AP full 0.472 0.891
seen 0.631 0.873

SP full 0.419 0.926
seen 0.612 0.971

DGI full 0.999 1.000
seen 1.000 1.000

43

F
ig
ur
e
4.
2:

G
A
TA

’s
tr
ai
ni
ng

cu
rv
es

(a
ve
ra
ge
d
ov
er

3
se
ed
s,

ba
nd

re
pr
es
en
ts

st
an

da
rd

de
vi
at
io
n)
.
C
ol
um

ns
ar
e
di
ffi
cu
lty

le
ve
ls

1/
2/
3/
4/
5.

T
he

up
pe

r
tw

o
ro
w
s
ar
e
G
A
T
A

us
in
g
be

lie
fg

ra
ph

s
ge
ne
ra
te
d
by

th
e
gr
ap

h
up

da
te
r
pr
e-
tr
ai
ne
d
w
it
h
ob

se
rv
at
io
n
ge
ne
ra
ti
on

ta
sk
;T

he
lo
w
er

tw
o
ro
w
s
ar
e
G
A
T
A

us
in
g
be

lie
f
gr
ap

hs
ge
ne
ra
te
d
by

th
e
gr
ap

h
up

da
te
r
pr
e-
tr
ai
ne
d
w
it
h
co
nt
ra
st
iv
e
ob

se
rv
at
io
n
cl
as
si
fic
at
io
n
ta
sk
.
In

th
e
4
ro
w
s,

th
e
pr
es
en
ce

of
te
xt

ob
se
rv
at
io
n
ar
e
Fa

ls
e/
T
ru
e/
Fa

ls
e/
T
ru
e.

In
th
e
fig

ur
e,

bl
ue

lin
es

in
di
ca
te

th
e
gr
ap

h
en
co
de
r
in

ac
ti
on

se
le
ct
or

is
ra
nd

om
ly

in
it
ia
liz
ed
;o

ra
ng

e
lin

es
in
di
ca
te

th
e
gr
ap

h
en
co
de
r
in

ac
ti
on

se
le
ct
or

is
in
it
ia
liz
ed

by
th
e
pr
e-
tr
ai
ne
d
ob

se
rv
at
io
n
ge
ne
ra
ti
on

an
d
co
nt
ra
st
iv
e
ob

se
rv
at
io
n
cl
as
si
fic
at
io
n
ta
sk
s.

So
lid

lin
es

in
di
ca
te

20
tr
ai
ni
ng

ga
m
es
,d

as
he
d
lin

es
in
di
ca
te

10
0
tr
ai
ni
ng

ga
m
es
.

44

Fi
gu

re
4.
3:

T
he

te
xt
-b
as
ed

ba
se
lin

e
ag

en
ts
’t

ra
in
in
g
cu
rv
es

(a
ve
ra
ge
d
ov
er

3
se
ed
s,

ba
nd

re
pr
es
en
ts

st
an

da
rd

de
vi
at
io
n)
.
C
ol
um

ns
ar
e
di
ffi
cu
lty

le
ve
ls
1/

2/
3/

4/
5,

ro
w
sa

re
Tr

-D
Q
N
,T

r-
D
R
Q
N
an

d
Tr

-D
R
Q
N
+
,r
es
pe

ct
iv
el
y.

A
ll
of

th
e
th
re
e
ag

en
ts

ta
ke

te
xt

ob
se
rv
at
io
n
O
t
as

in
pu

t.
In

th
e
fig

ur
e,

bl
ue

so
lid

lin
es

in
di
ca
te

th
e
tr
ai
ni
ng

se
t
w
it
h
20

ga
m
es
;o

ra
ng

e
da

sh
ed

lin
es

in
di
ca
te

th
e
tr
ai
ni
ng

se
t
w
it
h
10

0
ga

m
es
.

45

Fi
gu

re
4.
4:

G
A
TA

-G
T
P

an
d
G
A
TA

-G
T
F’
s
tr
ai
ni
ng

cu
rv
es

(a
ve
ra
ge
d
ov
er

3
se
ed
s,

ba
nd

re
pr
es
en
ts

st
an

da
rd

de
vi
at
io
n)
.

C
ol
um

ns
ar
e
di
ffi
cu
lt
y
le
ve
ls

1/
2/

3/
4/

5.
T
he

up
pe

r
tw

o
ro
w
s
ar
e
G
A
T
A
-G

T
F

w
he
n

te
xt

ob
se
rv
at
io
n
is

ab
se
nt

an
d
pr
es
en
t
as

in
pu

t;
th
e
lo
w
er

tw
o
ro
w
s
ar
e
G
A
T
A
-G

T
P

w
he
n
te
xt

ob
se
rv
at
io
n
is

ab
se
nt

an
d
pr
es
en
t
as

in
pu

t.
In

th
e
fig

ur
e,

bl
ue
/o

ra
ng

e/
gr
ee
n
in
di
ca
te

th
e
ag

en
t’
s
gr
ap

h
en
co
de
r
is
in
it
ia
liz
ed

w
it
h
A
P
/S

P
/D

G
I
pr
e-
tr
ai
ni
ng

ta
sk
s.

R
ed

lin
es

in
di
ca
te

th
e
gr
ap

h
en
co
de
r
is

ra
nd

om
ly

in
it
ia
liz
ed
.
So

lid
lin

es
in
di
ca
te

20
tr
ai
ni
ng

ga
m
es
,d

as
he
d
lin

es
in
di
ca
te

10
0
tr
ai
ni
ng

ga
m
es
.

46

4.2.2 Training Scores

In Table 4.4 we provide all agents’ max training scores, each score is averaged over 3 random
seeds. All scores are normalized. Note as described in Section 3.4, we use ground-truth
KGs to train the action selector, Gbelief is only used during evaluation.

4.2.3 Test Results

In Table 4.5 we provide all our agent variants and the text-based baselines’ test scores. We
report agents’ test score corresponding to their best validation scores.

Observations

Pre-training graph encoder helps. In Table 4.4 and Table 4.5, we also show GATA,
GATA-GTP and GATA-GTF’s training and test scores when their action scorer’s graph
encoder are initialized with pre-trained parameters as introduced in Section 3.2 (for GATA)
and Section 3.6.1 (for GATA-GTP and GATA-GTF). We observe in most settings, pre-
trained graph encoders produce better training and test results compared to their randomly
initialized counterparts. This is particularly obvious in GATA-GTP and GATA-GTF, where
graphs are discrete. For instance, from Table 4.5 we can see that only with text observation
as additional input (♣♠), and when graph encoder are initialized with AP/SP/DGI, the
GATA-GTP agent can outperform the text-based baselines on test game sets.

Note however, that pre-training the graph encoder with OG and COC do not help
GATA. This is because, OG and COC, unlike AP and SP are much different objectives
than what the action selector is required to do, i.e. optimize rewards for RL. As a result,
we find OG/COC not necessarily helping for the RL task when used to initialize the graph
encoder in the action selector.

Fine-tuning graph encoder helps. For all experiment settings where the graph encoder
in action scorer is initialized with pre-trained parameters (OG/COC for GATA, AP/SP/DGI
for GATA-GTP), we also compare between freezing vs. fine-tuning the graph encoder
in RL training. By freezing the graph encoders, we can effectively reduce the number
of parameters to be optimized with RL signal. However, we see consistent trends that
fine-tuning the graph encoders can always provide better training and testing performance
in both GATA and GATA-GTP.

47

Text input helps more when graphs are imperfect. We observe clear trends that
for GATA-GTF, using text together with graph as input (to the action selector) does not
provide obvious performance increase. Instead, GATA-GTF often shows better performance
when text observation input is disabled. This observation is coherent with the intuition of
using text observations as additional input. When the input graph to the action selector is
imperfect (e.g., belief graph maintained by GATA or GATA-GTP itself), the text observation
provides more accurate information to help the agent to recover from errors. On the other
hand, GATA-GTF uses the ground-truth full graph (which is even accurate than text) as
input to the action selector, the text observation might confuse the agent by providing
redundant information with more uncertainty.

Learning across difficulty levels. We have a special set of RL games — level 5 —
which is a mixture of the other four difficulty levels. We use this set to evaluate an agent’s
generalizability on both dimensions of game configurations and difficulty levels. From
Table 4.4, we observe that almost all agents (including baseline agents) benefit from a larger
training set, i.e., achieve better test results when train on 100 level 5 games than 20 of them.
Results show GATA has a more significant performance boost from larger training set. We
notice that all GATA-GTP variants perform worse than text-based baselines on level 5
games, whereas GATA outperforms text-based baselines when training on 100 games. This
may suggest the continuous belief graphs can better help GATA to adapt to games across
difficulty levels, whereas its discrete counterpart may struggle more. For example, both
games in level 1 and 2 have only single location, while level 3 and 4 games have multiple
locations. GATA-GTP might thus get confused since sometimes the direction relations
(e.g., west_of) are unused. In contrast, GATA, equipped with continuous graphs, may learn
such scenario easier.

48

Table 4.4: Agents’ Max performance on Training games, averaged over 3 random seeds.
In this table, ♠, ♢represent Ot and Gfull

t , respectively. ♣represents discrete belief graph
generated by GATA-GTP (trained with ground-truth graphs of FTWP). ⋆and ∞indicate
continuous belief graph generated by GATA, pre-trained with observation generation (OG)
task and contrastive observation classification (COC) task, respectively. Light blue shadings
represent numbers that are greater than or equal to Tr-DQN; light yellow shading represent
number that are greater than or equal to all of Tr-DQN, Tr-DRQN and Tr-DRQN+.

20 Training Games 100 Training Games Avg.

Difficulty Level 1 2 3 4 5 % ↑ 1 2 3 4 5 % ↑ % ↑

Input Agent Text-based Baselines

♠ Tr-DQN 90.8 36.9 69.3 31.5 61.2 —– 63.4 33.2 66.1 31.9 55.2 —– —–

♠ Tr-DRQN 88.8 41.7 76.6 29.6 60.7 +2.9 60.8 33.7 71.7 30.6 44.9 -3.4 -0.2

♠ Tr-DRQN+ 89.1 35.6 78.0 30.9 58.1 +0.0 61.1 32.8 70.0 30.0 50.3 -2.8 -1.4

Pre-training GATA

⋆ N/A 87.9 40.4 40.1 30.8 50.1 -11.2 65.1 34.6 51.2 32.0 41.8 -7.9 -9.6
⋆ OG 88.8 40.8 40.1 32.1 48.2 -10.6 63.8 33.9 51.9 32.6 39.3 -9.1 -9.8

⋆♠ N/A 90.2 35.4 69.0 32.0 62.8 -0.2 63.9 41.2 72.2 32.2 50.8 +5.4 +2.6
⋆♠ OG 90.0 57.1 70.6 31.7 57.9 +10.2 64.2 38.9 72.5 32.4 50.1 +4.1 +7.1

∞ N/A 89.0 43.1 41.2 31.8 48.7 -9.0 65.8 33.4 51.5 29.1 44.0 -9.4 -9.2
∞ COC 89.6 41.0 39.2 31.9 54.4 -8.7 65.8 33.4 48.6 31.2 47.2 -7.8 -8.2

∞♠ N/A 90.9 41.4 66.1 31.3 58.8 +0.6 67.1 33.1 73.6 29.9 51.2 +0.7 +0.6
∞♠ COC 90.2 50.8 66.4 31.9 59.3 +6.2 67.4 41.5 66.6 31.4 50.8 +4.5 +5.4

GATA-GTP

♣ N/A 73.3 34.5 50.5 21.7 43.5 -22.6 49.3 31.1 54.3 25.1 28.8 -23.1 -22.8
♣ AP 68.4 34.8 61.3 23.8 43.1 -19.2 40.9 31.3 55.4 24.8 28.8 -25.7 -22.4
♣ SP 62.7 38.1 57.5 23.5 44.1 -19.6 50.2 30.8 55.0 23.7 28.0 -24.0 -21.8
♣ DGI 64.9 37.0 55.6 25.7 47.4 -17.8 43.4 31.8 58.3 25.3 30.2 -22.7 -20.3

♣♠ N/A 77.5 33.9 45.6 26.3 40.2 -21.6 59.5 32.3 55.4 29.1 27.6 -16.8 -19.2
♣♠ AP 87.5 35.8 50.4 22.3 45.4 -17.8 61.3 32.2 56.3 25.3 33.0 -16.4 -17.1
♣♠ SP 80.0 35.5 50.2 23.5 44.0 -19.4 57.3 32.1 58.3 27.1 29.2 -17.4 -18.4
♣♠ DGI 70.3 33.9 51.4 26.3 42.1 -20.9 57.7 32.7 55.6 28.8 29.8 -16.4 -18.6

GATA-GTF

♢ N/A 98.6 58.4 95.6 36.1 80.9 +30.3 96.0 53.4 97.9 36.0 76.4 +42.3 +36.3
♢ AP 98.7 97.5 98.3 48.1 79.3 +59.4 97.1 74.7 98.3 44.5 75.9 +60.8 +60.1
♢ SP 100.0 96.9 98.3 44.9 76.6 +56.5 98.6 90.5 99.0 38.9 73.4 +66.6 +61.5
♢ DGI 96.9 45.4 95.3 28.7 72.6 +15.4 98.2 39.1 90.1 33.0 62.4 +25.1 +20.2

♢♠ N/A 91.7 55.9 80.9 33.6 63.2 +15.8 73.5 48.1 67.7 31.8 56.7 +13.1 +14.5
♢♠ AP 87.9 62.4 78.8 32.4 62.8 +17.0 76.8 54.0 73.7 34.1 55.6 +20.6 +18.8
♢♠ SP 90.7 55.8 83.8 30.7 64.2 +14.9 60.4 40.1 67.4 31.1 51.5 +1.8 +8.3
♢♠ DGI 88.1 38.1 73.0 32.5 62.5 +2.2 66.4 35.5 59.1 30.4 49.6 -2.8 -0.3

49

Table 4.5: Agents’ performance on test games, model selected using best validation
performance. Boldface and underline represent the highest and second highest values
in a setting (excluding GATA-GTF which has access to the ground-truth graphs of the
RL games). In this tabel, ♠, ♢represent Ot and Gfull

t , respectively. ♣represents discrete
belief graph generated by GATA-GTP (pre-trained with ground-truth graphs of FTWP).
⋆and ∞indicate continuous belief graph generated by GATA, pre-trained with observation
generation (OG) task and contrastive observation classification (COC) task, respectively.
Light blue shadings represent numbers that are greater than or equal to Tr-DQN; light
yellow shading represent number that are greater than or equal to all of Tr-DQN, Tr-DRQN
and Tr-DRQN+. Note that this table is an elaborate version of Table 4.2 to compare
amongst the pre-training methods.

20 Training Games 100 Training Games Avg.

Difficulty Level 1 2 3 4 5 % ↑ 1 2 3 4 5 % ↑ % ↑

Input Agent Text-based Baselines

♠ Tr-DQN 66.2 26.0 16.7 18.2 27.9 —– 62.5 32.0 38.3 17.7 34.6 —– —–

♠ Tr-DRQN 62.5 32.0 28.3 12.7 26.5 +10.3 58.8 31.0 36.7 21.4 27.4 -2.6 +3.9

♠ Tr-DRQN+ 65.0 30.0 35.0 11.8 18.3 +10.7 58.8 33.0 33.3 19.5 30.6 -3.4 +3.6

Pre-training GATA

⋆ N/A 70.0 20.0 20.0 18.6 26.3 -0.2 62.5 32.0 46.7 27.7 35.4 +16.1 +8.0
⋆ OG 66.2 28.0 21.7 15.9 24.3 +2.4 66.2 34.0 40.0 21.4 34.0 +7.2 +4.8

⋆♠ N/A 66.2 34.0 30.0 12.7 24.3 +13.5 66.2 38.0 36.7 27.3 36.1 +15.8 +14.6
⋆♠ OG 66.2 48.0 26.7 15.5 26.3 +24.8 66.2 36.0 58.3 14.1 45.0 +16.1 +20.4

∞ N/A 73.8 42.0 26.7 20.9 24.5 +27.1 62.5 30.0 51.7 23.6 36.0 +13.2 +20.2
∞ COC 66.2 29.0 30.0 18.2 27.7 +18.1 66.2 34.0 41.7 19.1 40.3 +9.1 +13.6

∞♠ N/A 68.8 33.0 41.7 17.7 27.0 +34.9 62.5 33.0 46.7 25.9 33.4 +13.6 +24.2
∞♠ COC 66.2 44.0 16.7 20.0 21.7 +11.4 70.0 34.0 45.0 12.3 36.2 +2.0 +6.7

GATA-GTP

♣ N/A 56.2 23.0 41.7 11.4 22.1 +13.0 45.0 32.0 30.0 10.5 17.4 -28.0 -7.5
♣ AP 50.0 20.0 25.0 9.5 24.3 -11.7 45.0 31.0 50.0 15.9 24.4 -8.0 -9.9
♣ SP 45.0 25.0 38.3 11.8 22.6 +7.9 42.5 32.0 50.0 11.4 22.5 -14.4 -3.3
♣ DGI 56.2 26.0 40.0 17.3 17.7 +16.6 37.5 31.0 45.0 13.6 18.7 -18.9 -1.2

♣♠ N/A 73.8 31.0 28.3 8.2 22.5 +5.2 62.5 29.0 38.3 13.2 19.8 -15.5 -5.2
♣♠ AP 62.5 32.0 46.7 12.3 21.1 +28.1 58.8 30.0 40.0 10.9 29.2 -12.4 +7.9
♣♠ SP 65.0 32.0 41.7 12.3 23.5 +24.6 62.5 32.0 51.7 21.8 23.5 +5.2 +14.9
♣♠ DGI 75.0 27.0 33.3 17.3 24.3 +19.7 62.5 31.0 46.7 19.5 24.7 +0.1 +9.9

GATA-GTF

♢ N/A 83.8 53.0 33.3 23.6 24.8 +49.7 100.0 90.0 68.3 37.3 52.7 +96.5 +73.1
♢ AP 85.0 39.0 26.7 26.4 27.5 +36.4 92.5 88.0 63.3 53.6 51.6 +108.0 +72.2
♢ SP 48.7 61.0 46.7 23.6 28.9 +64.2 95.0 95.0 70.0 37.3 52.8 +99.0 +81.6
♢ DGI 85.0 27.0 31.7 14.1 22.1 +15.7 100.0 40.0 70.0 31.8 50.6 +58.7 +37.2

♢♠ N/A 92.5 39.0 30.0 15.9 23.6 +28.3 96.3 56.0 55.0 14.5 46.6 +37.9 +33.1
♢♠ AP 73.8 36.0 46.7 25.9 23.9 +51.5 85.0 42.0 68.3 36.4 47.5 +57.7 +54.6
♢♠ SP 62.5 24.0 36.7 14.5 28.6 +17.7 60.0 43.0 46.7 25.0 47.9 +26.4 +21.1
♢♠ DGI 81.2 30.0 25.0 16.8 30.7 +18.0 73.8 39.0 48.3 15.0 40.6 +13.6 +15.8

50

4.2.4 Probing Task and Belief Graph Visualization

In this section, we investigate whether generated belief graphs contain any useful information
about the game dynamics. We first design a probing task to check if G encodes the existing
relations between two nodes. Next, we visualize a few slices of the adjacency tensor
associated to G.

Probing Task

We frame the probing task as a multi-label classification of the relations between a pair
of nodes. Concretely, given two nodes i, j, and the vector Gi,j ∈ [−1, 1]R (in which R
denotes the number of relations) extracted from the belief graph G corresponding to the
nodes i and j, the task is to learn a function f such that it minimizes the following binary
cross-entropy loss:

LBCE (f(Gi,j, hi, hj), Yi,j) , (4.1)

where hi, hj are the embeddings for nodes i and j, Yi,j ∈ {0, 1}R is a binary vector
representing the presence of each relation between the nodes (there are R different relations).
Following Alain and Bengio 2017 [4], we use a linear function as f , since we assume the
useful information should be easily accessible from G.

We collect a dataset for this probing task by following the walkthroughs of 120 games.
At every game step, we collect a tuple (G,Gseen) (see Section 2.7.1 for the definition of
Gseen). We used tuples from 100 games as training data and the remaining for evaluation.

From each tuple in the dataset, we extract several node pairs (i, j) and their corre-
sponding Yi,j from Gseen (positive examples, denoted as “+”). To make sure a model can
only achieve good performance on this probing task by using the belief graph G, without
overfitting by memorising node-relation pairs (e.g., the unique relation between player and
kitchen is at), we augment the dataset by adding plausible node pairs (i.e., Yi,j = 0⃗

R) but
that have no relation according to the current G (negative examples, denoted as “−”). For
instance, if at a certain game step the player is in the bedroom, the relation between the
player and kitchen should be empty (0⃗R). We expect G to have captured that information.

We use two metrics to evaluate the performance on this probing task:
• Exact match represents the percentage of predictions that have all their labels
classified correctly, i.e., when f(Gi,j, hi, hj) = Y n

i,j.
• F1 score which is the harmonic mean between precision and recall. We report the
macro-averaging of F1 over all the predictions.

51

Table 4.6: Probing task results showing that belief graphs obtained from OG and COC do
contain information about the game dynamics, i.e. node relationships.

Exact Match F1 score
Train Test Train Test

Model + − Avg + − Avg + − Avg + − Avg
Random 0.00 0.99 0.49 0.00 0.99 0.49 0.00 0.99 0.49 0.00 0.99 0.49
Ground-truth 0.98 0.96 0.97 0.97 0.96 0.97 0.98 0.96 0.97 0.98 0.96 0.97
Tr-DRQN 0.61 0.84 0.73 0.61 0.83 0.72 0.61 0.84 0.73 0.61 0.83 0.72
GATA (OG) 0.69 0.86 0.78 0.70 0.86 0.78 0.71 0.85 0.78 0.72 0.86 0.79
GATA (COC) 0.65 0.86 0.75 0.65 0.84 0.75 0.67 0.85 0.76 0.67 0.84 0.75

To better understand the probe’s behaviors on each settings, we also report their training
and test performance on the positive samples (+) and negative samples (−) separately.

From Table 4.6, we observe that belief graphs G generated by models pre-trained with
either OG or COC do contain useful information about the relations between a pair of
nodes. We first compare against a random baseline where each G is randomly sampled
from N (0, 1) and kept fixed throughout the probing task. We observe the linear probe
fails to perform well on the training set (and as a result also fails to generalize on test set).
Interestingly, with random belief graphs provided, the probe somehow overfits on negative
samples and always outputs zeros all the time. In both training and testing phases, it
produces zero performance on positive examples. This baseline suggests the validity of our
probing task design — there is no way to correctly predict the relations without having the
information encoded in the belief graph G.

Next, we report the performance of using ground-truth graphs (Gseen) as input to f . We
observe the linear model can perform decently on training data, and can generalize from
training to testing data — on both sets, the linear probe achieves near-perfect performance.
This also verifies the probing task by showing that given the ground-truth knowledge, the
linear probe is able to solve the task easily.

Given the two extreme cases as upper bound and lower bound, we investigate the belief
graphs G generated by GATA, pre-trained with either of the two self-supervised methods,
OG and COC (proposed in Section 3.2). From Table 4.6, we can see G generated by both
OG and COC methods help similarly in the relation prediction task, both provide more
than 75% of testing exact match scores.

In Section 4, we show that GATA outperforms a set of baseline systems, including
Tr-DRQN (as described in Section 4.1), an agent with recurrent components. To further

52

investigate if the belief graphs generated by GATA can better facilitate the linear probe in
this relation prediction task, we provide an additional setting. We modify the Tr-DRQN
agent by replacing its action scorer by a text generator (the same decoder used in OG
training), and train this model with the same data and objective as OG. After pre-training,
we obtain a set of probing data by collecting the recurrent hidden states produced by this
agent given the same probing game walkthroughs. Since these recurrent hidden states
are computed from the same amount of information as GATA’s belief graphs, they could
theoretically contain the same information as G. However, from Table 4.6, we see that the
scores of Tr-DRQN are consistently lower than GATA’s score. This is coherent with our
findings in the RL experiments (Section 4), except the gap between GATA and Tr-DRQN
is less significant in the relation prediction task setting.

While being able to perform the classification correctly in a large portion of examples, we
observe a clear performance gap comparing GATA’s belief graphs with ground-truth graphs.
The cause of the performance gap can be twofold. First, compared to ground-truth graphs
that accurately represent game states without information loss, G (iteratively generated by
a neural network across game steps) can inevitably suffer from information loss. Second,
the information encoded in G might not be easily extracted by a linear probe (compared to
ground-truth). Both aspects suggest potential future directions to improve the belief graph
generation module.

We optimize all probing models for 10 epochs with Adam optimizer, using the default
hyperparameters and a learning rate of 0.0001. Note in all the probing models, only
parameters of the linear layer f are trainable, everything else (including node embeddings)
are kept fixed.

Belief Graph Visualization

In Figure 2.2, we show a slice of the ground-truth adjacency tensor representing the is
relation. To give context, that tensor has been extracted at the end of a game with a recipe
requesting a fried diced red apple, a roasted sliced red hot pepper, and a fried sliced yellow
potato. Correspondingly, for the same game and same time step, Figure 4.5 shows the
same adjacency tensor’s slice for the belief graphs G generated by GATA pre-trained on
observation generation (OG) and contrastive observation classification (COC) tasks.

For visualization, we found that subtracting the mean adjacency tensor, computed
across all games and steps, helps by removing information about the marginal distribution
of the observations (e.g., underlying grammar or other common features needed for the
self-supervised tasks). Those “cleaner” graphs are shown in Figure 4.6–which represent

53

the same graphs from the Figure 4.5 subtracted with the respective baselines. One must
keep in mind that there is no training signal to force the belief graphs to align with any
ground-truth graphs since the belief graph generators are trained with pure self-supervised
methods. Further, the higher values in these adjacency tensors may not necessarily imply
strength of a relation between two nodes.

54

pl
ay

er
in

ve
nt

or
y

ch
op

pe
d

ro
as

te
d

di
ce

d
bu

rn
ed

op
en

fri
ed

gr
ille

d
co

ns
um

ed
clo

se
d

sli
ce

d
ex

it
ki

tc
he

n
pa

nt
ry

liv
in

gr
oo

m
ba

th
ro

om
ba

ck
ya

rd
be

dr
oo

m
ga

rd
en

sh
ed

dr
iv

ew
ay

st
re

et
co

rri
do

r
su

pe
rm

ar
ke

t
bb

q
ba

na
na

ba
rn

 d
oo

r
be

d
bl

ac
k

pe
pp

er
bl

oc
k

of
 c

he
es

e
ca

rro
t

ch
ick

en
 b

re
as

t
ch

ick
en

 le
g

ch
ick

en
 w

in
g

cil
an

tro
co

m
m

er
cia

l g
la

ss
 d

oo
r

co
ok

bo
ok

co
uc

h
co

un
te

r
eg

g
fib

er
gl

as
s d

oo
r

flo
ur

fri
dg

e
fro

nt
 d

oo
r

fro
st

ed
-g

la
ss

 d
oo

r
gr

ee
n

ap
pl

e
gr

ee
n

be
ll

pe
pp

er
gr

ee
n

ho
t p

ep
pe

r
ki

tc
he

n
isl

an
d

kn
ife

le
ttu

ce
m

ilk
m

ea
l

ol
iv

e
oi

l
or

an
ge

 b
el

l p
ep

pe
r

ov
en

pa
rs

le
y

pa
tio

 c
ha

ir
pa

tio
 d

oo
r

pa
tio

 ta
bl

e
pe

an
ut

 o
il

pl
ai

n
do

or
po

rk
 c

ho
p

pu
rp

le
 p

ot
at

o
ra

w
re

cip
e

bo
ok

re
cip

e
re

d
ap

pl
e

re
d

be
ll

pe
pp

er
re

d
ho

t p
ep

pe
r

re
d

on
io

n
re

d
po

ta
to

re
d

tu
na

re
fri

ge
ra

to
r

sa
lt

sc
re

en
 d

oo
r

sh
el

f
sh

ow
ca

se
sli

di
ng

 d
oo

r
sli

di
ng

 p
at

io
 d

oo
r

so
fa

st
ov

e
su

ga
r

ta
bl

e
to

ile
t

to
m

at
o

to
ol

bo
x

un
cu

t
ve

ge
ta

bl
e

oi
l

wa
te

r
wh

ite
 o

ni
on

wh
ite

 tu
na

wo
od

en
 d

oo
r

wo
rk

be
nc

h
ye

llo
w

ap
pl

e
ye

llo
w

be
ll

pe
pp

er
ye

llo
w

on
io

n
ye

llo
w

po
ta

to

player
inventory
chopped
roasted

diced
burned

open
fried

grilled
consumed

closed
sliced

exit
kitchen
pantry

livingroom
bathroom
backyard
bedroom

garden
shed

driveway
street

corridor
supermarket

bbq
banana

barn door
bed

black pepper
block of cheese

carrot
chicken breast

chicken leg
chicken wing

cilantro
commercial glass door

cookbook
couch

counter
egg

fiberglass door
flour

fridge
front door

frosted-glass door
green apple

green bell pepper
green hot pepper

kitchen island
knife

lettuce
milk

meal
olive oil

orange bell pepper
oven

parsley
patio chair
patio door
patio table
peanut oil
plain door
pork chop

purple potato
raw

recipe book
recipe

red apple
red bell pepper
red hot pepper

red onion
red potato

red tuna
refrigerator

salt
screen door

shelf
showcase

sliding door
sliding patio door

sofa
stove
sugar
table
toilet

tomato
toolbox

uncut
vegetable oil

water
white onion
white tuna

wooden door
workbench

yellow apple
yellow bell pepper

yellow onion
yellow potato

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

pl
ay

er
in

ve
nt

or
y

ch
op

pe
d

ro
as

te
d

di
ce

d
bu

rn
ed

op
en

fri
ed

gr
ille

d
co

ns
um

ed
clo

se
d

sli
ce

d
ex

it
ki

tc
he

n
pa

nt
ry

liv
in

gr
oo

m
ba

th
ro

om
ba

ck
ya

rd
be

dr
oo

m
ga

rd
en

sh
ed

dr
iv

ew
ay

st
re

et
co

rri
do

r
su

pe
rm

ar
ke

t
bb

q
ba

na
na

ba
rn

 d
oo

r
be

d
bl

ac
k

pe
pp

er
bl

oc
k

of
 c

he
es

e
ca

rro
t

ch
ick

en
 b

re
as

t
ch

ick
en

 le
g

ch
ick

en
 w

in
g

cil
an

tro
co

m
m

er
cia

l g
la

ss
 d

oo
r

co
ok

bo
ok

co
uc

h
co

un
te

r
eg

g
fib

er
gl

as
s d

oo
r

flo
ur

fri
dg

e
fro

nt
 d

oo
r

fro
st

ed
-g

la
ss

 d
oo

r
gr

ee
n

ap
pl

e
gr

ee
n

be
ll

pe
pp

er
gr

ee
n

ho
t p

ep
pe

r
ki

tc
he

n
isl

an
d

kn
ife

le
ttu

ce
m

ilk
m

ea
l

ol
iv

e
oi

l
or

an
ge

 b
el

l p
ep

pe
r

ov
en

pa
rs

le
y

pa
tio

 c
ha

ir
pa

tio
 d

oo
r

pa
tio

 ta
bl

e
pe

an
ut

 o
il

pl
ai

n
do

or
po

rk
 c

ho
p

pu
rp

le
 p

ot
at

o
ra

w
re

cip
e

bo
ok

re
cip

e
re

d
ap

pl
e

re
d

be
ll

pe
pp

er
re

d
ho

t p
ep

pe
r

re
d

on
io

n
re

d
po

ta
to

re
d

tu
na

re
fri

ge
ra

to
r

sa
lt

sc
re

en
 d

oo
r

sh
el

f
sh

ow
ca

se
sli

di
ng

 d
oo

r
sli

di
ng

 p
at

io
 d

oo
r

so
fa

st
ov

e
su

ga
r

ta
bl

e
to

ile
t

to
m

at
o

to
ol

bo
x

un
cu

t
ve

ge
ta

bl
e

oi
l

wa
te

r
wh

ite
 o

ni
on

wh
ite

 tu
na

wo
od

en
 d

oo
r

wo
rk

be
nc

h
ye

llo
w

ap
pl

e
ye

llo
w

be
ll

pe
pp

er
ye

llo
w

on
io

n
ye

llo
w

po
ta

to

player
inventory
chopped
roasted

diced
burned

open
fried

grilled
consumed

closed
sliced

exit
kitchen
pantry

livingroom
bathroom
backyard
bedroom

garden
shed

driveway
street

corridor
supermarket

bbq
banana

barn door
bed

black pepper
block of cheese

carrot
chicken breast

chicken leg
chicken wing

cilantro
commercial glass door

cookbook
couch

counter
egg

fiberglass door
flour

fridge
front door

frosted-glass door
green apple

green bell pepper
green hot pepper

kitchen island
knife

lettuce
milk

meal
olive oil

orange bell pepper
oven

parsley
patio chair
patio door
patio table
peanut oil
plain door
pork chop

purple potato
raw

recipe book
recipe

red apple
red bell pepper
red hot pepper

red onion
red potato

red tuna
refrigerator

salt
screen door

shelf
showcase

sliding door
sliding patio door

sofa
stove
sugar
table
toilet

tomato
toolbox

uncut
vegetable oil

water
white onion
white tuna

wooden door
workbench

yellow apple
yellow bell pepper

yellow onion
yellow potato

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 4.5: Adjacency tensor’s slices for G generated by GATA, pre-trained with OG task
(top) and COC task (bottom).

55

pl
ay

er
in

ve
nt

or
y

ch
op

pe
d

ro
as

te
d

di
ce

d
bu

rn
ed

op
en

fri
ed

gr
ille

d
co

ns
um

ed
clo

se
d

sli
ce

d
ex

it
ki

tc
he

n
pa

nt
ry

liv
in

gr
oo

m
ba

th
ro

om
ba

ck
ya

rd
be

dr
oo

m
ga

rd
en

sh
ed

dr
iv

ew
ay

st
re

et
co

rri
do

r
su

pe
rm

ar
ke

t
bb

q
ba

na
na

ba
rn

 d
oo

r
be

d
bl

ac
k

pe
pp

er
bl

oc
k

of
 c

he
es

e
ca

rro
t

ch
ick

en
 b

re
as

t
ch

ick
en

 le
g

ch
ick

en
 w

in
g

cil
an

tro
co

m
m

er
cia

l g
la

ss
 d

oo
r

co
ok

bo
ok

co
uc

h
co

un
te

r
eg

g
fib

er
gl

as
s d

oo
r

flo
ur

fri
dg

e
fro

nt
 d

oo
r

fro
st

ed
-g

la
ss

 d
oo

r
gr

ee
n

ap
pl

e
gr

ee
n

be
ll

pe
pp

er
gr

ee
n

ho
t p

ep
pe

r
ki

tc
he

n
isl

an
d

kn
ife

le
ttu

ce
m

ilk
m

ea
l

ol
iv

e
oi

l
or

an
ge

 b
el

l p
ep

pe
r

ov
en

pa
rs

le
y

pa
tio

 c
ha

ir
pa

tio
 d

oo
r

pa
tio

 ta
bl

e
pe

an
ut

 o
il

pl
ai

n
do

or
po

rk
 c

ho
p

pu
rp

le
 p

ot
at

o
ra

w
re

cip
e

bo
ok

re
cip

e
re

d
ap

pl
e

re
d

be
ll

pe
pp

er
re

d
ho

t p
ep

pe
r

re
d

on
io

n
re

d
po

ta
to

re
d

tu
na

re
fri

ge
ra

to
r

sa
lt

sc
re

en
 d

oo
r

sh
el

f
sh

ow
ca

se
sli

di
ng

 d
oo

r
sli

di
ng

 p
at

io
 d

oo
r

so
fa

st
ov

e
su

ga
r

ta
bl

e
to

ile
t

to
m

at
o

to
ol

bo
x

un
cu

t
ve

ge
ta

bl
e

oi
l

wa
te

r
wh

ite
 o

ni
on

wh
ite

 tu
na

wo
od

en
 d

oo
r

wo
rk

be
nc

h
ye

llo
w

ap
pl

e
ye

llo
w

be
ll

pe
pp

er
ye

llo
w

on
io

n
ye

llo
w

po
ta

to

player
inventory
chopped
roasted

diced
burned

open
fried

grilled
consumed

closed
sliced

exit
kitchen
pantry

livingroom
bathroom
backyard
bedroom

garden
shed

driveway
street

corridor
supermarket

bbq
banana

barn door
bed

black pepper
block of cheese

carrot
chicken breast

chicken leg
chicken wing

cilantro
commercial glass door

cookbook
couch

counter
egg

fiberglass door
flour

fridge
front door

frosted-glass door
green apple

green bell pepper
green hot pepper

kitchen island
knife

lettuce
milk

meal
olive oil

orange bell pepper
oven

parsley
patio chair
patio door
patio table
peanut oil
plain door
pork chop

purple potato
raw

recipe book
recipe

red apple
red bell pepper
red hot pepper

red onion
red potato

red tuna
refrigerator

salt
screen door

shelf
showcase

sliding door
sliding patio door

sofa
stove
sugar
table
toilet

tomato
toolbox

uncut
vegetable oil

water
white onion
white tuna

wooden door
workbench

yellow apple
yellow bell pepper

yellow onion
yellow potato

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

pl
ay

er
in

ve
nt

or
y

ch
op

pe
d

ro
as

te
d

di
ce

d
bu

rn
ed

op
en

fri
ed

gr
ille

d
co

ns
um

ed
clo

se
d

sli
ce

d
ex

it
ki

tc
he

n
pa

nt
ry

liv
in

gr
oo

m
ba

th
ro

om
ba

ck
ya

rd
be

dr
oo

m
ga

rd
en

sh
ed

dr
iv

ew
ay

st
re

et
co

rri
do

r
su

pe
rm

ar
ke

t
bb

q
ba

na
na

ba
rn

 d
oo

r
be

d
bl

ac
k

pe
pp

er
bl

oc
k

of
 c

he
es

e
ca

rro
t

ch
ick

en
 b

re
as

t
ch

ick
en

 le
g

ch
ick

en
 w

in
g

cil
an

tro
co

m
m

er
cia

l g
la

ss
 d

oo
r

co
ok

bo
ok

co
uc

h
co

un
te

r
eg

g
fib

er
gl

as
s d

oo
r

flo
ur

fri
dg

e
fro

nt
 d

oo
r

fro
st

ed
-g

la
ss

 d
oo

r
gr

ee
n

ap
pl

e
gr

ee
n

be
ll

pe
pp

er
gr

ee
n

ho
t p

ep
pe

r
ki

tc
he

n
isl

an
d

kn
ife

le
ttu

ce
m

ilk
m

ea
l

ol
iv

e
oi

l
or

an
ge

 b
el

l p
ep

pe
r

ov
en

pa
rs

le
y

pa
tio

 c
ha

ir
pa

tio
 d

oo
r

pa
tio

 ta
bl

e
pe

an
ut

 o
il

pl
ai

n
do

or
po

rk
 c

ho
p

pu
rp

le
 p

ot
at

o
ra

w
re

cip
e

bo
ok

re
cip

e
re

d
ap

pl
e

re
d

be
ll

pe
pp

er
re

d
ho

t p
ep

pe
r

re
d

on
io

n
re

d
po

ta
to

re
d

tu
na

re
fri

ge
ra

to
r

sa
lt

sc
re

en
 d

oo
r

sh
el

f
sh

ow
ca

se
sli

di
ng

 d
oo

r
sli

di
ng

 p
at

io
 d

oo
r

so
fa

st
ov

e
su

ga
r

ta
bl

e
to

ile
t

to
m

at
o

to
ol

bo
x

un
cu

t
ve

ge
ta

bl
e

oi
l

wa
te

r
wh

ite
 o

ni
on

wh
ite

 tu
na

wo
od

en
 d

oo
r

wo
rk

be
nc

h
ye

llo
w

ap
pl

e
ye

llo
w

be
ll

pe
pp

er
ye

llo
w

on
io

n
ye

llo
w

po
ta

to

player
inventory
chopped
roasted

diced
burned

open
fried

grilled
consumed

closed
sliced

exit
kitchen
pantry

livingroom
bathroom
backyard
bedroom

garden
shed

driveway
street

corridor
supermarket

bbq
banana

barn door
bed

black pepper
block of cheese

carrot
chicken breast

chicken leg
chicken wing

cilantro
commercial glass door

cookbook
couch

counter
egg

fiberglass door
flour

fridge
front door

frosted-glass door
green apple

green bell pepper
green hot pepper

kitchen island
knife

lettuce
milk

meal
olive oil

orange bell pepper
oven

parsley
patio chair
patio door
patio table
peanut oil
plain door
pork chop

purple potato
raw

recipe book
recipe

red apple
red bell pepper
red hot pepper

red onion
red potato

red tuna
refrigerator

salt
screen door

shelf
showcase

sliding door
sliding patio door

sofa
stove
sugar
table
toilet

tomato
toolbox

uncut
vegetable oil

water
white onion
white tuna

wooden door
workbench

yellow apple
yellow bell pepper

yellow onion
yellow potato

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 4.6: Adjacency tensor’s slices after subtracting the mean for G generated by GATA,
pre-trained with OG task (top) and COC task (bottom).

56

Chapter 5

Conclusion

In this work, we investigate how an RL agent can play and generalize within a distribution
of text-based games using graph-structured representations inferred from text. We introduce
GATA, a novel neural agent that infers and updates latent belief graphs as it plays text-
based games. We use a combination of RL and self-supervised learning to teach the
agent to encode essential dynamics of the environment in its belief graphs. We show that
GATA achieves good test performance, outperforming a set of strong baselines including
agents pre-trained with ground-truth graphs. This evinces the effectiveness of generating
graph-structured representations for text-based games.

5.1 Future Directions

As mentioned in Section 4.2.4, the belief graphs generated by GATA lack interpretability
because the training is not supervised by any ground-truth graph. Technically, they are
recurrent hidden states that encode the game state, we only (weakly) ground these real-
valued graphs by providing node and relation vocabularies (word embeddings) for the
message passing in R-GCN.

Therefore, there can be two potential directions deriving from the current approach.
First, it would be interesting to investigate regularization methods and auxiliary tasks that
can make the belief graph sparser (without relying on ground-truth graphs to train). A
sparser belief graph may increase GATA’s interpretability, however, it does not guarantee
to produce better performance on playing text-based games (which is what we care more
about).

57

Second, it would also be interesting to see how GATA can be adapted to environments
where the node and relation names are unknown. This will presumably make the learned
belief graphs even far away from interpretable, but at the same time it will further relax
GATA from the need of requiring any prior knowledge about the environments. We
believe this is an essential property for an agent that is generalizabile to out-of-distribution
environments. For instance, without the need of a pre-defined node and relation vocabularies,
we can expand GATA to the setting where training on the cooking games, and testing on
games from another genre, or even text-based games designed for humans [27].

58

References

[1] Ashutosh Adhikari, Xingdi Yuan, Marc-Alexandre Côté, Mikul’avs Zelinka, M. Rondeau,
R. Laroche, P. Poupart, J. Tang, Adam Trischler, and William L. Hamilton. Learning
dynamic belief graphs to generalize on text-based games. arXiv: Computation and
Language, 2020.

[2] Leonard Adolphs and Thomas Hofmann. Ledeepchef: Deep reinforcement learning
agent for families of text-based games. CoRR, abs/1909.01646, 2019.

[3] Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine.
Learning to poke by poking: Experiential learning of intuitive physics. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems 29, pages 5074–5082. Curran Associates, Inc., 2016.

[4] Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear
classifier probes. ArXiv, abs/1610.01644, 2017.

[5] Prithviraj Ammanabrolu and Matthew Hausknecht. Graph constrained reinforcement
learning for natural language action spaces. In International Conference on Learning
Representations, 2020.

[6] Prithviraj Ammanabrolu and Mark Riedl. Playing text-adventure games with graph-
based deep reinforcement learning. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 3557–3565, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics.

[7] Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, and
R. Devon Hjelm. Unsupervised state representation learning in atari. In NeurIPS,
2019.

59

[8] Gabor Angeli, Melvin Jose Johnson Premkumar, and Christopher D. Manning. Lever-
aging linguistic structure for open domain information extraction. In ACL, 2015.

[9] Ghulam Ahmed Ansari, P SagarJ., A. P. Sarath Chandar, and Balaraman Ravindran.
Language expansion in text-based games. ArXiv, abs/1805.07274, 2018.

[10] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath. Deep rein-
forcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38,
2017.

[11] Timothy Atkinson, Hendrik Baier, Tara Copplestone, Sam Devlin, and Jerry Swan.
The text-based adventure ai competition. IEEE Transactions on Games, 11:260–266,
2018.

[12] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR,
abs/1607.06450, 2016.

[13] Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations
by maximizing mutual information across views. In Advances in Neural Information
Processing Systems, pages 15509–15519, 2019.

[14] Richard Bellman. On the theory of dynamic programming. Proceedings of the National
Academy of Sciences, 38(8):716–719, 1952.

[15] Joan Bruna, W. Zaremba, Arthur Szlam, and Y. LeCun. Spectral networks and locally
connected networks on graphs. CoRR, abs/1312.6203, 2014.

[16] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
RNN encoder–decoder for statistical machine translation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
1724–1734, Doha, Qatar, October 2014. Association for Computational Linguistics.

[17] Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery
Fine, James Moore, Ruo Yu Tao, Matthew Hausknecht, Layla El Asri, Mahmoud
Adada, Wendy Tay, and Adam Trischler. Textworld: A learning environment for
text-based games. CoRR, abs/1806.11532, 2018.

[18] Rajarshi Das, Tsendsuren Munkhdalai, Xingdi Yuan, Adam Trischler, and Andrew
McCallum. Building dynamic knowledge graphs from text using machine reading
comprehension. In International Conference on Learning Representations, 2019.

60

[19] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune.
Go-explore: a new approach for hard-exploration problems. ArXiv, abs/1901.10995,
2019.

[20] Angela Fan, Claire Gardent, Chloé Braud, and Antoine Bordes. Using local knowledge
graph construction to scale Seq2Seq models to multi-document inputs. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 4186–4196, Hong Kong, China, November 2019. Association for Computational
Linguistics.

[21] Nancy Fulda, Daniel Ricks, Ben Murdoch, and David Wingate. What can you do with
a rock? affordance extraction via word embeddings. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI-17, pages 1039–1045,
2017.

[22] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX Companion.
Addison-Wesley, Reading, Massachusetts, 1994.

[23] Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati, Bowen Zhou, and Yoshua Bengio.
Pointing the unknown words. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 140–149,
Berlin, Germany, August 2016. Association for Computational Linguistics.

[24] David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution.
In Advances in Neural Information Processing Systems 31, pages 2451–2463. Curran
Associates, Inc., 2018. https://worldmodels.github.io.

[25] H. V. Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double
q-learning. In AAAI, 2016.

[26] Hado V. Hasselt. Double q-learning. In J. D. Lafferty, C. K. I. Williams, J. Shawe-
Taylor, R. S. Zemel, and A. Culotta, editors, Advances in Neural Information Processing
Systems 23, pages 2613–2621. Curran Associates, Inc., 2010.

[27] Matthew Hausknecht, Prithviraj Ammanabrolu, Côté Marc-Alexandre, and Xingdi
Yuan. Interactive fiction games: A colossal adventure. In Thirty-Fourth AAAI
Conference on Artificial Intelligence, 2020.

61

https://worldmodels.github.io

[28] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable
mdps. In AAAI Fall Symposium on Sequential Decision Making for Intelligent Agents
(AAAI-SDMIA15), November 2015.

[29] Matthew J. Hausknecht, Ricky Loynd, Greg Yang, Adith Swaminathan, and Jason D.
Williams. Nail: A general interactive fiction agent. CoRR, abs/1902.04259, 2019.

[30] Matthew J. Hausknecht and P. Stone. Deep recurrent q-learning for partially observable
mdps. In AAAI Fall Symposia, 2015.

[31] Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong Li, Li Deng, and Mari
Ostendorf. Deep reinforcement learning with a natural language action space. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1621–1630, Berlin, Germany, August 2016. Association
for Computational Linguistics.

[32] N. Heess, J. Hunt, T. Lillicrap, and D. Silver. Memory-based control with recurrent
neural networks. ArXiv, abs/1512.04455, 2015.

[33] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow:
Combining improvements in deep reinforcement learning. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[34] Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip Bach-
man, Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual
information estimation and maximization. In ICLR 2019. ICLR, April 2019.

[35] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.

[36] Vishal Jain, William Fedus, Hugo Larochelle, Doina Precup, and Marc G. Bellemare.
Algorithmic improvements for deep reinforcement learning applied to interactive fiction.
In Thirty-Fourth AAAI Conference on Artificial Intelligence, 2020.

[37] Daniel D Johnson. Learning graphical state transitions. In International Conference
on Learning Representations (ICLR), 2017.

[38] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and
acting in partially observable stochastic domains. Artif. Intell., 101(1–2):99–134, May
1998.

62

[39] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel.
Neural relational inference for interacting systems. arXiv preprint arXiv:1802.04687,
2018.

[40] Thomas Kipf, Elise van der Pol, and Max Welling. Contrastive learning of structured
world models. In International Conference on Learning Representations, 2020.

[41] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph con-
volutional networks. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. Open-
Review.net, 2017.

[42] Donald Knuth. The TEXbook. Addison-Wesley, Reading, Massachusetts, 1986.

[43] Leslie Lamport. LATEX — A Document Preparation System. Addison-Wesley, Reading,
Massachusetts, second edition, 1994.

[44] Pedro Lima. First textworld challenge - first place solution, 2019.

[45] Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning
and teaching. Mach. Learn., 8(3–4):293–321, May 1992.

[46] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng
Gao, and Jiawei Han. On the variance of the adaptive learning rate and beyond. In
Proceedings of the Eighth International Conference on Learning Representations (ICLR
2020), April 2020.

[47] Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob N. Foerster, Jacob An-
dreas, Edward Grefenstette, Shimon Whiteson, and Tim Rocktäschel. A survey of
reinforcement learning informed by natural language. In IJCAI, 2019.

[48] Andrea Madotto, Mahdi Namazifar, Joost Huizinga, Piero Molino, Adrien Ecoffet,
Huaixiu Zheng, Alexandros Papangelis, Dian Yu, Chandra Khatri, and Gokhan Tur.
Exploration based language learning for text-based games, 2020.

[49] Rui Meng, Xingdi Yuan, Tong Wang, Peter Brusilovsky, Adam Trischler, and Daqing
He. Does order matter? an empirical study on generating multiple keyphrases as a
sequence. CoRR, 2019.

[50] Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Armand
Joulin. Advances in pre-training distributed word representations. In Proceedings of

63

the International Conference on Language Resources and Evaluation (LREC 2018),
2018.

[51] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[52] Karthik Narasimhan, Tejas Kulkarni, and Regina Barzilay. Language understanding
for text-based games using deep reinforcement learning. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, pages 1–11, Lisbon,
Portugal, September 2015. Association for Computational Linguistics.

[53] Junhyuk Oh, Valliappa Chockalingam, Satinder Singh, and Honglak Lee. Control
of memory, active perception, and action in minecraft. In Proceedings of the 33rd
International Conference on International Conference on Machine Learning - Volume
48, ICML’16, page 2790–2799. JMLR.org, 2016.

[54] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. In NIPS-W, 2017.

[55] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven
exploration by self-supervised prediction. In ICML, 2017.

[56] Cinjon Resnick, Roberta Raileanu, Sanyam Kapoor, Alex Peysakhovich, Kyunghyun
Cho, and Joan Bruna. Backplay:" man muss immer umkehren". arXiv preprint
arXiv:1807.06919, 2018.

[57] G. A. Rummery and M. Niranjan. On-line q-learning using connectionist systems.
Technical report, 1994.

[58] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience
replay. In International Conference on Learning Representations, Puerto Rico, 2016.

[59] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov,
and Max Welling. Modeling relational data with graph convolutional networks. In
European Semantic Web Conference, pages 593–607. Springer, 2018.

[60] John Schulman, F. Wolski, Prafulla Dhariwal, A. Radford, and O. Klimov. Proximal
policy optimization algorithms. ArXiv, abs/1707.06347, 2017.

64

[61] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirec-
tional attention flow for machine comprehension. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017.

[62] Mathieu Seurin, Philippe Preux, and Olivier Pietquin. “i’m sorry dave, i’m afraid i
can’t do that” deep q-learning from forbidden action. CoRR, abs/1910.02078, 2019.

[63] Aravind Srinivas, Michael Laskin, and Pieter Abbeel. Curl: Contrastive unsupervised
representations for reinforcement learning. arXiv preprint arXiv:2004.04136, 2020.

[64] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks.
CoRR, abs/1505.00387, 2015.

[65] Richard Sutton. The Bitter Lesson, 2019.

[66] Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine
Learning, 3(1):9–44, Aug 1988.

[67] Chen Tessler, Tom Zahavy, Deborah Anne Cohen, Daniel J. Mankowitz, and Shie
Mannor. Action assembly: Sparse imitation learning for text based games with
combinatorial action spaces. ArXiv, abs/1905.09700, 2019.

[68] Adam Trischler, Marc-Alexandre Côté, and Pedro Lima. First TextWorld Problems,
the competition: Using text-based games to advance capabilities of AI agents, 2019.

[69] Jack Urbanek, Angela Fan, Siddharth Karamcheti, Saachi Jain, Samuel Humeau, Emily
Dinan, Tim Rocktäschel, Douwe Kiela, Arthur Szlam, and Jason Weston. Learning to
speak and act in a fantasy text adventure game. CoRR, abs/1903.03094, 2019.

[70] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with
contrastive predictive coding. CoRR, abs/1807.03748, 2018.

[71] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with
double q-learning. In AAAI, 2015.

[72] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems 30, pages 5998–6008.
Curran Associates, Inc., 2017.

65

[73] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. Deep Graph Infomax. In International Conference on Learning
Representations, 2019.

[74] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning,
8(3):279–292, May 1992.

[75] Jason Weston, Antoine Bordes, Sumit Chopra, and Tomas Mikolov. Towards ai-
complete question answering: A set of prerequisite toy tasks. CoRR, abs/1502.05698,
2015.

[76] Zhilin Yang, Jake Zhao, Bhuwan Dhingra, Kaiming He, William W Cohen, Russ R
Salakhutdinov, and Yann LeCun. Glomo: Unsupervised learning of transferable
relational graphs. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems
31, pages 8950–8961. Curran Associates, Inc., 2018.

[77] Xusen Yin and Jonathan May. Comprehensible context-driven text game playing. In
2019 IEEE Conference on Games (CoG), pages 1–8. IEEE, 2019.

[78] Xusen Yin and Jonathan May. Learn how to cook a new recipe in a new house: Using
map familiarization, curriculum learning, and bandit feedback to learn families of
text-based adventure games. CoRR, abs/1908.04777, 2019.

[79] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad
Norouzi, and Quoc V. Le. Qanet: Combining local convolution with global self-attention
for reading comprehension. In International Conference on Learning Representations,
2018.

[80] Xingdi Yuan, Marc-Alexandre Côté, Jie Fu, Zhouhan Lin, Christopher Pal, Yoshua
Bengio, and Adam Trischler. Interactive language learning by question answering.
2019.

[81] Xingdi Yuan, Marc-Alexandre Côté, Alessandro Sordoni, Romain Laroche, Remi
Tachet des Combes, Matthew Hausknecht, and Adam Trischler. Counting to explore
and generalize in text-based games. arXiv preprint arXiv:1806.11525, 2018.

[82] Tom Zahavy, Matan Haroush, Nadav Merlis, Daniel J Mankowitz, and Shie Mannor.
Learn what not to learn: Action elimination with deep reinforcement learning. In
Advances in Neural Information Processing Systems, pages 3562–3573, 2018.

66

[83] Mikulás Zelinka. Baselines for reinforcement learning in text games. 2018 IEEE 30th
International Conference on Tools with Artificial Intelligence (ICTAI), pages 320–327,
2018.

[84] Mikulas Zelinka, Xingdi Yuan, Marc-Alexandre Cote, Romain Laroche, and Adam
Trischler. Building dynamic knowledge graphs from text-based games. arXiv preprint
arXiv:1910.09532, 2019.

67

	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Contributions
	Thesis Organization

	Background and Related Work
	A brief review of Reinforcement Learning (RL)
	Markov Decision Processes and RL
	Value functions
	How to learn Q-values?

	Deep Reinforcement Learning
	Deep Q-Networks (DQN)
	Double Deep Q-Networks
	Prioritized Experience Replay

	Text-based Games
	Formats of Text-based Games
	What makes Text-based Games Challenging?
	TextWorld Learning Environment

	Problem Setting
	Playing Text-based Games
	The FTWP dataset
	Graphs and Text-based Games
	Extracting Ground-truth Graphs from FTWP Dataset

	Graph Representation Learning
	Relational Graph Convolutional Networks
	Dynamic graph extraction

	Graph-Aided Transformer Agent (GATA)
	Belief Graph
	Graph Updater
	Graph Encoder
	Text Encoder
	Representation Aggregator

	Training the Graph Updater
	Observation Generation
	Contrastive Observation Classification (COC)

	Action Selector
	Graph Encoder
	Text Encoder
	Representation Aggregator
	Scorer

	Training the Action Selector
	Variants Using Ground-Truth Graphs
	GATA-GTP: Pre-training a discrete graph updater using ground-truth graphs
	GATA-GTF: Training the action selector using ground-truth graphs

	Experiments and Analyses
	Experimental Setup and Baselines
	Additional Results
	Performance on Graph Encoder Pre-training Tasks
	Training Scores
	Test Results
	Probing Task and Belief Graph Visualization

	Conclusion
	Future Directions

	References

