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Partially observable Markov decision processes (POMDPs) provide a natural and

principled framework to model a wide range of sequential decision making problems

under uncertainty. To date, the use of POMDPs in real-world problems has been limited

by the poor scalability of existing solution algorithms, which can only solve problems

with up to ten thousand states. In fact, the complexity of finding an optimal policy

for a finite-horizon discrete POMDP is PSPACE-complete. In practice, two important

sources of intractability plague most solution algorithms: large policy spaces and large

state spaces.

On the other hand, for many real-world POMDPs it is possible to define effective poli-

cies with simple rules of thumb. This suggests that we may be able to find small policies

that are near optimal. This thesis first presents a Bounded Policy Iteration (BPI) al-

gorithm to robustly find a good policy represented by a small finite state controller.

Real-world POMDPs also tend to exhibit structural properties that can be exploited

to mitigate the effect of large state spaces. To that effect, a value-directed compres-

sion (VDC) technique is also presented to reduce POMDP models to lower dimensional

representations.

In practice, it is critical to simultaneously mitigate the impact of complex policy

representations and large state spaces. Hence, this thesis describes three approaches that

combine techniques capable of dealing with each source of intractability: VDC with BPI,
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VDC with Perseus (a randomized point-based value iteration algorithm by Spaan and

Vlassis [136]), and state abstraction with Perseus. The scalability of those approaches

is demonstrated on two problems with more than 33 million states: synthetic network

management and a real-world system designed to assist elderly persons with cognitive

deficiencies to carry out simple daily tasks such as hand-washing. This represents an

important step towards the deployment of POMDP techniques in ever larger, real-world,

sequential decision making problems.

iii



Acknowledgements

I would like to acknowledge the contributions of many people who have helped me directly

and indirectly in the accomplishment of this work. First and foremost, I am indebted to

my supervisor and mentor, Craig Boutilier, who has played a key role by his continuous

support, his invaluable guidance and his insightful advice for my research as well as my

career.

I am also grateful to Jesse Hoey for carefully reading and commenting an early draft

of this thesis. I also thank my external examiner, Michael Littman and the members of

my thesis committee, Richard Zemel, Fahiem Bacchus and Christina Christara for their

helpful comments. More generally, I thank the department of Computer Science at the

University of Toronto for the stimulating environment to learn and carry out research.

Finally, my special thanks go to my wife, Ching-Huei Wu, for her patience and con-

tinuous support. I also thank my parents, Francine and Real Poupart, for their encour-

agement and moral support as well as Heather Watson and Peter Josic for providing me

with a quiet and stable environment in their home.

iv



Contents

1 Introduction 1

1.1 Decision-Theoretic Planning . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Partially Observable Markov Decision Processes 7

2.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Related Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Classic Solution Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Sondik’s One-Pass Algorithm and Monahan’s Algorithm . . . . . 19

2.2.2 Linear Support and Witness Algorithms . . . . . . . . . . . . . . 23

2.2.3 Incremental Pruning . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.4 Hansen’s Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Performance Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Policy Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Policy Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Compact Value Function and Policy Representations 32

3.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Parsimonious Sets of α-vectors . . . . . . . . . . . . . . . . . . . . 33

3.1.2 Grid-based Representations . . . . . . . . . . . . . . . . . . . . . 35

3.1.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.4 Bounded Histories . . . . . . . . . . . . . . . . . . . . . . . . . . 36

v



3.2 Bounded Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Policy Iteration for Stochastic Controllers . . . . . . . . . . . . . 38

3.2.2 Policy Iteration for Bounded Controllers . . . . . . . . . . . . . . 42

3.2.3 Local Optima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.4 Improvement Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Local Optima Robustness . . . . . . . . . . . . . . . . . . . . . . 52

3.3.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Compact State Space and Belief Space Representations 64

4.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.1 Factored POMDPs . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.2 State Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.3 Linear Change of Basis . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.4 Predictive Representations . . . . . . . . . . . . . . . . . . . . . . 70

4.1.5 Factored Belief States . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.6 Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Value-Directed Compression . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 Lossless Compressions . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.2 Lossy Compressions . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Algorithms for Large POMDPs 93

5.1 Compressed Bounded Policy Iteration . . . . . . . . . . . . . . . . . . . . 94

5.1.1 Nonnegativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.3 Iterative Policy Evaluation . . . . . . . . . . . . . . . . . . . . . . 95

5.1.4 Constraint Generation . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Fast Point-Based Value Iteration . . . . . . . . . . . . . . . . . . . . . . 98

5.2.1 Compressed Point-Based Value Iteration . . . . . . . . . . . . . . 98

5.2.2 Symbolic Point-Based Value Iteration . . . . . . . . . . . . . . . . 100

vi



5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.1 Network Management Problems . . . . . . . . . . . . . . . . . . . 102

5.3.2 Task Assistance for Persons with Dementia . . . . . . . . . . . . . 109

6 Conclusion 119

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A Problem Descriptions 123

A.1 Preference Elicitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.2 Heaven and Hell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.3 Coffee Delivery Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.4 Spoken-Dialog System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Bibliography 130

vii



List of Tables

2.1 Value iteration algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Sondik’s One-Pass DP backup. . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 LP-dominance test: vector α is dominated by ℵ − {α} when δ ≥ 0. . . . 22

2.4 Monahan’s DP backup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Incremental pruning DP backup. . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Dual LP: convex combination
∑

i ciαni
dominates αn when δ ≥ 0. . . . . 41

3.2 a) Canonical block matrix form of the LP in Table 2.3. b) Canonical block

matrix form of the LP in Table 3.1. . . . . . . . . . . . . . . . . . . . . . 41

3.3 Naive LP to find a convex combination of new nodes that dominate n. . 43

3.4 Efficient LP to find a convex combination of new nodes that dominate n. 44

3.5 Efficient LP to find a tangent witness point. This is the dual of the LP in

Table 3.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 LP to maximize the expected improvement of the occupancy distribution

of a node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.7 LP to maximize the expected improvement of the occupancy distribution

of a node while allowing a slight decrease in value of at most ε at some

belief states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.8 Bounded Policy Iteration algorithm. . . . . . . . . . . . . . . . . . . . . . 51

3.9 Problem properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.10 Results on benchmark problems. . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Krylov iteration for lossless compressions. . . . . . . . . . . . . . . . . . . 78

4.2 Interpretation of F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Optimization program for linear lossy compressions. . . . . . . . . . . . . 81

4.4 Alternating optimization for lossy compressions. . . . . . . . . . . . . . . 83

4.5 Truncated Krylov iteration for lossy compressions. . . . . . . . . . . . . . 84

viii



4.6 Problem sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.7 Dimensionality of the best lossless compression versus original state space. 89

5.1 LP constraint generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Fast point-based value iteration. . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Problem sizes for networks of 16, 19, 22 and 25 machines. . . . . . . . . . 102

5.4 Results for the 3legs networks. “Fail” indicates that the algorithm ran out

of memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Results for the cycle networks. “Fail” indicates that the algorithm ran out

of memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6 Results for the assistive technology task. . . . . . . . . . . . . . . . . . . 117

A.1 Utility assigned by each preference function pfi to each outcome oj. . . . 124

A.2 Transition function for customer utterances. Here, x1, x2 and x3 are vari-

ables representing possible cities. . . . . . . . . . . . . . . . . . . . . . . 128

ix



List of Figures

2.1 Tree representation of a three-step conditional plan. . . . . . . . . . . . . 11

2.2 Recursive definition of a conditional plan. . . . . . . . . . . . . . . . . . . 12

2.3 Finite state controller for a simple POMDP with two actions and two

observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Geometric View of Value Function. . . . . . . . . . . . . . . . . . . . . . 15

2.5 POMDP represented as an influence diagram. . . . . . . . . . . . . . . . 18

2.6 Example of a support region. . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 a) Value function V and the backed up value function V ′ obtained by DP;

b) original controller (n1 and n2) with nodes added (n3 and n4) by DP;

c) new controller once pointwise dominated node n1 is removed and its

inward arcs a, b, c are redirected to n4. . . . . . . . . . . . . . . . . . . . 39

3.2 Example of a convex combination (dotted line) of n3 and n4 that dominates

n2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 BPI local optimum: current value function is tangent to the backed up

value function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 BPI can improve vector α by an amount δ to obtain vector α′. . . . . . . 45

3.5 Example to escape a local optimum. . . . . . . . . . . . . . . . . . . . . . 47

3.6 Preference elicitation: expected reward (averaged over 20 trials) earned by

the controllers found by BPI with respect to time and number of nodes. . 54

3.7 Heaven and hell: expected reward (averaged over 20 trials) earned by the

controllers found by BPI with respect to time and number of nodes. . . . 55

3.8 Tiger-grid: expected reward (averaged over 20 trials) earned by the con-

trollers found by BPI with respect to time and number of nodes. . . . . . 58

3.9 Hallway: expected reward (averaged over 20 trials) earned by the con-

trollers found by BPI with respect to time and number of nodes. . . . . . 59

x



3.10 Hallway2: expected reward (averaged over 20 trials) earned by the con-

trollers found by BPI with respect to time and number of nodes. . . . . . 60

3.11 Tag-avoid: expected reward (averaged over 20 trials) earned by the con-

trollers found by BPI with respect to time and number of nodes. . . . . . 61

4.1 Dynamic Bayesian network. . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Additive rewards: R(X1, X2, A1, A2) = U1(X1, X2, A1) + U2(X2, A1, A2). . 67

4.3 Mixture distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Decision tree and algebraic decision diagram to compactly represent the

utility table of U1 in Figure 4.2. . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Functional flow of a POMDP (dotted arrows) and a compressed POMDP

(solid arrows). a) next belief state is accurately predicted. b) next com-

pressed belief state is accurately predicted. . . . . . . . . . . . . . . . . . 74

4.6 Network configurations: a) cycle, b) 3legs. . . . . . . . . . . . . . . . . . 89

4.7 Coffee problem: value of the policies resulting from lossy compressions

(solid line) versus the range of best values achieved without compression

(dotted lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.8 Spoken dialog system: value of the policies resulting from lossy compres-

sions (solid line) versus the range of best values achieved without com-

pression (dotted lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.9 Cycle network of 7 machines: value of the policies resulting from lossy

compressions (solid line) versus the range of best values achieved without

compression (dotted lines). . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.10 3legs network of 7 machines: value of the policies resulting from lossy

compressions (solid line) versus the range of best values achieved without

compression (dotted lines). . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1 Expected reward of policies found by compressed BPI for 3legs networks

of 16, 19, 22 and 25 machines. . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Expected reward of policies found by compressed BPI for cycle networks

of 16, 19, 22 and 25 machines. . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 Running time of BPI on compressed versions of a cycle network of 25

machines as we vary the number of basis functions and the number of nodes.105

5.4 Retrofitted bathroom at the Sunnybrook hospital in Toronto for the COACH

project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xi



5.5 Possible sequences of subtasks to complete the handwashing task. . . . . 112

5.6 Dynamic Bayesian network structure of the transition function for the

“turn water on” prompt. A partial CPT represented as a decision tree is

given for WF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.1 Heaven and hell problem with left and right mazes. . . . . . . . . . . . . 125

A.2 Transition dynamics for the coffee delivery problem. Variables remain

unchanged unless a conditional probability table is specified. . . . . . . . 126

A.3 Reward function for the coffee delivery problem. . . . . . . . . . . . . . . 126

A.4 Dynamic Bayesian network of the spoken-dialog system. . . . . . . . . . 127

A.5 Finite-state automaton describing the evolution of the dialog status: de-

parture city (a) and arrival city (b). . . . . . . . . . . . . . . . . . . . . . 129

xii



Chapter 1

Introduction

The design of automated systems capable of accomplishing complicated tasks is at the

heart of computer science. Such systems can be viewed abstractly as taking inputs

from the environment and producing outputs toward the realization of some goals. An

important problem is the design of good control policies that produce suitable outputs

based on the inputs received. For instance, a thermostat is an automated system that

regulates the temperature of a room by controlling a heating device based on information

provided by heat sensors. For such a simple system, a reactive control policy can maintain

the temperature more or less constant by turning on and off the heating device when the

temperature is below or above some target.

For more complicated systems, effective control policies are often much harder to

design. Consider a system designed to assist elderly persons suffering from memory

deficiencies. Memory loss can severely hamper the ability of a person to accomplish

simple activities of daily living such as dressing, toileting, eating, taking medication,

etc. An automated system could help a person regain some autonomy by guiding a

person with some audio-prompts that remind the person of the next steps in the course

of an activity. Suppose the system is equipped with sensors (e.g., video-cameras and

microphones) to monitor the user, and actuators (e.g., speakers) to communicate with

the user. The design of a suitable prompting strategy is far from obvious.

In particular, the information provided by the sensors tends to be inaccurate due to

the noisy nature of image and sound processing. Furthermore, that information may

be incomplete due to the limited scope of the sensors. For example, although cameras

and microphones allow the system to observe movements and utterances made by a

user, they do not reveal the intentions nor the state of mind of people. Ideally, if the

1



Chapter 1. Introduction 2

system could read minds, the design of effective prompting strategies could be eased

significantly. Instead, the system must infer the state of the user based on the limited

and noisy information provided by sensors.

The effects of actuators may also be quite uncertain. For example, users may not

always follow the prompts depending on their mood, their physical or mental weariness,

etc. The system should then have the ability to take into account this uncertainty in

its strategy. When uncertainty in the action effects is due to unknown features of the

world, it may be possible to reduce that uncertainty by designing strategies that learn

and adapt to the environment as they proceed. For instance, each user may exhibit a

different personality for which different prompting strategies are better suited. Initially

the system may not know the personality of a user; however, as interaction proceeds, it

should be able to learn about the user and tailor its prompting strategy accordingly.

This also suggests that actions may have long term effects, which further complicates

the design of control policies. For instance, in order to learn about a user, the system may

sometimes give a prompt that does not help achieve immediate progress, but that allows

it to gain useful information by observing how the user reacts. This information can then

be used to better tailor the policy in the future. Hence, the control policy of automated

systems should also be able to reason about the sequentiality of actions, including their

short-term and long-term effects, by balancing the exploitation of available information

for short-term progress with the exploration of new information for long-term progress.

The design of control policies is also complicated by the fact that automated systems

often pursue multiple (possibly conflicting) objectives. The primary goal of an automated

assistant is to help the user to complete tasks as often and as quickly as possible. The

system may then be tempted to prompt at each step regardless of the user’s state just

to make sure that she stays on course. However, such a strategy may irritate the user.

Thus, we would like a system that effectively guides a user while prompting only when

necessary to retain as much user autonomy as possible. In general, control policies should

be able to tradeoff conflicting objectives based on their relative importance.

1.1 Decision-Theoretic Planning

Partially observable Markov decision processes (POMDPs) provide a natural framework

for modeling complex control problems with partial observability, uncertain action effects,

incomplete knowledge of the environment dynamics and multiple interacting objectives.
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Uncertainty in the action effects and the state of the world are modeled probabilistically.

Objectives are encoded with utility functions whose magnitude is indicative of their

relative importance. Following the principle of maximum expected utility, it is possible

to optimize a control strategy to achieve the desired objectives. Furthermore, optimal

policies naturally learn about unknown components of the environment dynamics by

optimizing the combined value of the information gained by exploration with the utility

of immediate action effects.

POMDPs were initially formalized by the control theory and operations research com-

munities [32, 2, 81, 134, 90, 26, 74] to optimally control stochastic dynamical systems.

More recently, the artificial intelligence community also considered POMDPs for plan-

ning under uncertainty [22, 55]. To date, a wide range of sequential decision problems

such as robot navigation [67, 21, 140, 91], preference elicitation [10], stochastic resource

allocation [87, 80], maintenance scheduling [116], spoken-dialog systems [98, 145, 144]

and many others have been modeled using POMDPs.

Despite the considerable expressivity of POMDPs, their use in real-world systems re-

mains limited due to the intractability of the solution algorithms for finding good control

policies. In fact, the problem of computing an optimal policy is PSPACE-complete [99]

and an ε-optimal policy is NP-hard [75] for discrete POMDPs. In practice, the hardness

of POMDPs arises from the complexity of policy spaces and the potentially large number

of states.

Nervertheless, real-world POMDPs tend to exhibit a significant amount of structure,

which can often be exploited to improve the scalability of solution algorithms. In par-

ticular, many POMDPs have simple policies of high quality. Hence, it is often possible

to quickly find those policies by restricting the search to some class of compactly repre-

sentable policies. In addition, when states correspond to the joint instantiation of some

random variables (features), it is often possible to exploit various forms of probabilistic

independence (e.g., conditional independence and context-specific independence), decom-

posability (e.g., additive separability) and sparsity in the POMDP dynamics to mitigate

the impact of large state spaces. Hence, this thesis focuses on solution algorithms for

discrete POMDPs that exploit problem-specific structure to achieve better scalability.
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1.2 Contributions

To date, several algorithms have been proposed to search in restricted classes of policies,

thereby circumventing the complexity of policy spaces. When there is no expert knowl-

edge available to determine a suitable class, a popular approach consists of searching

for the best policy represented by a finite state controller of some limited size. Policy

iteration (PI) [44, 45], gradient ascent (GA) [88, 1], branch and bound (B&B) [89] and

stochastic local search (SLS) [20] can be used to perform this search; however, the size

of the controllers constructed by PI tends to grow exponentially, GA may get trapped

in local optima, and the running times of B&B and SLS tend to scale poorly. Chapter 3

describes a new anytime algorithm called bounded policy iteration (BPI) that combines

some of the advantages of GA (efficiency) and PI (less vulnerability to local optima).

Beyond the contribution of a new robust scalable algorithm, useful insights are provided

concerning some of the limitations of PI and GA. In particular, an analysis of the local

optima that may trap GA is carried out. More precisely, sufficient tangency conditions

characterizing those local optima are described. We also explain how to extend PI to

stochastic controllers (previously limited to deterministic controllers), which allows one

to find smaller controllers, yet with higher value, than PI with deterministic controllers.

Chapter 4 describes a new value-directed compression (VDC) technique to circumvent

the complexity of large state spaces. The idea is to compress POMDP dynamics to a

more compact representation by retaining only the state information necessary to the

decision process. Since an optimal policy can be found as long as the utility of each

policy can be accurately estimated, state information that doesn’t help in the evalua-

tion of policies is discarded. General sufficient conditions are derived to ensure a lossless

compression. When considering the class of linear compressions, interesting mathemat-

ical properties of those sufficient conditions are highlighted and used to derive a simple

Krylov iteration algorithm that finds the best linear lossless compression. In the event

where the best lossless compression doesn’t yield a small enough representation, two

other algorithms are proposed to find good lossy linear compressions. Compared to

other techniques that overcome the complexity of large state spaces, linear VDC has

the advantage that the resulting compressed POMDPs can be solved (more or less) di-

rectly by any existing POMDP algorithm. Similarities and differences between several

related compression/model minimization techniques are also discussed. Very briefly (see

Section 4.2.3 for more details), it turns out that VDC subsumes state aggregation [14],
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computes a stochastic bi-simulation [38], produces compressed POMDPs that are pre-

dictive state representations [71], but exploits different structure than compressions by

exponential principal component analysis [119].

Currently, state-of-the-art algorithms that do not exploit any problem structure suffer

from both sources of intractability (i.e., complex policy space and large state space) and

therefore can only solve toy POMDPs with roughly 1000 states and optimal policy graphs

of roughly 1000 nodes. Algorithms that restrict their search to classes of compactly rep-

resentable policies can tackle slightly more difficult problems, but are still plagued by

the complexity of large state spaces. Similarly, algorithms that exploit problem structure

to mitigate the impact of large state spaces, but do not tackle the complexity of policy

space, cannot solve problems significantly larger. In order to tackle large scale POMDPs,

it is necessary to simultaneously tackle both sources of intractability. Hence, the most

significant contribution of this thesis is the description in Chapter 5 of three new algo-

rithms that each combine existing ideas to overcome both sources of intractability. In

particular, a compressed version of BPI is described by integrating BPI with VDC. Com-

pressed and symbolic versions of the point-based value iteration algorithm called Perseus

(by Spaan and Vlassis [142, 137, 136]) are also described by integrating Perseus with

VDC and a popular symbolic representation called algebraic decision diagrams (ADDs).

The scalability of those algorithms is demonstrated on synthetic network management

problems and an assistive technology task of up to 33 million states with unknown opti-

mal policies that are believed to be complex. Finally, the last contribution of this thesis

is the description of a POMDP model for an automated system designed to assist persons

with dementia.

1.3 Outline

The thesis is structured as follows. Chapter 2 introduces the POMDP framework and

explains in detail its advantages for formalizing planning under uncertainty. Related

decision-theoretic models and classical planning approaches are compared to help situ-

ate POMDPs in the literature. Then, several classic solution algorithms are reviewed

to better understand the two sources of intractability that pervasively plague POMDP

algorithms.

Chapter 3 focuses on algorithms that tackle the complexity of policy space. First, a

literature review of existing algorithms is presented, noting that the complexity of policy
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spaces can often be circumvented by restricting the search for a good policy to compactly

representable policies and by tailoring policies to the reachable belief region. Then, the

bounded policy iteration algorithm is proposed as a robust and efficient alternative to

existing algorithms for computing good finite state controllers. The robustness of BPI to

local optima is verified on some problems known to possess important local optima and

its scalability is compared to other algorithms on a suite of benchmark problems.

Chapter 4 focuses on algorithms that tackle the complexity arising from large state

spaces. A literature review of the various types of problem structure and the algorithms

that exploit them is presented. Then, a new value-directed compression technique is

presented. It simultaneously exploits additive separability, conditional independence and

context-specific independence to generate a compressed model solvable by most POMDP

algorithms. The effectiveness of lossless and lossy compressions are verified on several

factored POMDPs.

Chapter 5 combines several algorithms of Chapters 3 and 4 to simultaneously tackle

both sources of intractability. A compressed version of bounded policy iteration is de-

scribed by combining BPI with VDC. Also, compressed and symbolic versions of Perseus

are described by combining Perseus with VDC and ADDs. The scalability of those algo-

rithms is tested on synthetic network management problems and an assistive technology

task with up to 33 million states. The assistive technology task consists of an automated

system designed to help persons with dementia to wash their hands.

Finally, Chapter 6 concludes by summarizing the thesis and presenting some open

problems for future work.



Chapter 2

Partially Observable Markov

Decision Processes

Partially observable Markov decision processes (POMDPs) were first introduced in the

control theory and operations research communities [32, 2, 134, 90, 26, 74] as a framework

to model stochastic dynamical systems and to make optimal decisions. This framework

was later considered by the artificial intelligence community as a principled approach to

planning under uncertainty [22, 55]. Compared to other methods, POMDPs have the

advantage of a well-founded theory. They can be viewed as a special (continuous) case of

the well-known fully observable Markov decision process (MDP) model, which is rooted

in probability theory, decision theory and utility theory.

2.1 Model Description

POMDPs provide a rich framework to model uncertainty in a planning problem. They

allow action effects and state observations to be modeled probabilistically. They also

allow implicit learning of the model components when they are not completely known [34].

2.1.1 Components

Formally, a POMDP is specified by a tuple 〈S,A,Z, T, Z, R, h, γ〉. We now describe each

one of those 8 components. In practice, each component must be specified by a domain

expert or learned from data.

7
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State space S

The world is modeled by a set S of distinct states. The number of states may be finite,

countably infinite or continuous. Unless otherwise stated, we will focus on discrete models

with a finite number of states.

Action space A

An agent living in this world seeks to influence its state by executing actions from the

set A. Again, A can be finite, infinite or continuous, but we will assume that it is finite

unless otherwise stated. Roughly speaking, the agent’s goal is to choose actions that will

influence the world in such a way that desirable states are visited more frequently.

Transition function T

As opposed to classical planning models, POMDPs allow action effects with uncertainty

to be modeled. From the agent’s point of view, this means that the world has a certain

probability of making a transition to any state in S as a result of an action execution.

The stochastic nature of action effects is captured by the transition function T . Let

T (s, a, s′) = Pr(s′|s, a) denote the probability that the world makes a transition to state

s′ when action a is executed in state s. Note that this transition function exhibits the

Markov property, which says that the probability of transition to some state st+1 at the

next time-step t+1 depends only on the state st and the action at at the current time-step

t. It is independent of the previous states and actions.

Observation space Z

After executing an action, the agent makes an observation z ∈ Z. Observations corre-

spond to features of the world directly perceptible by an agent’s sensors. In contrast,

states correspond to all the relevant features of the world, but these may not be percep-

tible by the agent.

Observation function Z

Observations provide information about the current state of the world. More precisely,

observations are probabilistically related to states by the observation function Z. Let
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Z(a, s′, z′) = Pr(z′|a, s′) denote the probability that the agent experiences observation z ′

after executing action a and making a transition to state s′.

Note that in fully observable MDPs Z = S as the agent knows exactly the current

state. In this case the observation function corresponds to an identity function (i.e.,

Pr(z′ = s′|a, s′) = 1 and Pr(z′ 6= s′|a, s′) = 0). In partially observable MDPs, which is the

focus of this thesis, Z may differ from S. Observations provide only partial information

to the agent since the same observation may be experienced in different states.

Reward function R

The preferences of the agent are encoded in the reward function R. This function indi-

cates how much utility R(s, a) is earned by an agent when the world is in state s and

it executes some action a. The reward function is a powerful tool since it allows simple

goals as well as complex concurrent goals to be modeled. The key to modeling concurrent

goals is the use of utility theory, which provides a common scale that allows an agent to

combine multiple goals and to make rational tradeoffs with respect to those goals.

Horizon h and discount factor γ

In decision theory, the goal of an agent is to maximize the expected utility earned over

some time frame. The horizon h defines this time frame by specifying the number of time-

steps the agent must plan for. The horizon can be finite or infinite. A discount factor γ

is also used to indicate how rewards earned at different time-steps should be weighted.

In general, the more delayed a reward is, the smaller will be its weight. Therefore, γ is

a constant in [0, 1] indicating by how much a reward should be scaled down for every

time-step delay. A reward earned k steps in the future is scaled down by γk. Unless

otherwise indicated, this thesis assumes infinite horizon POMDPs with a discount factor

strictly less than 1.

Unknown parameters

The specification of a POMDP requires all of the above components. In practice, com-

ponents such as the transition, observation and reward functions are often difficult to

define accurately due to incomplete prior knowledge. Therefore, one must often resort

to learning techniques. One can either conduct offline experiments to learn the unknown

parameters in a preprocessing step, or alternatively, one can implicitly learn the unknown



Chapter 2. Partially Observable Markov Decision Processes 10

parameters while planning. The latter approach is quite interesting since the problem of

simultaneously learning and planning can be formulated as a larger POMDP, for which

all the components are known [34]. Since states are not directly observable and therefore

possibly unknown, we can augment the state space with the domain of the unknown

parameters. As an agent interacts with the world, it will make some observations that

help it estimate the state of the world as well as the unknown parameters. Hence, the

agent can learn about unknown parameters while executing a policy.

Note also that the POMDP formulation considered in this thesis assumes stationary

components. That is, S, Z, A, T , Z and R do not change over time. On the other hand,

it is possible to transform non-stationary processes into stationary ones, by including in

S, Z, A all the states, observations and actions possible at any time-step. If some states

or observations are not possible at some time-step, they will simply have zero probability

of occurring in the transition and observation functions. Similarly, if some actions are

not possible at some time-step, we simply have to encode an infinitely negative reward

to prevent an optimal agent from selecting them. When T , Z and R change over time, it

may be due to some unknown parameters of those functions. As mentioned above, one

can then augment the state space with those unknown parameters, making the process

stationary and allowing the agent to learn them while planning.

By the nature of partially observable Markov decision processes, the transition, obser-

vation and reward functions are also assumed to be Markovian, that is, they only depend

on the current state and action (not the past states and actions). When a non-Markovian

process has dependencies on the past states and actions, it is also possible to transform

it into a larger Markovian process by augmenting the state space to include all relevant

past states and actions.

Without loss of generality, the focus of this thesis will be on planning algorithms

for fully specified, stationary and Markovian processes. When some components are

unknown, non-stationary or non-Markovian, we will assume that the larger POMDP

resulting from the inclusion of all necessary parameters in the state space is used.

2.1.2 Policies

Given a tuple 〈S,A,Z, T, Z, R, h, γ〉 specifying a POMDP, what action should an agent

execute at each time-step to earn as much reward as possible over time? Let’s define

Π to be the set of all policies π (action strategies) that an agent can execute. Roughly
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Figure 2.1: Tree representation of a three-step conditional plan.

speaking, a policy is some strategy that dictates which action a to execute (at each

time-step) based on some information previously gathered. The relevant information

available to the agent consists of some belief b0 about the initial state of the world and

the history (sequence) of actions and observations experienced up to the current time-step

t (histt = 〈a0, z1, a1, z2, . . . , at−1, zt〉). Since the agent may not have complete knowledge

of the initial state of the world, we use b0 to denote a probability distribution over all

possible states that corresponds to its belief about the initial state. Hence, a policy π is

a mapping from initial beliefs and histories to actions.

Representations

For a given initial belief state b0, a finite policy π can be represented by a tree correspond-

ing to a conditional plan β. Figure 2.1 shows such a tree for a three-step conditional

plan. Intuitively, a conditional plan is defined as a mapping from histories to actions.

The execution of a conditional plan consists of the traversal of its corresponding tree

from the root to a leaf by interleaving action execution and observation gathering. For

instance, in Figure 2.1, action a1 is first executed. Suppose observation z2 is received,

then action a3 is executed. If observation z1 is received next, then action a6 is executed.

We can define recursively a k-step conditional plan βk in terms of (k − 1)-step con-

ditional plans βk−1. The idea is to define βk = 〈a, σk〉 as a tuple consisting of an action

a and an observation strategy σk such that σk : Z → Γk−1 is a mapping from observa-

tions to conditional plans of length k − 1 (Γk−1 is the set of all (k − 1)-step conditional

plans). Figure 2.2 shows the recursive definition of the conditional plan in Figure 2.1.
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Figure 2.2: Recursive definition of a conditional plan.

Note that one-step conditional plans correspond to an action only (i.e., Γ1 = A) since an

observation strategy is unnecessary.

Unfortunately, as the number of steps increases, the number of histories grows expo-

nentially and it is infeasible to represent mappings over all such histories. Furthermore,

infinite-horizon problems require mappings over arbitrarily long histories, which limits

the use of conditional plans to problems with a short horizon. Note, however, that it

is possible to have mappings over infinite cyclic histories. Such mappings can be rep-

resented by a finite state controller [44], which is essentially a set of cyclic conditional

plans. In Figure 2.3, each node is the root of a cyclic conditional plan that is executed in

the same way as the finite conditional plans previously described. For example, suppose

that execution starts in the top node of the controller in Figure 2.3, then action a1 is

executed. Then, if observation z2 is made, the middle node is reached and action a2 is

executed. If observation z1 is received next, then the bottom left node is reached and ac-

tion a1 is executed. Execution continues by following edges labeled with the observations

made and executing the actions of the nodes traversed.

Alternatively, it is possible to summarize histories by a sufficient statistic that encodes

all the relevant information from previous actions and observations for planning purposes.

Recall that the transition, reward and observation functions exhibit the Markov property,

which means that the outcome of future states, rewards and observations depend only

on the current state and action. If the agent knew the current state of the world, then it

would have all the desired information to make an optimal action choice. Thus, histories

of past actions and observations are only relevant to the extent that they provide infor-
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mation about the current state of the world. Let bt be the beliefs of the agent about the

state of the world at time-step t, which we represent by a probability distribution over

the state space S. Using Bayes theorem, one can compute the current belief state bt from

the previous belief state bt−1, the previous action at−1 and the current observation zt:

bt(s
′) = C

∑

s∈S

bt−1(s) Pr(s′|s, at−1) Pr(zt|at−1, s
′) (2.1)

= C
∑

s∈S

bt−1(s)T (s, at, s
′)Z(at−1, s

′, zt) . (2.2)

Here, b(s) denotes the probability of s according to the distribution of belief state

b and C denotes a normalizing constant. Hence, belief state bt is a sufficient statis-

tic that captures the relevant information contained in the history of past actions and

observations.

To summarize, we can represent a policy π as a mapping from initial belief states

b0 and histories histt to actions at, or as a mapping from belief states bt to actions

at. The former is problematic because of the exponentially growing number of histories

with respect to the horizon and the latter is problematic because the belief space is

an |S − 1|-dimensional continuous space. Fortunately, a key result by Smallwood and

Sondik [132, 134] allows us to circumvent the continuous nature of belief space. In the

following section, we first introduce value functions, and then discuss Sondik’s solution.

Evaluation

Given the set of all policies Π, we need a mechanism to evaluate and compare policies.

Roughly speaking, the goal of an agent is to maximize the amount of reward earned
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over time. This loosely defined criterion can be formalized in many ways [69]: one

may wish to maximize total (accumulated) or average reward, expected or worst-case

reward, discounted or undiscounted reward. Unless otherwise stated, this thesis assumes

an expected total discounted reward criterion, since it is by far the most popular in the

literature. Mathematically, we define the value V π(b0) of executing some policy π starting

at belief state b0 to be the expected sum of the discounted rewards earned at each time-

step:

V π(b0) =
h

∑

t=0

γt
∑

s∈S

bt(s)R(s, π(bt)) . (2.3)

Here, bt(s) denotes the probability of s according to belief state bt and π(bt) denotes the

action prescribed by policy π at belief state bt.

Using value functions V , we are now in a position to order policies. A decision

theoretic agent prefers π to π′ when V π(b) ≥ V π′
(b) for all belief states b. This preference

ordering is a partial order because there are pairs of policies for which neither policy has

a value function greater than the other one for all belief states. On the other hand, there

always exists an optimal policy π∗ such that its value function V π∗
dominates all other

policies (V π∗
(b) ≥ V π(b) ∀π, b). This fact follows from Bellman’s equation, which will be

introduced in Section 2.2.

As with policies, representing a value function can be problematic because its do-

main is an (|S| − 1)-dimensional continuous space corresponding to the belief space.

Fortunately, a key result by Smallwood and Sondik [132, 134] shows that optimal value

functions for finite-horizon POMDPs are piecewise-linear and convex (PWLC). The idea

is that at any point in time during the execution of a policy, the actions prescribed for

the remaining steps form a conditional plan. The value function of a conditional plan is

constant for any world state. Since belief states represent probability distributions over

the set of world states, the value function of a conditional plan at any belief state b is

simply the weighted average (according to b) of the value at each world state. Thus, the

value function V β(b) of a conditional plan β is linear with respect to b. This means that

V β(b) can be represented by a vector αβ of size |S| such that V β(b) =
∑

s∈S b(s)αβ(s).1

For a finite horizon h, an optimal policy πh consists of the best conditional plans

for each initial belief state. More precisely, the best conditional plan β∗ for some belief

state b is the one that yields the highest value: β∗ = argmaxβ V β(b). Although there

1The vector αβ actually lies in an |S| − 1 dimensional space.
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are uncountably many belief states, the set of h-step conditional plans Γh is finite and

therefore an h-step optimal value function can be represented by a finite collection of α-

vectors. For infinite horizon problems, the optimal value function may require an infinite

number of α-vectors.

Figure 2.4 shows an optimal value function for a simple two-state POMDP. The

horizontal axis represents belief space and the vertical axis indicates the expected total

reward. Assuming the two world states are s and s̄, then a belief state is completely

determined by the probability of s. Therefore, the horizontal axis represents a continuum

of belief states determined by the probability b(s). Each line in the graph is an α-vector

which corresponds to the value function of a conditional plan β. The upper surface of

those α-vectors is a piecewise-linear and convex (PWLC) function corresponding to the

optimal value function V ∗(b) = maxβ V β(b).

2.1.3 Related Models

Before discussing solution algorithms that compute optimal policies for POMDPs, it is

good to take a step back in order to have a broader view. Several other models are closely

related to POMDPs. They usually differ by a few assumptions regarding the information

available or the type of planning problems to which they cater. Although those related

models are not our focus, outlining their differences with respect to POMDPs helps to

characterize and situate POMDPs in this broader context. Furthermore, as we will see
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later, several solution algorithms for POMDPs are borrowed from or inspired by the

solution algorithms for those related models.

Classical planning

Classical planning has traditionally adopted stringent certainty assumptions about the

planner’s knowledge of the world. More precisely, action effects are assumed to be deter-

ministic and the current state of the world is assumed fully observable.2 Furthermore,

the goal of the planning agent is usually to reach some state within some set of desirable

states as opposed to accumulating rewards for POMDPs. Also, instead of using a horizon

to define the length of a plan, termination of the plan is assumed when a goal state is

reached.

Classical planning problems can be modeled using POMDPs since deterministic tran-

sition functions are a special case of stochastic transition functions and goal states can

be modeled by a reward function that assigns zero reward to those desired states and

negative rewards to all other states. One can also simulate plan termination in an infinite-

horizon POMDP by designing “absorbing” goal states. A state is absorbing when there

is no possible transition out of this state.

Several extensions to classical planning have been proposed to allow uncertainty in

action effects and partial observability of the state space. One broad class of exten-

sions has lead to probabilistic conformant planners (BURIDAN [64, 65], UDTPOP [103],

MAXPLAN [78], CPplan [51, 52], etc.), which model uncertainty in the initial state and

action effects with probabilities, but do not make use of any observations. The resulting

plan is a sequence of actions (as opposed to a “tree” of actions conditioned on obser-

vations for POMDPs) that will reach a goal state with probability greater than some

predetermined threshold. A conformant plan succeeds (with high probability) regardless

of the uncertainty, but may be of significantly lower quality since it ignores information

gathered through observations.

A second class of extensions has lead to probabilistic contingent planners (C-BURI-

DAN [33], DTPOP [103], MAHINUR [96, 97], PGRAPHPLAN/TGRAPHPLAN [9],

C-MAXPLAN [79], ZANDER [79, 77], etc.), which condition the choice of actions on

observations. Both POMDPs and probabilistic contingent planning allow the encoding

of uncertainty in states, actions effects and observations using probabilities. The main

2Although only the initial state of the world needs to be observable.
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difference is the use of goal states (contingent planning) versus rewards (POMDPs);

however, this is just a formulation difference since goal-oriented planning problems can

always be transformed into equivalent reward-oriented planning problems and vice-versa.

The goal-to-reward conversion was discussed earlier and the reward-to-goal conversion

was established in [29]. Intuitively, by appropriately rescaling rewards between 0 and 1

and creating absorbing goal and sink states, the problem of maximizing total discounted

rewards can always be transformed into an equivalent problem of maximizing the prob-

ability of goal achievement. It follows that the frameworks of probabilistic contingent

planning and POMDPs are equally expressive [77].

In another line of work, situation calculus [86, 117] (which is a first-order language to

model dynamical systems and to do classical planning) has also been extended to handle

uncertainty. Decision-theoretic [108] and probabilistic [4] extensions have been proposed

to allow stochastic actions as well as partial observability. These frameworks match the

expressiveness of POMDPs for uncertainty while using a more powerful first order logic.

POMDPs traditionally assume a propositional logic; however, several relational [39, 37]

and first-order [16, 15] extentions have been proposed for fully observable MDPs. The

remainder of this thesis will focus on propositional POMDPs.

Influence diagrams

Finite horizon POMDPs can also be viewed as special cases of influence diagrams [50].

An influence diagram is a directed acyclic graph used in decision analysis to model

the influences between different components of a decision-theoretic problem. Figure 2.5

illustrates a finite horizon POMDP modeled as an influence diagram. The graph is

composed of three types of nodes: chance nodes, decision nodes and utility nodes. Chance

nodes are random variables (e.g., state variables and observation variables), decision

nodes are variables set by a decision maker (i.e., action variables) and utility nodes are

real variables (i.e., reward variables). There are also two types of arcs: probabilistic arcs

and informational arcs. Arcs pointing into a chance node or a utility node indicate a

probabilistic dependency between a child and its parents, whereas arcs pointing into a

decision node indicate the information available to a decision maker (i.e., which nodes

are observable) when deciding how to set the value of a decision node.

One can quantify the probabilistic dependencies of a chance node or a utility node

with respect to its parents by defining a function that maps the values of parent nodes
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Figure 2.5: POMDP represented as an influence diagram.

to probability distributions over the values of the chance/utility node. In the POMDP

example, these mappings are specified by the transition, observation and reward func-

tions. Solving an influence diagram essentially consists of quantifying informational arcs

by mapping the values of observed nodes to values of decision nodes. For the POMDP

example, this is equivalent to finding a policy since decision nodes consist of actions

and observed nodes consist of previous actions and observations. Thus, most influence

diagram solution techniques (e.g., value-preserving reductions [125, 126], dynamic pro-

gramming [139], Bayesian network conversion [127], etc.) can be used directly to find

optimal POMDP policies represented as mappings from histories to actions.

In contrast with POMDPs, influence diagrams do not assume stationary state, action

and observation spaces nor stationary transition, observation and reward functions. In

other words, influence diagrams can model sequential decision making problems with

state, action, observation spaces and transition, observation, reward functions that may

be different at each time-step. Note however that this doesn’t make influence diagrams

more general than POMDPs since we can always turn a non-stationary process into a sta-

tionary one by expanding the non-stationary components with enough parameters until

they become stationary. However, in practice, dealing with non-stationary components

directly may (or may not) be advantageous. Note also that influence diagrams are typi-



Chapter 2. Partially Observable Markov Decision Processes 19

cally used only for finite horizon processes since it is not possible to represent explicitely

different state, action, observation spaces and transition, observation, reward functions

for infinitely many steps.

2.2 Classic Solution Algorithms

Over the years, many algorithms have been proposed to find optimal POMDP poli-

cies. In the 1960s, the Operations Research community developed the POMDP frame-

work which was first formalized by Drake [32]. Then, in the 1970s, the piecewise-linear

and convex properties of optimal value functions were discovered by Smallwood and

Sondik [132, 134]. This discovery enabled the formulation of several dynamic program-

ming (DP) algorithms. This section reviews some of the classic DP-based algorithms

with an emphasis on the sources of intractability that prevent them from scaling well.

For a more extensive coverage of classic algorithms, the reader is referred to the surveys

by Monahan [90], White [143] and Lovejoy [74].

2.2.1 Sondik’s One-Pass Algorithm and Monahan’s Algorithm

We first describe Sondik’s One-Pass algorithm [132, 134] and Monahan’s algorithm [90]

due to their simplicity. These algorithms essentially compute the optimal value function

at each time-step, starting from the horizon (assuming it is finite) and going backward in

time. This is achieved by a dynamic programming procedure that computes the optimal

value function V k+1 (at k + 1 stages-to-go) from the optimal value function V k (at k

stages-to-go).

Dynamic programming backup

Intuitively, V k tells us the highest expected total return that an agent can accumulate

over the remaining k stages. Thus, if we want to find the highest expected total return

for the remaining k + 1 stages (i.e., V k+1), we can decompose the problem into finding

the highest combined return of the expected reward earned at k+1 stages-to-go with the

expected total return for the remaining k stages. This idea is formalized by Bellman’s

equation:
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V k+1(b) = max
a

[ra(b) + γ
∑

z∈Z

Pr(z|a, b)V k(ba
z)] . (2.4)

Here, ra(b) =
∑

s b(s)R(a, s) is the expected reward earned for belief state b when

action a is executed. Similarly, Pr(z|a, b) =
∑

s b(s) Pr(z|a, s) corresponds to the proba-

bility of experiencing z when action a is executed in belief state b. Also, ba
z is the updated

belief state (according to Equation 2.1) after action a is executed and observation z is

experienced. In theory, we can use Bellman’s equation to compute V k+1 from V k; how-

ever, because of the continuous nature of the belief space, computing V k+1(b) for each

b is not feasible. Recall Sondik’s observation that V k+1 and V k are piecewise-linear and

convex and therefore represented by some set of α-vectors, ℵk+1 and ℵk respectively.

Each vector αβ in ℵk corresponds to some conditional plan β over k stages. Thus, by

using the recursive definition of conditional plans (Section 2.1.2), we can obtain the set

Γk+1 of all conditional plans over k + 1 stages from the set Γk of all conditional plans

over k stages:

Γk+1 = {〈a, σ〉 | a ∈ A, σ : Z → Γk} .

Similarly, we can compute the set ℵk+1 of all α-vectors as follows:

ℵk+1 = {ra + γ
∑

z∈Z

T a,zασ(z) | a ∈ A, ασ(z) ∈ ℵ
k} .

Here, ra is the |S|×1 column vector that corresponds to the reward function for action

a (i.e., ra(i) = R(a, si)). Similarly, T a,z is the |S|×|S| transition matrix corresponding to

the probability of reaching sj and observing z when a is executed in si (i.e., T a,z(i, j) =

Pr(sj|si, a) Pr(z|sj, a) = Pr(sj, z|si, a)).

Tables 2.1 and 2.2 describe value iteration with Sondik’s One-Pass algorithm to it-

eratively compute ℵk at each time-step.3 The optimal value function V k is implicitly

obtained from ℵk by selecting the best α-vector for each belief state:

V k(b) = max
α∈ℵk

b · α .

3In Table 2.1, the function DPbackup can be instantiated by Sondik’s OnePassDPbackup (Table 2.2)
as well as other algorithms that we will see shortly, such as MonahanDPbackup (Table 2.4) and Incre-

mentalPruningDPbackup (Table 2.5).
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PROCEDURE ValueIteration(horizon)

ℵ0 ← { zero vector }

for k ← 1 to horizon do

ℵk ← DPbackup(ℵk−1)

return ℵk

END PROCEDURE

Table 2.1: Value iteration algorithm.

PROCEDURE OnePassDPbackup(ℵk−1)

ℵk ← {ra + γ
∑

z∈Z T a,zασ(z) | a ∈ A, ασ(z) ∈ ℵk−1}

return ℵk

END PROCEDURE

Table 2.2: Sondik’s One-Pass DP backup.

Finite-horizon optimal policies

An optimal policy πk is also obtained by selecting at each stage the action a of the

conditional plan β = 〈a, σ〉 that maximizes expected total return for the current belief

state b:

πk(b) = a such that b · α〈a,σ〉 ≥ b · α for all α ∈ ℵk . (2.5)

This implicit policy is essentially a mapping from belief states to actions. At each

time-step, the agent would first update its belief state according to Equation 2.1 (to reflect

the previous action executed and the observation made) and select the next action to

execute according to Equation 2.5.

Alternatively, one could select the maximizing αβ-vector for the initial belief state

and execute the corresponding conditional plan β directly. At each time-step, it suffices

to follow the edge labeled with the observation made to reach the node with the next

action to execute.



Chapter 2. Partially Observable Markov Decision Processes 22

min
{δ, b}

δ

s.t. b · (α′ − α) ≤ δ ∀α′ ∈ ℵ − {α}
∑

s b(s) = 1

b(s) ≥ 0 ∀s ∈ S

Table 2.3: LP-dominance test: vector α is dominated by ℵ − {α} when δ ≥ 0.

Pruning

Unfortunately, Sondik’s One-Pass algorithm is intractable because of the exponentially

growing number of conditional plans. A quick analysis of the algorithm reveals that

|Γk+1| = |A||Γk||Z| .

Thus, Γk grows exponentially with the observation space and doubly exponentially

with the horizon. On the other hand, not all conditional plans in Γk are useful when

determining the optimal value function V k. Only those whose α-vector is maximal at

some belief state are really necessary. Thus, Monahan proposed to prune ℵ to its minimal

representation by removing dominated α-vectors. For example, in Figure 2.4, α2 and α4

are dominated vectors since they are below the upper surface corresponding to the optimal

value function. Consequently, one can safely remove α2 and α4 from ℵ without changing

V .

Dominated α-vectors can be detected by linear programming (LP) and sometimes

by a simpler pointwise dominance test. A vector α is pointwise dominated by α′ when

the expected total reward of α is less than or equal to α′ for every state (i.e., ∀α(s) ≤

α′(s)s ∈ S) and strictly less for some state (i.e., ∃s ∈ S α(s) < α′(s)). In Figure 2.4, α4

is pointwise dominated by α3. Note however, that α2 is not pointwise dominated by any

single vector; it is dominated by a combination of vectors of the upper surface. This is

detectable by an LP-dominance test (Table 2.3), which verifies that for all belief states

the expected total return of α is lower than that of some other vector α′.

Table 2.4 describes Monahan’s version of a DP backup, which consists of the one-

pass DP backup with a pruning step to reduce ℵk to its minimal representation. More

specifically, prune(ℵk) removes all vectors in ℵk that are dominated by other vectors

according to the pointwise dominance test or the LP-dominance test. Pruning affects the

running time by reducing the base in the exponential complexity. In practice, this can
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PROCEDURE MonahanDPbackup(ℵk−1)

ℵk ← {ra + γ
∑

z∈Z T a,zαz|a ∈ A, (∀z ∈ Z)αz ∈ ℵk−1}

ℵk ← prune(ℵk)

return ℵk

END PROCEDURE

Table 2.4: Monahan’s DP backup.

translate in substantial time savings; however, the algorithm remains exponential in the

worst case and intractable for many problems.

Infinite-horizon ε-optimal policies

For infinite-horizon problems, an ε-optimal policy (policy whose value function differs

from the optimal infinite-horizon policy π∗ by at most ε for every belief state) can also

be found by Sondik’s and Monahan’s algorithms. The idea is to find the k-step optimal

value function V k and to execute at every time-step the action a corresponding to the

maximizing vector α〈a,σ〉 in ℵk. Let π̂k and V̂ k be the policy and value function corre-

sponding to this strategy. Here, π̂k differs from πk since at every time-step t π̂k chooses

the maximizing α-vector in ℵk instead of ℵk−t. As a consequence, π̂k is only represented

as a mapping from belief states to actions. The corresponding implicit conditional plan

is not available.

We can estimate the quality of π̂k by measuring the distance between V̂ k and the

optimal infinite-horizon value function V ∗. If the Bellman residual, that is, the L∞

difference between V k−1 and V k−2, is bounded by some δ (i.e., supb |V
k−1(b)−V k−2(b)| ≤

δ), then one can show that V̂ k and V ∗ differ by at most 2δγ/(1−γ) for every belief state

[116]. If δ is picked to be ε(1 − γ)/2γ, then sup |V̂ k(b) − V ∗(b)| ≤ ε and we say that

π̂k is ε-optimal. In practice, δ can be made arbitrarily small since the Bellman residual

decreases with each DP backup by a factor of at least γ.

2.2.2 Linear Support and Witness Algorithms

In Sondik and Monahan’s algorithms, the exponential number of α-vectors generated to

compute V k at each time-step is the main source of intractability. On the other hand, the

pruning step in Monahan’s algorithm often shrinks ℵk to a small fraction of its original



Chapter 2. Partially Observable Markov Decision Processes 24

α 1 α 2

α 3

α
2

R

b

α 1

α 2

α 3

improvement
greatesta) b)

Figure 2.6: Example of a support region.

size. This observation suggests that if we were able to generate only the necessary vectors,

many problems may have a tractable solution. In this section, we describe two algorithms

that generate only the non-dominated vectors (necessary vectors): linear support by

Cheng [26] and the Witness algorithm by Kaelbling, Littman and Cassandra [55].

Cheng’s Linear support algorithm

The name “linear support” comes from the idea that non-dominated vectors provide

support to the value function. A non-dominated vector α is optimal for some non-empty

belief space region Rα called the support region of α (i.e., ∀b ∈ R, ∀α′ 6= α, b ·α > b ·α′).

A belief state b in the support region Rα is called a “witness” of α because it can testify

that α is non-dominated since α is maximal at b. In Figure 2.6a, b is a witness of α2 in

its support region Rα2
.

Given any belief state b, it is easy to find the maximal vector α that provides support

to V k at b. It suffices to do a one-step lookahead to find the conditional plan β = 〈a, σ〉

with the best observation strategy σa(z) = argmaxβ′∈Γk−1 ba
z · αβ′ and the best action

a = argmaxa∈A b · (ra + ασa(z)). Thus, finding the set of support vectors can be achieved

by finding a set of corresponding witnesses.

It turns out that given a subset of support vectors, one can search for witness belief

states of the missing support vectors among the vertices of the support regions of the

current support vectors. To illustrate, if we add the dotted α-vector to ℵk in Figure 2.6b,

then the value-function will necessarily improve in at least one belief state that corre-

sponds to a vertex and furthermore, the belief state with greatest value improvement is
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also a vertex. In this case, it is the intersection of α1 and α2.

Cheng’s DP procedure incrementally generates the set of support vectors by searching

for the vertex that witnesses the missing support vector providing the greatest improve-

ment to the value function. Although the algorithm generates only the necessary support

vectors, it may take an exponential amount of time to find a vertex that witnesses a miss-

ing support vector since a support region may have an exponential number of vertices

and consequently the number of vertices in the current approximation can be exponential

[70].

The Witness algorithm

Designing an algorithm that finds the minimal set ℵk for V k and that runs in time

polynomial with respect to |S|, |A|, |Z|, |ℵk| and |ℵk−1| is impossible unless NP = RP

[70]. As an alternative, the Witness algorithm was designed to compute V k indirectly by

finding the Q functions of each action in polynomial time. The function Qk
a represents

the expected total return of executing action a at k stages to go followed by an optimal

policy for the remaining k − 1 stages:

Qk
a(b) = ra(b) +

∑

z∈Z

Pr(z|a, b)V k−1(ba
z) ,

V k(b) = max
a

Qk
a(b) .

The Qk
a functions are also piecewise-linear and convex, and therefore can be repre-

sented by sets ℵk
a of α-vectors. The Witness algorithm essentially constructs for each

action a the minimal sets ℵk
a and merges them to obtain ℵk. The main achievement of

this algorithm is a subroutine to construct each ℵk
a in time polynomial with respect to

|S|, |A|, |Z|, |ℵk
a| and |ℵk−1|. We can define a class of polynomially action-output bounded

POMDPs (i.e., POMDPs such that for each action a the set ℵk
a is polynomial with respect

to |S|, |A|, |Z| and |ℵk−1|), for which the Witness algorithm has a DP procedure that

runs in polynomial time. Note, however, that the number of α-vectors may still grow

exponentially with the horizon.

Given a subset of the conditional plans that support Qk
a, the Witness algorithm effi-

ciently finds a belief state that witnesses a missing support conditional plan by perturbing

the current support conditional plans. The idea is that we can verify that a conditional

plan β = 〈a, σ〉 is not optimal at some witness belief state (in β’s support region) if
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there exists a better conditional plan 〈a, σ′〉 obtained by slightly perturbing the obser-

vation strategy so that σ′ differs from σ at only one observation z. Since there are only

|Z||ℵk−1| such perturbations for a given conditional plan, the search for witnesses re-

mains polynomially bounded. As with Cheng’s algorithm, once a witness is found, the

support conditional plan that maximizes the expected total return for that witness is

easily computed by a one-step lookahead.

2.2.3 Incremental Pruning

In order to avoid generating dominated α-vectors, the linear-support and Witness algo-

rithms introduced special search procedures to determine belief states that witness the

support vectors. A drawback of those procedures is their conceptual complexity, which

makes them less attractive to implement when compared to the simple DP backup of

Sondik and Monahan’s algorithms. Zhang and Liu [146] proposed a new algorithm called

incremental pruning that achieves both simplicity and computational efficiency. This al-

gorithm performs a DP-backup in 3 steps and at each step it prunes dominated vectors.

Bellman’s equation (2.4) can be decomposed in the following 3 steps:

Qk
a,z(b) =

ra(b)

|Z|
+ γ Pr(z|b, a)V k−1(ba

z) , (2.6)

Qk
a(b) =

∑

z∈Z

Qk
a,z(b) , (2.7)

V k(b) = max
a

Qk
a(b) . (2.8)

Equation 2.6 computes Qk
a,z, which is the portion of the Qk

a function that pertains

to making observation z. More precisely, Qk
a,z is the expected total return of executing

action a and observing z, weighted by Pr(z|a, b) and assuming an optimal policy for

the remaining k − 1 stages. Equation 2.7 computes the Qk
a function as in the Witness

algorithm and Equation 2.8 computes the optimal value function V k. Each of these

functions is piecewise-linear and convex and therefore can be represented by a set of

α-vectors. The above three equations can be rewritten in terms of sets of α-vectors as

follows:



Chapter 2. Partially Observable Markov Decision Processes 27

PROCEDURE IncrementalPruningDPbackup(ℵk−1)

ℵk ← ∅

for each a ∈ A do

ℵk
a ← ∅

for each z ∈ Z do

ℵk
a,z ← prune({ ra

|Z|
+ γT a,zα|α ∈ ℵk−1})

ℵk
a ← prune(ℵk

a ⊕ ℵ
k
a,z)

ℵk ← prune(ℵk ∪ ℵk
a)

return ℵk

END PROCEDURE

Table 2.5: Incremental pruning DP backup.

ℵk
a,z = {

ra

|Z|
+ γT a,zα|α ∈ ℵk−1} , (2.9)

ℵk
a =

⊕

z∈Z

ℵk
a,z , (2.10)

ℵk =
⋃

a∈A

ℵk
a . (2.11)

The symbol ⊕ means pairwise addition (i.e., ℵ ⊕ ℵ′ = {α + α′|α ∈ ℵ ∧ α′ ∈ ℵ′}).

The incremental pruning algorithm for DP backups is described in Table 2.5 and can be

used in the value iteration algorithm of Table 2.1. Cassandra, Littman and Zhang [23]

showed that incremental pruning has the same computational complexity as the Witness

algorithm and usually outperforms it by a constant factor in practice.

2.2.4 Hansen’s Policy Iteration

All the algorithms presented so far are value iteration algorithms since they iteratively

compute the optimal value function at each time-step. Sondik [134, 135], Hansen [44, 45]

and Meuleau et al. [89, 88] also proposed policy iteration algorithms that conduct an

iterative search directly within the space of policies. In this section, we describe Hansen’s

policy iteration because of its elegance and simplicity.

Hansen’s algorithm uses finite state controllers to represent policies. Recall that a

finite state controller is a cyclic directed graph with vertices labeled by actions and edges
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labeled by observations (Figure 2.3). Vertices do not (necessarily) correspond to world

states or belief states; they correspond to (possibly infinite) conditional plans. The vertex

corresponding to conditional plan β = 〈a, σ〉 is labeled with action a and its outward

edges correspond to the observation strategy σ. At run time, the agent executes the

action labeling the current active vertex. It then makes an observation z, which is used

to update the active vertex by following the outward edge labeled with z. This edge

points to the next active vertex, which corresponds to the conditional plan σ(z). The

initial active vertex is determined by selecting the conditional plan β0 that maximizes

the expected total return for the initial belief state b0 (i.e., β0 = argmaxβ∈Γ b0 · αβ).

Since the initial conditional plan is picked to be maximal with respect to the initial belief

state, the value function V π of a finite state controller π corresponds to the upper surface

of the set of α-vectors ℵπ associated with the conditional plans of each vertex of π.

Hansen’s algorithm can be used to solve discounted, infinite-horizon POMDPs. It

computes a sequence of finite state controllers 〈π0, π1, . . . , πn〉 such that in the limit

(when n → ∞), πn converges to the optimal policy π∗. That is, the value function of

the controllers in the sequence increases monotonically and in the limit, converges to

V ∗. Given a controller πi, the next controller πi+1 is obtained greedily in two steps:

policy evaluation (compute V πi of πi) and policy improvement (perform a DP backup

and extract πi+1).

Policy evaluation computes the set ℵπ of α-vectors for some controller π. This is done

by solving a system of |Γπ||S| equations of the following form:

V 〈a,σ〉(s) = ra(s) + γ
∑

s′∈S

Pr(s′|s, a)
∑

z′∈Z

Pr(z′|a, s′)V σ(z′)(s′) ∀s ∈ S, ∀〈a, σ〉 ∈ Γπ .

(2.12)

In each equation, V β(s) is the expected total reward for executing the conditional plan β

when starting in state s. Alternatively, V β(s) is the s component of the vector αβ ∈ ℵπ

that corresponds to conditional plan β ∈ Γπ.

Policy improvement is the key step in Hansen’s algorithm. It takes the set of α-vectors

ℵπi computed by policy evaluation and performs a DP backup as in incremental pruning.

Let ℵπi

+ be the set of α-vectors resulting from the backup. For each α-vector in ℵπi

+

it creates a new node with outward edges corresponding to the action and observation

strategy used to compute the α-vector. Then, it deletes the old nodes that are now

pointwise-dominated by a new node. The inward edges of a deleted node are re-routed to

its pointwise dominating new node since it offers better value for the entire belief space.
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Note that LP-dominated old nodes are not deleted since their inward edges cannot be

re-routed to a single dominating node.

In practice, some POMDPs have optimal policies corresponding to infinite state con-

trollers. As with value iteration algorithms, one can find an ε-optimal finite state con-

troller by ensuring that Bellman residual is small enough. The argument is identical to

the one for value iteration since both use DP backups. Empirically, it has been observed

that Hansen’s algorithm requires fewer iterations than value iteration to converge to an

ε-optimal policy. On the other hand, each iteration of Hansen’s algorithm consists of

a policy evaluation step and a DP backup, whereas an iteration of value iteration only

performs a DP backup. Since the running time of a policy evaluation step tends to

be negligible compared to a DP backup, Hansen’s algorithm usually runs faster over-

all. Although it runs faster, its worst case computational complexity remains intractable

because the number of vertices (corresponding to α-vectors) may grow exponentially.

2.3 Performance Issues

We now have reviewed some of the key classic algorithms to solve POMDPs. They have

given us a general idea for the solution techniques as well as some of the performance

issues. In this section, we outline the two main sources of intractability that prevent

classic algorithms from scaling up effectively.

2.3.1 Policy Search

Solving POMDPs is a notoriously hard problem. In fact, finding an optimal policy has

been shown to be PSPACE-complete for finite-horizon problems [99] and verifying the

existence of a policy with a value function greater than some threshold for a given initial

belief state is undecidable [76]. Furthermore, finding ε-optimal policies for any ε is NP-

hard [75]. Yet, POMDPs remain a very attractive framework given that they can be used

to naturally model numerous real-world problems. In practice, the hardness of finding

optimal POMDP policies arises from two sources of intractability that plague classic

algorithms:

• Complex value function and policy representations (also known as the curse of

history [105]),
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• Large state space (also known as the curse of dimensionality [105].

We have already observed the first problem when representing value functions as sets

of α-vectors. The size of ℵk may grow exponentially with the observation space and

doubly exponentially with the horizon (even when dominated α-vectors are pruned or

not generated). As for the second problem, most real-world POMDPs tend to have large

state spaces. In many domains, the state space is defined by a set of variables such that

each state corresponds to a joint instantiation of those variables. Hence, the number

of states (and the dimensionality of α-vectors) is exponential in the number of state

variables.

2.3.2 Policy Execution

Once a policy π is found, it remains to be executed. If it is represented as a mapping from

histories to actions, such as a conditional plan or a finite state automaton, then at each

time-step, the agent simply has to follow the edge labeled with the current observation

to reach the next node and execute its corresponding action.

However, many existing algorithms produce policies represented as mappings from

belief states to actions. In that case, policy execution is not as straightforward since one

needs to monitor (update) the belief state (using Equation 2.1) at each time-step in order

to retrieve the next action to execute. Since a belief state is a probability distribution

over the state space, belief state monitoring may be intractable for large state spaces.

Furthermore, although the size of the state space may be reasonable for an algorithm to

find a good policy off-line, it may be too large when executing the policy online. The

time constraints to execute a policy are typically much more stringent than those for

finding the policy. For instance, a car maker may take several months to design and

compile a POMDP auto-pilot; however, once installed in a car, the auto-pilot will have

to react in real-time to challenging traffic conditions.

2.3.3 Structure

Although classic POMDP algorithms do not scale in practice, real-world problems often

exhibit a significant amount of structure that can be exploited to mitigate the above

sources of intractability. The fact that variants of the POMDP policy search problem

are NP-hard, PSPACE-complete or undecidable simply means that in the worst case
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solutions are impractical to find. Subclasses of POMDPs may be much easier to solve.

In fact, as mentioned in Section 2.2.2, the Witness algorithm can perform DP back-

ups in polynomial time for the class of polynomially action-output bounded POMDPs.

Unfortunately, most real-world POMDPs are not known to be part of this class.

Nevertheless, real-world POMDPs tend to exhibit a significant amount of structure

and the key will be to design scalable algorithms that exploit it. To that effect, Chap-

ter 3 reviews some of the techniques proposed by the research community to deal with

the complexity of value function and policy representations, and then describes a new

algorithm called bounded policy iteration (BPI). Similarly, Chapter 4 summarizes recent

algorithms and the structure they exploit to handle exponentially large state spaces, and

then describes a new value-directed compression (VDC) technique to mitigate the curse

of dimensionality. In order to tackle large-scale POMDPs, both sources of intractability

must be simultaneously contained, so Chapter 5 describes how to combine BPI and VDC

as well as the point-based value iteration algorithm called Perseus [142, 137, 136] with

VDC and ADDs.



Chapter 3

Compact Value Function and Policy

Representations

Between the two sources of intractability identified in Section 2.3, the complexity of

policy and value function representations tends to be the most important one. POMDPs

with as few as two states can easily have optimal value functions requiring exponentially

many α-vectors. This chapter focuses on techniques for dealing with the complexity

of policy and value function spaces. In particular, Section 3.1 reviews a wide range of

techniques proposed in the literature to compactly represent and efficiently manipulate

policies and value functions. Based on the insights gained from previous work, Section 3.2

describes a novel algorithm called bounded policy iteration (BPI). Finally, Section 3.3

demonstrates BPI’s ability to overcome the complexity of policy space on a suite of

benchmark problems.

3.1 Literature Review

Recall that optimal value functions for discrete POMDPs are piecewise linear and convex,

and therefore representable by a set of α-vectors, each corresponding to the value of a

conditional plan. Unfortunately, the number of α-vectors (and conditional plans) tends

to grow exponentially with the observation space and doubly exponentially with the

horizon. This section reviews some approximation techniques to compactly represent

value functions and policies.

32
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3.1.1 Parsimonious Sets of α-vectors

An early approach to keep value functions tractable was to force Q-functions to be

linear. Recall from Section 2.2.2 that function Qk
a represents the expected total return

for executing action a at k stages-to-go followed by an optimal policy for the remaining

k− 1 stages. The optimal value function at k stages-to-go is simply V k(b) = maxa Qk
a(b)

and ℵk =
⋃

a∈A ℵ
k
a (where ℵk

a is the set of α-vectors that represents Qk
a). Making the Q

functions linear means restricting ℵk
a to one α-vector, and consequently, restricting ℵk

to |A| α-vectors. Chrisman [27] and McCallum [83] used this approach while learning

POMDPs, since it allowed them to easily adapt classic reinforcement learning algorithms

that learn linear Q-functions. Later on, Littman et al. [67] experimented with several

algorithms (including those by Chrisman and McCallum) that find linear approximations

to Q-functions. The approximations are often good for small problems, but they quickly

degrade for large problems due to their limited degrees of freedom.

Several of the classic solution algorithms can be modified to output reduced or

bounded sets of α-vectors. In particular, Cheng [26] proposed an approximate version of

his linear support algorithm that generates only the most important α-vectors at each

DP backup. Recall from Section 2.2.2 that the DP procedure of the linear support al-

gorithm incrementally refines the next value function V k by iteratively adding to ℵk the

α-vector that provides the greatest improvement to the current estimate of V k. One can

either bound the size of ℵk by stopping the DP procedure after a predetermined number

of α-vectors are constructed, or one can bound the approximation error by stopping the

DP procedure when the next α-vector to be constructed provides an improvement to the

value function that is smaller than some error threshold. The Witness algorithm [55] can

be used in a similar fashion to incrementally construct a parsimonious set of α-vectors.

Feng and Hansen [36] also proposed a scheme to prune α-vectors that marginally con-

tribute to a value function in the incremental pruning DP procedure. When carrying

out an LP-dominance test (Table 2.3), the idea is to prune a vector even when it is not

dominated as long as its contribution is smaller than some error threshold.

Zhang and Zhang [147] also improved the running time of incremental pruning by

interleaving DP backups with more efficient point-based backups. A point-based backup

is an approximate DP backup that generates a subset of the support vectors by quickly

selecting a few witness belief states and computing in a one-step lookahead the opti-

mal conditional plan (and corresponding α-vector) for each witness belief state. The
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point-based version of incremental pruning provides substantial time savings in practice;

however, the number of α-vectors still grows exponentially. Realizing that only a small

portion of the belief space tends to be reachable from the initial belief state, Pineau et

al. [106] proposed a point-based value iteration (PBVI) algorithm that performs point-

based backups only for witness belief states that are reachable. The algorithm alternates

between point-based backups and forward search to generate new reachable belief points.

This technique tends to perform very well in practice since for many POMDPs the op-

timal value function of the reachable belief region can often be well approximated by a

small set of α-vectors. Spaan and Vlassis [142, 137, 136] proposed a randomized version

of PBVI called Perseus that performs partial point-based backups by stopping early the

generation of support vectors once the value of all witness points has improved. Smith and

Simmons [133] also combined heuristic search with point-based value iteration to obtain a

new algorithm called HSVI that simultaneously computes lower bounds (by point-based

backups) and upper bounds (by heuristic search) of the optimal value function.

In general, one may be interested in finding the best policy or value function of a

given size. To that effect, Parr and Russell [100] devised the SPOVA (smooth partially

observable value approximation) algorithm. It is a gradient descent algorithm that di-

rectly minimizes Bellman residual by approximating the value function with a smooth

combination of a predetermined number of α-vectors. Since gradient descent works only

for continuous functions, the value function V ∗(b) = maxα∈ℵ∗ b · α is made continuous

by smoothing the max operator by some Lk-norm (i.e., V ∗(b) = k
√

∑

α∈ℵ∗(b · α)k). In a

similar spirit, Meuleau et al. [88] as well as Aderbeen and Baxter [1] proposed gradient

descent algorithms to find the best stochastic finite state controllers of a given size. Sev-

eral other gradient-based algorithms [94, 93, 56, 5] have been proposed to search within

restricted classes of policies determined based on prior expert knowledge. In general,

gradient-based algorithms are simple and efficient, but they are not guaranteed to find

the best policy since they may get trapped into a local optimum. To circumvent lo-

cal optima, Meuleau et al. [89] and Braziunas et al. [20] respectively proposed branch

and bound as well as stochastic local search algorithms for finite state controllers of a

given size. Unfortunately, these techniques do not scale very well and tend to become

impractical for controllers with more than 30 nodes.
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3.1.2 Grid-based Representations

Part of the difficulty in accurately representing value functions is their continuous domain:

the belief space. A popular approach to get around the continuous nature of the belief

space is to select a finite grid (or more generally a finite set) of belief states for which

we store the corresponding values. The values of all other belief states are interpolated

from the values of the grid points. In general, grid-based algorithms [32, 57, 35, 73, 18,

47, 140, 48, 148] vary depending on the regularity of the grid, the resolution of the grid

and the interpolation technique.

Lovejoy [73] proposed a fixed-resolution regular grid that selects grid points equally

spaced in the belief simplex. A very efficient interpolation technique based on a triangu-

lation concept assigns to non-grid belief states the convex combination of the values of

nearby grid belief states. Unfortunately, as the resolution increases, the number of grid

points grows exponentially with the size of the state space (which may already be expo-

nential with respect to the number of state variables). In contrast, Hauskrecht [47, 48] and

Brafman [18] proposed variable-resolution non-regular grids, which allow one to increase

resolution in areas of poor accuracy by adding new grid points that are not necessarily

equally spaced. This tremendously reduces the number of grid points while achieving sim-

ilar accuracy; however, because grid points are unevenly spaced, interpolation techniques

are much more computationally intensive. Recently, Zhou and Hansen [148] proposed a

variable-resolution regular grid that allows both fast interpolation and increased resolu-

tion in only the necessary areas. Despite these refinements, experimental results [148]

demonstrate that grid-based methods do not scale well for large state spaces since the

size of the grid tends to grow exponentially with the number of states.

3.1.3 Neural Networks

Value functions can also be approximated by neural networks. Bertsekas and Tsitsik-

lis [8] proposed a general technique called neuro-dynamic programming to learn MDP

value functions with large state spaces as well as continuous state spaces (such as belief

spaces). The idea is to train a neural network by dynamic programming to approximate

Q-functions. The neural network takes as inputs a belief state and an action, and it out-

puts an estimate of the corresponding Q-value. Unfortunately, the exact Q-value is not

available, so Bertsekas and Tsitsiklis bootstrap the learning process by using a variant

of Bellman’s equation for Q-functions:
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Qk+1
a (b) = ra(b) + γ

∑

z∈Z

Pr(z|a, b) . max
a′

Qk
a′(ba

z) (3.1)

The idea is to use the right hand side of the above equation as the exact Q-value and

to use the neural network to estimate the Q-values at ba
z . The neural network can be

trained either by sampling the belief space uniformly or by generating sequences of belief

states obtained by executing the policy associated with the current value function. The

latter has the advantage of focusing training efforts on regions of the belief space that

are more likely to be visited.

Lin and Mitchell [66] also proposed a feed-forward neural network to learn Q-values

from finite histories (instead of belief states) and two recurrent neural networks to learn

simultaneously Q-values and sufficient statistics of the belief space from only the most

recent observation. Those neural networks are also trained by using the right hand side

of Equation 3.1 as a surrogate for the exact Q-values.

In general, there are no convergence guarantees when neural network approximations

of the Q-functions are trained by using the right hand side of Equation 3.1 as a surrogate

for the exact Q-values [8]. On the other hand, Baird and Moore [7] showed that gradient-

based algorithms that minimize the residual of Bellman’s equation are guaranteed to

converge to a local optimum. The idea is to use a neural network (or some other function

approximation) to approximate the Q’s in both, the left hand side and the right hand side

of Equation 3.1, and to minimize the difference between the two sides of Equation 3.1 by

gradient descent. Although convergence to a local optimum is guaranteed, the quality of

this local optimum varies significantly due to the lack of convexity of the optimization

and the often arbitrary architecture of neural networks.

3.1.4 Bounded Histories

Another way of compactly approximating value functions is to define them as mappings

from finite histories (instead of belief states) to expected total return. Recall from Sec-

tion 2.1.2 that histories and belief states are equivalent in terms of the information they

provide about the current state of the world. If we bound histories to some length, then

only a finite though exponential (in length) number of histories are possible and the value

function has a simple vector representation over the discrete space of bounded histories.

If we were going to rewrite the transition, observation and reward functions in terms of

bounded histories (instead of states), then a POMDP would be converted into an NMDP
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(non-Markovian decision process). Since bounded histories are observable, the POMDP

appears to have been converted to an MDP; however, bounded histories do not (neces-

sarily) possess sufficient information to predict future states so the Markov property is

lost, rendering the decision process non-Markovian (in the worst case).

Nevertheless, a fair amount of work in the POMDP reinforcement learning literature

has focused on such approximations. In particular, work on memoryless policies has been

very popular [68, 130, 131, 53, 72, 6]. A memoryless policy selects actions based only

on the last observation. The belief space is essentially reduced to the observation space

(histories of length 1). This reduction allows standard reinforcement learning algorithms

such as Q-learning and TD-λ to learn a good memoryless policy by ignoring the fact that

the Markov property doesn’t hold. Furthermore, memoryless policies can be represented

by a table mapping each observation to some action, which circumvents the need for

belief state monitoring.

Unfortunately, memoryless policies can be far from optimal due to the loss of infor-

mation caused by restricting belief states to the last observation. Several researchers

have explored methods for learning finite memory policies based on bounded histories

[104, 84, 85, 66]. Those techniques offer a range of accuracy/complexity tradeoff since

accuracy gains can be had (as we increase the maximum length of histories) at the cost

of an exponentially growing number of possible histories.

3.2 Bounded Policy Iteration

Although the optimal policies of most POMDPs are usually composed of an exponential,

if not an infinite, number of conditional plans, real-world POMDPs often have policies

that are very simple and yet very good. Furthermore, when interested only in a policy

for a given initial belief state, tailoring the policy to the belief region reachable from that

initial belief state can be an effective way of further reducing the complexity of policy

and value function representations. If the reachable belief region is a small subset of the

entire belief space, then tailored policies can be much simpler to find and represent than

full policies. As a result, the most successful approaches to date are those that exploit

domain expert knowledge to search for good tailored policies within a restricted class

of compactly representable policies (e.g., PEGASUS for helicopter control [92, 94] and

covariant policy search for the game of Tetris [5]).

When prior knowledge is unavailable or difficult to elicit, bounded finite state con-
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trollers (controllers with a bounded number of nodes) provide a natural class of compact

policies. Furthermore, the execution of policies represented by finite state controllers can

be done in real-time since there is no need for belief state monitoring. Existing algorithms

for finite state controllers (FSCs) include classic policy iteration (PI) [44, 45], gradient

ascent (GA) [88, 1], branch and bound (B&B) [89] and stochastic local search (SLS) [20].

As explained earlier in Section 2.2.4, PI tends to generate FSCs that grow exponentially

in size and therefore is not suitable for bounded FSCs. GA, B&B and SLS can all be

used to search for a good controller of a given size; however, existing implementations of

B&B and SLS scale poorly and GA may get trapped in a local optimum.

While locally optimal solutions are often acceptable, for many planning problems with

a combinatorial flavor, GA can easily get trapped by simple policies that are far from

optimal. Consider a system engaged in preference elicitation, charged with discovering an

optimal query policy to determine relevant aspects of a user’s utility function. Often no

single question yields information of much value, while a sequence of queries does. If each

question has a cost, a system that locally optimizes the policy by GA may determine that

the best course of action is to ask no question (i.e., minimize cost given no information

gain). When an optimal policy consists of a sequence of actions such that any small

perturbation results in a bad policy, there is little hope of finding this sequence using

methods that greedily perform local perturbations such as those employed by GA.

In general, we would like the best of both worlds: scalability and convergence to a

global optimum. While finding the best deterministic controller of a given size is NP-

hard [68, 88], one can hope for a tractable algorithm that at least avoids obvious local

optima. This section describes a new anytime algorithm, bounded policy iteration (BPI),

that improves a policy much like classic PI while keeping the size of the controller fixed.

Whenever the algorithm gets stuck in a local optimum, the controller is allowed to slightly

grow by introducing one (or a few) node(s) to escape the local optimum.

3.2.1 Policy Iteration for Stochastic Controllers

Recall that classic policy iteration (PI) [44, 45] incrementally improves a controller by

alternating between two steps, policy improvement and policy evaluation, until conver-

gence to an optimal policy. Policy evaluation solves Equation 2.12 for a given policy.

Policy improvement adds nodes to the controller by dynamic programming (DP) and

removes other nodes. A DP backup applied to the value function (V in Figure 3.1a) of
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Figure 3.1: a) Value function V and the backed up value function V ′ obtained by DP;

b) original controller (n1 and n2) with nodes added (n3 and n4) by DP; c) new controller

once pointwise dominated node n1 is removed and its inward arcs a, b, c are redirected

to n4.

the current controller yields a new, improved value function (V ′ in Figure 3.1a). Each

α-vector composing V ′ corresponds to a new node added to the controller (in Figure 3.1b,

nodes n3 and n4 are new nodes added to the original controller composed of n1 and n2).

After the new nodes created by DP have been added, old nodes that are now pointwise

dominated are removed (e.g., n1 is pointwise dominated by n4 in Figure 3.1a and therefore

deleted in Figure 3.1c). The inward edges of a pointwise dominated node are re-directed

to the dominating node since it offers better value (e.g., inward arcs of n1 labeled by

a, b, and c in Figure 3.1b are redirected to n4 in Figure 3.1c). The controller resulting

from this policy improvement step is guaranteed to offer higher value at all belief states.

Unfortunately, up to |A||N ||Z| new nodes may be added with each DP backup, so the

size of the controller quickly becomes intractable in many POMDPs.

Note that policy iteration only prunes nodes that are pointwise dominated, rather

than all dominated nodes (i.e., pointwise and LP-dominated). This is because the al-

gorithm is designed to produce controllers with deterministic observation strategies. A

pointwise-dominated node can be safely pruned since its inward arcs are redirected to the

dominating node (which has value at least as high as the dominated node at each state).

In contrast, a node jointly dominated by several nodes (e.g., n2 in Figure 3.1(b) is jointly

dominated by n3 and n4) cannot be pruned without its inward arcs being redirected to

different nodes depending on the current belief state.

This problem can be circumvented by allowing stochastic observation strategies.
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Figure 3.2: Example of a convex combination (dotted line) of n3 and n4 that dominates

n2.

Hence, we consider stochastic finite state controllers, which were first explored by Platz-

man, as reported by Littman in his PhD thesis [69]. Recall that an observation strategy

(Section 2.2.4) is a mapping indicating the next node n′ that will be visited after receiving

observation z in node n. We revise the notion of observation strategy by allowing a dis-

tribution over successor nodes n′ for each n, z-pair (specifically, σ(n, z, n′) = Pr(n′|n, z)).

Intuitively, stochastic observation strategies can be viewed as selecting mixtures or convex

combinations of successor nodes. If a stochastic strategy is chosen carefully, the corre-

sponding convex combination of dominating nodes may pointwise dominate the node we

would like to prune. In Figure 3.2, n2 is dominated by n3 and n4 together (but neither of

them alone). Convex combinations of n3 and n4 correspond to all lines that pass through

the intersection of n3 and n4. The dotted line illustrates one convex combination of

n3 and n4 that pointwise dominates n2. Consequently, n2 can be safely removed and

its inward arcs re-directed to reflect this convex combination by setting the observation

probabilities accordingly. In general, when a node is jointly dominated by a group of

nodes, we show in Theorem 1 that there always exists a pointwise-dominating convex

combination of this group.

Theorem 1 The value function αn of a node n is jointly dominated by the value functions

αn1
, . . . , αnk

of nodes n1, . . . , nk if and only if there is a convex combination
∑

i ciαni
that

dominates αn.

Proof: αn is dominated by αn1
, . . . , αnk

when the objective of the LP-dominance test

described in Table 2.3 is positive. The LP in Table 2.3 finds the belief state b that

minimizes the difference between b · αn and the max of b · αn1
, . . . , b · αnk

. It turns out

that the dual LP (Table 3.1) finds the most dominating convex combination parallel

to αn. Since the dual has positive objective value when the primal does, the theorem
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max
{δ, ci}

δ

s.t. αn(s) + δ ≤
∑

i ciαni
(s), ∀s ∈ S

∑

i ci = 1

ci ≥ 0, ∀i

Table 3.1: Dual LP: convex combination
∑

i ciαni
dominates αn when δ ≥ 0.
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Table 3.2: a) Canonical block matrix form of the LP in Table 2.3. b) Canonical block

matrix form of the LP in Table 3.1.

follows.

Recall from the duality theory [28] that the primal LP minx cx subject to Ax ≥

b, x ≥ 0 is equivalent to (i.e., has the same objective as) the dual LP maxy bT y subject to

AT y ≤ cT , y ≥ 0. To help visualize the duality of the LPs in Tables 2.3 and 3.1, they have

been respectively rewritten in Table 3.2a and 3.2b in a canonical block matrix format.

The LPs in Table 3.2 are obtained from the LPs in Tables 2.3 and 3.1 by “splitting” the

variable δ in a positive component δ+ and a negative component δ− and by expressing

the equalities
∑

s b(s) = 1 and
∑

i ci = 1 as pairs of inequalities. J

As argued in the proof of Theorem 1, the LP in Table 3.1 gives us an algorithm to find

the most dominating convex combination parallel to a dominated node. In summary, by

considering stochastic controllers, we can extend PI to prune all dominated nodes (point-

wise or LP-dominated) in the policy improvement step. This provides two advantages:
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controllers can be made smaller while improving their decision quality.

3.2.2 Policy Iteration for Bounded Controllers

Pruning all dominated nodes certainly helps to keep the controller small, but it may still

grow substantially with each DP backup. Several techniques described in Section 3.1

can be used to perform partial DP backups that effectively bound the number of nodes.

In particular, we can further reduce the number of nodes by pruning those that only

marginally improve the value function [36]. Alternatively, we can generate only a subset

of the nodes using Cheng’s algorithm [26], the Witness algorithm [55] or point-based

backups [147]. When the new nodes generated by a partial DP backup jointly dominate

all the old nodes, then the old nodes can be pruned and their inward arcs re-directed to

dominating convex combinations of the new nodes. The resulting controller is guaranteed

to have value at least as great for the entire belief space since all the old nodes were

replaced by dominating convex combinations of the new nodes. When there is an old

node that isn’t dominated by any convex combination of the new nodes, then that old

node can still be pruned and its inward arcs re-directed so some good but non-dominating

convex combination of the new nodes. As a result, the new controller may have lesser

value at some belief states. In general, partial DP backups using any of the techniques

described in Section 3.1 cannot guarantee monotonic improvement of the controller since

the new nodes do not necessarily jointly dominate all the old nodes. We now propose

a new algorithm called bounded policy iteration (BPI) that guarantees monotonic value

improvement at all belief states while keeping the number of nodes fixed.

BPI considers one node at a time and tries to improve it while keeping all other nodes

fixed. Improvement is achieved by replacing each node by a good convex combination

of the nodes normally created by a DP backup, but without actually performing the DP

backup. Since the backed up value function must dominate the controller’s current value

function, then by Theorem 1 there must exist a convex combination of the new nodes

that pointwise dominates each old node of the controller. We can directly compute

such convex combinations with the LP in Table 3.3. This LP has |A||N ||Z| variables

ca,n1,n2,...,n|Z|
corresponding to the probabilities of the convex combination as well as the

δ variable measuring the value improvement. More precisely, ca,n1,n2,...,n|Z|
denotes the

probability of the strategy where action a is chosen, node n1 is reached when the first

observation is made, node n2 is reached when the second observation is made, . . ., node
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max
{δ, ca,n1,n2,...,n|Z|

}
δ

s.t. αn(s) + δ ≤
∑

a,n1,n2,...,n|Z|
ca,n1,n2,...,n|Z|

[R(s, a)+

γ
∑

s′,z Pr(s′|s, a) Pr(z|s′, a)αnz
(s′)], ∀s ∈ S

∑

a,n1,n2,...,n|Z|
ca,n1,n2,...,n|Z|

= 1

ca,n1,n2,...,n|Z|
≥ 0, ∀a, n1, n2, . . . , n|Z|

Table 3.3: Naive LP to find a convex combination of new nodes that dominate n.

n|Z| is reached when the last observation is made. Since there are |A||N ||Z| possible action

and observation strategies, that’s why there are as many convex combination variables.

We can significantly reduce the number of variables by pushing the convex combi-

nation variables as far as possible into the DP backup, resulting in the LP shown in

Table 3.4. The key here is to realize that we can aggregate many variables. For in-

stance, when computing the expected immediate reward, we can aggregate together all

the strategies that pick the same action, since the immediate expected reward doesn’t

depend on the nodes reached after each observation. Let ca =
∑

n1,n2,...,n|Z|
ca,n1,n2,...,n|Z|

denote the aggregate probability of the observation strategies that pick action a, then

∑

n1,n2,...,n|Z|

ca,n1,n2,...,n|Z|
R(s, a) = caR(s, a) .

Similarly, when computing the expected future value of reaching a node nz after ex-

ecuting action a and making observation z, we can aggregate together all the strate-

gies that execute the same action and that pick the same node for observation z. Let

ca,nz
=

∑

n1,...,nz−1,nz+1,...,n|Z|
ca,n1,n2,...,n|Z|

denote the aggregate probability of the observa-

tion strategies that execute a and reach node nz when observing z, then

∑

n1,n2,...,...,n|Z|

ca,n1,n2,...,n|Z|
Pr(s′|s, a) Pr(z|s′, a)αnz

(s′)

=
∑

nz

ca,nz
Pr(s′|s, a) Pr(z|s′, a)αnz

(s′) .

By using the aggregate probability variables ca and ca,nz
, the LP in Table 3.4 is much

more efficient since it has only |A||Z||N | + |A| + 1 variables.1 Furthermore, once the

1Actually, we don’t need the ca variables since they can be derived from the ca,nz
variables by

summing out nz, so the number of variables can be reduced to |A||Z||N |+ 1.
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max
{δ, ca, ca,nz}

δ

s.t. αn(s) + δ ≤
∑

a[caR(s, a)+

γ
∑

s′,z Pr(s′|s, a) Pr(z|s′, a)
∑

nz
ca,nz

αnz
(s′)], ∀s

∑

a ca = 1
∑

nz
ca,nz

= ca, ∀a

ca ≥ 0, ∀a

ca,nz
≥ 0, ∀a, z

Table 3.4: Efficient LP to find a convex combination of new nodes that dominate n.

LP in Table 3.4 is solved the values of ca and ca,nz
can be used to specify an improved

stochastic action and observation strategy: pick action a with probability ca and for each

observation z, pick node nz with probability ca,nz
.

To summarize, BPI alternates between policy evaluation and policy improvement as in

classic PI, but the policy improvement step simply tries to improve each node by solving

the LP in Table 3.4 (without performing any DP backup). The ca and ca,nz
variables

are used to set the probabilistic action and observation strategies of the new improved

node. The value of the improved node is at least δ higher than the original node for the

entire belief space. Note that the policy improvement step of BPI is much more efficient

than the one for classical PI since linear programming has polynomial time complexity

whereas a DP backup takes exponential time and space in the worst case. Overall, BPI

runs in polynomial time and space complexity since the size of the controller remains

constant, the policy improvement step solves linear programs and the policy evaluation

step solves linear equations. In contrast, classical PI tends to grow exponentially large

controllers over time.

3.2.3 Local Optima

BPI is a simple, efficient alternative to classic PI that monotonically improves an FSC

while keeping its size constant. The value of the controller will increase until a local

optimum is reached, that is when none of the existing nodes can be be improved with

the LP in Table 3.4. We now characterize BPI’s local optima and propose a method to

escape them.
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Figure 3.4: BPI can improve vector α by an amount δ to obtain vector α′.

Characterization

Theorem 2 below gives a necessary and sufficient condition characterizing BPI’s local

optima. Intuitively, a controller is a local optimum when each α-vector touches from

below, or is tangent to, the controller’s backed up value function (see Figure 3.3). Recall

that the backed up value function V k+1 is the result of a DP backup (Equation 2.4)

applied to the current value function V k. Since DP backups monotonically improve the

value of controllers, we know that V k+1 is at least as high as V k. Furthermore, BPI

improves a node by computing a best convex combination of backed up α-vectors, which

is equivalent to “pushing” upward its α-vector until it is tangent to the backed up value

function. Hence, a controller is a local optimum when each α-vector is already tangent

to the backed up value function, leaving no room for improvement. Note that some α-

vectors may be equal to linear portions of the backed up value function, but each α-vector

is only guaranteed to touch the backed up value function in one belief state.

Theorem 2 BPI has converged to a local optimum if and only if each node’s α-vector is

tangent to the backed up value function.
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Proof: Let’s prove by contradiction that in BPI’s local optima, each node’s α-vector is

tangent to the backed up value function. Suppose this is not the case, then there must

be a gap between some α-vector and the backed up value function (e.g., vector α in

Figure 3.4 is not tangent to the backed up value function). When such a gap exists, then

the LP in Table 3.4 can be used to find a better convex combination that improves the

value by the same amount as the gap (e.g., vector α′ is found in Figure 3.4). Hence, BPI

is able to improve the controller, which is not a local optimum.

Conversely, when each node’s α-vector is tangent to the backed up value function

(e.g., Figure 3.3), one can also show that BPI has reached a local optimum. Since the

space of convex combinations of backed up α-vectors consists of hyperplanes that are

below or tangent to the backed up value function, BPI can only improve a controller by

finding new vectors that are below or tangent to the backed up value function. Further-

more, the LP in Table 3.4 improves a vector uniformly by pushing it upward by an equal

amount for the entire belief space. Hence, as soon as a vector touches the backed up

value function, BPI cannot improve it further. J

Interestingly, tangency is also a necessary (but not sufficient) condition for GA’s local

optima (see Corollary 1 below). Intuitively, GA searches for the direction of steepest

monotonic improvement. It reaches a local minimum only when there is no direction

providing monotonic improvement. If there is a gap between some α-vector and the

backed up value function, then GA will find a direction of monotonic improvement.

Hence it is necessary that all α-vectors be tangent to the backed up value function for

GA to be stuck in a local optimum.

Corollary 1 If GA has converged to a local optimum, then the α-vector of each node

reachable from the initial belief state is tangent to the backed up value function.

Proof: GA seeks to monotonically improve a controller in the direction of steepest as-

cent. The LP of Table 3.4 also seeks a monotonically improving direction. Thus, if BPI

can improve a controller by finding a direction of improvement using the LP of Table 3.4,

then GA will also find it or will find a steeper one. Conversely, when a controller is

a local optimum for GA, then there is no monotonic improvement possible in any di-

rection. Since BPI can only improve a controller by following a direction of monotonic

improvement, GA’s local optima are a subset of BPI’s local optima. Thus, tangency is a

necessary, but not sufficient, condition of GA’s local optima. J
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Figure 3.5: Example to escape a local optimum.

In the proof of Corollary 1, we argued that GA’s local optima are a subset of BPI’s

local optima. This suggests that BPI is inferior to GA since it can be trapped by more

local optima than GA. However, we will describe in the next section a simple technique

that allows BPI to easily escape from many local optima.

Escape Technique

The tangency condition characterizing local optima can be used to design an effective

escape method for BPI. It essentially tells us that tangent points are “bottlenecks” for

further policy improvement. If we could improve the value at the belief states where

tangency occurs, then we could break out of the local optimum. A simple method

for doing so consists of a one-step lookahead search from the tangent belief states. In

Figure 3.5, suppose that belief state b′ can be reached in one step from tangent belief state

b, and that the backed up value function improves the current value of b′. If we add a

node to the controller that maximizes the value of b′, its improved value can subsequently

be backed up to the tangent belief state b, breaking out of the local optimum.

The escape technique is summarized as follows: perform a one-step lookahead search

from each tangent belief state; when a reachable belief state can be improved, add a new

node to the controller that maximizes that belief state’s value. Interestingly, when no

reachable belief state can be improved, the policy must be optimal at the tangent belief

states.

Theorem 3 If the backed up value function does not improve the value of any belief

state reachable in one step from any tangent belief state, then the policy is optimal at the

tangent belief states.
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min
{δ, b, Qa,z}

δ

s.t. b · α + δ ≤ b ·
∑

z Qa,z, ∀a

b ·Qa,z ≥ b · [ra/|Z|+ γT a,zα′], ∀a, z, α′

∑

s b(s) = 1

b(s) ≥ 0, ∀s

Table 3.5: Efficient LP to find a tangent witness point. This is the dual of the LP in

Table 3.4.

Proof: By definition, belief states for which the backed up value function provides no

improvement are tangent belief states. Hence, when all belief states reachable in one step

are themselves tangent belief states, then the set of tangent belief states is closed under

every policy. Since there is no possibility of improvement, the current policy must be

optimal at the tangent belief states. J

Although Theorem 3 guarantees an optimal solution only at the tangent belief states,

in practice, they rarely form a proper subset of the belief space. Note also that the escape

algorithm assumes knowledge of the tangent belief states. Fortunately, the solution to

the dual of the LP in Table 3.4 is a tangent belief state. Table 3.5 describes this dual LP.

Intuitively, the dual finds the belief state b for which α has the smallest gap δ with the

backed up value function. This belief point will be the first one to “touch” the backed up

value function when improving α. Hence, it is necessarily a tangent point. Since most

commercial LP solvers return both the solution of the primal and the dual, a tangent

belief state is readily available for each node when solving the LP in Table 3.4. In other

words, it is sufficient to solve only the LP in Table 3.4 (there is no need to solve the dual

in Table 3.5).

3.2.4 Improvement Bias

In practice, we often wish to find a policy suitable for a given initial belief state. Since the

reachable belief states often form a small subset of the entire belief space, it is generally

possible to construct much smaller policies tailored to the set of reachable belief states.

We now describe a simple way to bias BPI’s efforts toward the set of reachable belief

states.
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Recall that the LP in Table 3.4 optimizes the parameters of a node to uniformly

improve its value at all belief states. We can modify that LP so that improvement is

weighted by the discounted occupancy distribution induced by the current policy. The

occupancy distribution o(s) of a policy is a probability distribution that indicates the

relative frequency with which each state is visited. We can compute the occupancy

distribution o(s) by adding together all the reachable belief states (weighted by their

probability of being reached and the discount factor γ) and re-normalizing:

o(s) = k

∞
∑

t=0

γt
∑

i

Pr(bi|t)bi(s) .

Here, Pr(bi|t) is the probability that belief state bi is reached at time step t. In that sense,

the occupancy distribution constitutes a suitable aggregation of the reachable belief states

that can be used by BPI to bias the improvement. In Table 3.6, we obtain a new LP

by weighting the improvement δn,s by o(n, s). Here, o(n, s) is the occupancy distribution

parameterized by a node n since we are improving one node at a time. Intuitively, it

represents the relative (discounted) frequency of the states visited when the controller is

in node n. In general, o(s) =
∑

n o(n, s). We can compute an unnormalized version of

o(n, s) with a system of linear equations (similar to the system to evaluate a policy) by

summing all discounted future belief states:

o(n′, s′) = b0(n
′, s′) + γ

∑

s,a,z,n

o(n, s) Pr(a|n) Pr(z|a, s) Pr(n′|n, a, z) ∀s′, n′ . (3.2)

Note that b0(n, s) is the probability that the world is in state s and the controller is in

node n at time step 0. We can use the unnormalized o(n, s) in Table 3.6 since normal-

izing doesn’t affect the objective. Hence, the LP in Table 3.6 maximizes the expected

improvement of a node’s occupancy distribution while making sure that the value doesn’t

decrease for any belief state. This LP has the effect of greedily improving the current pol-

icy. Such a myopic strategy may not yield the best node improvement; however, it tends

to perform well and when the reachable belief region is small, it often finds controllers

with fewer nodes (yet similar value) than those found with the uniform improvement

strategy of the LP in Table 3.4.

In practice, the expected improvement of a node’s occupancy distribution is often

limited by the constraints that prevent any decrease in value at any belief state (e.g.,

first set of constraints in Table 3.6). Although these constraints are necessary to ensure

monotonic improvement, relaxing them a bit by allowing a slight decrease in value at some
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max
{δn,s, ca, ca,nz}

∑

s,n o(n, s)δn,s

s.t. αn(s) + δn,s ≤
∑

a[caR(s, a)+

γ
∑

s′,z Pr(s′|s, a) Pr(z|s′, a)
∑

nz
ca,nz

αnz
(s′)], ∀s

∑

a ca = 1
∑

nz
ca,nz

= ca, ∀a

ca ≥ 0, ∀a

ca,nz
≥ 0, ∀a, z

Table 3.6: LP to maximize the expected improvement of the occupancy distribution of

a node.

max
{δn,s, ca, ca,nz}

∑

s,n o(n, s)δn,s

s.t. αn(s) + δn,s ≤ ε +
∑

a[caR(s, a)+

γ
∑

s′,z Pr(s′|s, a) Pr(z|s′, a)
∑

nz
ca,nz

αnz
(s′)], ∀s

∑

a ca = 1
∑

nz
ca,nz

= ca ∀a

ca ≥ 0 ∀a

ca,nz
≥ 0 ∀a, z

Table 3.7: LP to maximize the expected improvement of the occupancy distribution of

a node while allowing a slight decrease in value of at most ε at some belief states.

belief states can often further boost the occupancy improvement. Since improvement at

the occupancy distribution is more important than elsewhere, such a strategy tends to

further improve BPI’s policy search. Table 3.7 describes a modified version of the LP

that allows value to decrease by some small ε. Setting ε to some small fraction of the

reward span such as ε = (maxa,s R(s, a)−mina,s R(s, a))/(400(1− γ)) tends to give good

results.

When a node of the controller is never reached from the initial belief state, its occu-

pancy distribution is zero. In that case, the objectives of the LPs in Tables 3.6 and 3.7

are trivially zero. So we must resort to the uniform improvement strategy of Table 3.4

or replace the occupancy distribution by some other distribution in Tables 3.6 and 3.7.

In particular, we can replace the occupancy distribution by the belief state used at the

time of creation of the node. Recall from Section 3.2.3 that the escape technique adds
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PROCEDURE BPI(controller, timebound)

repeat (controller growth loop)

repeat (policy iteration loop)

policy evaluation:

solve linear system (Equation 2.12)

policy improvement:

improve each node by solving the LP in Table 3.4, 3.6 or 3.7

until no improvement

escape local optimum:

find belief states reachable from tangent points in a one-step lookahead

create k new nodes that improve the value at some reachable belief states

until no time left or no new node created by escape algorithm

END PROCEDURE

Table 3.8: Bounded Policy Iteration algorithm.

new nodes that maximize improvement at some belief states reachable from the tangent

points. Hence, belief states reachable from tangent points provide an alternative set of

belief states to the belief states reachable from the initial belief state.

3.2.5 Summary

Let’s summarize BPI. Table 3.8 provides a concise description of the algorithm. BPI

takes as input a controller, which can be initialized randomly or based on prior expert

knowledge. It then alternates between policy evaluation and policy improvement until a

local optimum is reached. At that point, new nodes are added to the controller. These

nodes improve the value at some belief states reachable from the tangent points of the

local optimum. BPI runs until convergence to a policy that is optimal at the tangent

points or until time is up. Since the three steps (policy evaluation, policy improvement

and escape step) run in polynomial time, BPI’s running time is polynomial with respect

to the number of actions |A|, the number of observations |Z|, the number of states |S|

and the number of nodes |N | in the final controller.

Since real-world POMDPs often have some policies that are both very good and

very small, BPI can often quickly find those policies by searching through classes of
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increasingly large controllers. Furthermore, when an initial belief state is available, it

can often find a smaller policy tailored to the reachable belief region. As a result, BPI can

effectively circumvent the complexity of policy and value function representations. BPI

distinguishes itself by its slow growth of the controller size (cf. PI), its ability to avoid

local optima (cf. GA), its efficiency (cf. B&B and SLS) and the fact that belief state

monitoring is not required during policy execution (cf. PBVI, Perseus). In the following

section, we compare BPI to existing algorithms on a suite of benchmark problems.

3.3 Experiments

This section presents some experiments to demonstrate BPI’s ability to overcome the

complexity of policy and value function representations. A first set of experiments

(Section 3.3.1) verifies BPI’s robustness to local optima. A second set of experiments

demonstrates BPI’s scalability on a suite of benchmark problems. Compared to existing

algorithms, BPI is a robust, scalable algorithm.

3.3.1 Local Optima Robustness

As argued earlier, in several domains it is common to find safe but far from optimal

policies that form local optima. When the basin of attraction of those local optima is

important, myopic techniques such as GA are ineffective because they easily get trapped.

We now test BPI on a preference elicitation problem proposed by Boutilier [10] and a

modified version of the heaven and hell problem proposed by Braziunas and Boutilier [20].

Both problems are known to have local optima into which GA will almost always fall.

In the preference elicitation problem, the task of the decision maker is to make a

recommendation to a user. However, since the decision maker doesn’t know the user’s

preferences, it can ask queries to gain some information before making a recommendation.

The query process followed by the recommendation can be modeled by a POMDP [10]

where the actions correspond to the possible queries and recommendations, the obser-

vations correspond to the user answers and the states correspond to the possible user

preferences. The rewards consists of the cost associated with each query and the value

(measured in terms of the user preferences) of the recommendation. The preference elici-

tation problem we consider is taken from earlier work by Braziunas and Boutilier [19, 20]

(see Appendix A for more details). It has the following interesting property: the cost of
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a query is higher than the value of the information gained by a single query. As a result,

myopic algorithms tend to get stuck in a local optimum that consists of making a blind

recommendation without making any queries.

Figure 3.6 shows the expected rewards of the controllers found by BPI. Although BPI

is deterministic, the expected rewards are averaged over 20 runs starting with different

random initial controllers. The solid and dashed lines respectively correspond to the

results achieved by BPI with and without biasing the search to the reachable belief

region. There is no significant difference between the two because this problem is fairly

small; however, we will see shortly that the biased search is much more effective on

larger/more difficult problems. Braziunas and Boutilier [19, 20] report that the optimal

value for this problem is 0.8233. Classic policy ietartion (PI), which is not subject to

local optima, finds a 334-node controller that achieves this optimal value in 32 seconds.

BPI finds near optimal (value of 0.81) controllers of 35 nodes in 35 seconds. Hence BPI

is able to find a much smaller controller of similar quality than PI in a similar amount

of time. In contrast, GA is not able to find policies with value higher than 0.6552 and

belief-based stochastic local search (BBSLS) finds near optimal 22-node controllers in

roughly 150 seconds [19, 20].

The second problem considered is Heaven and Hell [20]. In this problem, two nearly

identical mazes offer a positive reward (heaven) and a negative reward (hell) in opposite

locations. The agent starts in one of the two mazes, but doesn’t know which. By visiting

a priest and paying a small fee, it can find out which maze it is in and then reach heaven

without any risk. Myopic algorithms tend to avoid the priest, gaining no knowledge about

the world, and consequently avoiding reward-bearing states due to the risk of falling in

hell (see Appendix A for more details).

Braziunas and Boutilier [20] report that the optimal policy has value 8.641. While PI

should be able to find this optimal policy, the best controller found after 84,600 seconds

(24 hours) of computation had 15,003 nodes and a value of 4.06 only. As for GA and

BBSLS, the former gets stuck in a local optimum of value 0 and the latter finds 20-node

controllers with average value of 7.65 in 5100 seconds. In contrast, BPI (see Figure 3.7)

finds 60-node controllers of value 7.7 (averaged over 20 trials) in 35 seconds. Note how

biasing BPI’s search to reachable belief states (dotted line) produces smaller and yet

better controllers than a search that ignores the initial belief state (dashed line).
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Figure 3.6: Preference elicitation: expected reward (averaged over 20 trials) earned by

the controllers found by BPI with respect to time and number of nodes.
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Figure 3.7: Heaven and hell: expected reward (averaged over 20 trials) earned by the

controllers found by BPI with respect to time and number of nodes.
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Problems |S| |O| |A|

tiger-grid 33 17 5

hallway 57 21 5

hallway2 89 17 5

tag-avoid 870 30 5

Table 3.9: Problem properties.

3.3.2 Scalability

The experiments of the previous section clearly demonstrate BPI’s ability to avoid

some important local optima. In this section we compare BPI to state-of-the-art al-

gorithms on 4 additional benchmark problems: tiger-grid, hallway, hallway2 and tag-

avoid. Although these problems are not known to have important suboptimal local

optima, they are too difficult for the classic POMDP algorithms and thus have been

used extensively to test the scalability of recent POMDP algorithms. All four prob-

lems are maze problems where a robot must perform a navigation task. The tiger-

grid, hallway, hallway2 problems were introduced by Littman et al. [67] (available at

http://www.pomdp.org/pomdp/examples/index.shtml) and the tasks consist of reach-

ing a designated goal as quickly as possible. The tag-avoid problem was introduced by

Pineau et al. [106] (available at http://www-2.cs.cmu.edu/~jpineau/) and the task

consists of tagging an opponent robot that is trying to escape. The size of the state,

action and observation spaces of each problem are given in Table 3.9. The hardness of

those problems depends on the complexity of the optimal policy/value function. In the

worst case, the number of nodes/α-vector in the optimal solution is |A||Z|h (where h is

the horizon). The optimal solution of those problems is currently unknown; however,

as we will see (Table 3.10, small yet very good solutions can be found for each of those

problems. In general, it is very difficult to quantify a priori the policy complexity of a

problem since the upper bound |A||Z|h often doesn’t reflect the relatively small size of

some near-optimal policies. A posteriori, we can more easily quantify policy complexity

by looking at the size and quality (value) of the policy graphs found. Finding a reliable

a priori measure of policy complexity is an open problem.

Figures 3.8, 3.9, 3.10 and 3.11 report the expected reward (averaged over 20 trials)

earned by the controllers produced by BPI with respect to time and number of nodes.

The results show that BPI can find relatively small controllers in a short period of time.
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Note that biasing the search to the reachable belief region significantly helps BPI.

In Figures 3.8, 3.9, 3.10 and 3.11, we also report with an “x” the results obtained

when fixing a priori the number of nodes (i.e., preventing BPI from growing the controller

with the escape heuristic). For all four problems, when fixing the number of nodes, the

local optimum controller that BPI converges to takes more time to find and has lower

value than the one obtained by incrementally growing a controller. The smaller running

time achieved by incrementally growing the controller is explained by the fact that early

iterations can be done quickly when the controller is still small. The higher expected

rewards achieved by growing the controller are explained by the fact that the escape

heuristic greedily adds nodes that improve the controller in the reachable belief region.

In contrast, when fixing the size of the controller a priori, the random initialization of

the controller generates nodes that may not be relevant to the reachable belief region.

Table 3.10 summarizes BPI’s results and compares them to state-of-the-art algo-

rithms. PBVI refers to Pineau et al.’s original point-based value iteration [106]. Perseus

refers to Spaan and Vlassis’ randomized version of PBVI [142, 137, 136] that per-

forms partial point-based backups. PBUA is another point-based algorithm proposed by

Poon [109]. BBSLS is the belief-based stochastic local search algorithm proposed by Braz-

iunas and Boutilier [20]. PI refers to Hansen’s classic policy iteration algorithm [44, 45]

with incremental pruning for the improvement step. Similarly, appPI refers to an ap-

proximate version of Hansen’s policy iteration algorithm, where the number of α-vectors

is bounded to 150 at each step of incremental pruning. Following Feng and Hansen’s

proposal [36], this is done by retaining the 150 α-vectors that contribute the most (i.e.,

α-vectors with the smallest objective when solving the LP-dominance test in Table 2.3)

to the value function at each step and pruning all remaining α-vectors.

In order to make sure that the results for BPI are comparable to the ones previously

reported for those algorithms, the rewards in Table 3.10 are accumulated over an infinite

horizon for tag-avoid and tiger-grid, and until a goal state is reached for hallway and

hallway2. In contrast, the results reported in Figures 3.8, 3.9, 3.10 and 3.11 assume an

infinite horizon. Note also that time comparisons in Table 3.10 may not be adequate

since the running times for Perseus, PBVI, PBUA and BBSLS are taken from the papers

describing each algorithm and therefore important differences in hardware and software

architecture may exist.2 The size of the solution reported is the number of nodes in the

2The results for BPI, PI and appPI were computed using Matlab 6.5 and CPLEX 7.1 on a 3 GHz
linux machine.
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Figure 3.8: Tiger-grid: expected reward (averaged over 20 trials) earned by the controllers

found by BPI with respect to time and number of nodes.
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Figure 3.9: Hallway: expected reward (averaged over 20 trials) earned by the controllers

found by BPI with respect to time and number of nodes.
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Figure 3.10: Hallway2: expected reward (averaged over 20 trials) earned by the controllers

found by BPI with respect to time and number of nodes.
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Figure 3.11: Tag-avoid: expected reward (averaged over 20 trials) earned by the con-

trollers found by BPI with respect to time and number of nodes.
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controller for BPI, BBSLS, PI and appPI, and the number of α-vectors for PBVI, Perseus

and PBUA. Since there is one α-vector per node in a controller, these quantities are

comparable. Note also that PI and appPI were stopped after 24 hours (86,400 seconds)

so the results reported are for the controllers found in the last completed iteration. For

tag-avoid and hallway2, the size of the controllers found by PI is artificially low because

it only completed two iterations. In the third iteration, the number of nodes blew up

significantly, preventing PI from completing the third iteration within 24 hours.

As mentioned earlier, the size of the components of a POMDP are often poor in-

dicators of its inherent policy complexity. Unlike state space complexity, which can be

easily quantified by the number of states, policy complexity is much harder to quantify

a priori. While the number of actions and observations can be used to bound the size

of the optimal policy graph (e.g., |A||Z|h), there often exist relatively small policies of

good quality. In fact, all problems in Table 3.10 possess small yet very good policies.

Furthermore, even though tag-avoid has a larger number of observations than the other

problems, smaller policies of high quality can be found for it. As a result, it can be solved

in a similar amount of time to the other problems. Indeed, it is difficult to quantify a

priori policy complexity.

In Table 3.10, the running time of each algorithm (except PI) is polynomial with

respect to the size of the policies or value functions they construct. Hence, the best

algorithms tend to be those that quickly find small policies of high quality. BPI tends to

find very small policies compared to the other algorithms and therefore is competitive in

practice. By its ability to avoid local optima and to find relatively small policies of high

quality, BPI is a robust scalable algorithm that can effectively overcome policy and value

function complexity. Perseus is also quite efficient on some problems. We will discuss

Perseus and BPI in more details in Chapter 5 when we combine them with techniques to

deal with large state spaces.
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Problems Algorithms Expected Solution Time

Reward Size (seconds)

tiger-grid BPI 2.22 120 1000

Perseus 2.34 134 104

PBVI 2.25 470 3448

PBUA 2.30 660 12116

BBSLS n.a. n.a. n.a.

PI 0 6448 86400

appPI 0 150 86400

hallway BPI 0.51 43 185

Perseus 0.51 55 35

PBVI 0.53 86 288

PBUA 0.53 300 450

BBSLS n.a. n.a. n.a.

PI 0.14 286 86400

appPI 0.14 150 86400

hallway2 BPI 0.32 60 790

Perseus 0.35 56 10

PBVI 0.34 95 360

PBUA 0.35 1840 27898

BBSLS n.a. n.a. n.a.

PI 0.02 5 86400

appPI 0.05 150 86400

tag-avoid BPI −6.65 17 250

Perseus −6.17 280 1670

PBVI −9.18 13340 180880

PBUA n.a. n.a. n.a.

BBSLS −8.20 30 100000

PI −15.71 3 86400

appPI −19.08 150 86400

Table 3.10: Results on benchmark problems.



Chapter 4

Compact State Space and Belief

Space Representations

In Chapter 3, we saw that policy and value function complexity can often be overcome

for POMDPs that possess small policies of high quality by using algorithms such as

BPI that concentrate their search on compactly representable policies. Such techniques

allow us to make an important step forward; however, a second source of intractability

remains: the complexity of state spaces. Real-world POMDPs tend to have very large

state spaces, which make impractical the classic solution algorithms of Chapter 2 as well

as the more advanced algorithms of Chapter 3. Fortunately, real-world POMDPs tend to

exhibit a significant amount of structure, so this chapter focuses on techniques that can

exploit structure (when available) to mitigate the complexity of state and belief spaces.

In particular, Section 4.1 reviews several types of structure previously identified in the

literature and a wide range of algorithms proposed to exploit these. In Section 4.2, we

describe a new value-directed compression technique that can reduce the dimensionality

of POMDP components while preserving the information necessary to compute optimal

policies. Finally, Section 4.3 illustrates the effectiveness of the compression technique on

some test problems.

4.1 Literature Review

In a POMDP, the transition, observation and reward functions all use the state space to

define their domain. For problems with very large state spaces, several techniques allow

us to represent these functions in a compact way. In particular, we review in Section 4.1.1

64
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some factored representations of those functions. Despite the possibility of specifying very

large POMDPs in a compact form, it is not straightforward to design solution algorithms

that also work directly with a compact representation without ultimately enumerating all

or most states. In Sections 4.1.2-4.1.6, we survey some solution techniques that attempt

to overcome the state space complexity by exploiting the structure of factored POMDPs.

4.1.1 Factored POMDPs

In a POMDP, the relevant features of the world are summarized by a state s ∈ S.

Suppose each relevant feature is represented by some variable Xi with domain Di. Then,

each state is a different joint instantiation of the variables X1, X2, . . . , Xn (assuming n

variables). The size of the state space is exponential in n since S = D1 ×D2 × . . .×Dn.

Similarly, one can often decompose the action space A and the observation space Z such

that each action a corresponds to a joint instantiation of the action variables and each

observation z corresponds to a joint instantiation of the observation variables. In many

domains, it is possible to define the transition, observation and reward functions in terms

of the state variables, action variables and observation variables (instead of the states,

actions and observations), allowing compact factored representations.

Conditional Independence

The transition and observation functions of a POMDP can typically be compactly rep-

resented as a dynamic Bayesian network (DBN) [30], which is a graphical representation

for stochastic processes that exploits conditional independence. Conditional indepen-

dence refers to the fact that some variables are probabilistically independent of each

other when the values of other variables are held fixed [102].

The conditional probabilities Pr(s′|s, a) and Pr(z|s, a) can be expressed using an

acyclic directed graph such as the one in Figure 4.1. In this graph, the nodes are state,

action and observation variables and the edges represent probabilistic dependencies. The

nodes are arranged in slices corresponding to two successive time-steps and each state

variable occurs in each slice. Each node X ′
i in the second slice has a conditional probabil-

ity table (CPT) that specifies the conditional probability distribution Pr(X ′
i|parents(X ′

i))

of X ′
i with respect to its parent variables. Parents are always in the current or prior slice

and the graph must be acyclic. Using Bayes theorem, the transition function, which

corresponds to Pr(X ′
1, X

′
2|X1, X2, A1, A2), can be factored into a product of smaller
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Figure 4.1: Dynamic Bayesian network.

conditional distributions. In the example of Figure 4.1, Pr(X ′
1, X

′
2|X1, X2, A1, A2) =

Pr(X ′
1|X1, X2, A1) Pr(X ′

2|X2, A1, A2). Similarly, the observation function, which cor-

responds to Pr(Z ′
1, Z

′
2|X

′
1, X

′
2, A1, A2), can also be factored into a product of smaller

conditional distributions (e.g., Pr(Z ′
1, Z

′
2|X

′
1, X

′
2, A1, A2) = Pr(Z ′

1|X
′
1, A1) Pr(Z ′

2|X
′
2, A2)).

Hence, the transition and observation functions are compactly encoded by the CPTs of

the DBN. The size of each CPT is exponential in the number of parent variables; however,

in practice, variables tend to have only a few parents.

Additive separability

The reward function of a POMDP can often be compactly represented by exploiting

additive separability [139]. Additive separability refers to the fact that utility functions

often decompose into sums of smaller utility functions [59, 3]. For instance, the reward

function in Figure 4.2 is the sum of two small reward functions each depending on a small

subset of action and state variables.

The conditional probability tables of transition and observation functions may also

decompose into sums of smaller distributions. In particular, this happens when a distri-

bution is a mixture (e.g., convex combination) of other distributions. For example, the

CPT Pr(X ′
1|X1, X2, A1) in Figure 4.1 could be represented more compactly by a mixture

of smaller distributions Pr(X ′
1|X1, A1) and Pr(X ′

1|X2, A1) (see Figure 4.3). Mixture dis-

tributions often arise in practice when several distributions are possible and we are not

sure which one is right or as tractable approximations to complex distributions.
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Context-Specific Independence

The probability tables in Figure 4.1 and the utility tables in Figure 4.2 can be further

compressed by exploiting context-specific independence [12]. Intuitively, context-specific

independence refers to the fact that some utility or random variables are independent

of each other in some contexts (i.e., for some specific values of other random variables).

In general, context-specific independence allows one to compactly represent probability

and utility tables using Horn rules [107] decision trees (DTs) [12, 11, 14] or algebraic

decision diagrams (ADDs) [49, 46]. For instance, Figure 4.4 illustrates the DT and ADD

representations of the utility table for U1 in Figure 4.2. A DT is a tree that stores in

its leaves the values of a function defined over some variables. The value of the utility

function U1 for some truth assignment to X1, X2 and A1 is found by following the

corresponding branch. For example, when X1 and X2 are true, the value of U1 is 5. Note

that U1 is independent of A1 when X1 and X2 are true since the value of U1 is 5 whether

A1 is true or false. Hence, by exploiting context-specific independence, the decision tree

in Figure 4.4 can encode with only 5 leaves the 8 values of the utility table in Figure 4.2.

An algebraic decision diagram (ADD) is essentially a decision tree (DT) with branches

that are allowed to merge together. This allows further space reduction over DTs with

minimal overhead to keep track of which subtrees are shared. In general DTs and ADDs

can compactly represent a function defined over some set of variables by aggregating

together values that are identical.
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4.1.2 State Aggregation

Given a POMDP with transition, observation and reward functions compactly repre-

sented by exploiting conditional independence, additive separability and context-specific

independence, we would like to devise a solution algorithm that can also work with com-

pact representations. Classic solution algorithms all have in common a DP procedure

to compute a set ℵk of α-vectors from the previous set ℵk−1 of α-vectors. An α-vector

is a linear function defined over the state space, so Boutilier and Poole [14] proposed

a method to aggregate states with the same expected total return by compactly repre-

senting α-vectors by DTs. Assuming the reward, transition and observation functions

are represented by DTs, then the DP procedure used by classic solution algorithms can

be adapted to efficiently compute the expected total return of all states by partitioning

the state space in aggregates with identical expected total return. The method was later

refined to generate larger aggregates by using ADDs [49, 46] and by aggregating states

with similar (instead of identical) expected total return [138, 36].

In practice, substantial savings have been demonstrated on several synthetic prob-

lems [46, 36]. Generally speaking, the smaller are the DTs/ADDs representing transition,

observation and reward functions, the more likely it is that α-vectors can be computed

and represented by small DTs/ADDs.

4.1.3 Linear Change of Basis

Given that reward functions are often additively separable into smaller reward functions

defined over a small subset of variables, then α-vectors, which are computed from reward

functions, may also be additively separable into small linear functions defined over a small

subset of variables. Recent work in fully observable MDPs [62, 63, 40, 41, 124, 118] has

explored the possibility of making a linear change of basis. Basis functions can be selected

based on prior expert domain knowledge or by some automated techniques [101, 113] that

greedily grow the subsets of state variables used to define the basis functions. Guestrin

et al. [42] also proposed to adapt this idea to POMDPs: instead of working with α-

vectors defined as linear functions over the state space, the α-vectors are approximated

by some linear combination of small basis functions. However, the method remains to be

implemented.

Note that state aggregation techniques such as DTs and ADDs exploit context specific

independence whereas approximations with linear combinations of basis functions exploit
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additive separability. It is possible to simultaneously exploit both types of structure by

using linear combinations of DTs/ADDs where each DT/ADD is a basis function [43].

4.1.4 Predictive Representations

In the POMDP framework, a state captures all the relevant features of the world for

the purpose of planning. One can compress the state space by reducing it to some

representation that retains only the relevant features of the world. Since the goal of

a decision-theoretic agent is to accumulate as much future reward as possible, we can

shrink the state space to some sufficient statistic that allows us to accurately predict

future observations (assuming rewards are observable). Chrisman [27] first proposed a

reinforcement learning technique called the perceptual distinction approach to grow a set

of states that is statistically sufficient for predicting future observations. The method was

later refined by McCallum who recognized that it is not necessary to distinguish future

observations if they yield the same reward. He proposed several utile distinction memory

approaches [83, 84, 85] that grow a set of states that are sufficient for predicting only

expected future rewards. Lin and Mitchell [66] also report experiments using recurrent

neural networks to learn sufficient statistics of the state space for predicting either future

observations or future rewards. Along the same lines, Littman et al. [71, 120, 129, 54, 128]

proposed to learn from past observations a predictive state representation that is sufficient

to predict future observations.

These techniques were proposed for reinforcement learning scenarios where the num-

ber of states, the transition function, the observation function and the reward function

are completely unknown. Since the agent only knows its own actions and the observa-

tions made, it must learn the remaining POMDP components (directly or indirectly)

in addition to finding a good policy. The learning part of the problem turns out to be

much harder than the planning part since a prohibitively large number of sample runs

are often necessary. As a result, these techniques have only been demonstrated on small

POMDPs.

4.1.5 Factored Belief States

When a policy is represented by a mapping from belief states to actions, the current

belief state must be quickly updated at each time step using Bayes’ theorem (Equa-

tion 2.1) during the execution of the policy. For factored POMDPs, since the transition
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and observation functions can be factored into compact representations, it may also be

possible to factor belief states into products of marginals by exploiting conditional in-

dependence. The idea is to leverage the dynamic Bayesian network representation of

factored POMDPs to efficiently update and compactly represent belief states. Recall

that a belief state is a joint probability distribution of the state variables. If the state

variables can be partitioned into probabilistically independent subsets, then the joint

distribution can be compactly represented by the product of the marginal distributions

of each subset.

If at every time-step belief states can be factored into sets of marginals, then belief

state monitoring algorithms can focus only on factored belief states which have a reduced

dimensionality equal to the sum of the size of each marginal. The size of a marginal is

exponential in the size of the subset of variables it corresponds to; however, for small

subsets, this effectively reduces dimensionality. Unfortunately, as observed by Boyen and

Koller [17], even in the extreme case in which the initial belief state is completely factored

(all state variables are mutually independent), correlations introduced by the transition

and observation functions tend to “bleed through” the DBN, rendering most (if not all)

state variables correlated after some time.

Nevertheless, many of those correlations are weak in practice and this suggests an

approximation scheme where we force some subsets of variables to remain independent

by breaking at each time step any correlation that could creep in. Boyen and Koller [17]

proposed to project at each time step the exact joint distribution of the belief state onto a

predetermined set of marginals that partition state variables into mutually independent

subsets. They also showed that this approximation technique can significantly speed

up belief state monitoring while ensuring that the KL divergence between exact and

approximate belief states remains bounded for rapidly mixing DBNs.

During the execution of a POMDP policy, belief state monitoring is conducted only

to facilitate action selection. Thus, although the KL divergence between exact and

approximate belief states remains bounded, the policy may be altered since the action

selected for every approximate belief state may be different from the one prescribed by

the exact belief state. Poupart and Boutilier [110] showed that the quality of the policies

resulting from approximate belief state monitoring can be significantly lower than the

original policy even when the KL-divergence remains fairly small and that policy quality

can be unaffected when KL-divergence is large. They also devised algorithms to select

sets of marginals to project on that directly minimize the impact on decision quality
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rather than KL-divergence [110, 111].

Factored representations of belief states have also been used by McAllester and

Singh [82] in a forward search algorithm that expands the search tree of future actions

and observations to select the next action that maximizes future expected total return.

In a POMDP reinforcement learning scenario, Sallans [122] also used factored represen-

tations of belief states to reduce the number of parameters for learning the POMDP

dynamics as well as an optimal value function.

4.1.6 Sparsity

When the state space is very large or continuous, belief states can also be compactly ap-

proximated and efficiently monitored by sampling techniques (a.k.a. particle filtering or

sequential Monte Carlo) [31, 58]. The idea is to approximate a belief state by a weighted

sample of states, which is updated as follows: given a weighted sample representing the

current belief state, some states reachable at the next time-step are sampled according

to the transition function and re-weighted according to the observation function. This

new weighted sample approximates the next belief state.

Assuming the sample size is much smaller than the state space size, then dimen-

sionality is effectively reduced. In practice, sampling techniques tend to work well for

problems with sparse transition functions and/or very informative observation functions.

When the transition function is sparse, then only a few states can be reached from any

state, allowing accurate approximation by a small sample of states. Similarly, when the

observation function is very informative, then after making an observation only a few

states are likely, once again allowing accurate approximation by a small sample of states.

Poupart, Ortiz and Boutilier [114] also derived bounds on decision quality associated

with sampling methods for approximate belief state monitoring during policy execution.

Given that approximations by factored representations exploit conditional independence

and that sampling techniques exploit distributional sparsity, Ng et al. [95] combined the

two approaches in a very effective technique.

Besides sparse belief states, it is also common for real-world POMDPs to have very few

reachable belief states, meaning that the reachable region of the belief space is also sparse.

Roy and Gordon [119] proposed to compress the belief space to a lower dimensional

manifold by exponential principal component analysis. The idea is to fit a low dimensional

manifold to a sample of reachable belief states. This technique has proved very effective
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for robot navigation tasks, since the uncertainty in the location of a robot tends to be

local.

4.2 Value-Directed Compression

Although real-world POMDPs tend to have very large state spaces, we highlighted in the

previous section several types of structure and a variety of techniques that can exploit

that structure to mitigate the complexity of state spaces. These techniques can be quite

effective in reducing the dimensionality of the state space when the structure they exploit

is present; however, most of them typically exploit a single type of structure, which limits

their applicability. Furthermore, none of the techniques have been integrated with those

of Chapter 3, which leaves them at the mercy of the policy space complexity. As a result,

even though the techniques described in the previous section are designed to handle

large-scale POMDPs, they can typically solve only toy problems.

This section describes a new value-directed compression (VDC) technique, which offers

two important advantages. First, by combining ideas from state aggregation, predictive

state representations and linear change of basis, VDC generates a reduced POMDP

by simultaneously exploiting conditional independence, context-specific independence,

additive separability and the fact that belief states often contain superfluous information

that is irrelevant to the decision process. Second, as will be described in Chapter 5, the

reduced POMDP produced by VDC can be fed to any of the algorithms of Chapter 3,

allowing both sources of intractability to be contained.

4.2.1 Lossless Compressions

Recall that belief states constitute a sufficient statistic summarizing all information avail-

able to the decision maker (i.e., past actions and observations). However, as long as

enough information is available to determine the value of each policy, one can still choose

the best policy. Since belief states often contain information irrelevant to the estima-

tion of future rewards, one can often compress belief states into some lower-dimensional

representation. We provide a characterization of lossless compressions and then consider

algorithms to compute linear compressions.
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Sufficient Conditions

Let f be a compression function that maps each belief state b into some lower dimensional

compressed belief state b̃ (see Figure 4.5(a)). Here, b̃ can be viewed as a bottleneck (e.g.,

in the sense of the information bottleneck method [141]) that filters the information

contained in b before it is used to estimate future rewards. A possible approach is to find

a compression f such that b̃ corresponds to the smallest statistic sufficient for accurately

predicting the current reward r as well as the next belief state b′ (since we can accurately

predict all following rewards from b′). Such a compression f exists if we can also find

mappings ga,z and R̃ such that:

R = R̃ ◦ f , (4.1)

T a,z = ga,z ◦ f ∀a ∈ A, z ∈ Z . (4.2)

Here, g ◦ f denotes the composition of function g applied to the output of function f .

Since we are only interested in predicting future rewards, we don’t really need to

accurately estimate the next belief state b′; we could just predict the next compressed

belief state b̃′ because it captures all information in b′ relevant for estimating future

rewards. Figure 4.5(b) illustrates the resulting functional flow, where T̃ a,z represents the

transition function that directly maps one compressed belief state to the next compressed

belief state. The sufficient conditions of Equations 4.1 and 4.2 can then be replaced by

the following weaker but still sufficient conditions:

R = R̃ ◦ f , (4.3)

f ◦ T a,z = T̃ a,z ◦ f ∀ .a ∈ A, z ∈ Z (4.4)

Given an f , R̃ and T̃ a,z satisfying Equations 4.3 and 4.4, we can evaluate a policy π by

using the compressed POMDP dynamics as follows:

Ṽ π(b̃) = R̃(b̃) + γ
∑

z

Ṽ π(T̃ π(b̃),z(b̃)) . (4.5)

Since the conditions ensure accurate predictions of all future rewards, we can show that

the value of each policy is the same with respect to the original POMDP and the com-

pressed POMDP:

Theorem 4 Let f , R̃ and T̃ a,z satisfy Equations 4.3 and 4.4 then V π(b) = Ṽ π(b̃).
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Proof: We use a proof by induction. Base case: let V π
0 (b) = R(b) and Ṽ π

0 (b̃) = R̃(b̃),

then
V π

0 (b) = R(b)

= R̃(f(b)) (Equation 4.3)

= R̃(b̃) (by definition)

= Ṽ π
0 (b̃) .

Induction: let V π
n (b) = Ṽ π

n (b̃) with n stages-to-go, then

V π
n+1(b) = R(b) + γ

∑

z V π
n (T π(b),z(b)) (Bellman equation)

= R(b) + γ
∑

z Ṽ π
n (f(T π(b),z(b))) (by induction)

= R(b) + γ
∑

z Ṽ π
n (T̃ π(b̃),z(f(b))) (Equation 4.4)

= R̃(f(b)) + γ
∑

z Ṽ π
n (T̃ π(b̃),z(f(b))) (Equation 4.3)

= R̃(b̃) + γ
∑

z Ṽ π
n (T̃ π(b̃),z(b̃)) (by definition)

= Ṽ π
n+1(b̃) . (Bellman equation)

J

Theorem 4 essentially shows that all policies have identical values with respect to

the original and compressed POMDPs. This means that we can run our favorite solution

algorithm on the compressed POMDP to find an optimal policy for the original POMDP.

When the components of the compressed POMDP are much smaller than the original

POMDP, substantial time savings are possible.

Linear Compressions

We now turn to the problem of computing a compressed POMDP. In other words, we

would like to find a compression mapping f and some compressed dynamics T̃ a,z and R̃

that satisfy the sufficient conditions in Equations 4.3 and 4.4. Let’s consider the class

of linear compressions. As we will see, linear compressions naturally arise for problems

that exhibit additive separability in the reward and/or transition functions. Furthermore,

linear compressions can be easily computed.

Before explaining how to find linear lossless compressions, we briefly review several

linear algebraic concepts that will be used later (see Saad [121] for more details). Let

X be a vector subspace. We say that X is invariant with respect to matrix M if it is

closed under multiplication by M (i.e., Mx ∈ X , ∀x ∈ X ). A Krylov subspace Kr(M, x)

is the smallest subspace X that contains x and is invariant with respect to M . A basis
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B for a Krylov subspace can easily be generated by repeatedly multiplying x by M

(i.e., B = {x, Mx, M2x, M3x, . . . , Mn−1x}) until a vector Mnx is found to be a linear

combination of the previous vectors. If Kr(M, x) is n-dimensional, one can show that

Mn−1x is the last linearly independent vector in this sequence and that all subsequent

vectors are linear combinations of B.

When the compression mapping f is linear and therefore representable by some ma-

trix F , the compressed transition and reward functions T̃ a,z and R̃ must also be linear

for discrete POMDPs (assuming Equations 4.3 and 4.4 are satisfied). Consequently,

Equations 4.3 and 4.4 are linear and can be rewritten in matrix notation:

R = FR̃ , (4.6)

T a,zF = F T̃ a,z ∀a, z . (4.7)

In a linear compression, F can be viewed as effecting a change of basis for the value

function, with the columns of F defining a subspace in which the compressed value

function lies. Furthermore, the rank of F indicates the dimensionality of the compressed

state space. When Equations 4.6 and 4.7 are satisfied, the columns of F span a subspace

that contains R and that is invariant with respect to each T a,z. Intuitively, Equation 4.7

says that a sufficient statistic must be able to predict itself at the next time step, which

is why the compression subspace must be invariant. Similarly, Equation 4.6 says that

a sufficient statistic must also predict the current reward which is why the compression

subspace must contain R. A formal proof is given in Theorem 5.

Theorem 5 If T̃ a,z, R̃ and F satisfy Equations 4.6 and 4.7, then the range of F contains

R and is invariant with respect to each T a,z.

Proof: Equation 4.6 ensures R is a linear combination of the columns of F , so it lies

in the range of F . Equation 4.7 also requires that the columns of each T a,zF are linear

combinations of the columns of F , so F is invariant with respect to each T a,z. J

Thus, the best linear lossless compression corresponds to the smallest invariant sub-

space that contains R. This is by definition the Krylov subspace Kr({T a,z : a ∈ A, z ∈

Z}, R). Using this fact, we can easily compute the best lossless linear compression by

iteratively multiplying R by each T a,z until the Krylov basis is obtained. We then let
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PROCEDURE KrylovIteration(T a,z, R)

compute F :

set F1 (first column of F ) to R

for each column Fi of F do:

for each 〈a, z〉-pair do:

if T a,zFi is linearly independent of F1, . . . , Fi−1

add T a,zFi to the column set of F

end if

end for

end for

compute R̃:

solve R = FR̃

compute T̃ a,z:

for each 〈a, z〉-pair do:

solve T a,zF = F T̃ a,z

end for

return F , R̃ and T̃ a,z

END PROCEDURE

Table 4.1: Krylov iteration for lossless compressions.

the Krylov basis form the columns of F , and compute R̃ and each T̃ a,z by solving Equa-

tions 4.6 and 4.7. Table 4.1 summarizes the Krylov iteration algorithm to compute F , R̃

and T̃ a,z.

Although the Krylov iteration algorithm always generates the best linear lossless com-

pression, an important question is how large will F be? In the worst case, when no

compression is possible, F has |S| columns spanning the entire state space. However, the

hope is to find a much smaller compression, which is likely to happen when the reward

function and/or the transition dynamics are decomposable into sums of small functions.

Once a good compression is found, we can solve the POMDP in the compressed state

space by using R̃ and T̃ a,z.

Note that the Krylov iteration algorithm runs in time linear with respect to the

number of states. For factored POMDPs that have exponentially many states, this is

bad news. This means that compressing a POMDP by Krylov iteration is as imprac-
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F =

s1

s2

s3

s4

s5

s6

























5 3 2

1 2 1

1 2 1

8 0 0

4 0 4

0 0 8

























Table 4.2: Interpretation of F .

tical as solving the POMDP directly. On the other hand, when a factored POMDP is

specified compactly, say, using a DBN, we may be able to exploit the DBN structure

and context-specific independence. In particular, if the transition, observation and re-

ward functions are represented using decision trees (DTs) or algebraic decision diagrams

(ADDs), then the matrix operations required by Krylov iteration can be implemented

more efficiently [11, 49, 60]. The resulting basis vectors are also DTs or ADDs whose size

depend on the amount of conditional and context-specific independence exhibited by the

POMDP dynamics.

Interpretation

The mapping F corresponding to a lossless linear compression has an interesting inter-

pretation. Consider the matrix F in Figure 4.2 representing a hypothetical compression

mapping. Since F is a 6 by 3 matrix, it maps belief states from a 6-dimensional simplex to

a 3-dimensional linear subspace. In particular, each row of F corresponds to a state and

indicates the 3-dimensional point to which that state is mapped. For instance, state s1

is mapped to (5, 3, 2). When 2 rows are identical it means that the corresponding states

have been aggregated since they are mapped to the same 3-dimensional point (e.g., s2

and s3 are aggregated in Figure 4.2). This means that linear compressions subsume state

aggregation.

Beyond “pure” state aggregation, it is also possible that some states be aggregated

with belief states. Suppose that s4 corresponds to yes, s5 to maybe and s6 to no. Intu-

itively, the maybe-state is in between the yes-state and the no-state. From an information

theoretic point of view, the maybe-state may be equivalent to 50% no, 50% yes. When

that happens, the compression will simply aggregate the maybe-state with the uniform

belief state over yes and no. Aggregations of states with belief states arise in F when a
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row is the convex combination of some other rows (e.g., s5 is a convex combination of s4

and s6). Since belief states correspond to all possible convex combinations of the states,

the convex hull of all rows forms the compressed belief space.

In general, linear compressions are more powerful than simple state and belief state

aggregation. When a row is a linear combination of other rows, its corresponding state

doesn’t get aggregated. However, it gets projected in the same linear subspace, which

reduces the dimensionality of the belief space.

As mentioned earlier, we can also interpret the columns of F as a basis spanning

a linear subspace that contains the value function of every conditional plan. When

F is computed by Krylov iteration, each entry corresponds to the reward earned after

starting in some state and executing some sequence of actions and observations. For

instance, Krylov iteration sets the first column of F to R so the entries of the first

column are the immediate rewards of each state. Suppose the second column corresponds

to T a,zR then the entries of the second column correspond to the rewards earned after

executing a and observing z from each state. Similarly, suppose column n corresponds

to T a1,z1T a2,z2T a3,z3R then the entries of that column correspond to the rewards received

after executing and observing the sequence a1, z1, a2, z2, a3, z3 from each state. Note

however that the entries of F may not be interpreted as future expected rewards when

F is computed by other means than Krylov iteration.

4.2.2 Lossy Compressions

Suppose that due to computational constraints we can only solve POMDPs with belief

spaces of k dimensions or fewer. Assuming there doesn’t exist any effective lossless com-

pression, we would like to find the best k-dimensional lossy compression. A compression

is lossy when Equation 4.6 or 4.7 is not satisfied. As a result, the value estimates of each

policy with respect to the compressed POMDPs may differ from those with respect to

the original POMDP. However, if the error estimates are small enough, the best policy

with respect to the compressed POMDP may still be near-optimal with respect to the

original POMDP. We propose two approaches to find linear lossy compressions that al-

most satisfy Equations 4.6 and 4.7. The first approach is an optimization program that

minimizes the residual error of Equations 4.6 and 4.7. The second approach consists of

Krylov iteration with early stopping.
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min cεR + dεT

s.t. ‖R− FR̃‖∞ ≤ εR

‖T a,zF − F T̃ a,z‖∞ ≤ εT ∀a ∈ A, z ∈ Z

‖F‖∞ = 1

Table 4.3: Optimization program for linear lossy compressions.

Optimization program

We can formulate the problem of finding the best k-dimensional lossy compression as

an optimization problem. The idea is to treat F , R̃ and T̃ a,z as unknowns that we

optimize to satisfy Equations 4.6 and 4.7 as much as possible. Table 4.3 outlines a

simple optimization program to find lossy compressions that minimize a weighted sum

of the max-norm1 residual errors, εT and εR, of each sufficiency condition. Here, c and d

are weights that allow us to vary the degree to which each sufficiency condition should be

satisfied. The unknowns of the program are all the entries of R̃, T̃ a,z and F as well as εT

and εR. Here, ‖M‖∞ indicates the maxnorm of matrix M , which is the largest absolute

row sum (i.e., maxi

∑

j |Mij|). The constraint ‖F‖∞ = 1 is necessary to preserve scale,

otherwise εT could be driven down to 0 simply by setting all the entries of F to 0. Since

T̃ a,z and R̃ multiply F , some constraints are nonlinear. However, it is possible to solve

this optimization program by a series of LPs (linear programs). We alternate between

solving the LP that adjusts R̃ and T̃ a,z while keeping F fixed, and solving the LP that

adjusts F while keeping R̃ and T̃ a,z fixed. Convergence is guaranteed since the objective

function decreases at each iteration; however, the resulting fixed point may not be a

global optimum nor a local optimum.

The quality of the compression resulting from this optimization program depends on

the weights c and d. Ideally, we would like to set c and d in a way that cεR+dεT represents

the loss in decision quality associated with compressing the state space. If we can bound

the error εV of evaluating any policy using the compressed POMDP, then the difference

in expected total return between the policy that is best with respect to the compressed

POMDP and the truly optimal policy is at most 2εV . Let εV be maxπ ‖V π − Ṽ π ◦ f‖∞.

Theorem 6 gives an upper bound on εV as a linear combination of the max-norm residual

errors in Equations 4.6 and 4.7.

1Any norm could be used; however, the max-norm will be convenient to compute an upper bound on
the loss in value in Theorem 6.



Chapter 4. Compact State Space and Belief Space Representations 82

Theorem 6 Let εV = maxπ ‖V
π − Ṽ π ◦ f‖∞, εR = ‖R − R̃ ◦ f‖∞, εT = maxa,z ‖T

a,z −

T̃ a,z ◦ f‖∞ and Ṽ ∗ = maxπṼ π. Then εV ≤
1

1−γ
εR + γ|Z| ‖Ṽ ∗‖∞

1−γ
εT .

Proof: The proof essentially consists of a sequence of substitutions of the type ‖AB‖∞ ≤

‖A‖∞ ‖B‖∞ and ‖A + B‖∞ ≤ ‖A‖∞ + ‖B‖∞. In the following derivation, e represents

a column vector of 1’s.

εV = max
π
‖V π − Ṽ π ◦ f‖∞

= max
α
‖α− Fα̃‖∞

= max
αz ,a,z

‖R + γ
∑

z

T a,zαz − FR̃− γ
∑

z

F T̃ a,zα̃z‖∞

≤ ‖R− FR̃‖∞ + γ max
αz ,a,z

‖
∑

z

(T a,zαz − F T̃ a,zα̃z)‖∞

≤ εR + γ max
αz ,a,z

‖
∑

z

T a,z(αz − Fα̃z)‖∞

+γ max
αz ,a
‖

∑

z

(T a,zF − F T̃ a,z)α̃z‖∞

≤ εR + γ max
a,z
‖

∑

z

T a,zeεV ‖∞ + γ max
α̃z ,a

∑

z

‖(T a,zF − F T̃ a,z)α̃z‖∞

≤ εR + γεV + γ
∑

z

εT‖Ṽ
∗‖∞

≤
1

1− γ
εR +

γ|Z| ‖Ṽ ∗‖∞
1− γ

εT .

The above derivation assumes a discrete POMDP, which is known to have a piecewise-

linear and convex value function. Hence a value function V can be substituted by a set

of α-vectors each representing a linear piece of V . J

Even though the above error bound tends to grossly overestimate the actual loss in

decision quality, we can still use it as a guide for setting c and d. Here, γ|Z| ‖Ṽ ∗‖∞/(1−γ)

is typically much greater than 1/(1− γ) because of the factor ‖Ṽ ∗‖∞. This means that

εT has a much higher impact on the loss in decision quality than εR. Intuitively, this

makes sense because the error εT in predicting the next compressed belief state may

compound over time, so we should set d significantly higher than c. Table 4.4 summarizes

the alternating optimization procedure to compute good lossy compressions for a fixed

dimensionality. Note that we can’t set d directly to γ|Z| ‖Ṽ ∗‖∞/(1− γ) because ‖Ṽ ∗‖∞

is unknown; however, we can substitute ‖Ṽ ∗‖∞ by some estimate or simply set d to some

large number.
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PROCEDURE AlternatingOptimization(T a,z , R)

set d to some estimate of γ|Z|‖Ṽ ∗‖∞/(1− γ) (or some relatively large number)

set c to 1/(1− γ) (or some relatively small number)

initialize F randomly

repeat

fix F and solve Program 4.3 for R̃ and T̃ a,z

fix R̃ and T̃ a,z, and solve Program 4.3 for F

until convergence of εT and εR

return F , R̃ and T̃ a,z

END PROCEDURE

Table 4.4: Alternating optimization for lossy compressions.

Truncated Krylov Iteration

Compared to Krylov iteration, the alternating optimization procedure is much more de-

manding computationally. Krylov iteration involves a sequence of matrix multiplications

(to compute F ) and solves several systems of linear equations (to compute R̃ and T̃ a,z).

In contrast, the alternating optimization procedure solves a series of linear programs

(LPs). Furthermore, empirical evidence suggests that it converges slowly, often requiring

a large number of LPs to be solved. It would be nice to design an algorithm for lossy

compressions that retains the simplicity of Krylov iteration.

To that effect, we propose a truncated Krylov iteration algorithm. The idea is to stop

Krylov iteration early, retaining only the basis vectors that are “far” from being linear

combinations of prior vectors. For instance, if v is a linear combination of v1, v2, . . . , vn,

then there are coefficients c1, c2, . . . , cn s.t. the error ||v −
∑

i civi||2 is zero. Given a

threshold ε or some upper bound k on the desired number of columns in F , we run Krylov

iteration, retaining only the vectors with an error greater than ε, or the k vectors with

largest error. When F is computed by truncated Krylov iteration, we cannot compute R̃

and T̃ a,z by solving Equations 4.6 and 4.7—due to the lossy nature of the compression,

the system is over-constrained. But, we can find suitable R̃ and T̃ a,z by computing a

least square approximation, solving:
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PROCEDURE TruncatedKrylovIteration(T a,z, R, k)

compute F :

initialize F to ∅

initialize basisSet to R

while basisSet is not empty and F has fewer than k columns do:

remove vector x from basisSet with largest error ||x−
∑

i ciFi||2

add x to the columns of F

for each 〈a, z〉-pair do:

add T a,zx to basisSet

end for

end while

compute R̃:

solve F>R = F>FR̃

compute T̃ a,z:

for each 〈a, z〉-pair do:

solve F>T a,zF = F>F T̃ a,z

end for

return F , R̃ and T̃ a,z

END PROCEDURE

Table 4.5: Truncated Krylov iteration for lossy compressions.

F>R = F>FR̃ , (4.8)

F>T a,zF = F>F T̃ a,z ∀a ∈ A, z ∈ Z . (4.9)

Alternatively, we can also find suitable R̃ and T̃ a,z by solving the LP in Table 4.3

since F is fixed. This is more demanding computationally than solving Equations 4.8

and 4.9, but it tells us the maxnorm residuals εR and εT that can be used to compute

the upper bound εV on the loss of decision quality. In practice, the actual loss of decision

quality appears to be roughly the same whether we compute R̃ and T̃ a,z by minimizing

the Euclidean norm (Equations 4.8 and 4.9) or the maxnorm (Table 4.3).

Table 4.5 summarizes truncated Krylov iteration for a fixed desired dimensionality

k. Note again that for factored POMDPs with exponentially many states, the algorithm
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can be carried out efficiently by using DTs or ADDs to represent vectors and matrices. If

at any point during the computation the size of some DTs/ADDs become prohibitively

large, we can always shrink them by merging leaves with similar value (see prior work

[138] for more details). This additional approximation introduces further inaccuracies in

the compression, which means that the compression will simply be more lossy.

Intuitively, truncated Krylov iteration stores in F the future rewards that are “harder”

to predict from the previous ones. Furthermore, since future rewards are considered

by gradually increasing the horizon, early stopping yields lossy compressions that tend

to evaluate policies more accurately over a short horizon than a long horizon. Hence,

POMDPs with good myopic policies can often be solved effectively despite the lossy

nature of the compressions produced by truncated Krylov iteration.

4.2.3 Summary

The value-directed compression (VDC) technique proposed addresses the intractability

caused by large state spaces by compressing POMDP problems to a lower dimensional

representation. The compression proposed takes advantage of the fact that optimal

decision making is possible as long as each policy can be accurately evaluated. Since belief

states often contain superfluous information that is irrelevant to the reward estimation

of policies, it is often possible to compress belief spaces (as well as the reward functions

and the transition dynamics). A set of sufficient conditions for lossless compression was

presented and algorithms for linear (lossless and lossy) compressions were proposed.

An important aspect of linear VDC is its ability to simultaneously exploit several

types of structure. In particular, VDC naturally exploits additive separability in reward

functions and conditional probability tables. When reward functions and conditional

probability tables can be decomposed into sums of smaller terms, then value functions

also tend to decompose additively, allowing compact representations as linear combina-

tions of the columns of F . Krylov iteration can also take advantage of conditional and

context-specific independence. When reward functions and conditional probability tables

are compactly represented DTs or ADDs then matrix computations can often be done

efficiently and the columns of F can also be compactly represented as DTs and ADDs.

Similarly, sparsity in the transition dynamics and the rewards can be exploited by using

sparse matrices, sparse DTs or sparse ADDs, which omit zero entries. On the other

hand, VDC doesn’t exploit sparsity in the reachable belief region (i.e., when there are
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few belief states reachable). Another important aspect of linear VDC is that compressed

POMDPs can be fed directly to most of the algorithms discussed in Chapter 3, allowing

both sources of intractability to be mitigated simultaneously.

Note that linear VDC essentially performs a change of basis in which the value func-

tion of every possible conditional plan is compactly represented by a linear combination

of the columns of F . In practice, it is rarely the case that a small basis set can span all

the value functions of every possible conditional plan. Although one can always resort to

a lossy compression, it may also be the case that a small basis set is sufficient to span only

the value functions of the conditional plans of the optimal policy (and the intermediate

policies as we compute the optimal policy). This is a promising alternative that remains

to be explored.

We now highlight the similarities and differences between VDC and some related

techniques.

State Aggregation

In general, linear VDC subsumes state aggregation since all possible aggregation schemes

can be represented by compression mappings F that have identical rows for aggregated

states. VDC can also be viewed as a generalization of Givan et al.’s [38] model minimiza-

tion technique since VDC computes a stochastic bi-simulation of POMDPs. Two MDPs

M1 = 〈S1,A, T1, R1〉 and M2 = 〈S2,A, T2, R2〉 are stochastically bi-similar when there

exists an equivalence relation E between S1 and S2 such that for all (s1, s2) ∈ E:

R1(s1) = R2(s2) ,

T1(s1, a, s′1) = T2(s2, a, s′2) ∀(s
′
1, s

′
2) ∈ E .

Since POMDPs can be viewed as belief state MDPs, then two POMDPs are stochas-

tically bi-similar when there exists an equivalence relation E between their respective

belief spaces B1 and B2 such that for all (b1, b2) ∈ E:

b1R1 = b2R2 , (4.10)

if b1T
a,z = b′1 and b2T

a,z = b′2 then (b′1, b
′
2) ∈ E ∀a ∈ A, z ∈ Z . (4.11)

If we view the compression mapping f as an equivalence relation that maps each

belief state b to its corresponding compressed belief state b̃ then it is easy to see that
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Equations 4.3 and 4.10 are equivalent and that Equations 4.4 and 4.11 are equivalent.

Hence, value directed compressions of POMDPs are stochastic bi-simulations.

Predictive state representations

VDC is also closely related to the predictive state representation (PSR) framework pro-

posed by Littman et al. [71, 128]. The PSR approach compactly represents the informa-

tion available to the decision maker by a sufficient statistic for estimating the probability

of future observations. In a linear PSR, belief states are compressed using a matrix U of

“core tests” corresponding to the probability of observing some sequence of actions and

observations from each state. The matrices U (for PSR) and F (for VDC) differ only

in the sense that U ’s entries are probabilities and F ’s entries are rewards. Littman et

al. also proposed a Krylov iteration algorithm to compute U by multiplying e (vector of

1’s) by each T a,z over and over, retaining only the linearly independent vectors to form

the columns of U . Hence, linear PSR and linear VDC are equivalent except for the fact

that one predicts future observations and the other predicts future rewards. When the

rewards are observable, then the representations produced by both are equivalent.

Exponential Principal Component Analysis

As mentioned earlier, Roy and Gordon [119] developed a non-linear compression tech-

nique for belief states called exponential principal component analysis. The idea is to

exploit the sparsity of the reachable belief region to compress it to some low dimensional

manifold. Exponential PCA and VDC differ in the type of structure they exploit to

achieve their compression. Exponential PCA exploits sparsity, where as VDC doesn’t.

In contrast, VDC prunes from belief states the superfluous information that is irrele-

vant to the decision process, whereas exponential PCA doesn’t. In the future it would

be interesting to combine the two techniques to simultaneously exploit both types of

structure.

Note also that Exponential PCA performs a non-linear compression whereas we have

only proposed algorithms for linear VDC. Although non-linear compressions are more

powerful than linear ones, most of the algorithms described in Chapter 3 cannot operate

on compressed POMDPs resulting from non-linear compressions.
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4.3 Experiments

This section presents some experiments to test VDC’s ability to reduce the dimensionality

of state spaces. We only report experiments for Krylov iteration since it is several orders

of magnitude faster and much simpler to implement than the alternating optimization

technique. The experiments were conducted on four problems taken (or inspired) from the

literature: a coffee delivery problem [14], a spoken dialog system [144] and two synthetic

network management problems similar to those of Guestrin et al. [40]. All four problems

are factored POMDPs.

The coffee problem (proposed by Boutilier and Poole [14]) is a toy POMDP featuring

a robot that must purchase coffee at a coffee shop and deliver it to a user. The spoken-

dialog system (developed by Williams [144]) consists of an automated travel agent that

must elicit the departure and destination cities of a customer. The agent’s task is to ask a

series of questions to determine the traveling needs of the customer, which is complicated

by the noisy nature of speech recognition. Since the details of those two problems are

not essential to the experiments, a full description is provided only in Appendix A.

The network management problems are partially observable extensions of the fully

observable ones described by Guestrin et al. [40]. We briefly describe them for the benefit

of the analysis of the experiments. A system administrator must maintain a network of

machines. Each machine has a 0.1 probability of failing at any stage, which increases

to 0.333 when a neighboring machine is down. The administrator receives a reward of 1

per working machine and 2 per working server.2 At each stage, she can either reboot a

machine, ping a machine or do nothing. She only observes the status of a machine (with

0.95 accuracy) if she reboots or pings it. Costs are 2.5 (rebooting), 0.1 (pinging), and 0

(doing nothing). An n-machine network induces a POMDP with 2n states, 2n+1 actions

and 2 observations. We report on experiments with networks of 7 machines organized

in two configurations: cycle (Figure 4.6a) and 3legs (Figure 4.6b). Edges indicate which

machines are neighbors.

Note that all four problems are relatively small (see Table 4.6). In fact, they can be

solved without any compression. This allows us to evaluate the loss in decision quality

resulting from lossy compressions by comparing the value of the optimal policies for the

original and compressed POMDPs. In Chapter 5, we will present further experiments

2In this problem, servers behave the same way as ordinary machines. However, the administrator
receives a higher reward for working servers than for working ordinary machines.
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server server

a) b)

Figure 4.6: Network configurations: a) cycle, b) 3legs.

Problems |S| |O| |A|

coffee 32 3 2

spoken-dialog 433 37 16

cycle7 128 2 15

3legs7 128 2 15

Table 4.6: Problem sizes.

with larger POMDPs of up to 33 million states.

In a first experiment, Krylov iteration was run on each problem to see if lossless

compressions are possible. Table 4.7 compares the dimensionality of the best lossless

compression to the original state space. The coffee and spoken dialog problems can be

significantly compressed, but not the network problems.

In a second experiment, truncated Krylov iteration was run on each problem to further

reduce the dimensionality. Figures 4.7, 4.8, 4.9 and 4.10 report the value of the policies

found by running BPI on compressed versions of varying dimensionality (the number of

basis functions indicate the dimensionality of the compressed space). Since the controllers

found by BPI depend on the random initialization, we report, for each dimensionality

tested, an interval corresponding to one standard deviation of 20 BPI runs. In each

coffee spoken-dialog cycle7 3legs7

|S| 32 433 128 128

lossless 7 31 128 128

Table 4.7: Dimensionality of the best lossless compression versus original state space.
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Figure 4.7: Coffee problem: value of the policies resulting from lossy compressions (solid

line) versus the range of best values achieved without compression (dotted lines).

graph, the horizontal dotted lines correspond to the value (with one standard deviation)

of the best controller found by BPI without any compression. Hence, the difference

between the intervals of the curves represent the loss in decision quality induced by a

lossy compression. In all cases, near-optimal solutions can still be found with a relatively

small number of dimensions. For the coffee problem and the spoken-dialog system, only

4 basis functions out of 32 and 7 basis functions out of 433 respectively can still yield a

near optimal policy. Similarly, for the network problems, 50 basis functions out of 128 are

sufficient to obtain a near optimal policy. This is still remarkable given that no lossless

compressions were possible for the network problems. The curves are generally noisy

since increasing the number of basis functions doesn’t necessarily yield better policies

and numerical instability may also creep in. We believe this explains the dip in value

observed when the number of basis functions approaches 128 for the 3legs problem. It is

interesting to note that all four problems are factored POMDPs exhibiting conditional

independence, context-specific independence and additive separability. This explains the

success of VDC.

In contrast, the four maze problems (tiger-grid, hallway, hallway2 and tag-avoid) of

Chapter 3 are not factored POMDPs and do not exhibit any conditional independence,

context-specific independence and additive separability. We also tried Krylov iteration on
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Figure 4.8: Spoken dialog system: value of the policies resulting from lossy compressions

(solid line) versus the range of best values achieved without compression (dotted lines).
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Figure 4.9: Cycle network of 7 machines: value of the policies resulting from lossy com-

pressions (solid line) versus the range of best values achieved without compression (dotted

lines).
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Figure 4.10: 3legs network of 7 machines: value of the policies resulting from lossy

compressions (solid line) versus the range of best values achieved without compression

(dotted lines).

those problems, but without any success. There were no lossless compressions and lossy

compressions were too unstable numerically to allow BPI to work properly.3 Note that the

state space of these four maze problems correspond to a discretization of some continuous

floor plan. Hence, instead of compressing the state space by VDC, one can simply

discretize the floor plan more coarsely. Alternatively, since these are robot navigation

problems with sparse reachable belief regions, we also expect exponential PCA to be

quite effective.

Note also that there were no time savings when running VDC followed by BPI on

the compressed problems compared to running BPI on the full problems. This is simply

because the overhead due to the compression is too large for such small problems. We

defer to Chapter 5 experiments on larger problems that BPI (or any other algorithm of

Chapter 3) cannot handle.

3Numerical instability naturally arises when a vector is multiplied over and over by some matrices as
in Krylov iteration. It can be significantly reduced by orthogonalizing the Krylov basis, but this wasn’t
good enough in our experiments.



Chapter 5

Algorithms for Large POMDPs

In Chapter 3, the complexity of policy and value function spaces was addressed by observ-

ing that there are often very good policies with value functions representable by a small

number of α-vectors. Various algorithms such as point-based value iteration (PBVI) [106],

Perseus [137], bounded policy iteration (BPI) [112], gradient ascent (GA) [89, 1] and

stochastic local search (SLS) [20] exploit this fact to produce (often near-optimal) poli-

cies of low complexity, allowing larger POMDPs to be solved. Still, these algorithms scale

to problems of only roughly 1000 states since each α-vector may have exponential dimen-

sionality. On the other hand, it was observed in Chapter 4 that factored POMDPs often

exhibit a significant amount of structure (e.g., conditional independence, context-specific

independence, additive separability) and that reachable belief states are often sparse and

tend to carry more information than necessary. Hence, one can often reduce vector di-

mensionality by using compact representations such as decision trees (DTs) [14], algebraic

decision diagrams (ADDs) [46], linear combinations of small basis functions (LCBFs) [42],

or by compressing the belief space into a small subspace by a value-directed compression

(VDC) [112] or exponential principal component analysis (PCA) [119]. To date, these

techniques have only been implemented with the classical solution algorithms. Although

they can effectively overcome the complexity of large state spaces, none of them address

the exponential complexity of policy and value function space. As a result, they cannot

solve much larger/difficult POMDPs.

Scalable POMDP algorithms can only be realized when both sources of intractability

are tackled simultaneously. This chapter describes how to combine some of the techniques

of Chapters 3 and 4. More precisely, we discuss how to integrate BPI with VDC (Sec-

tion 5.1) as well as Perseus with VDC and ADDs (Section 5.2). The resulting algorithms

93
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can effectively overcome both sources of intractabilities for POMDPs exhibiting suitable

structure. In Section 5.3, experiments demonstrate their scalability on synthetic network

management problems and an assistive technology task of up to 33 million states.

5.1 Compressed Bounded Policy Iteration

In principle, any POMDP algorithm can be used to solve the compressed POMDPs

produced by VDC. If the compression is lossless and the POMDP algorithm exact, the

computed policy will be optimal for the original POMDP. In practice, POMDP algo-

rithms are usually approximate and lossless compressions are not always possible, so

care must be taken to ensure numerical stability and a policy of high quality for the orig-

inal POMDP. We now discuss some of the integration issues that arise when combining

VDC with BPI.

5.1.1 Nonnegativity

Recall that BPI optimizes a controller by maximizing the α-vector of each node. When

BPI operates on a compressed POMDP, we would like to make sure that value im-

provements in the compressed α-vectors translate in value increases with respect to the

original POMDP. Otherwise BPI may think that it is improving a controller when it is

really harming it. Since a node’s compressed value α̃ is related to its real value α by

α = Fα̃ (see Theorem 4), then maximizing α̃ automatically maximizes α when F is

nonnegative. Hence it is essential that the entries of F be nonnegative. Otherwise, the

optimal policy of the compressed POMDP may not be optimal for the original POMDP.

Fortunately, when R is nonnegative then F is guaranteed to be nonnegative by the

nature of Krylov iteration. Recall from Table 4.1 that each column of F is the product

of some transition matrices T a,z by R. Hence F is nonnegative when R and each T a,z are

nonnegative. By definition, the transition matrices T a,z are nonnegative, but the reward

function R may not be. If some rewards are negative, we can add a sufficiently large

constant to R to make it nonnegative without changing the decision problem. When

computing lossy compressions with the optimization program in Table 4.3, we can also

ensure that F is nonnegative by adding suitable constraints (i.e., Fi,j ≥ 0).

Hence, we can generally ensure that improvements in the compressed α-vectors trans-

late in value increases with respect to the original POMDP by making F nonnegative,
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which is the case with Krylov iteration when the reward function is also made nonnega-

tive.

5.1.2 Normalization

Since BPI computes approximately optimal policies, we would also like to make sure

that ε-optimal policies in the compressed space are indeed ε-optimal with respect to the

original POMDP. If there are important differences in the optimality measures of the

compressed and original spaces, then BPI may return a policy that is far from optimal

for the original POMDP despite the fact that it is ε-optimal for the compressed POMDP.

For example, suppose F has two columns F1 and F2 with L1-lengths 1 and 100,

respectively. Since α = Fα̃ = α̃1F1 + α̃2F2, changes in α̃2 have a much greater impact

on α than changes in α̃1. Such a difference in sensitivity may bias the search for a

good policy to an undesirable region of the belief space, which may prevent approximate

algorithms such as BPI from finding near-optimal policies.

This problem can be avoided by normalizing the columns of F to have the same

L1 norm. More precisely, each column Fi is normalized by dividing by its L1-length

(i.e., Fi ← Fi/||Fi||1). This way, changes of the same magnitude in the entries of α̃

will have a similar impact on α. This will ensure that compressed ε-optimal policies are

also ε-optimal with respect to the original POMDP. Note that this normalization doesn’t

change the subspace spanned by the columns of F .

5.1.3 Iterative Policy Evaluation

Note also that it is “safer” to evaluate policies iteratively rather than solving the system

in Equation 2.12. Recall that the value of a policy is the expected sum of future rewards,

which can be computed by an infinite series of policy backups:

V
〈a,σ〉
0 (s) = ra(s) ∀s ∈ S, 〈a, σ〉 ∈ Γπ

V
〈a,σ〉
1 (s) = ra(s) + γ

∑

s′∈S Pr(s′|s, a)
∑

z′∈Z Pr(z′|a, s′)V
σ(z′)
0 (s′) ∀s ∈ S, 〈a, σ〉 ∈ Γπ

V
〈a,σ〉
2 (s) = ra(s) + γ

∑

s′∈S Pr(s′|s, a)
∑

z′∈Z Pr(z′|a, s′)V
σ(z′)
1 (s′) ∀s ∈ S, 〈a, σ〉 ∈ Γπ

V
〈a,σ〉
3 (s) = ra(s) + γ

∑

s′∈S Pr(s′|s, a)
∑

z′∈Z Pr(z′|a, s′)V
σ(z′)
2 (s′) ∀s ∈ S, 〈a, σ〉 ∈ Γπ

. . .

Alternatively, the system in Equation 2.12 can also be used to evaluate policies since

the transition matrices T a,z have eigenvalues of magnitude less than or equal to 1, which
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ensures that the solution is the same as that produced by infinitely many policy backups.

In contrast, lossy compressed transition matrices T̃ a,z may have eigenvalues of magnitude

greater than one. When that is the case, the system in Equation 2.12 does not correspond

to policy evaluation and therefore should not be used. Hence, it is safer to perform a

series of policy backups for the policy evaluation step of BPI.

5.1.4 Constraint Generation

There are also important differences between the compressed and original belief spaces

that may impact algorithms such as BPI. Recall that by definition a belief state is a

probability distribution and therefore the sum of its components must be 1. Furthermore,

the space of all belief states is a simplex corresponding to all nonnegative vectors whose

components sum to 1. In contrast, compressed belief states are vectors of future reward

estimates that do not generally sum to 1 and the compressed belief space corresponds

to the convex hull of the rows of F . BPI normally exploits the simplex nature of the

belief space during the policy improvement step. More precisely, the LPs in Tables 3.4,

3.6 and 3.7 have a set of constraints that ensure the value of a node doesn’t decrease at

any belief state. Since the belief space is a simplex, it suffices to have one constraint per

state to ensure that there is no decrease in value for the entire belief space. A similar

effect can be obtained with compressed belief spaces by having one constraint per vertex

of the convex hull. Unfortunately, the number of vertices of the convex hull tends to be

very large. In fact, in the worst case, there may be as many vertices as the number of

rows of F which equals the number of states of the original model. Hence, for factored

POMDPs with exponentially many states, the LPs in Tables 3.4, 3.6 and 3.7 tend to

have exponentially many constraints.

Fortunately, we can get around this problem by using constraint generation tech-

niques (similar to cutting plane and column generation techniques). These have been

used successfully for similar LPs in the context of MDP [124] and minimax regret [13]

optimization. The idea is to solve the LP with a small subset of constraints, find among

the remaining constraints the one that is most violated by the current solution, add it to

the set of constraints and repeat until there are no more violated constraints. The most vi-

olated constraint can often be found efficiently (i.e., without enumerating all constraints)

by solving a cost network [124, 13]. Table 5.1 summarizes the constraint generation ap-

proach to incrementally build a small sufficient set of constraints. In practice, the number
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PROCEDURE LPconstraintGeneration(LP )

Let C = {c1, c2, . . . , cn} be the entire set of constraints

Let G be the set of constraints generated

Initialize G = {c1}

Repeat forever

Solve LP subject to G

If solution satisfies all constraints in G

Then return solution

Else add most violated constraint to G

End if

End repeat

END PROCEDURE

Table 5.1: LP constraint generation.

of constraints generated tends to be fairly small (proportional to the number of active

constraints), so the LPs in Tables 3.4, 3.6 and 3.7 can be solved relatively efficiently even

when belief space convex hulls have exponentially many vertices.

5.1.5 Summary

To summarize, a few adjustments are necessary to ensure that BPI can be run properly

on compressed POMDPs produced by VDC. In particular, F should be nonnegative and

its columns normalized to prevent numerical instability. Also, policy evaluation in BPI

should be done by a series of DP backups since the eigenvalues of T̃ a,z can be greater than

1. Finally, the LPs for policy improvement should be solved by constraint generation to

deal with the potentially large number of vertices of belief space convex hulls. With

those adjustments, POMDPs can first be compressed by VDC, generating a compression

function F as well as compressed dynamics T̃ a,z and R̃. The compressed model can then

be fed to BPI to find a good controller.

The combination of BPI with VDC can solve relatively large POMDPs when a good

compression is found by VDC and a small controller of high quality is found by BPI. Sec-

tion 5.3 demonstrates the scalability of BPI with VDC on synthetic network management

problems of up to 33 million states.



Chapter 5. Algorithms for Large POMDPs 98

5.2 Fast Point-Based Value Iteration

This section describes how to combine point-based value iteration with VDC and ADDs.

The version of point-based value iteration we consider is the Perseus algorithm [142, 137]

because of its efficiency and simplicity. Let’s briefly review the algorithm, which is

summarized in Table 5.2. First, a set of reachable belief states are collected by doing a

forward search from the initial belief state. This can be done in a number of ways. If

we already have a “default” policy, we can execute it and record the belief states visited

during n runs of k steps. Otherwise, we can execute a random policy by sampling the

actions and observations at each step. Then, value iteration is performed by doing partial

point-based backups at the reachable belief states. A point-based backup computes the

best α-vector for each point in a set of witness belief states. A partial point-based backup

looks at each witness point in turn and computes its best α-vector only if no other α-

vector improves its value compared to the previous backup. The algorithm is fairly

efficient since it produces a parsimonious set of α-vectors concentrated on the reachable

belief region and it avoids costly optimization programs (every step consists of simple

matrix multiplications).

5.2.1 Compressed Point-Based Value Iteration

As is, Perseus cannot tackle exponentially large POMDPs since the dimensionality of the

α-vectors is linear in the number of states. This problem can be overcome by compressing

large POMDPs with VDC and then running Perseus on the compressed version. The

integration of Perseus with VDC is fairly straightforward and similar to that of BPI with

VDC. As explained in the previous section, F should be nonnegative and its columns

normalized to ensure numerical stability. Within Perseus itself, only one adjustment

is necessary. When computing the set of reachable belief states, we normalize each

belief state to make sure that its components sum to 1. More precisely, recall from

Equation 2.1 that bt is computed by multiplying bt−1 by the transition and observation

functions for some action-observation pair and by rescaling the resulting vector so that its

components sum to 1. When computing reachable belief states in the compressed space,

we also compute b̃t by multiplying b̃t−1 by the compressed dynamics T̃ a,z; however, it is

unclear how to “normalize” the resulting vector. As explained in the previous section,

the components of compressed belief states do not generally sum to 1, hence we should

not normalize by dividing by the sum of the components.
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PROCEDURE Perseus(T a,z , R)

sample set of reachable belief states B:

(e.g. execute n runs of k steps of a random or default policy)

B ← ∅

repeat n times:

b← initial belief state

repeat k times

B ← B ∪ {b}

sample a uniformly (or via a default policy)

sample z from Pr(z|b, a)

b← ba
z

end repeat

end repeat

value iteration (partial point-based backup):

ℵ ← {ra|a ∈ A}

repeat

ℵ′ ← ∅

for each b ∈ B

if ℵ′ = ∅ or maxα′∈ℵ′ b · α′ < maxα∈ℵ b · α

(compute best new α′ for b)

for each a ∈ A do:

α∗
a ← ra + γ

∑

z T a,z argmaxα∈ℵ ba
z · α

end for

α∗ ← argmaxα∗
a
b · α∗

a

ℵ′ ← ℵ′ ∪ {α∗}

end if

end for

ℵ ← ℵ′

until convergence

return ℵ

END PROCEDURE

Table 5.2: Fast point-based value iteration.
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Suppose that x is an unnormalized vector (i.e., ||x||1 6= 1) and that once normalized

it corresponds to belief state b. Let x̃ be the compressed version of x such that x̃ = xF .

We would like to find an operation that rescales x̃ into the compressed belief state b̃

corresponding to b (i.e., b̃ = bF ).

Here is a simple way of accomplishing this operation. Suppose that the ith column of

F is e (a vector of 1’s), then the ith entry of x̃ is ||x||1 (i.e., x̃i = xFi = xe = ||x||1). We

can then compute b̃ simply by dividing x̃ by its ith entry x̃i:

x̃/x̃i = xF/x̃i

= xF/||x||1

= bF

= b̃ .

It follows that we can effectively normalize compressed belief states when Fi = e. If F

has a linear combination of columns equal to e, then we can still normalize x̃ by dividing

it by the corresponding linear combination of its components. In Krylov iteration, we

can make sure that F has a column (or linear combination of columns) equal to e by

initializing the first two columns of F to e and R (instead of just R).

The adjustments described above are sufficient to integrate Perseus with VDC. So,

we can easily run Perseus on a compressed POMDP by making sure F is nonnegative,

has normalized columns and has a column (or linear combination of columns) equal to

e. When normalizing compressed belief states, it suffices to divide by the appropriate

component (or linear combination of components). The combination of Perseus with

VDC makes it possible to tackle large POMDPs that exhibit suitable structure, as will

be demonstrated in Section 5.3.

5.2.2 Symbolic Point-Based Value Iteration

Alternatively, the curse of dimensionality that plagues Perseus can be overcome by com-

pactly representing α-vectors with algebraic decision diagrams (ADDs). The papers by

Hoey et al. [49] and Hansen et al. [46] describe how to efficiently implement classic value

iteration with ADDs. Since Perseus is very close to classic value iteration, the integra-

tion described in those papers can be applied directly to Perseus. The idea is simply to
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represent all vectors and matrices by ADDs and to perform symbolically the matrix op-

erations for DP backups (or point-based backups). Intuitively, ADDs aggregate together

the entries of vectors (or matrices) that are identical. This way, matrix operations can

be done efficiently by performing the arithmetic operations applied to identical entries

only once.

Although reward functions and conditional probability tables of factored POMDPs

can often be represented compactly by ADDs, belief states and α-vectors computed by

Perseus may not have a lot of identical values, resulting in potentially large ADDs. If

this situation happens, we can always shrink the ADDs by aggregating similar (instead of

identical) entries [138, 36]. We use this approximation to keep the size of ADDs bounded

for α-vectors. We can do the same for belief states or alternatively, we can also use

the factored approximation proposed by Boyen and Koller [17]. Recall from Chapter 4

that probability distributions are often well approximated by breaking some correlations,

which allows a compact factored representation as a product of independent marginals.

In our symbolic implementation of Perseus, we use this factored representation for belief

states and ADDs for α-vectors. The resulting algorithm is essentially the same as the one

described in Table 5.2, but uses ADDs and factored representations as the underlying data

structures of vectors and matrices. Hence, this symbolic version of Perseus can effectively

circumvent both sources of intractability, as will be demonstrated in the following section.

5.3 Experiments

This section describes some experiments to illustrate the scalability of compressed BPI,

compressed Perseus and symbolic Perseus. Large synthetic network management prob-

lems (Section 5.3.1) and an assistive technology task (Section 5.3.2) of up to 33 million

states are used as benchmarks. Given the size of those problems, the algorithms of Chap-

ters 2 and 3 cannot be used since they run out of memory. The techniques of Chapter 4

can handle state spaces of this magnitude; however, they are also inadequate since the

policy and value function representations they use grow exponentially. Only the algo-

rithms described in this chapter can tackle these problems since they simultaneously

mitigate both sources of intractability.
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Machines |S| |O| |A|

16 65, 536 2 33

19 524, 288 2 39

22 4, 194, 304 2 45

25 33, 554, 432 2 51

Table 5.3: Problem sizes for networks of 16, 19, 22 and 25 machines.

5.3.1 Network Management Problems

We now report on some experiments with large synthetic network management problems.

These are essentially the same as in Section 4.3, but with networks of 16, 19, 22 and 25

machines. Recall that a system administrator must keep as many machines as possible

running in a network organized in a cycle or 3legs configuration by doing nothing, pinging

a machine or rebooting a machine at each time step (see Section 4.3 for more details).

Table 5.3 indicates problem sizes as the number of machines increases in a network.

Figures 5.1 and 5.2 show the average expected reward earned by policies computed

by BPI after the POMDP has been compressed by VDC. Expected rewards are averaged

over 500 policy runs of 60 steps, starting with a belief state where all machines are

working. Note that the ruggedness of the graphs is mainly due to the variance in the

reward samples. As expected, decision quality improves as we increase the number of

nodes used in BPI and the number of basis functions used in truncated Krylov iteration.

Also interesting are some of the jumps in the reward surface of some graphs, suggesting

phase transitions with respect to the dimensionality of the compression. For instance,

the graph for a 3-leg network of 19 machines in Figure 5.1 exhibits an important jump

in expected rewards around 180 basis functions.

The graph in Figure 5.3 shows the time taken by BPI on a cycle network of 25

machines (other problems exhibit similar behavior). Truncated policy iteration takes

from 4902 seconds to 12408 seconds (depending on size and configuration) to compress

POMDPs to 250 dimensions.1

We also ran Perseus on the compressed network problems. Tables 5.4 and 5.5 compare

the results of compressed BPI and Perseus as well as two simple heuristics. The expected

rewards are averaged over 500 policy runs of 60 steps starting from an initial belief state

1Reported running times are the cputime measured on 3 GHz linux machines.



Chapter 5. Algorithms for Large POMDPs 103

20
40

60
80

100
120

50
100

150
200

250

95

100

105

110

115

120

# of nodes

3legs16

# of basis fns

E
xp

ec
te

d 
R

ew
ar

ds

20
40

60
80

100
120

50
100

150
200

250

110

115

120

125

130

135

# of nodes

3legs19

# of basis fns

E
xp

ec
te

d 
R

ew
ar

ds

20
40

60
80

100
120

50
100

150
200

250
125

130

135

140

145

150

# of nodes

3legs22

# of basis fns

E
xp

ec
te

d 
R

ew
ar

ds

20
40

60
80

100
120

50
100

150
200

250

140

145

150

155

160

# of nodes

3legs25

# of basis fns

E
xp

ec
te

d 
R

ew
ar

ds

Figure 5.1: Expected reward of policies found by compressed BPI for 3legs networks of

16, 19, 22 and 25 machines.
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Figure 5.2: Expected reward of policies found by compressed BPI for cycle networks of

16, 19, 22 and 25 machines.
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Figure 5.3: Running time of BPI on compressed versions of a cycle network of 25 machines

as we vary the number of basis functions and the number of nodes.
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where all machines are running. The results reported for compressed BPI and Perseus

are those for the best policy found with fewer than 120 nodes (BPI) or fewer than

50 iterations (Perseus) after compressing the problems with 250 basis functions. The

doNothing policy is a passive one that lets the network evolve without rebooting nor

pinging any machine. The heuristic policy estimates the probability of failure2 of each

machine at each stage and reboots the machine most likely to be down if its failure

probability is greater than threshold p1 or pings it when it is greater than threshold p2.

Settings of p1 = 0.8 and p2 = 0.15 were used.3 This heuristic policy performs very well

and therefore offers a strong competitor to compressed BPI and Perseus. It is possible

to do better than the heuristic policy by optimizing the choice of the machine that the

system administrator may reboot or ping. Since a machine is more likely to fail when

neighboring machines are down, it is sometimes better to choose (for reboot) a machine

surrounded by working machines. However, since the system administrator doesn’t know

exactly, which machines are up or down due to partial observability, such a tradeoff is

difficult to evaluate and sometimes not worthwhile. In general, compressed BPI and

Perseus outperform the heuristic policy on the 3legs problems and match it on the cycle

problems. Note also that compressed BPI tends to generate slightly better policies than

compressed Perseus; however, compressed Perseus is significantly faster than compressed

BPI. The running times are those for BPI and Perseus alone (i.e., excluding the time

taken by truncated Krylov iteration to compress the problems since it is the same). The

longer running times for BPI are explained by the need to solve linear programs, which

Perseus avoids. Finally, the solution size reported is the number of α-vectors used to

represent the value function.

We also tried symbolic Perseus on the same network problems. Unfortunately, the

ADDs used to represent α-vectors became too large after a few iterations and the algo-

rithm ran out of memory. Even though the network problems exhibit a significant amount

of additive separability, ADDs are not able to exploit this type of structure. In contrast,

VDC does exploit additive separability, which explains the success of compressed BPI

and Perseus.

In summary, this experiment clearly demonstrates the need to mitigate both sources of

intractability. First, given the exponentially large state space, techniques that enumerate

2Due to the large state space, approximate monitoring was performed by factoring the joint.
3These values were determined through enumeration of all threshold combinations in increments of

0.05, choosing the best for 25-machine problems.
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Problems Algorithms Expected Solution Time (seconds)

Reward Size compression solution total

3legs16 BPI fail − − − −

BPI+VDC 120.9 126 4902 12518 17420

Perseus fail − − − −

Perseus+VDC 115.4 152 4902 809 5711

Perseus+ADD fail − − − −

heuristic 100.6 0 0 0 0

doNothing 98.4 0 0 0 0

3legs19 BPI fail − − − −

BPI+VDC 137.0 65 5143 2866 8009

Perseus fail − − − −

Perseus+VDC 126.6 30 5143 62 5205

Perseus+ADD fail − − − −

heuristic 118.3 0 0 0 0

doNothing 112.9 0 0 0 0

3legs22 BPI fail − − − −

BPI+VDC 151.0 111 6143 5499 11642

Perseus fail − − − −

Perseus+VDC 143.1 15 6143 60 6203

Perseus+ADD fail − − − −

heuristic 138.3 0 0 0 0

doNothing 133.5 0 0 0 0

3legs25 BPI fail − − − −

BPI+VDC 164.8 123 7097 6596 13693

Perseus fail − − − −

Perseus+VDC 162.6 33 7097 211 7308

Perseus+ADD fail − − − −

heuristic 152.3 0 0 0 0

doNothing 147.1 0 0 0 0

Table 5.4: Results for the 3legs networks. “Fail” indicates that the algorithm ran out of

memory.
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Problems Algorithms Expected Solution Time (seconds)

Reward Size compression solution total

cycle16 BPI fail − − − −

BPI+VDC 103.9 107 12408 20723 33131

Perseus fail − − − −

Perseus+VDC 103.6 65 12408 250 12658

Perseus+ADD fail − − − −

heuristic 102.5 0 0 0 0

doNothing 91.6 0 0 0 0

cycle19 BPI fail − − − −

BPI+VDC 121.3 103 11582 16884 28466

Perseus fail − − − −

Perseus+VDC 111.2 89 11582 575 12157

Perseus+ADD fail − − − −

heuristic 117.9 0 0 0 0

doNothing 105.4 0 0 0 0

cycle22 BPI fail − − − −

BPI+VDC 134.3 72 7124 5319 12443

Perseus fail − − − −

Perseus+VDC 129.5 69 7124 295 7319

Perseus+ADD fail − − − −

heuristic 130.2 0 0 0 0

doNothing 122.0 0 0 0 0

cycle25 BPI fail − − − −

BPI+VDC 151.4 68 8511 6940 15451

Perseus fail − − − −

Perseus+VDC 148.0 57 8511 63 8574

Perseus+ADD fail − − − −

heuristic 152.3 0 0 0 0

doNothing 140.1 0 0 0 0

Table 5.5: Results for the cycle networks. “Fail” indicates that the algorithm ran out of

memory.
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states such as BPI and Perseus run out of memory. ADDs can often aggregate states by

exploiting conditional and context-specific independence, but for these network problems,

the exhibited independence was not sufficient to yield significant aggregations. VDC

is the only technique (among those tested) that sufficiently reduced the complexity of

the state space by exploiting additive separability with conditional and context-specific

independence. As for policy complexity, the fact that the simple doNothing and heuristic

policies perform well suggests that simple yet good policies can be found. Indeed, BPI and

Perseus were both able to find relatively small policies that outperform the doNotyhing

and heuristic policies. Hence the only two practical algorithms (among those tested) are

Perseus+VDC and BPI+VDC. The former is significantly faster since Perseus doesn’t

need to solve linear programs; however, the latter finds slightly better policies.

5.3.2 Task Assistance for Persons with Dementia

The second set of experiments features an automated system designed to assist persons

with dementia. People with dementia suffer from a deterioration of their cognitive facul-

ties often resulting in memory losses and lack of autonomy. As a result, they have diffi-

culty completing basic activities of daily living such as handwashing, toileting, dressing,

eating, taking medication, etc. In collaboration with the Intelligent Assistive Technol-

ogy and Systems Lab in the Department of Occupational Therapy at the University of

Toronto, I designed a control system modeled as a POMDP that guides patients with

memory deficiencies through the steps of handwashing by monitoring their progress with

video cameras and, when necessary, prompting the next step with a verbal cue. The

system represents a real-world POMDP which I next describe at a high level.

The automated system, dubbed COACH, assists a person in completing the task of

handwashing. Figure 5.4 shows the sink area of a retrofitted bathroom at the Sunnybrook

hospital in Toronto where patients can wash their hands. A camera mounted above the

sink monitors patient movements and a hidden speaker emits verbal cues (when neces-

sary) to guide a patient. The control system in COACH is modeled as a POMDP and is

responsible for deciding when to emit a cue as well as the type of cue based on the infor-

mation provided by the camera. The decision process is fraught with uncertainty, both

with respect to the observability of the environment (e.g., occluded views and noisy image

processing) and the effects of actions (e.g., patients do not always follow the prompts).

Furthermore, the goal of the system is to satisfy a number of different objectives—some
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Figure 5.4: Retrofitted bathroom at the Sunnybrook hospital in Toronto for the COACH

project.

more important than others—that often conflict and cannot be achieved with certainty

(e.g., maximizing the probability of task completion, maximizing the number of success-

ful steps without any help from the caregiver, etc.). The system should also have the

ability to learn about each patient to adapt to their preferences since different prompting

strategies will work better with each user. In that respect, POMDPs provide an ideal

framework since they allow a system to plan under uncertainty with respect to conflicting

goals while learning about unknown environment or user characteristics. In particular,

optimal POMDP policies naturally choose courses of action that balance the importance

of specific objectives with their odds of success. They also account for the long-term

impact of decisions, including the value of information inherent in each action, which

allows the system to actively learn about unknown parameters such as user preferences.

A somewhat simplified POMDP model is now described for the handwashing task.

State variables

The state space is characterized by 4 classes of variables: those that capture the state of

the environment, those that summarize the steps of handwashing that have been com-
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pleted so far, those that summarize system behavior, and those reflecting certain hidden

aspects of the patient’s personality or mental state. Environment variables represent

the underlying physical state of the environment. The variables used are HL (hands

location: at tap, at soap, at towel, at sink, at water, away) and WF (water flow: on

or off). Plan-step variables capture various aspects of the handwashing steps that the

user has completed. Figure 5.5 shows the legitimate sequences of steps (any path from

start to finish) that constitute a successful completion of the handwashing task. Variable

PS, whose domain is the set of nodes of the plan graph (excluding L, which is shown

for convenience), denotes the last step completed by the user. There are also MaxPS

MaxPSRepeat variables denoting respectively the most advanced plan-step successfully

completed by the user and whether that most advanced plan-step changed or repeated

at the last step. These will be useful to keep track of the steps already completed in case

the patient backtracks in the plan graph. System behavior variables provide a summary

of the history relevant to the prediction of patient responses to a prompt. These are NP

(number of prompts issued for the current plan-step: 0, 1, 2, 3, 4+), NW (number of

time-steps waited since the last prompt: 0, 1, 2, 3, 4+), LP (the type of the last prompt,

corresponding to the action types described below) and PL (the level of specificity of the

last prompt: general, moderate or specific). Finally, user variables reflect the aspects

of the user’s mental state that can impact their response to prompts. The current pro-

totype uses only two variables to provide a very crude characterization of patient type:

Dm (level of dementia: high or low) and Resp (general responsiveness: high or low).

Actions and dynamics

Actions consist of playing prompts associated with each of the plan-steps in Figure 5.5

(e.g., use soap, turn on water, wet hands, rinse hands, turn off water, dry hands), doing

nothing (e.g., wait) or calling the caregiver. Calling the caregiver is a terminal action that

ends the process, and is presumed to result in successful task completion. Each prompt

has associated with it three levels of specificity (e.g., general, moderately specific and

specific). Transition probabilities describe the stochastic state changes induced by each

action. These can be specified by a dynamic Bayesian network (DBN) over the state

variables, with the conditional probability tables (CPTs) represented by ADDs. The

transitions exhibit considerable context specific independence, leading to a relatively

compact specification of the system dynamics.
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Activity Started

Dry Hands

Turn off Water

Turn off Water

Use Soap

Turn on Water

Wet Hands

Use Soap

Turn on Water

Rinse Hands

Dry Hands

Activity Finished
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C

D
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F
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H

I

J

K

L

A

Figure 5.5: Possible sequences of subtasks to complete the handwashing task.
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Since the details of the transition probabilities are beyond the scope of this thesis,

only a high level overview is provided.4 The environment variables WF and HL change

stochastically depending on the current plan-step PS, the system variables NP, NW, PL,

LP and the user variables. For instance, when a “turn on water” prompt is given, the

probability that WF becomes “on” increases with the specificity of the prompt, when

the last completed plan-step is A or E, and when the patient has low dementia and high

responsiveness.

Figure 5.6 illustrates the transition dynamics for the “turn on water” prompt with

a dynamic Bayesian network. A partial conditional probability table represented as a

decision tree describes the dependencies of WF on prompt history (NP, NW and PL).

The probability that the water will be turned on by the patient when prompted to do so

increases with the first prompt, but decreases with subsequent prompts for the same step.

Furthermore, the longer one waits for a response, the less likely it is to spontaneously

occur. If the prior prompt was specific, the odds of response are lower still.

In general, the odds of a patient following a prompt also depend on the time (number

of waits) since the last prompts as well as whether the prompt was repeated. The plan-

step variables PS, MaxPS and MaxPSRepeat are updated deterministically based on the

current estimates of the environment variables. For instance, when PS and MaxPS are

B, if HL becomes “at soap”, then PS and MaxPS advance to D. However, if WF becomes

“off” then PS backtracks to A and MaxPS remains unchanged. Similarly the system

variables NP, NW, LP and PL are also updated deterministically based on the history

of past actions. Finally, the user variables are static and do not change values over time

(though the system’s beliefs do).

Observation variables

The system is equipped with a camera that monitors the sink area. Based on the im-

ages, it is possible to infer (with some noise) the position of the hands as well as the

water flow. Therefore an observation variable OHL is used to denote the observed hand

location, which is assumed to return the correct location 85% of the time and each in-

correct position 3% of the time. Similarly an observation variable OWF denotes the

observed water flow with 95% accuracy. There are no other observation variables since

4The transition probabilities were elicited from a domain expert, Jennifer Boger, at the Intelligent
Assistive Technology and Systems Lab in the Department of Occupational Therapy at the University of
Toronto.
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Figure 5.6: Dynamic Bayesian network structure of the transition function for the “turn

water on” prompt. A partial CPT represented as a decision tree is given for WF.
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the plan-step and the system variables are updated deterministically, and user variables

are unobservable.

It is interesting to note that the hidden user variables Dm and Resp can be viewed as

unknown parameters of the system dynamics. Reinforcement learning techniques could

be used to infer the values of those parameters, but the system can also learn indirectly

while executing a policy simply by updating its beliefs about the levels of dementia and

responsiveness in response to the observations made for OHL and OWF. Intuitively, when

a patient tends to follow a prompt quickly, then it is more likely to have low dementia

and high responsiveness. Since the optimal policy of a POMDP executes the best action

in each belief state, the course of action of an optimal policy naturally adapts to the user

characteristics captured by the current belief state.

Rewards

A large reward of +100 is earned when the handwashing task is completed, that is when

PS ∈ {I, K}. Smaller rewards of +3 are earned with the completion of each plan-

step. The relative magnitude of these rewards is designed to encourage the resulting

policy to pursue full task completion, but if the odds of successful completion are very

low, to at least attempt to make progress through the plan. The progress rewards are

associated with the MaxPS and MaxPSRepeat variables, rather than the PS variable to

prevent a policy that encourages repeated achievement of the same plan-step (such as

repeatedly turning the water on and off). Action costs are also incorporated to ensure

that prompting only occurs when needed. Each prompt is given a small negative reward

(e.g., −1, −2, −3), with the more time-consuming specific prompts penalized slightly

more. Calling the caregiver has a much higher cost of −70, but still of smaller magnitude

than the +100 for completing the task. This ensures that calling the caregiver will occur

if the predicted odds of completion are too low (or predicted costs too high).

Experimental results

The resulting POMDP model has 33,454,080 states, 23 actions and 12 observations.

Table 5.6 indicates the expected reward (averaged over 500 policy runs of 60 steps, start-

ing from the initial belief state where Dm and Resp are uniformly distributed, PS=A,

MaxPS=A, MaxPSRepeat=yes, NW=0, NP=0, LP=doNothing, PL=general, WF=off,

HL=away). Results can be compared for compressed BPI (BPI+VDC), compressed
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Perseus (Perseus+VDC), symbolic Perseus (Perseus+ADDs) as well as a few other heuris-

tic policies. DoNothing corresponds to a passive policy that doesn’t give any prompt to

the patient. CallCaregiver corresponds to the very conservative policy of always request-

ing help from the caregiver, ensuring that the task completes.

Table 5.6 also includes an algorithm (MDPVI+ADDs) that computes a policy by

treating the POMDP as a fully observable MDP since the problem is almost fully ob-

servable. This algorithm corresponds to the SPUDD algorithm [49], which performs

symbolic value iteration for MDPs by using ADDs to represent the value function. Since

the value function of MDPs consists of a single α-vector, MDPVI+ADDs runs signifi-

cantly faster than the more general POMDP algorithms. On the other hand, since the

resulting policy maps each state to some action, execution of the policy is complicated by

the fact that several state variables are not observable nor deterministic. In general, we

can always ignore partial observability by computing the most likely state and executing

its corresponding action. For the COACH problem, this strategy performs really well

(value of 37.6) given that the problem is almost fully observable due to the deterministic

nature of the system and plan-step variables as well as the relatively high accuracy of

the observations for the environment variables.

Since the dynamics of the problem exhibit a significant amount of context-specific

independence, symbolic Perseus can effectively mitigate both sources of intractability to

compute the best policy (value of 39.1) in Table 5.6. It also takes advantage of the fact

that the handwashing task always starts in the same initial belief state to construct a

policy tailored to the reachable belief region.

The results reported for compressed BPI and Perseus are for lossy compressions of

250 dimensions. Since the compressions were too lossy, BPI and Perseus converged to

poor policies even though they appeared reasonable in the compressed space. We also

tried compressions with up to 500 basis functions, but the quality of the resulting poli-

cies did not improve. Since VDC computes compressions for all policies, it is unable

to find a relatively good compression with a small number of basis functions. In con-

trast, Perseus+ADDs represents the α-vectors of a single policy at each iteration, which

explains its success.

The value of the optimal policy is unknown; however, it is possible to compute an

upper bound. Since the optimal policy of a POMDP has access to less information than

the optimal policy of the corresponding fully observable MDP, the value (with respect

to the MDP model) of the policy found by MDPVI+ADDs provides an upper bound of
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Algorithms Expected Time (seconds)

Reward compression solution total

Perseus+ADD 39.1 − − 128490

MDPVI+ADD 37.6 − − 167

callCaregiver 25.0 − − 0

BPI+VDC 18.1 75168 51242 126410

Perseus+VDC 17.8 75168 15666 90834

doNothing 13.2 − − 0

Table 5.6: Results for the assistive technology task.

49.6. Note that this value is not realized in practice since the problem is really a POMDP

(not an MDP) and that’s why the policy obtained by MDPVI+ADDs only earns a value

of 37.6. Since the policy obtained by Perseus+ADDs earns a higher value of 39.1, we

know that the optimal value is between 39.1 and 49.6.

This experiment demonstrates once more the need to simultaneously mitigate the

complexity of policy spaces and the complexity of state spaces. In contrast with the

network management problems, ADDs offer a better state space reduction than VDC for

this assistive technology task. ADDs turn out to be more effective than VDC because they

dynamically aggregate states for a single policy. In contrast, VDC compresses the belief

space for all policies. Furthermore, despite the exponentially and doubly exponentially

large policy space (with respect to the observation space and the horizon length), simple

yet good policies were found. Symbolic Perseus (Perseus+ADD) was the only algorithm

tested that adequately mitigated both sources of intractability and as a result found the

policy with the highest value.

In summary, this chapter has demonstrated the benefits of mitigating simultaneously

both sources of intractability by yielding solutions to POMDPs significantly larger than

those previously tackled. The network management problems and the assistive tech-

nology task have state spaces three orders of magnitude larger than the state spaces

of previous test problems. Nevertheless, due to the presence of important structural

properties, such as conditional independence, context-specific independence and additive

separability, VDC and ADDs can sometimes mitigate the complexity of state spaces.

As for the policy space, despite its exponential size with respect to the number of ob-

servations and doubly exponential size with respect to the horizon length, simple yet
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good policies were found by focusing on the reachable belief region and giving priority

to small policies. Indeed, BPI and Perseus are often capable of quickly finding small yet

good policies when they exist. By simultaneously mitigating the complexity of policy

and state spaces, compressed BPI, compressed Perseus and symbolic Perseus constitute

approximate, scalable algorithms that can tackle relatively large and difficult problems

by exploiting structural properties (when present).



Chapter 6

Conclusion

An important problem at the center of artificial intelligence is the design of suitable

control policies for automated systems. To that effect, POMDPs provide a rich and

principled framework to optimize the course of actions in the presence of state and action

uncertainty, incomplete dynamics and multiple interacting objectives. As a result, a wide

range of sequential decision problems in robotics, operations research, human-computer

interaction, preference elicitation, etc. can be naturally modeled as POMDPs.

Unfortunately, the use of POMDPs in real-world systems remains limited due to

the intractability of existing solution algorithms. However, real-world problems tend to

exhibit a significant amount of structure that can be exploited to improve the scalability of

POMDP algorithms. Hence, this thesis analyzes problem-specific structure and describes

new and existing algorithms that exploit them.

6.1 Summary

Two important sources of intractability plague the majority of discrete POMDP algo-

rithms: the complexity of policy and state spaces. In practice, since many POMDPs have

simple policies of high quality, it is often possible to circumvent the complexity of policy

space by searching within a restricted class of compactly representable policies and by

focusing on the reachable belief region. Chapter 3 reviews several algorithms that tackle

the complexity of policy and value function spaces, and presents a new bounded policy

iteration algorithm. BPI searches for a good policy represented by a small stochastic con-

troller. It distinguishes itself by its robustness to local optima (c.f. gradient ascent) and

its scalability (c.f. classic policy iteration, branch and bound, stochastic local search).

119
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Furthermore, useful insights are provided concerning the properties of GA’s local optima

and PI’s limitation to deterministic controllers.

Chapter 4 reviews several structural properties (e.g., sparsity, conditional indepen-

dence, context-specific independence and additive separability) exhibited by factored

POMDPs. These can be exploited by various techniques to mitigate the complexity of

large state spaces. In particular, a new value-directed compression (VDC) technique is

proposed. Belief states, which summarize histories of past actions and observations, of-

ten contain superfluous information irrelevant to the decision process. Since an optimal

policy can be found as long as all policies are accurately evaluated, we can prune from

belief states any information that doesn’t help to estimate future rewards. Sufficient con-

ditions to ensure a lossless compression are proposed as well as a simple Krylov iteration

algorithm that finds the best linear loss compression. In the event where the best lossless

compression is not powerful enough, suitable lossy compressions can be found by solving

an optimization program or stopping the Krylov iteration algorithm early. Perhaps one of

the most interesting properties of linear VDC is that the resulting compressed POMDPs

can be solved (more or less) directly by most algorithms. This means that VDC can be

used as a preprocessing step to most POMDP algorithms to mitigate the intractability

caused by large state spaces.

To date, all existing algorithms tackle only one of the two sources of intractability.

As a result they cannot tackle large POMDPs. Thus, one of the most important con-

tributions of this thesis is the description of three new algorithms that simultaneously

tackle both sources of intractability. Chapter 5 describes a compressed version of BPI

by combining BPI with VDC as well as compressed and symbolic versions of Perseus by

combining Perseus with VDC and ADDs. These algorithms can overcome both sources

of intractability to attack POMDPs several orders of magnitude larger than previously

possible when suitable structural properties are present.

6.2 Open Problems

Overcoming the complexity of policy and state spaces presents an important step toward

scalable algorithms capable of solving large real-world POMDPs. This research can be

extended in several directions.

Besides large state spaces, many POMDPs also have large action and observation

spaces. These often arise in factored POMDPs when observations correspond to the
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cross-product of the domains of multiple sensors and actions correspond to the cross-

product of the possible decisions for multiple parameters, options or primitive actions.

In that case, the number of observations and actions is exponential with respect to

the number of observation variables and primitive actions. It would be interesting to

investigate the use of symbolic representations (e.g., decision trees, algebraic decision

diagrams) or compression techniques to handle large action and observation spaces. In

fact, algebraic decision diagrams have already been used to tackle factored MDPs with

large action sets [61].

The framework of POMDPs traditionally assumes a propositional representation. One

could also specify POMDPs using relational or first-order constructs, allowing for a (po-

tentially) more compact representation of the dynamics. The additional structure cap-

tured by relational and first-order representations may be exploited to further mitigate

the complexity of large state, action and observation spaces. To date, several algo-

rithms have been proposed for relational [39, 37] and first-order [16, 15] MDPs, but not

POMDPs. There also exist probabilistic [4] and decision-theoretic [108] extensions of the

situation calculus language, which are equivalent to first-order POMDPs, but again no

algorithms have been proposed.

Although this thesis focuses exclusively on discrete POMDPs, it is common in practice

to encounter problems with continuous states, actions and observations. For instance, in

robot navigation problems, the state space may correspond to a continuous floor plan, the

action space to a continuous range of motor controls and the observation space to con-

tinuous sonar or laser range finder measurements. For such problems, the dynamics are

rarely linear and the value functions rarely have a simple form. One can always discretize

the continuous components; however, such an approximation is not always satisfactory. A

few approaches have been proposed to directly solve continuous POMDPs by gradient as-

cent [89, 1, 94], neural networks [8, 122, 123], and Monte Carlo simulation [140]. Further

research will be necessary to better understand the structural properties of continuous

POMDPs and how to exploit them.

POMDP algorithms traditionally assume the complete specification of transition, ob-

servation and reward functions. When parameters of those functions are unknown, one

can build a larger POMDP that seamlessly integrates Bayesian learning of those pa-

rameters with planning. The idea is to augment the state space with the unknown

parameters and to learn their values during the execution of a policy based on the ob-

servations made at each time step. Furthermore, optimal policies naturally optimize
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the exploration/exploitation tradeoff by maximizing the combined value associated with

immediate action effects and the information gathered about the unknown parameters.

This approach was used in the COACH system (described in Section 5.3.2) to design

an adaptive policy that learns the unknown level of dementia and responsiveness while

interacting with each patient. Similar approaches were also used in the context of re-

inforcement learning [81, 34], imitation learning [115], preference elicitation [10], multi-

agent coordination [24] and coalition formation [25]. In general, the resulting augmented

POMDPs are much harder to solve due to the increased complexity of the state space,

but they exhibit additional structure. In particular, the dynamics of the unknown pa-

rameters that must be learned are quite simple since their values remain static. Further

research is necessary to exploit the additional structure exhibited by those POMDPs.



Appendix A

Problem Descriptions

A.1 Preference Elicitation

In the preference elicitation problem, the task of the decision maker is to make a recom-

mendation to a user. However, since the decision maker doesn’t know the user’s pref-

erences, it can ask queries to gain some information before making a recommendation.

The query process followed by the recommendation can be modeled by a POMDP [10]

where the actions correspond to the possible queries and recommendations, the obser-

vations correspond to the user answers and the states correspond to the possible user

preferences. The rewards consists of the cost associated with each query and the value

(measured in terms of the user preferences) of the recommendation.

The preference elicitation problem we consider [19, 20] has 14 actions (7 queries and 7

recommendations), 2 observations (yes and no) and 7 states (6 possible preference func-

tions and an absorbing terminal state). In this simple problem, the user has a (unknown)

preference function defined over 7 possible outcomes. Table A.1 gives the utility assigned

by each of the preference functions to the 7 possible outcomes. At each step, the deci-

sion maker either asks a query or makes a recommendation. Queries have a cost of 0.02

and are of the type “Is the utility of outcome oi less than 0.9?”. The user answers yes

or no with certainty. When the decision maker feels that enough information has been

gathered, it makes a recommendation (among 7 possible recommendations {r1, . . . , r7}).

Recommendations ri, i ≤ 5, yield outcomes oi or oi+1 with equal probability, while r6

yields o6 or o1 with equal probability, and r7 yields o7 with certainty. Once a recommen-

dation is made, the process ends and the decision maker receives a reward corresponding

to the utility assigned to the outcome by the user’s actual preference function.
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o1 o2 o3 o4 o5 o6 o7

pf1 0.9 0.9 0.1 0.1 0.1 0.1 0.3

pf2 0.1 0.9 0.9 0.1 0.1 0.1 0.3

pf3 0.1 0.1 0.9 0.9 0.1 0.1 0.3

pf4 0.1 0.1 0.1 0.9 0.9 0.1 0.3

pf5 0.1 0.1 0.1 0.1 0.9 0.9 0.3

pf6 0.9 0.1 0.1 0.1 0.1 0.9 0.3

Table A.1: Utility assigned by each preference function pfi to each outcome oj.

This preference elicitation problem has the following interesting property: the cost of

a query is higher than the value of the information gained by a single query. As a result,

myopic algorithms tend to get stuck in a local optimum that consists of recommending r7

without asking any query. Here r7 is a conservative recommendation that yields outcome

o7 with utility 0.3 for all preference functions.

A.2 Heaven and Hell

Heaven and Hell [20] consists of two nearly identical mazes offering a positive reward

(heaven) and a negative reward (hell) in opposite locations (see Figure A.1). The agent

starts in location s of one of the two mazes, but doesn’t know which. It has 4 deterministic

actions (move up, down, right or left) that fail only when a wall is hit, resulting in

no movement. Reaching a reward-bearing state is risky since the reward is positive in

one world and negative in the other. When the magnitude of the negative reward is

much larger than the positive, it is important for the agent to be fairly certain about

the world it is in. It can visit a priest (cells with an arrow) and pay a small price to

receive an observation indicating the world it is in. When dropped with equal probability

in either world, the optimal policy is to visit the priest, and then aim for the positive

state given the world it is in. Since there is a price to pay when visiting the priest,

myopic algorithms tend to avoid the priest, gaining no knowledge about the world, and

consequently avoiding all reward-bearing states due to the risk involved.
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+1 +1−10−10

s s

Figure A.1: Heaven and hell problem with left and right mazes.

A.3 Coffee Delivery Problem

The coffee problem (proposed by Boutilier and Poole [14]) is a toy POMDP featuring a

robot that must purchase coffee at a coffee shop and deliver it to a user. The state space

is defined by 5 Boolean variables indicating whether the user has coffee HC, the user wants

coffee WC, it is raining R, the robot is wet W , the robot carries an umbrella U . Figure A.2

describes the transition dynamics. The robot has two actions: get coffee getC and check

whether the user wants coffee checkWC. All variables remain unchanged except those for

which a conditional probability table is given. When the robot gets coffee, it must go

across the street to the local coffee shop to buy coffee. The robot may get wet if there

is rain and it doesn’t carry any umbrella. The robot doesn’t make any observation when

it gets coffee, however it observes (with some noise) whether the user wants coffee when

executing the checkWC action. The robot earns rewards when the user wants coffee and

has coffee, and it is penalized otherwise. The robot is further penalized if it gets wet. A

small cost of 1.0 is incurred each time it gets coffee, and 0.5 each time it checks whether

the user wants coffee. Figure A.3 describes the reward function.

A.4 Spoken-Dialog System

The spoken-dialog system (developed by Williams [144]) consists of an automated travel

agent that must elicit the departure and destination cities of a customer. The agent’s

task is to interact with the customer to identify the departure and destination cities

of its itinerary, however this is complicated by the noisy nature of speech recognition.

Figure A.4 gives the structure of the dynamic Bayesian network modelling the task.

The agent can greet the customer, query the customer (e.g., “Where are you travel-

ling?”), confirm statements (e.g., “So you want to go to city a, is that right?”), submit

a pair of locations to book a flight or simply end the conversation. The state space is
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Figure A.4: Dynamic Bayesian network of the spoken-dialog system.

defined by the customer’s itinerary (i.e., departure and arrival cities), the customer’s

last utterance and the status of the dialog (e.g., the itinerary is not mentioned, men-

tioned but not grounded, or grounded). In the reduced model considered, there are 3

possible cities, 2 queries (ask-departure and ask-arrival, 6 confirmation statements

(3 possible departures and 3 possible arrivals), and 18 utterances (3 cities, 3 departures,

3 arrivals, 6 departure-arrival pairs, yes, no or null).

The customer’s itinerary is a static variable that never changes — though the

agent’s belief about the customer’s itinerary varies over time. The dialog status evolves

over time according to the finite state automaton in Figure A.5. Initially, the departure

and arrival cities are not mentioned. Once the agent recognizes a city, it becomes men-

tioned but not grounded. After it is recognized a second time, it becomes grounded. The

customer’s utterances depend probabilistically on the agent’s queries and the customer’s

itinerary (see Table A.2).

Due to the noisy nature of speech recognition, the agent’s observations are perceived

utterances with a confidence level (e.g., high or low) correlated with the customer’s

actual utterances. The probability of perceiving a correct utterance with high confidence

is 0.425, a correct utterance with low confidence is 0.35, an incorrect utterance with low

confidence is 0.015 and an incorrect utterance with high confidence is 0.004.

The agent is rewarded +10 for submitting a correct itinerary, −10 for an incorrect

itinerary, −5 for ending the dialog without submitting any itinerary. The agent also gets
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P(utterance = null | itinerary = (x1,x2), action) = 0.1

P(utterance = from-x1-to-x2 | itinerary = (x1,x2), action = greet) = 0.54

P(utterance = from-x1 | itinerary = (x1,x2), action = greet) = 0.18

P(utterance = to-x2 | itinerary = (x1,x2), action = greet) = 0.18

P(utterance = from-x1 | itinerary = (x1,x2), action = query-from) = 0.225

P(utterance = x1 | itinerary = (x1,x2), action = query-from) = 0.585

P(utterance = from-x1-to-x2 | itinerary = (x1,x2), action = query-from) = 0.09

P(utterance = to-x2 | itinerary = (x1,x2), action = query-from) = 0.225

P(utterance = x2 | itinerary = (x1,x2), action = query-from) = 0.585

P(utterance = from-x1-to-x2 | itinerary = (x1,x2), action = query-from) = 0.09

P(utterance = from-x1 | itinerary = (x1,x2), action = confirm-from-x3) = 0.03375

P(utterance = x1 | itinerary = (x1,x2), action = confirm-from-x3) = 0.10125

P(utterance = yes | itinerary = (x1,x2), action = confirm-from-x3) = 0.765, x1 = x3

P(utterance = no | itinerary = (x1,x2), action = confirm-from-x3) = 0.765, x1 6= x3

P(utterance = to-x2 | itinerary = (x1,x2), action = confirm-to-x3) = 0.03375

P(utterance = x2 | itinerary = (x1,x2), action = confirm-to-x3) = 0.10125

P(utterance = yes | itinerary = (x1,x2), action = confirm-to-x3) = 0.765, x2 = x3

P(utterance = no | itinerary = (x1,x2), action = confirm-to-x3) = 0.765, x2 6= x3

Table A.2: Transition function for customer utterances. Here, x1, x2 and x3 are variables

representing possible cities.
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Figure A.5: Finite-state automaton describing the evolution of the dialog status: depar-

ture city (a) and arrival city (b).

−3 for asking about the departure or arrival city when it has already been mentioned

and −2 for confirming the departure or arrival city when it has already been grounded.

When none of the above rules apply, a cost of −1 is incurred at each step.
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