Approximate Value-Directed Belief State Monitoring
for Partially Observable Markov Decision Processes
by
Pascal Poupart

B.Sc., McGill University, 1998

A THESIS SUBMITTED IN PARTTAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
Master of Science
in
THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

The University of British Columbia
November 2000

(© Pascal Poupart, 2000

Abstract

Partially observable Markov decision processes (POMDPs) provide a principled ap-

proach to planning under uncertainty. Unfortunately, several sources of intractabil-
ity currently limit the application of POMDPs to simple problems. The following
thesis is concerned with one source of intractability in particular, namely the belief
state monitoring task. As an agent executes a plan, it must track the state of the
world by updating its beliefs with respect to the current state. Then, based on its
current beliefs, the agent can look up the next action to execute in its plan. In
many situations, an agent may be required to decide in real-time which action to
execute next. Thus, efficient algorithms to update the current belief state would be
desirable. Unfortunately, exact belief state monitoring turns out to be very time
consuming for many domains.

This thesis introduces a value-directed framework to analyze and design ap-
proximation methods that speed up the monitoring task. The goal of approximate
belief state monitoring is to trade monitoring accuracy for efficiency. Thus, this
framework outlines a principled approach to quantify the impact of approximating
belief states on the original plan. Since at any point in time, an action is executed
based on the current belief state, it may be possible that a less desirable action ends
up being executed as a result of the approximations used to infer the current belief
state.

The framework developped covers a wide range of approximation methods
including projection schemes and density trees. First, several bounds on the loss
in decision quality due to approximate belief state monitoring are derived. Then,
given a class of approximation methods, a few search algorithms are proposed to seek
a relatively good approximation scheme within the given class. These algorithms
essentially try to minimize the bounds derived. Next, a vector space analysis is per-
formed to gain some insights regarding which properties of approximation methods
are likely to ensure a minimal impact on decision quality. Finally, faster algorithms
(than the previous ones) are designed to search for approximation methods that
exhibit such properties.

ii

Contents

Abstract ii
Contents iii
List of Tables vi
List of Figures viii
Acknowledgements X
1 Introduction 1
1.1 Problem statement, 1
1.2 Tlustrative Example o 0oL, 3
1.3 Contributions 4
1.4 Outline e e e 6

2 Partially Observable Markov Decision Processes (POMDPs) 8
2.1 Model Description oL e 9
2.1.1 State Space So L e 10

2.1.2 Actionspace A 11

2.1.3 Transition function T 11

2.1.4 Observationspace Zt 12

2.1.5 Observation function Z 12

iii

2.1.6 Reward function R o e e 13

2.1.7 Horizon h and discount factor v 13
2.2 Policies e 14
2.2.1 Definitiono L 14
222 Evaluation o oo 17
2.3 Solution Algorithms L. 19
2.3.1 Incremental Pruning 19
2.3.2 Policy Iteration oL 23
2.4 Performanceissueso oo e o 25
2.4.1 Sources of Intractability 26
2.4.2 Factored Representation, 26
2.5 Belief State Monitoring L oo 29
2.5.1 Motivation Lo 29
2.5.2 Dynamic Bayesian Networks (DBNs) 31
2.5.3 Approximation Methods 33
2.6 Thesis Assumptions 37
Value-Directed Approximations 39
3.1 Planswitching 0. 40
3.1.1 Switch set computations 41
3.1.2 Switch set error bounds o oo 47
3.2 Alternative plans 53
3.2.1 Alt-set computations 54
3.2.2 Alt-set errorbounds Lo L. 57
3.3 Value-directed search L oL 60
3.3.1 Lattice of projection schemes 61
332 Greedysearch., 63

v

4 Vector Space Analysis 68

4.1 Vector space formulation oL 69
4.2 Vector space switch test oo 72
4.3 Vectorspacesearch oL 80

5 Empirical Evaluation 83
5.1 Proofof Concept 84
5.2 Experiments. 87
5.2.1 Search running time L. L. 89

5.2.2 Error bound evaluation 91

5.2.3 Search algorithm comparison 93

6 Conclusion 108
6.1 Summary e e e e 108
6.2 Future Framework Enhancements 109
Appendix A Basics of Vector Spaces 112
Appendix B Test Problems 115
B.1 Coffee Delivery e 116
B.2 Widget Production oo 118
B.3 Pavement Maintenance, 122
Bibliography 128

2.1
2.2

3.1

3.2

3.3

4.1

List of Tables

LP-dominance test: vector a is dominated by ® — {a} when z < 0. .

DP procedureo

Switch test program to determine if there exists a belief state b such
that the projection S leads to a switch from «; to «;. The variables
are ¢ and each component b(s) of the vector b representing a belief
state. o4, aj, og and S are fixed and therefore yield the variable
coefficients. Lo
LP-switch test for projection schemes. The variables are x and each
component b(s) and b'(s) of the vectors b and b’ representing belief
states. «;, o, @ and M, are fixed and therefore yield the variable
coefficients. Lo

Alt-set DP procedure,

VS-switch test for projection schemes. The optimization program has
a strictly positive objective function when there exists a belief state
b € Ry, such that S(b) € Raj and a non-positive objective function

where there doesn’t exists such a belief state.

vi

21

4.2

5.1
5.2
5.3
5.4
9.5
5.6
5.7

Linear VS-switch test for projection schemes. This LP has a strictly
positive objective function when there exists belief states b € R,
and b’ € Raj such that b(M) = b'(M) for all marginals M defined by

projection S and a non-positive objective function when there doesn’t

exist such beliefstates.o oL 75
POMDP specifications for the factory example 85
Comparison of different distance measures 87
Solution statistics for the three test problems 88
Search running time L oL oo 89
Coffee problem: error bound comparisons at 15 stages togo 92
Widget problem: error bound comparisons at 15 stagestogo 92
Pavement problem: error bound comparisons at 15 stagestogo . . . 92

vii

2.1
2.2
2.3
2.4

2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5

4.1
4.2

5.1
5.2

List of Figures

Tree representation of a three-step conditional plan
Recursive definition of a conditional plan
Geometric View of Value Function
Finite state controller for a simple POMDP with two actions and two
observations.o e
DT and ADD example oo
Two-slice DBN o
Unrolled DBN with no observation

Density tree approximation

Relevant belief states at stage &
Regions for each maximizing a-vector
The Switch Set Su¥(asz) of a3 L.
Lower surface of anti-dominating vectors

Lattice of Projection Schemes

Solution space of possible exact belief states b

Belief space regions for each a-vector

DBN for the factory example
Coffee problem: comparison of the average cumulative error obtained

by different search algorithms

viii

9.3

5.4

9.5

5.6

5.7

5.8

5.9

5.10

5.11

Widget problem: comparison of the average cumulative error ob-
tained by different search algorithms
Pavement problem: comparison of the average cumulative error ob-
tained by different search algorithms
Pavement problem: comparison of the average error due to a single
approximation at each stage for different search algorithms
Coffee problem: comparison of the average cumulative number of
switches for different search algorithms
Widget problem: comparison of the average cumulative number of
switches for different search algorithms
Pavement problem: comparison of the average cumulative number of
switches for different search algorithms
B-bound search with LP-switch tests for the coffee problem: compar-
ison of the average cumulative error when the search is restricted to
projection schemes with marginals of at most 1, 2, or 3 variables. . .
Max VS search for the coffee problem: comparison of the average
cumulative error when the search is restricted to projection schemes
with marginals of at most 1, 2, or 3 variables.
Sum VS search for the coffee problem: comparison of the average
cumulative error when the search is restricted to projection schemes

with marginals of at most 1, 2, or 3 variables.

ix

105

Acknowledgements

I would like to acknowledge the invaluable contribution of many people who have
helped me directly or indirectly in the accomplishment of this work. First and
foremost, my supervisor, Craig Boutilier, has played a key role in guiding my first
steps in the world of research. Without his support and continuous advice, this
work would not have been possible. Craig has been a mentor as well as a friend and
his generous support is greatly appreciated.

I am also indepted to David Poole and Bob Price for their constructive
comments which contributed to the final form of this thesis. I would also like to
thank Bob for the many interesting and helpful discussions on various topics related
to this work.

I am grateful to the Laboratory for Computational Intelligence at the Uni-
versity of British Columbia for providing me with a stimulating environment to
learn and carry out research. I also thank the department of computer science at
the University of Toronto for their hospitality while visiting in the final year of my
Master’s degree.

Finally, my special thanks go my parents who have provided me with a warm
and stable environment in the early stages of my life. This work is in part the fruit
of their love and their care which have contributed to shape the man I am today.

PASCAL POUPART

The University of British Columbia
November 2000

Chapter 1

Introduction

1.1 Problem statement

Partially observable Markov decision processes (POMDPs) have received consid-
erable attention as a framework for decision theoretic planning. Their generality
allows one to model uncertainty in action effects, sensor observations and state of
knowledge. They also allow the practitioner to find an optimal plan (that takes into
account this uncertainty) with respect to one or several concurrent objectives. De-
spite their attractiveness as a conceptual model, POMDPs have limited applicability

as they are intractable:

e The offline search for a solution (optimal plan) to a POMDP is often in-
tractable [28, 30].

e The online execution of an optimal plan often requires belief state monitoring

which can be itself intractable.

This thesis focuses on the online problem, namely belief state monitoring.
In this work, it is assumed that a policy (plan) is represented by a mapping from
belief states (probability distributions over the states of the world) to actions. When

that is the case, the agent must update its current belief state at each time step in

order to know which action to execute next. Unfortunately, the belief state moni-
toring task tends to be a computationally intensive process which is unacceptable
in practice (especially for real-time applications). In short, a belief update requires
the computation of a probability distribution over the whole state space. In most
domains, the state space is large so this computation is prohibitively expensive.
One of the main reasons why state spaces for certain problems are large is be-
cause the states are defined by a large collection of features or random variables. For
such problems, each state corresponds to a joint instantiation of those variables and,
consequently, the number of states is exponential in the number of variables. This
is a serious problem since with only a few dozens of variables the state space grows
larger than the internal memory of most of today’s personal computers. Therefore,
a very common approach to perform belief monitoring is to try to reason at the vari-
able level instead of the state level. Dynamic Bayesian Networks (DBNs) provide a
way to do this by exploiting variable independencies. Unfortunately, as Boyen and
Koller [3] have shown, most if not all the variables tend to become correlated over
time for non-trivial problems and therefore belief inference remains intractable.
Due to the lack of effective exact inference methods to tackle large state
space problems, several researchers have investigated approximate methods. These

include:

Sampling [37, 20]

Density Trees [26]

Projection [3]

Variational methods [21]

These methods trade monitoring accuracy for monitoring efficiency. When
an agent’s estimate of the current belief state is inexact, it is possible that it will
execute a different action than the one indicated by the exact belief state. As time

passes, if the belief state is repeatedly approximated, then the sequence of actions

executed may be completely different than the one prescribed by the policy for the
true underlying state. Hence, an important question for approximate monitoring
methods is: how do approximations influence decision quality?

In the literature, when an analysis of the approximation quality is performed,
it is usually done by measuring some distance between the exact and approximate
belief states instead of evaluating the expected total loss. This is because general
dynamical systems free of any decision process are usually considered and the ab-
sence of a decision process gives some freedom as for which metric to use when
evaluating the error between the approximate and exact belief states. Common dis-
tance measures that have been used include KL-divergence (a measure of entropy),
Ly, Ly and Ly,. Although they are well-known distance measures with useful the-
oretical properties, they do not translate easily in a meaningful measure of the loss
in performance for an agent. In the presence of a decision process (i.e., POMDPs),
the decision maker is primarily interested in how much expected utility is lost due
to approximations. Since the expected utility of a POMDP policy is given by its
corresponding value function, I propose in the following chapters a framework to

carry out a value-directed analysis of approximation methods.

1.2 Illustrative Example

Let’s illustrate the importance of a value-directed analysis with a simple factory
problem. Imagine a process in which two parts are stamped from the same machine
A. Each part may be faulty with a certain probability. Since the parts are stamped
by the same machine, their fault probabilities are correlated. If the parts are faulty,
subsequent processing on some machine B may induce a monetary loss to the factory.
Therefore, a controller gets to decide whether to reject the parts or to continue their
processing.

In the event where the parts are processed individually by machine B, the

decision to reject or process each part is independent and the correlation between

their fault probability can be ignored safely.! One could devise an approximation
method whereby the approximate belief state is the same as the exact belief state
except that the correlation between fault probabilities is ignored. If the correlation
is strong, the distance between the exact and approximate belief states may be great
(from a KL-divergence, L1, Ly or Ly, point of view), but the factory won’t suffer
any loss.

On the other hand, if the parts are processed jointly by machine B, the
decision to reject or process the parts is influenced by the correlation between their
fault probability. If the consequences for processing faulty parts are disastrous (e.g.,
explosion), then it may not be wise to ignore a weak correlation even if the distance

measured by KL-divergence, L1, Ly or L, is small.

1.3 Contributions

The main contribution of this thesis consists of a theoretical framework to analyze
value-directed belief state approximation in POMDPs. The framework provides a
novel view of approximation methods and their impact on decision quality. A general
technique is proposed to derive bounds on the loss in expected return associated with
a given approximation method. The key to those error bounds is the use of the value
function as a distance measure. The bounds computed are then used to search for a
good approximation scheme that minimizes the loss in expected utility. Algorithms
to compute such bounds and to search within a class of approximation methods
are proposed for projection schemes and density trees. Those algorithms are not
restricted to projection schemes or density trees as they can be used for any “linear”
approximation method.

Unfortunately, these algorithms are computationally intensive: they require,

in the worst case, a quadratic increase in the solution time to solve a POMDP. As

!The decisions are independent assuming that the result of the decision for one part
cannot be observed before the decision for the other part is made.

mentioned earlier, solving POMDPs is already intractable, so the applicability of
those algorithms is limited to trivial problems. The running time can be consid-
erably improved by introducing a vector space formulation of the approximation
problem. This formulation allows us to search for a good approximation method
in a time comparable to that of solving POMDPs. This makes the value-directed
framework practical for problems that we are currently able to solve using state
of the art solution algorithms. The price paid for this efficiency consists of looser
bounds and consequently, the approximation schemes returned by those efficient
search algorithms have lower performance guarantees. On the other hand, experi-
ments suggests that in practice the expected loss in utility remains roughly the same
on average.

Another aspect of the vector space formulation is the novel view it provides
for understanding how some approximation methods alter policies. An important
observation shows that the difference in utility for alternative courses of action varies
more in some directions of the belief space than others. If we consider belief states
as points in belief space, we can characterize an approximation by the direction of
the vector corresponding to the difference between the exact and approximate belief
points. Intuitively, approximations with directions where the difference in utility for
executing alternative courses of action varies slowly are less likely to impact decisions
and therefore are more accurate. The vector space formulation enables us to identify
very quickly approximation schemes with such directions of higher accuracy. Finally,
this analysis of approximation direction explains in part why KL-divergence, L1, Lo
and Ly, do not translate well in a measure of loss in expected total return. Roughly
speaking, they are distance measures and they do not differentiate between equally

distant approximations that have different directions.

1.4 Outline

The core of this work resides in Chapters 3 and 4 where some algorithms to compute
error bounds and to search for good approximation schemes are presented. The
framework is introduced in Chapter 3 and the vector space formulation is presented
in Chapter 4. An outline of each chapter follows.

Chapter 2 presents a review of the POMDP model and introduces the nota-
tion used throughout the thesis. The main approaches (value iteration and policy
iteration) used to solve exactly POMDPs are summarized and the sources of in-
tractability that prevent them from being used effectively are described. Next,
dynamic Bayesian networks (DBNs) are introduced as a popular method for belief
state monitoring and some explanations are provided concerning the complexity of
belief inference using them. Among the different approximation methods for belief
state estimation, projection schemes and density trees are detailed as they will be
the focus of this framework. Projection schemes can be easily integrated to DBNs
for a significant speed up whereas density trees simplify greatly the error bound
analysis. Finally the assumptions made throughout this thesis are stated.

Chapter 3 introduces the value-directed approximation (VDA) framework
for belief state monitoring. There are two components to this framework: the first
computes a bound on the loss in expected return for a given POMDP and a given
approximation method, and the second describes greedy search procedures to find a
good approximation method within a certain class of methods (projection schemes or
density trees) for a given POMDP. Although the algorithms to compute the bounds
and to conduct the searches are executed offline, they are computationally inten-
sive. In fact their complexity is similar to, but worse than, the algorithms to solve
POMDPs (value iteration or policy iteration) which are known to be intractable.

To that effect, Chapter 4 proposes a more efficient approach based on a vector
space formulation. Essentially, the running time of those algorithms is improved by

loosening the error bounds. Moreover, the vector space formulation provides a

different viewpoint for analysing partial belief state monitoring. The emphasis is on
the direction of an approximation and how its knowledge can be exploited efficiently
to estimate the loss in expected utility.

Chapter 5 describes some empirical results obtained by applying the methods
developed in this framework. First, the factory example introduced in Section 1.2
is revisited with specific transition probabilities and reward functions. As a proof
of concept, it is shown how for a specific prior, the choice of a projection scheme
that minimizes KL-divergence, L1 or Lo norms yields a different choice than that
prescribed by a value-directed approach. Following, several experiments are carried
out on three test problems. They evaluate and compare the running time of the
search algorithms, the quality of the error bounds and the average expected loss
incurred in practice.

Finally, Chapter 6 summarizes the contributions of this thesis and elaborates
on future extensions to the framework. In particular, one goal of the author is to
extend this work to value-directed sampling since sampling is one of the most popular
and effective method for tracking dynamical systems. Another possibility consists
in integrating this framework for value-directed approximations with the algorithms
to solve POMDPs. Ultimately, when solving POMDPs, it would be nice to take
into account the fact that monitoring will be approximate. This may lead to ways

to solve POMDPs in a bounded-optimal fashion.

Chapter 2

Partially Observable Markov
Decision Processes (POMDPs)

The POMDP concept was first introduced in the control theory and operations re-
search communities [9, 1, 35, 31, 6, 29] as a framework to model stochastic dynamical
systems and to make optimal decisions. This framework was later considered by the
artificial intelligence community as a principled approach to do planning under un-
certainty [4, 22]. Compared to other methods, POMDPs have the advantage of
a well-founded theory since they can be viewed as a special (continuous) case of
the well-known Markov decision processes (MDPs) which are rooted in probability
theory, decision theory and utility theory.

In this chapter, an overview of the POMDP framework is presented with
an emphasis on the concepts that will recur throughout the thesis. For instance,
the reader should pay attention to the notion of a conditional plan and its value
function representation as an a-vector. These will be instrumental in defining the
notion of plan switching when analyzing how the course of action gets modified by
an approximation. The reader should also pay special attention to the incremental
pruning algorithm. This will ease the understanding of the algorithms to bound

error and to search for good approximation schemes presented in later chapters.

Finally, we describe dynamic Bayesian networks for exact belief inference, as well
as projection schemes and density trees for approximate inference, as they will serve
to illustrate the value-directed framework.

This chapter also provides an overview of the sources of intractability when
solving a POMDP. Although these are not the focus of this work, they limit the type
of experiments that can be carried out when testing the value-directed framework.
On the other hand, the research community has made some progress on several
fronts and I have tried to incorporate some of the techniques developed to speed up
the solution of POMDPs. For instance, factored representations allow us to solve
some POMDPs with significantly larger state spaces than before [2, 18, 15]. They
also allow us to improve the running time of the algorithms developed in this thesis.
As mentioned earlier, the bounding algorithms and the search algorithms are similar
to incremental pruning and therefore can benefit from the same type of speed up.

Lastly, this chapter addresses an important question regarding when and
why belief state monitoring is required. In the literature, there are two common
representations for POMDP policies: as a mapping from belief states to actions;
and as a finite state controller. The latter representation doesn’t require belief state
monitoring at execution time. Thus, one might seek an algorithm (such as Hansen’s
policy iteration [13, 14]) that outputs a finite state automaton to circumvent the
belief state monitoring problem altogether. I argue that policy iteration is not
always suitable for modeling and efficiency reasons, and even when it is suitable, it

may still be desirable to monitor belief states for explanatory purposes.

2.1 Model Description

POMDPs provide a nice framework to model uncertainty in a planning problem.
They allow action effects and state observations to be modeled probabilistically.

Formally, a POMDP is described as a tuple (S, A, Z,T, Z, R, h,y) where:

S is the set of states of the world.
A is the set of actions the agent can execute.
Z is the set of observations the agent can experience.

T:8x A — A(S) is the state transition function describing the dynamics
of the world. A(S) is the set of all probability distributions over the set S of
states. We write T'(s, a, s') to denote the probability of a transition to state s’
given that it was in state s at the previous stage and that the agent executed

action a.

7 : AxS — A(Z2) is the observation function. A(Z) is the set of all probability
distributions over the set Z of observations. We write Z(a,s',2') to denote
the probability with which the agent may experience observation 2z’ given that

it just executed action a and the world made a transition to state s.

R:8 x A — R is the reward function. We write R(s,a) to denote the reward
received by the agent when the world is in state s and the agent executes

action a.
h is the planning horizon.

v is the discount factor.

2.1.1 State Space S

The world is modeled by a set S of distinct states. In this thesis, S is assumed to
be finite for computational purposes, but in general, the POMDP framework allows
countably many states [33]. At any point in time, the relevant features of the world
are summarized by a state s € S. More precisely, the i** feature is represented by
variable X; which can be instantiated to any value in the (finite) domain D; of Xj.

Each state s corresponds to a joint instantiation of all the variables X, Xo,..., X,

10

encoding the world’s relevant features. Assuming a total of n variables, the num-
ber of states in S is then exponential in n since § = Dy X Dy X ... X D,,. Note
that this exponential relation between variables and states will be responsible for
the intractable size of a-vectors (Section 2.4) and the intractability of belief state

monitoring (Section 2.5).

2.1.2 Action space A

An agent living in this world seeks to influence its state by executing actions from
the set A (A is also assumed to be finite for computational reasons). Roughly
speaking, the agent’s goal is to choose actions that will influence the world in a
way that desirable states are visited frequently. On the other hand, as opposed to
classical planning, where actions are assumed to be deterministic, POMDPs allow
uncertainty to be modeled for action effects. From the agent’s point of view, this
means that the world has a certain probability of making a transition to any state

in S as a result of an action execution.

2.1.3 Transition function 7T

The stochastic nature of action effects is captured by the transition function T'.
Time is discretized in consecutive steps called time steps at which the agent gets to
execute an action in A. Here it is assumed that any action in A can be attempted
in any state of the world and at any time step. After each action, the world makes
a transition to a new state, so that over time, the world goes through a sequence
of states (sg,S1,...,8¢...) where ¢ denotes the time step index. Assuming the
transition function is the same at every time step (i.e., the transition function is
stationary), then T'(s,a,s') = Pr(s'|s,a) denotes the probability that the world
makes a transition to state s’ when action a is executed in state s. This transition
function also assumes the Markov property, namely that the next state s;y1 of

the world depends only on the current state s; and the current action a;, and is

11

independent of past history (past states and past actions).

Pr(si+1|se, at, St—1,a4—1,- - - 50,00) = Pr(siy1|st, a) (2.1)

2.1.4 Observation space Z

After executing an action, the agent makes an observation z € Z. This observation
provides some information as to what state the world just made a transition to. In
fully observable MDPs, Z = S and the agent knows exactly the current state. In
partially observable MDPs, which is the focus of this thesis, Z differs from S. Ob-
servations provide only partial information to the agent since the same observation
may be experienced in several states. Therefore, the agent remains uncertain about
the current state of the world and it is said to have only beliefs about the current
state. Those beliefs are usually represented by a probability distribution b over the
set S of world states. We write b(s) to denote the probability of s when the agent
has beliefs b.

2.1.5 Observation function 7

Partial observability is modeled by the observation function Z. Assuming the
observation function is the same at every time step (i.e., it is stationary), then
Z(a,s',2") = Pr(2'|a,s") denotes the probability that the agent experiences obser-
vation 2’ after executing action a and making a transition to state s’. The transition
and observation functions can be used to update the current belief state at each time

step. That is, using Bayes rule, one can infer b;11 from b;, a; and 2,11 as follows:

Yscs bi(8)Pr(s's, a) Pr(ziq1|at, 8)

bir1(s') = ie (2.2)
_ Zs bt(S)T(S,at,Sl)Z(CI,t,SI,ZH_l)
= €8 7 (2.3)

In the above equations, the denominator is the normalizing constant K =
Yo s bi(s)Pr(s'|s,ar) Pr(ziy1)at, s') that ensures that b is a probability distribu-

tion. If we think of b as a row vector, we can rewrite Equation 2.2 in matrix notation

12

by transforming the transition and observation functions into linear operators. De-
fine M, , to be an |S| x |S| matrix such that M, ,(i,j) = T(s;,a,s;)Z(a,s;,2)
is the likelihood of the world to transition from state s; to state s; when action
a is executed and observation z is experienced. We can further decompose the
matrix M, , into a product of matrices M,M,. M, is a transition matrix such
that My(i,7) = T(si,a,sj) and M, is a diagonal observation matrix such that
M,(i,7) = Z(a,Si,2). In matrix notation, we can compute b1 from by, a; and

zi+1 as follows:

b M,
b1 = % (2.4)
thatMZt+1
= -t ~re 2.5
s (25)

2.1.6 Reward function R

The preferences of the agent are encoded in the reward function R. This function
indicates how much utility R(s,a) is earned by an agent when the world is in state s
and it executes some action a. The reward function is a powerful tool since it allows
simple classical planning goals as well as complex concurrent goals to be modeled.
The key to modeling concurrent goals is the use of utility theory which provides a
common scale that allows an agent to combine multiple goals and to make rational

tradeoffs with respect to those goals.

2.1.7 Horizon h and discount factor v

In decision theory, the goal of an agent is to maximize the expected utility earned
over some time frame. The horizon h defines this time frame by specifying the
number of time steps the agent must plan for. The horizon can be finite or infinite.
A discount factor 7y is also used to indicate how rewards earned at different time
steps should be weighted. In general, the more delayed a reward is, the smaller will

be its weight. Therefore, v is a constant between 0 and 1 indicating by how much

13

a reward should be scaled down for every time step delay.! Finally, expression 2.6
shows the expected total discounted reward that an agent seeks to maximize for a
given horizon h and a given discount factor y. Expression 2.7 is the equivalent in

matrix notation assuming R, is a column vector such that R,(s) = R(s,a).

h
Expected total discounted reward = Z 4t Z bi(s)R(s, at) (2.6)
t=0 s€S
h
= > Y'bR,, (2.7)
t=0

2.2 Policies

2.2.1 Definition

Given a tuple (S, A, Z,T,Z, R, h,v) specifying a POMDP, an important question
is: what action should an agent execute at each time step to maximize its expected
total return? In order to answer this question, we define II to be the set of all
policies m (action strategies) that an agent can execute. Roughly speaking, a policy
is some strategy that dictates which action a to execute (at each time step) based
on some information previously gathered. The relevant information available to the
agent consists of the initial belief state by and the history (sequence) of actions and
observations experienced so far (hist; = (ag, 21, a1, 22, - - . ,a1—1, z¢)). Hence, a policy
7 is a mapping from initial belief states and histories to actions.

For a given initial belief state, a policy 7 can be represented by a tree cor-
responding to a conditional plan 8. Figure 2.1 shows such a tree for a three-step
conditional plan. A conditional plan is intuitively defined as a mapping from his-
tories to actions. The execution of a conditional plan essentially consists of the
traversal of its corresponding tree from the root to a leaf by interleaving action
execution and observation gathering. After traversing a node and executing its cor-

responding action a, the next action to execute is associated with the child node

'For computational purposes, the infinite-horizon case considered in this thesis always
assumes a discount factor smaller than 1.

14

conditional plan Stagesto go

a 3
/K

& & 2

a & % & 1

Figure 2.1: Tree representation of a three-step conditional plan

determined by the branch labelled with the next observation z experienced by the
agent.

In general, we can define recursively k-step conditional plans f; in terms
of (k — 1)-step conditional plans S_;. The idea is to define 8y = (a,0%) as an
action a followed by an observation strategy o;. In turn, an observation strategy
o, : Z = I'y_1 is a mapping from observations to conditional plans of length k — 1
(T'k—1 is the set of all (k —1)-step conditional plans). Figure 2.2 shows the recursive
definition of the conditional plan corresponding in Figure 2.1. Note that one-step
conditional plans correspond to an action only (i.e., 'y = A) since an observation
strategy is unecessary.

Unfortunately, as the number of steps increases, so does the number and the
length of histories, and it is infeasible to represent a mapping over all such histories.
Alternatively, it is possible to summarize histories by belief states which have a fixed-
size finite representation (O(|S])). A belief state is a sufficient statistic that encodes
all the necessary information from previous actions and observations for planning
purposes. For instance, belief state b; summarizes the relevant information encoded
by the initial belief state by and the sequence of actions and observations up to time
step t.

bt = <b0,a0,21,a1,22,---,Glt_]_,Zt> (28)

15

conditional plan Stagesto go

B=<a, 9> 3
/ X
o) =<8, 3> o) =<8y > 2

d)=<ap o= d=<ar ap=<ar 1

Figure 2.2: Recursive definition of a conditional plan

Intuitively, this follows from the fact that the transition function 7'(bs—1, a¢—1,b;) =
Pr(b¢|b;—1,a;—1) depends only on the previous belief state b;_; (due to the Markov
property). Since b1 = (by,aq, 21,01, 22,-.-,0t-2,2t-1), We can rewrite Expres-

sion 2.8 recursively as follows:

bt = <bt71,at71,zt) (2.9)

Expression 2.9 is not surprising since we had already derived Equation 2.4
which tells us how to update b; from b;_1, a;—1 and z;. This update equation is

rewritten below for convenience.

o btflMat_th

by e

Thus we can also define a policy 7 as mappings 74(b) (one mapping for each
time step t) from belief states to actions. When the mappings m;(b) are the same
for all time steps, we say that the policy is stationary and we simply write 7(b).
In practice, representing a policy as mappings from belief states to actions can be
problematic because the belief space is an (|S| — 1)-dimensional continuous space.
Fortunately, a key result by Sondik [34] allows us to circumvent this problem. The
explanations regarding Sondik’s solution are deferred to the next section after value

functions are introduced.

16

2.2.2 Evaluation

Given the set of all policies II, we need a mechanism to evaluate and compare
policies. Each policy 7 has a corresponding value function V7 : A(S) — R which is
defined as a mapping from initial belief states to expected total reward. For a given
initial belief state, the value returned is the expected sum of the discounted rewards
earned at each time step as defined by Equation 2.10. Here m;(b;) is the action a;

prescribed by policy 7 at time step ¢ for belief state b;.

h
VW(bO) = Z’YtbtR’lrg(bt) (210)
t=0

We can use value functions to order policies. A decision theoretic agent
prefers 7 to @' when V7(b) > V™ (b) for all b € A(S). This preference ordering is a
partial order because there are pairs of policies for which neither policy has a value
function greater than the other one for all belief states. On the other hand, there
always exists an optimal policy 7* such that its value function V™ dominates all
other policies (V™ (b) > V™ (b) Vr,b).

As with policies, representing a value function can be problematic because
its domain is an |S|-dimensional continuous space corresponding to the belief space.
Fortunately, a key result of Sondik [34] shows that optimal value functions for finite-
horizon POMDPs are piecewise-linear and convex (PWLC). The idea is that at
any point in time during the execution of a policy, the actions prescribed for the
remaining steps form a conditional plan. The value function of a conditional plan is
constant for any world state. Since belief states represent probability distributions
over the set of world states, the value function of a conditional plan at any belief
state b is simply the weighted average (according to b) of the value at each world
state. Thus the value function V4 (b) of a conditional plan 3 is linear with respect to
b. This means that V?(b) can be represented by an |S|-dimensional vector a such
that VA (b) = 3,5 b(s)as(s). If we consider ag as a column vector, then in matrix

notation, VA(b) = b- ag. Furthermore, using the recursive definition of conditional

17

— Optimal Vaue Function

Expected Total Reward

0 b(s) 1
Belief Space

Figure 2.3: Geometric View of Value Function

plans, we can compute a-vectors recursively:

Aoy = Ra + Y Mazaq(s) (2.11)
Z2EZ

For a finite horizon h, an optimal policy 7" consists of the best conditional
plans for each initial belief state. Although there are uncountably many belief states,
the set of h-step conditional plans I'y, is finite and therefore an h-step optimal value
function can be represented by a finite collection of a-vectors.

Figure 2.3 shows an optimal value function for a simple two-state POMDP.
The horizontal axis represents belief space and the vertical axis indicates the ex-
pected total reward. Assuming the two world states are s and s, then a belief state
is completely determined by the probability of s. Therefore, the horizontal axis rep-
resents a continuum of belief states determined by the probability b(s). Each line
in the graph is an a-vector which corresponds to the value function of a conditional
plan 8 = (a,0) as defined in Equation 2.11. The upper surface of those a-vectors is
a piecewise-linear and convex (PWLC) function corresponding to the optimal value

function.

18

In general, as shown by Sondik [34], optimal value functions for finite-horizon
problems are PWLC and can be represented succinctly by a finite collection of a-
vectors. As for infinite-horizon POMDPs, the optimal value function is convex but
not necessarily piecewise-linear. On the other hand, there always exists a sequence
of PWLC value functions that converge in the limit to the optimal value function.
This has considerably influenced the design of algorithms to find optimal policies,
since most of the algorithms restrict their search to the set of policies with PWLC

value functions.

2.3 Solution Algorithms

In the past 30 years, several algorithms have been proposed to solve POMDPs. We
can distinguish value iteration algorithms and policy iteration algorithms. Value
iteration algorithms indirectly compute an optimal policy by iteratively refining
its value function, whereas policy iteration algorithms directly refine a policy until
it is optimal. Below, the incremental pruning algorithm [38] is reviewed as it is
the fastest known value iteration algorithm [5] for the class of polynomially action-
output-bounded POMDPs [27] (a class of tractable POMDPs also reviewed below).
Note as well that many aspects of this algorithm will be reused by the algorithms
introduced for error bound computation and approximation search. Among the
policy iteration algorithms, Hansen’s algorithm [13, 14] is reviewed because it is
conceptually simple (compared to Sondik’s algorithm [35, 36]), it has been observed
to outperform value iteration algorithms on several examples and it circumvents the
need for belief state monitoring by computing policies represented by finite state

controllers.

2.3.1 Incremental Pruning

Incremental pruning was first introduced by Zhang and Liu [38] and then analyzed

by Cassandra, Littman and Zhang [5] from a computational complexity point of

19

view. For finite-horizon POMDPs, this algorithm incrementally constructs a k-step

optimal policy 7% by dynamic programming (DP). Given V¥~! the optimal value

function for k — 1 stages to go, V¥ is computed in a greedy fashion as follows. Here

b% denotes the belief state that follows b when action a is executed and observation
z is experienced:

VE@b) = max bR, + vPr(z[b, a)VE1(b%) (2.12)

Incremental pruning decomposes this DP backup (Equation 2.12) in three

steps (Equations 2.13, 2.14 and 2.15). Two intermediary PWLC value functions (Va’fz

and V¥) are first computed and then the optimal value function (V*) is computed.

Roughly speaking, Va’fz corresponds to the expected return of executing action a

and making observation z followed by executing an optimal (k — 1)-step policy 7%,
whereas V¥ corresponds to the expected return of executing action a and making

some unknown observation z, followed by executing an optimal (k — 1)-step policy

7Tk_1.
VE(b) = %ﬂpr(zw,a)vk—l(bg) (2.13)
Vi®) = > V() (2.14)
zZEZ
VFEb) = max VE(b) (2.15)

Using Sondik’s observation that PWLC value functions are representable
by a finite collection of a-vectors, let X be a set of a-vectors whose upper surface
corresponds to V. The above three equations can be rewritten in terms of sets of

a-vectors as follows:

R

ng,z = {ﬁ +7Ma,za|a€Nk71} (2.16)

N = Dri, (2.17)
z€Z

NEo=)k (2.18)
acA

The symbol @ means pairwise addition (i.e., RGN ={a+d|la R A o €

N'}). The key to incremental pruning is to reduce the set of a-vectors representing

20

Table 2.1: LP-dominance test: vector « is dominated by X — {a} when z < 0.

each value function in Equations 2.16, 2.17 and 2.18 by pruning all the dominated
vectors (vectors that are not part of the upper surface). For example, in Figure 2.3,
a9 and ay correspond to conditional plans that are suboptimal and therefore can be
removed without changing the upper surface. Dominated a-vectors can be detected
in two ways: by pointwise dominance and by linear programming (LP). A vector «
is pointwise dominated by o' when the expected total reward of « is less than or
equal to o for every state (i.e., a(s) < d/(s) Vs € §). In Figure 2.3, a4 is pointwise
dominated by a3. Note however, that ag is not pointwise dominated by any single
vector; it is dominated by a combination of vectors of the upper surface. This is
detectable by an LP-dominance test (Table 2.1).

The full DP procedure is given in Table 2.2. Its worst case running time
requires the solution of O(|A||R¥1|IZ]) TPs. TPs are taken as a basic operation be-
cause they are computationally intensive. This shows an exponential computational
complexity with respect to the observation space. However, in practice, pruning
helps to reduce considerably computation time. Moreover, for the class of polyno-
mially action-output-bounded POMDPs [27]—which consists of POMDPs such that
for all actions a the size of X¥ (after pruning) grows polynomially with respect to
RE~1__the reduction obtained by pruning makes the DP procedure tractable (i.e.,
polynomial in |A|, |Z] and [RF1)).

For finite horizon h, the incremental pruning algorithm determines an opti-
mal policy 7 by iterating the above DP procedure h times. A sequence (X%, R!, ... R?)

of sets of a-vectors is computed and the optimal policy is implicitly defined by the

21

PROCEDURE D Pbackup(RF~1)
RE <0
for each a € A do
RE 0
for each z € Z do
N’g’z — p?"une({%| + M, a|a € RE—11)
RE « prune(RF @ N’g,z)
N« prune(RF U RF)
return N¥
END PROCEDURE

Table 2.2: DP procedure

last set . In practice, the optimal policy can be represented explicitly as a map-
ping from belief states to actions or as a finite state controller. If a mapping is used,
then an action is stored with each a-vector of the h sets X’ (1 <4 < h). The action
stored with a given vector ag is the first action a that would be executed when
implementing the corresponding conditional plan S = (a, o). This scheme indirectly
provides a mapping from belief states to actions since there is a mapping from belief
states to maximizing a-vectors. At execution time, for time step ¢, the agent simply
updates its belief state, determines the a-vector that maximizes its expected total
return and executes the action stored with it. Alternatively, as pointed out by Kael-
bling, Littman and Cassandra [22], the optimal policy can also be represented as a
finite state controller. Explanations concerning finite state controllers are deferred
to the next section when Hansen’s policy iteration algorithm is introduced.

For infinite-horizon POMDPs, an e-optimal policy (policy whose value func-
tion differs from the optimal infinite-horizon policy 7* by at most € for every belief
state) is also found by iterating the DP procedure. The idea is to find a k-step
optimal policy 7% and to execute at every time step the action stored with the best
a-vector in R¥. Let’s call #% and V¥ the policy and value function corresponding

k

to this strategy. #* differs from 7% since at time step ¢ the action prescribed by #*

is stored with the maximizing a-vector in ¥* whereas for 7* it is stored with the

22

maximizing a-vector in R¥~t. An important question concerning the quality of 7% is:
how far is V¥ from the optimal infinite-horizon value function V*? If the Bellman
residual, that is, the Lo, difference between V*~! and V*~2, is bounded by some §
(i.e., supy, [V*~1(b) — VF~2(b)| < §) then one can show that V* and V* differ by at
most 26y/(1 —) for every belief state [32]. If § is picked to be €(1 — 7)/27, then
sup [V¥(b) — V*(b)| < € and we say that #* is e-optimal. In practice, § can be made
arbitrarily small since the Bellman residual decreases with each DP backup by a

factor of at least 7.

2.3.2 Policy Iteration

A short description of Hansen’s policy iteration algorithm is presented. It differs
from value iteration algorithms because it conducts a search directly within the
space of policies. On the other hand, the space of policies is huge, so it restricts its
search to the set of policies that can be represented by finite state controllers.

A finite state controller is essentially a directed graph with vertices labelled by
actions and edges labelled by observations (Figure 2.4). Vertices do not (necessarily)
correspond to world states or belief states, they correspond to conditional plans.
The vertex corresponding to conditional plan S = (a,o) is labelled with action a
and its outward edges correspond to the observation strategy o. At run time, the
agent executes the action labelling the current active vertex. It then makes an
observation z which is used to update the active vertex by following the outward
edge labelled with z. This edge points to the next active vertex which corresponds
to the conditional plan o(z). The initial active vertex is determined by selecting
the maximizing conditional plan, that is, the conditional plan with a corresponding
a vector that maximizes the expected total return for the initial belief state. The
value function V™ of a finite state controller m corresponds to the upper surface of
the set of a-vectors N™ associated with the vertices of .

Hansen’s algorithm can be used to solve discounted, infinite-horizon POMDPs.

23

Figure 2.4: Finite state controller for a simple POMDP with two actions and two
observations.

It computes a sequence of finite state controllers (mg,1,...,7,) such that in the
limit (when n — o0), 7, converges to the optimal policy 7*. That is, the value
function of the controllers in the sequence increases monotonically and in the limit,
converges to V*. Given a controller 7;, the next controller 7;; is obtained greedily

in two steps:

e Policy evaluation: compute the value function V™ of ;.

e Policy improvement: perform a dynamic programming backup and extract

the next finite state automaton ;4.

Policy evaluation essentially computes the set ™ for some controller 7. This

is done by solving a system of |X™||S| equations of the following form:
Ap=(a0)(5) = Ra(s) +7) Pr(s'|s,a) Y Pr(z'la,s)ag(r(s")
s'es 2'€Z

Each equation gives the expected total reward for executing the conditional plan 8
associated with some vector o € X” at some initial world state s € S.

Policy improvement is the key step in Hansen’s algorithm. It takes the set
of a-vectors N™ computed by policy evaluation and performs a DP backup as in
incremental pruning. Let X7 be the set of a-vectors resulting from the backup. The

a-vectors in N’ are used to modify the vertices and the edges of the controller 7;

24

according to three simple rules, yielding the next controller m;;1. We refer the reader
to [13, 14] for the details of those rules as they are not essential to the development
of this thesis. In practice, certain POMDPs have optimal policies corresponding to
infinite state controllers. As with incremental pruning, one can find an e-optimal
finite state controller by ensuring that the Bellman residual is small enough. The
argument is identical to the one for incremental pruning since both use the same
DP procedure to compute backups.

Empirically, it has been observed that Hansen’s algorithm requires fewer
iterations than incremental pruning to converge to an e-optimal policy. On the other
hand, each iteration of Hansen’s algorithm carries a policy evaluation step and a DP
backup, whereas an iteration of incremental pruning only performs a DP backup.
In practice, because the running time of a policy evaluation step is negligeable when
compared to a DP backup, Hansen’s algorithm usually runs faster. Although it runs
faster, its computational complexity is as intractable as incremental pruning since

both iterate the same DP procedure.

2.4 Performance issues

Solving POMDPs is a notoriously hard problem. In fact, finding an optimal policy
has been shown to be PSPACE-complete for finite-horizon problems [28] and verify-
ing the existence of a policy with a value function greater than some threshold for a
given initial belief state is undecidable [30]. Yet, POMDPs remain a very attractive
framework to conduct planning under uncertainty and numerous algorithms have
been proposed in the literature. In practice, the PSPACE completeness and undecid-
ability of POMDPs translate into two sources of intractability that afflict all current
algorithms. In this section, a brief review of those sources of intractability and how
some researchers have tried to mitigate them using factored representations is pre-
sented. Finally, as mentioned earlier, although the complexity of solving POMDPs

is not the focus of this thesis, it will influence the design of some algorithms in

25

Chapters 3 and 4 and the experiments in Chapter 5.

2.4.1 Sources of Intractability

All current algorithms that solve POMDPs exactly are plagued by two sources of
intractability:

e The number of a-vectors may grow exponentially with the size of the obser-

vation space Z and doubly exponentially with the horizon h.

e The dimensionality of each a-vector is equal to the size of the state space S.

The first problem is easily observed when examining the DP procedure used
in incremental pruning and in Hansen’s algorithm. For each backup, O(|A||R|IZ) a-
vectors may be generated if no vector is pruned. Consequently, at the k™ iteration,
there could be as many as O(|.A|k|N||Z‘k) a-vectors.

As for dimensionality, most real world problems tend to have large state
spaces. In many domains, the state space is defined by a set of variables such that
each state corresponds to a joint instantiation of those variables. Hence, the number
of states (and the dimensionality of a-vectors) is exponential in the number of state

variables.

2.4.2 Factored Representation

Recently, some attention has been devoted to approaches that exploit some type of
problem structure to essentially reduce the size of the state space. In particular,
the use of factored representations that resemble classical Al representations allow
the manipulation of a compact encoding of the state space. This encoding lets us
reason at the variable level instead of the explicit state level, leading (potentially)
to an exponential reduction in complexity. Decision trees (DTs) [2] and algebraic

decision diagrams (ADDs) [18, 15] are examples of such encodings that can exploit

26

a -vector DT ADD

a(Xyz) =2 X X
a(xv-2) =2 L egend
a(X~Yz) =2 \ \

- 2
a(X~Y~2) =2 /Y /Y true
G(“XYZ) =2 N N ---- fdse
a(~-XY~2) =4 \ 3 \ 3
o (~X~YZ) =3
2 4 2 4

o (~X~Y~Z) =3

Figure 2.5: DT and ADD example

problem structure and have been shown to significantly speed up solution algorithms
for several MDPs [18] and POMDPs [15].

DTs and ADDs can improve the running time of incremental pruning and
Hansen’s policy iteration by allowing the manipulation of an abstract state space
instead of the explicit state space S [15]. More precisely, linear functions of the
state space (such as a-vectors, belief states, transition functions and observation
functions) can be compactly represented by aggregating some world states with
identical values into a single abstract state. Figure 2.5 shows the DT and ADD
representations of an a-vector. For DTs, an abstract state corresponds to a partial
assignment of the state variables that define the state space. Each branch (path
from the root to a leaf) encodes such a partial assignment by instantiating all the
variables it traverses. The leaf at the end of a branch is labelled with the value that
is shared by all the world states that satisfy the corresponding partial assignment.
An ADD is roughly speaking a DT where branches are allowed to share identical
subtrees. Consequently, ADDs can generate much coarser partitions of the state
space than DTs and therefore, they will be used throughout the rest of this thesis.

Factored representations can speed up several operations on a-vectors such as
addition, pointwise multiplication, dot product, pointwise dominance, LP-dominance,

etc. All these operations have a running time that depends on the dimensionality

27

of the vectors involved. When using ADDs, the dimensionality is reduced to the
size of the intersection of the partitions used to represent the vectors involved. The
intersection of two partitions p; and po is a partition p such that all the abstract
states in p are the intersection of an abstract state in p; and an abstract state in
po.?2 For instance, when adding two vectors, a; and «y, only values of abstract
states that aggregate the same world states can be added together. These common
abstract states happen to be the intersection of the abstract states used to represent
a1 and as.

Most exact algorithms for POMDPs (including incremental pruning and
Hansen’s policy iteration) make use of a DP procedure similar to the one described
in Section 2.3.1. The running time of this procedure can be significantly improved
by the use of a factored representation [15]. More precisely, the speed up comes
from an improvement in the running time to solve LPs, which are the most compu-
tationally intensive operations in the procedure. ADDs can speed up LP-dominance
tests to the extent where the intersection of the partitions of the a-vectors involved

is smaller than the full state space. This fact is important for two reasons:

e The experiments carried out in Chapter 5 will be biased towards POMDPs
that exhibit enough structure to allow a-vectors with partitions that “intersect

well”.

e The algorithms for computing error bounds in Chapters 3 and 4 are very
similar to incremental pruning and make extensive use of linear programs that
resemble LP-dominance tests. Therefore, the design of those algorithms will
be influenced in a way to take advantage as much as possible of the speed up

enabled by ADDs.

2Hansen and Feng describe an algorithm to compute the intersection of some partitions
in [15].

28

2.5 Belief State Monitoring

The previous sections were concerned with the offline problem of solving a POMDP.
In this section, an overview of the online belief state monitoring problem is pre-
sented. Depending on the representation of a policy (as a mapping from belief
states to actions or as a finite state controller), the agent may or may not be re-
quired to monitor its belief state. Hence, our first concern will be to determine when
and why belief state monitoring is desirable. Following, a brief overview of some
exact and approximate methods for belief inference is presented. Dynamic Bayesian
networks (DBNs) are introduced as a popular exact method. Despite its use of fac-
tored representations, the method is intractable for most non-trivial POMDPs, so
we turn to approximate methods, among which projection schemes and density trees

are reviewed.

2.5.1 Motivation

When a policy is represented as a mapping from belief states to actions, belief state
monitoring is required; in contrast if it is represented by a finite state controller,
it can be executed directly. In general, the optimal policy of any finite horizon
POMDP can be represented by a finite state controller as pointed out by Kaelbling,
Littman and Cassandra [22]. As for infinite-horizon POMDPs, Hansen’s policy
iteration algorithm can be used to find an e-optimal policy, also represented as a
finite state controller. At a first glance, the reader may wonder about the need for

belief state monitoring, however three reasons may justify it in practice:
e-optimal finite state controllers may not be appropriate representations
for infinite-horizon policies

In many situations, the pratitioner may model an infinite-horizon, undiscounted
POMDP as an infinite-horizon, discounted POMDP. This could be for computa-

tional purposes or simply to give a sense of urgency to the planning agent. In either

29

case, the practitionner expects the agent to execute the policy for an infinite number
of steps and it also expects the quality of the policy to remain constant over time. In
other words, the expected total future reward for a given belief state should be the
same regardless of the number of steps executed so far. If the policy is stationary,
its quality is constant; however that is not the case for nonstationary policies. It
turns out that mappings from belief states to actions represent stationary policies
whereas finite state controllers don’t [16]. At this point, it is not known to what
extent the quality of a controller’s policy deteriorates over time. In theory, an e-
optimal controller is guaranteed to yield an expected total discounted reward within
€ of the optimal policy only for the initial time step. As time goes, the discount
factor scales down the rewards as well as any divergence between the optimal policy
and the controller’s policy. Currently, the only way to prevent a deterioration in
quality is to periodically reset the active vertex of the finite state controller to the
best vertex given the current belief state. Knowledge of the current belief state

requires that one perform belief state monitoring.

Most approximation algorithms for solving POMDPs represent policies

as mappings from belief states to actions

As explained in the previous section, all current exact algorithms are intractable.
Therefore, several heuristic approaches have been suggested to solve POMDPs ap-
proximately [17]. However, most of them assume a mapping from belief states to
actions which requires belief state monitoring. Thus, the techniques described in
the coming chapters are likely to integrate well with existing belief-based methods

to solve POMDPs approximately.

30

Belief state monitoring may be desirable in its on right for explanatory

purposes

Knowledge of the current belief state provides useful information to the practitioner
for understanding the subtleties of the policy in execution. This information can
also be used to validate the reward, transition and observation functions which are

usually based on rough estimates determined by an expert.

2.5.2 Dynamic Bayesian Networks (DBNs)

The task of belief state monitoring consists of updating the current belief state
according to the previous action and observation. More precisely, b;11 is obtained
from by, a; and 241 as in Equation 2.4. When represented as a vector, a belief
state has dimensionality equal to the size of the state space. In general, a belief
update requires some computation that is a low order polynomial in the size of the
state space. When the state space is large (i.e., exponential in the number of state
variables) the task becomes intractable.

Once again, factored representations have been proposed to mitigate the
curse of dimensionality. Dynamic Bayesian networks (DBNs) [7] are very popular
models that (potentially) allow efficient belief inference. The key is to exploit con-
ditional independence to reason at the variable level instead of the state level. A
DBN is an acyclic graph that encodes the transition and observation functions at
each time step. Figure 2.6 illustrates a two-slice DBN for a simple POMDP of three
state variables (W, X and Y') and one observation variable (Z). The unprimed state
variables form a slice for time step ¢ and the primed state variables form another
slice for the next time step, t + 1. The edges in the graph summarize conditional
independence between variables. That is, a variable is conditionally independent
from all its ancestors given its parents. The transition and observation functions
are numerically represented by conditional probability tables (CPTs), which indicate

the conditional distributions Pr(v|pl,p2,...,p?) of each variable v given its parents

31

t t+l W Y | Pr(W W, Y)
@é@ 11 0.3
10 0.8
0 1 0.4
0 0 05

o/ o
@)

Figure 2.6: Two-slice DBN

pi.p2,...,p". As an example, the CPT for Pr(W'|W,Y) is given in Figure 2.6.

Conditional independence can be leveraged to compute the next belief state
bi+1 from the current belief state b; (given some action a and some observation z). In
the DBN, b; and b;41 correspond respectively to the joint distributions Pr(W, X,Y")
and Pr(W', X')Y"). A belief state update using the DBN paradigm essentially asks
the question: Pr(W', X', Y'|Z = 2)? The answer can be found using a variety of
algorithms. A common method is to build a secondary structure, called a clique
tree, and to perform belief inference on this structure. A clique tree is a compact
factored representation of the joint distribution Pr(W, X,Y, W', X' Y', Z) that ex-
ploits variable independence. The reader is referred to Huang and Darwiche [19] for
a high level overview of clique tree construction. What is important to know is that
clique tree encodings are exponential in the size of the largest clique and roughly
speaking, clique size increases with dependencies (correlations).

Assuming monitoring is done using the clique tree representation of a DBN,
a belief update is performed in three steps (see [19, 25] for more details on inference

with DBNs using clique trees):

e Construct a clique tree that encodes the variable dependencies of the system

dynamics (for a specific action and observation).

32

o Initialize the clique tree with the transition probabilities, the observation prob-
abilities and the joint distribution of the state variables at the current time

step (current belief state).

e Query the tree to obtain a joint distribution of the state variables at the next

time step (next belief state).

The amount of computation required for those three steps is also exponential
in the size of the largest clique. This suggests that monitoring can be efficient when
the variables in each slice (defining each belief state) remain fairly independent as
time goes. Unfortunately this rarely occurs in practice. As observed by Boyen and
Koller [3], although the variables in the initial belief state may be independent and
although at each time step only a small number of state variables become correlated,
over time these correlations “bleed through” the DBN, rendering most (if not all)
state variables dependent after some time.

Figure 2.7 shows several slices of an “unrolled” DBN (observations are omit-
ted for simplicity). Suppose that the variables defining the current belief state at
time step ¢ are all independent. At the next time step, ¢t + 1, variables sharing at
least one parent become correlated and a few pairs of correlated variables show up.
At subsequent time steps, the subsets of correlated variables (variables that share
at least one ancestor) keep on growing until, at time step ¢ + 3, the state variables
are fully correlated. This is typical of most real world problems. Thus, exact belief

state monitoring using DBNs usually remains prohibitively expensive.

2.5.3 Approximation Methods

In the literature, several methods have been proposed to efficiently approximate the
belief state monitoring task. Among them, projection schemes and density trees are
reviewed since the former integrates well with DBNs whereas the latter is closely

related to DTs and ADDs.

33

===

L | subset of correlated variables

Figure 2.7: Unrolled DBN with no observation

Projection schemes

Boyen and Koller [3] devised a clever method to ensure that state variables remain
fairly independent during the execution of a policy. Intuitively they consider pro-
jection schemes whereby the joint distribution of a belief state is approximated by
the marginal distributions of some subsets of variables. They assume that these
subsets partition the variable set in disjoint subsets. For each subset, its marginal is
computed and the approximate belief state is formed by taking the product of the
marginals as if they were independent. Thus only variables within the same subset
can remain correlated in the approximate belief state.

In this thesis, a projection scheme is formally defined as a set of subsets of
variables such that all variables are in at least one subset. This allows marginals
with overlapping subsets of variables. For instance, the projection S = {XY,Y Z}
approximates the joint Pr(X,Y,Z) with the marginals Pr(X,Y) and Pr(Y,Z2).
Those marginals are stored in lieu of the belief state since they define implicitly the
approximate belief state. An ezplicit joint of the approximate belief state can be

computed by constructing a clique tree with cliques that correspond to the subsets

34

of variables over which those marginals are defined. This clique tree, which encodes
a belief state, is different from the DBN clique tree of Section 2.5.2 used for Bayesian
inference. Note that some projection schemes with overlapping subsets are not useful
because they don’t correspond to any clique tree, therefore they will be discarded
in practice. Given a projection scheme S (with a corresponding clique tree), one

can perform an approzimate belief state update as follows:

e Construct a DBN clique tree that encodes the variable dependencies of the sys-
tem dynamics (for a specific action and observation) and the correlations that
have been preserved by the marginals representing the current approximate

belief state b;.

e Initialize the DBN clique tree with the transition probabilities, the observation
probabilities and the marginals representing the (approximate, factored) joint

distribution of b;.

e Query the DBN clique tree to obtain the joint distribution b;” over the variables

at the next time step.

e Project b; according to scheme S by computing the marginals representing

the approximate belief state b1 = S(b]").

The complexity of belief state monitoring, which is exponential in the size of
the largest (DBN) clique, is effectively reduced by choosing an adequate projection
scheme that prevents (DBN) cliques from growing beyond some threshold.

It is also important to note that projection schemes perform nonlinear ap-
proximations of a belief state. In other words, the probabilities of each world state
in the approximate belief state are nonlinear combinations of the probabilities of
the world states in the exact belief state. For instance, the projection S = {X,Y}

maps the exact belief state b to the approximate belief state S(b) = b according to

35

the following nonlinear equations:

bzy) = b(x)b(y) = (blzy) + b(zy))(b(zy) + blzy))
b(zy) = b(2)b(y) = (b(zy) + b(zy))(b(zy) + b(zy))
b(zy) = b(2)b(y) = (b(zy) + b(z7))(b(TY) + b(zy))
b(zy) = b(2)b(7) = (b(zF) + b(zY))(b(z7) + b(z7))

The nonlinear properties of projection schemes will have an adverse effect on

the quality of the error bounds computed in the next chapter.

Density Trees

Although, the value-directed framework introduced in this thesis is exemplified with
projection schemes (mainly due to their nice integration with DBNs), it also applies
to any linear approximation method. In fact, it is better suited for linear methods
because the error bounds introduced in the next chapter can be made tighter. In
this section, we briefly describe density trees [26] as they are a very good example of
a linear approximation method and because they are closely related to DTs. The de-
scription given below is syntactically different from that of Koller and Fratkina [26],
but it is conceptually equivalent.

A density tree defines an abstract state space representable by a DT that
belief states are forced to fit in. The idea is to assume that all the world states
aggregated in a belief state have the same value. Thus, a belief state is “compressed”
in a DT by assigning to each abstract state the average probability of all the world
states it aggregates. Figure 2.8, shows how some belief state b is approximated
to S(b) when applying some density tree S. A density tree with an abtract state
space polynomially-sized in the number of variables offers an exponential reduction
in the number of dimensions. It should also be clear to the reader that density
tree approximations are linear since averaging is a linear operation. Finally, an

approximate belief update using density tree S is performed as follows:

36

b S S(b)

X X X
0.05 Y Y 0.05 Y
z 0.15 025 015
010 040 L egend:
true
---- fase

Figure 2.8: Density tree approximation

e Let by and M, , be in factored forms such as DTs or ADDs.
e Compute b} = btM, /K by manipulating the factored representations.

e Compute the approximate belief state by, ; = S(b]") by aggregating (through
averaging) the leaves of b until it satisfies the abstract state space defined by

the density tree S.

2.6 Thesis Assumptions

This section ends the background material on POMDPs and belief inference by
stating the assumptions underlying the value-directed framework introduced in the

following chapters. The framework assumes that:

e A POMDP has been solved and an optimal (or e-optimal) policy is already

computed.
e The policy is given by a mapping from belief states to actions.

37

The value function corresponds to (or is approximated by) the upper surface

of a finite set of a-vectors.

Since the POMDP has been solved, this set of a-vectors is assumed to be
tractable. This means that the number of a-vectors as well as their effective
dimensionality is reasonable. Here, by effective dimensionality we mean the

reduced dimensionality obtained by a factored representation such as ADDs.

Exact belief state monitoring is intractable and therefore needs to be approx-

imated.

The goodness of an approximation method is measured by the loss in expected

total reward.

We perform an offfine search to find a good approximation method that en-

ables fast online belief state monitoring.

38

Chapter 3

Value-Directed Approximations

We now introduce a general theoretical framework to analyze approximation meth-

ods from a wvalue-directed point of view. The goal of this analysis is threefold:

e To provide some insights regarding the impact of approximations on decision

quality.

e To develop bounds for the loss in expected value due to the use of a given

approximation method.

e To develop algorithms that search within a class of methods for an approxima-
tion scheme that sacrifices as little as possible decision quality (by minimizing

the bounds on expected loss).

The chapter is organized as follows. Sections 3.1 and 3.2 assume that we
have been given some approximation scheme S for performing efficient belief up-
dates, as well as the value function of an optimal policy that we wish to execute.
The goal is to derive error bounds for applying the approximation scheme S while
executing the optimal policy. Section 3.1 starts by analyzing the simple case where
a single approximation is performed at some time step and Section 3.2 generalizes
this analysis to the situation where the belief state is approximated repeatedly (i.e.,

at every time step).

39

It is important to note that this analysis is general in the sense that it can
accomodate a wide range of approximation methods. In this thesis, the framework
is illustrated by the class of projection schemes; however all the observations made
and the bounds derived also apply to any linear approximation method (including
density trees). Projection schemes were picked mainly due to their tight coupling
with DBNs which are very popular for exact inference in dynamical systems.

Section 3.3 makes use of the bounds derived to develop algorithms that search
for a good projection within the class of projection schemes. The class is first
organized in a lattice which highlights the nicely structured partial ordering induced
by the error bounds. Then we suggest a simple greedy algorithm that uses the lattice
to guide its search.

The reader should also be warned that the framework introduced in this
chapter is mainly theoretical. That is, the analysis performed is conceptually correct,
but the proposed bounds are loose and the suggested algorithms are designed to be

analyzed easily, not to be efficient. Chapter 4 addresses these practical issues.

3.1 Plan switching

Implementing a policy represented as a mapping from belief states to actions requires
that one maintains a belief state, plugging this into the value function at each step,
and executing the action associated with the maximizing a-vector. When the belief
state b is approximated using an approximation scheme S, a suboptimal policy
may be implemented since the maximizing vector for the approximate belief state
S(b) will be chosen rather than the maximizing vector for the exact belief state b.
Furthermore this mistaken choice of vectors (hence actions) can be compounded
with each further approximation at later stages of the process. To bound such
error, we first define the notion of plan switching. We phrase our definitions in
terms of finite-horizon value functions, introducing the minor variations needed for

infinite-horizon problems later.

40

Figure 3.1: Relevant belief states at stage &k

Suppose with k stages-to-go, the true belief state, had it been monitored
accurately to that point, is b. However, due to previous belief state approximations
we take our current belief state to be b. Now imagine our approximation scheme
has been applied at time k to obtain S(b). Given N¥, representing V¥, suppose the
maximizing vectors associated with b, band S (I~)) are a1, ag and as, respectively
(see Figure 3.1). The approximation at stage k mistakenly induces the choice of
the action associated with a3 instead of as at I~); this incurs an error in decision
quality of b- as — b- ag. While the optimal choice is in fact «y, the unaccounted
error b - oy — b - a9 induced by the prior approximations will be viewed as caused
by the earlier approximations; the goal at this point is simply to consider the error

induced by the current approximation.

3.1.1 Switch set computations

The purpose of this section is to identify when the course of action is modified by an
approximation scheme S. Assuming the current belief state is 5, the future course of

action is given by the conditional plan corresponding to the maximizing a-vector for

41

Figure 3.2: Regions for each maximizing a-vector

b. As long as S approximates b to some belief state S(b) with the same maximizing
a-vector, there is no loss in expected return since the same conditional plan gets
executed. In fact, the maximizing vector « for belief state b defines a region R,
of belief space in which S(b) can lie without altering the future course of action.
In general, the set of a-vectors that make up the upper surface of a value function
partition the belief space in regions R,; such that all belief states in a region are
mapped to the same maximizing a-vector.! Figure 3.2 shows the regions Ry, , Ra,
and R,, defined by the vectors a;, ag and o3.

The idea of this section is to pick some region R, and to identify all the
other regions R, such that there exists a belief state b € R, that gets mapped to
S(b) € Ry. More precisely, we identify for each o € R¥, the set of vectors Suf(c)
that the agent can switch to by approximating (with §) its current belief state b

given that b identifies « as optimal. Formally, we define

! Belief states on the boundaries of adjacent regions have more than one maximizing
a-vector, however this doesn’t bear any consequence. If a unique maximizing a-vector is
required, ties can be broken by always choosing the maximizing vector that comes first in
some predetermined ordering of the vectors.

42

Figure 3.3: The Switch Set Su*(a3) of a3

Suwk(a) = {o/ € ¥*:IVa(b-a>b-a,Sb) o > S(b)-a)}

Intuitively, this is the set of vectors we could choose as maximizing (thus
implementing the corresponding conditional plan) due to belief state approximation.
In Figure 3.3, we see that Suf(az) = {a1, o, au}.

The set Suf(a;) can be identified readily by solving a series of O(|X¥|) op-
timization problems. Each optimization problem tests the possibility of switching
to a specific vector o € Nk and it is formulated as a (possibly nonlinear) program
(Table 3.1). It is interesting to note the similarity between switch test programs
(Table 3.1) and dominance test LPs (Table 2.1). In fact, if we remove constraints
of type S(b) - (oj — o) > d, they are identical.

The objective function of a switch test program has a positive value whenever
there is a belief state b such that «; is optimal at b, and «; is optimal at S(b). In
fact, we need only find a positive feasible solution, not an optimal one, to identify
a; as an element of Swf ().

For linear approximation schemes (such as density trees), these problems

43

max T

st. b-(ag—ap) >z VI#£i
b

S(b)- (05— o) > VI
2sb(s) =1
b(s) >0 Vs

Table 3.1: Switch test program to determine if there exists a belief state b such
that the projection S leads to a switch from «; to «;. The variables are z and each
component b(s) of the vector b representing a belief state. «;, o, oy and S are fixed
and therefore yield the variable coefficients.

are easily solvable linear programs (LPs). Unfortunately, projection schemes are
nonlinear, making optimization (or identification of feasible solutions) more difficult.
On the other hand, a projection scheme determines a set of linear constraints on the
approximate belief state S(b). In general, for POMDPs with binary variables, there
is one linear constraint for each subset of the marginals defined by the projection
scheme.? For instance, consider the projection scheme S = {C D, DE} for a POMDP
with 3 binary variables. This projection imposes the following linear constraints on

S(b):

b(@) = b'(0) b(C) = V(C)
b(D) = V(D) b(E) = V(E)
b(CD) = b (CD) b(DE) = V(DE)

Here b’ denotes S(b) and b(XY') denotes the cumulative probability (accord-
ing to belief state b) of all states that assign the value true to variables X and
Y (ie., b(CD) = b(cde) + b(cde)). b(() is the cumulative probability of all states
(which is always 1). These constraints define an LP that can be used to construct a
superset gz\u];(a,) of Sw(cy) (see Theorem 1). Given scheme S = {M, ..., M,}, we
define the LP in Table 3.2. When a feasible positive solution exists, «; is added to
the set @g(ai), though in fact, it may not be a member of Sw%(c;). If no positive

solution exists, we know «; is not in Sw(c;) and it is not added to Swg(c;)-

2For POMDPs with non-binary variables, there is more than one equation per subset.

44

max =«
st. b-(ay—ap)>x VI#1
Vlaj—a) >z Vi#j

V(M) =bM) VYMCM,1<Il<n
5, b(s) = 1

b(s) >0 Vs

b'(s) >0 Vs

Table 3.2: LP-switch test for projection schemes. The variables are x and each
component b(s) and b'(s) of the vectors b and b’ representing belief states. «;, «;,
oy and M, are fixed and therefore yield the variable coefficients.

Theorem 1 Let Sws(a) and SAwS(a) be the switch sets respectively constructed us-

ing the switch tests of Tables 3.1 and 8.2. Then, Sws(c) C Sws(a).

Proof Since a vector o is added to Swg(a) and Swg(cr) when the switch tests of
Tables 3.1 and 3.2 have a positive feasible solution, it suffices to show that
whenever the switch test of Table 3.1 has a positive feasible solution, then the
switch test of Table 3.2 also has a positive feasible solution. Given a belief
state b for which Table 3.1 has a positive objective function, then in Table 3.2,

if we keep b the same and set b’ to S(b), the objective function is also positive.

O

While the number of constraints of the type b(M) = b'(M) is exponential
in the size of the largest marginal, we expect that the number of variables in each
marginal for a useful projection scheme will be bounded by a small constant. In
this way, the number of constraints can be viewed as constant (i.e., independent of
state space size).

The LP-switch tests in Table 3.1 (linear approximations) and Table 3.2 (pro-
jection schemes) are computationally intensive. Their complexity is similar to that
of LP-dominance tests since they all have O(|S|) variables and O(|R¥|) constraints.
Although the number of LP variables is exponential in the number of state variables,

factored representations such as ADDs can be used to aggregate LP variables (which

45

really correspond to world states). As with LP dominance tests, each constraint in
LP-switch tests can be encoded with an ADD that potentially reduces the effective
state space. The actual speed up induced by ADDs will be determined by the size
of the intersection of the abstract state spaces defined by the ADD representation
of each constraint.

In practice, density trees often have small intersections, whereas projection
schemes don’t. In fact one can show that for projection schemes, the resulting
abstract space is always the whole state space. This is because of the constraints
of type b(M) = b'(M). Each such constraint where M is a single variable has
an ADD representation defining a very small partition of two abstract states: the
states for which variable M is true versus the states for which variable M is false.
By definition, the state space is the intersection of those partitions, so if for each
variable X there is a constraint b(X) = b'(X), then the intersection is the whole state
space. It turns out that for all projection schemes, each variable has a corresponding
constraint b(M) = b'(M) where M is that variable. This is because all variables
must be contained in at least one marginal of the projection scheme.

Hence, LP-switch tests for projection schemes do not benefit from ADDs.
On the other hand, it may be possible to still get a speed up by extending the ADD
concept in such a way that we would aggregate, not only states with identical values,
but also states whose values are linear combinations of each others. This refinement
is a research problem in its own that remains to be explored.

In contrast, LP-switch tests for density trees do not suffer from this problem
since density trees yield linear approximations. Linearity allows us to use the LP-
switch test of Table 3.1 which doesn’t have any constraints of the type b(M) = b'(M).

In summary, the switch set of an a-vector identifies all other a-vectors (there-
fore conditional plans) that may be executed as a result of a single approximation
S at the current time step. At stage k, the value function is determined by |R¥|

a-vectors, so there are |N¥| switch sets and each of them requires the solution of |R¥|

46

LPs, for a total of O(|X¥|?) LPs. Once again, LPs are taken as a basic operation
since they are computationally intensive. In comparison, when computing R, the
DP procedure may require as few as Q(|X¥|) LPs if no vector gets pruned. However,
in practice, several a-vectors are usually pruned during the construction of ®*, hence
the running time to construct all switch sets tends to be similar to that of the DP

procedure.

3.1.2 Switch set error bounds

Switch sets give us a very useful tool to bound the loss in expected value attributed
to a single approximation. The idea is simply to measure the difference in expected
return between the optimal conditional plan (had we not approximated the current
belief state) and the worst conditional plan we could switch to. Let ng(oz) be an
upper bound for the loss at stage j when approximation S is used and when « is
viewed as optimal:

Bg(a) =max max b-(a—d) (3.1)
b a’ES’U/S(a)

Also, let Bg be the greatest error introduced for any a-vector:

Bl = max Bj(a) (3.2)

In Equation 3.1, although the exact switch set Swg. is used, one can also
define Bg in terms of a superset g%fq with the consequence of a looser bound. In
practice, since error at a belief state b is simply the expectation of the error at its
component states, Bg(a) can be determined by comparing the vectors in Swfq(a)
with @ componentwise (with the maximum component difference being Bg(a)).

For a k-stage, finite-horizon POMDP, we can now bound the error in decision
quality due to successive approximations with S. One simply has to figure out the
bounds Bg for j stages to go. The cumulative bound Ug (for k stages) is the

discounted sum of each stage’s bound:
k

Ut =Y 7B} (3.3)
7j=1

47

As for infinite-horizon POMDPs, two possibilities arise: either we are given
the set N* corresponding to the optimal value function V* or we only have access
to the set X¥ which implicitly determines the e-optimal value function V. For the
optimal case, the bound Ug is pretty straightforward. It suffices to compute the
switch sets of the vectors in the optimal set N* and to derive the one-step error
bound B%. The upper bound U¢ on the loss incurred by applying S indefinitely is
simply the infinite discounted sum of BY:

Bs
-y

As for e-optimal policies, we can derive a bound ﬁg, but this requires some

U5 = (3.4)

work. We normally get an e-optimal policy 7% by using at every step the same
mapping from belief states to actions provided by the set R* representing the optimal
k-step value function V*. If we had access to the set RF representing Vk, we could
compute the switch sets of each vector in R¥ and derive a one step bound Bg The

cumulative bound U"S“ would simply be the infinite discounted sum of Bg:

. Bk
U§s = _57 (3.5)
B+ p
< =5 .
< 3 (3.6)

In general, V¥ is not piecewise-linear nor convex so R¥ is not (necessarily)
a finite set of vectors whose upper surface corresponds to VEk. RF is a possibly
infinite set of vectors such that each of them corresponds to the conditional plan
that is prescribed by #* for some belief state b. Unfortunately, we don’t know RE
and computing it is an impractical task as it is a possibly infinite set. On the other
hand, we know that V¥ and V¥ are fairly close (within €/2 of each other), so one
would expect Bg and Bg to be fairly close. In fact they are, but not as close as
V* and V* are. We will show below that the difference between Bg and B% can be
bounded by some small number p. Unfortunately there is no relationship between
i and € other than y > e. Assuming Bg < B§ + u, which we will prove shortly,
then Equation 3.6 follows.

48

In order to show that Bg < Bg + i, we need to establish 3 lemmas and to
introduce some more notation. Define the L., distance between two sets of a-vectors
R™ and R as follows:

IR = R oo = RN llots — |l oo (3.7)

Here, ap and o are respectively the a-vectors in R™ and N that correspond
to the conditional plans prescribed by 7 and 7’ at belief state b. When the value
functions V7™ and V™ are piecewise-linear and convex, a; and «; are essentially the
maximizing vectors for belief state b. Note however that, in general, this is not the
case for value functions (such as V*) that lack these properties.

The distance measure in Equation 3.7 is essentially a generalization of the
L, distance between value functions to an L., distance between sets of a-vectors.
This new distance measure gives us a handle to compare B§ and Bg. Roughly
speaking, those bounds are defined in terms of a-vectors, so when R¥ and RF are
close (their Ly, distance is small), then we are able to show that B’g and Bg are also
close. Below, Lemma 1 relates the Lo, distance between RF and NF to the distance

between B and BE.
Lemma 1 If |[RF — X¥|| . < /2 then BE < BE + p.

Proof Let’s introduce an alternative definition for Bg(a) that is more convenient
for this proof. The expression B%(a) was initially defined in Equation 3.1
as an upper bound on the loss in expected total return due to the use of
approximation S at step k assuming that the maximizing vector is a. The
assumption that « is optimal implies that the current belief state b lies in the
belief space region R,. Using this region notion, one can redefine Bg(a) with
the following conceptually equivalent expression:

k _
Bsle) = mags, joax b+ (o — gy

49

The above expression can also be adapted to define Bg(&), but with one slight

semantic difference.

Bi(a) = max max b (é; — dop
@) bEA(S) beRs (& = 8s)

Since the value function V¥ is not (necessarily) piecewise-linear nor convex,
the region Ry is not (necessarily) the belief space region for which & dominates

in R¥. It is rather the region for which the policy #* prescribes the conditional

plan corresponding to &. Similarly, the vectors &; and & 5() correspond to the

conditional plans prescribed by #* at belief states b and S(b). We are now

ready to prove the lemma:

B = max max max b- (& — i)
S L I
aeRk bEA(S) beRy b 5(6)

= gg)li bénAaE)é) gg b- (G5 —az) +b- (o — aS(;))) +b- (O‘S(B) - (345(5))
W

< max max max 'LQ_L +b- (o — 015(5)) + 9 (3.8)
GeRE bEA(S) beRg

< a; a) ax b- (a5 —agiy) + 3.9

= aenk beA(S) bem (g — ag) +m (3.9)

= BS+p

In Equation 3.8, b- (&5 — o) < [|&5 — ol < p/2 and b (O‘S(E) - 6‘5([,)) <
|65 —aglle < /2. In Equation 3.9, the regions R4 are replaced by the regions

R,, since every region Ry is a subset of some region R,. O

The above lemma provides a step in the right direction for the computation

of B¥, however it assumes the knowledge of |[RF — R¥||.. As mentioned earlier, we

don’t have access to R¥ and therefore we don’t know its distance from R¥. On the

other hand, in the DP procedure, the value function V¥ is not available either and

yet, its distance from V* can be evaluated. This is made possible by observing that

H? backups contract the Ly, distance between value functions by a factor of at least

7. Assuming d is a mapping from belief states to actions, an H? backup is similar to

a DP backup except that the action executed at the first time step is not necessarily

50

the one maximizing the expected total reward, but rather the one prescribed by the

mapping d. Formally, we define H%V as follows:
(HV)(b) = R(d(b),a) + 7 P(b5"[b,d(b))V (55"

Below, Lemma 2 essentially shows that a generalized version of H¢, call
it 7%, is also a contraction mapping for the distance between sets of a-vectors.
Semantically, H? and H? are the same, however H¢ operates on sets of a-vectors

whereas H? operates on value functions.
HIN = {op|ay = Ry + 72Md(b),zab§(”) for some Qi) € N}
z

Lemma 2 Let X and X' be sets of o vectors, then H® is a contraction mapping:

IR = HW oo < YR = Xoo

Proof Let aZ{dN and ozZ'ldN, be the a-vectors respectively prescribed by R and
HAN' at belief state b. Let a be the action prescribed by d at belief state b.

We need to show that for any belief state b, ||oz;"dN — aZ“dN'Hoo < 1 when

||N - NIHoo = ¢
[0 — o[= ||Ra+ Y Mo —Ra+7) Ma,za,ﬁgnoo
V4 z
= YlIM. > M. (ahs — of)lloo
z
< A Mo (o —a?fg')lloo (3.10)
< vy Z (3.11)

In Equation 3.10, M, is a transition matrix such that the components of each
row sum up to 1. Matrices with this property can only reduce the Lo, distance.
In Equation 3.11, the sum of all the matrices M, is the identity matrix. Since
||a;fg - a}fé lloo is at most 1), then || 3, Mz(aﬁg - a?é)”oo is also bounded by 1.

O

51

The above lemma shows that any ¢ backup constitutes a contraction map-
ping. If we let d* be the mapping from belief states to actions encoded by the set R¥,
then it should be clear that R¥ = 74" RF~1 and similarly, RF = (32°)°RF~1, Below,
Lemma 3 shows how the contracting property of % and the fact that RF and RF
are obtained by " backups allow us to bound the L, distance between RF and
NF. The technique used is the same as for bounding ||V* — V*||o, given the Bellman

residual, however, working with sets of a-vectors instead of value functions.

Lemma 3 If [|RF — RF~1||, = v, then |RF — RE||o < yyp/(1 — 7).

Proof
IRF - R = (K)°°N“ HEREY|
< I (MY)ik — (" yRkE |
.
< YRR = RE
= /(1 -9)
O

The above lemma provides the last piece of information necessary to relate

B¥ and B*. To summarize, we can estimate the bounds U* and B¥ as follows:

Theorem 2 Given the sets ®* and REF~1 such that ¢ = ||[RF — RFL||) let p =
279/(1 =), then

1. BE < BF
2. Uk < (B¥+p)/(1-7)
Proof Compute 3 = ||R¥ — ®*~1|| . By Lemmas 2 and 3, we know that
IR = R¥[lo < yap/(1 =) = /2

52

It follows that by Lemma, 1,
BF < BF + W
and consequently, using Equation 3.5:
UF < (B¥+p)/(1-7)
a

It is interesting to compare the value 9 to J (Bellman residual) as well as
the value y to €. Since the L., distance between sets of a-vectors is at least as
great as the Lo, distance between the value functions they represent, it follows that
9 > §. Similarly, since p and e share the same relationship with respect to ¢ and
d, it follows that p > e.

There is one important distinction that must be made between y and e.
Since the DP backup is a contraction mapping for the L, distance between value
functions, one can make the Bellman residual, and consequently ¢, arbitrarily small
by doing enough DP backups. Although Lemma 2 shows that any #? backup is
a contraction mapping with respect to the L., distance between sets of a-vectors,
the author has been unable to prove or disprove the same for DP backups. This is
an important question that remains to be solved. In the event where DP backups
are not contraction mappings for the L., distance between sets of a-vectors, then
the practitionner has no control on 9 and p and therefore it may not be possible
to reduce them past an acceptable threshold. This means that the estimates of U*

and B* could be much worse than their actual values.

3.2 Alternative plans

The cumulative error induced by repeated approximations can be bounded in a

tighter way than simply taking the discounted sum of the B bounds (as it is done

53

to compute the U bounds). The idea is to generate the set of alternative plans that
may be executed as a result of both current and future approximations. Suppose
that an agent, due to approximation at k stages to go, changes its belief state from
b to S(b). This can induce a change in the choice of optimal a-vector in R, say
from ag, to ag, where 1 = (a1,01) and By = (ag,02). However, even though the
agent has switched and executed the action as stored with ag,, it has not necessarily
committed to implementing the entire conditional plan B. This is because further
approximation at k — 1 stages to go may cause it to depart from the implementation
of the conditional plans prescribed by the observation strategy oo.

Suppose for instance that o9(z) = 3. If z is observed, and the agent updates
its (approximate) belief state S(b) accurately to obtain S(b)’, then the maximizing
vector at the next stage is necessarily ag,. But given that S(b)’ will be approximated
before the maximizing vector is chosen, the agent may adopt some other continuation
of the plan if ag, does not maximize value for the (second) approximated belief state
S(S(b)"). In fact, the agent may implement the conditional plan 4 = (a4, 04) of any
vector ag, in the switch set Sw® !(ag,). Notice that the value of the plan actually
implemented-—doing the action ay stored with ag,, followed by the action a4 stored

with ag,, and so on—may not be represented by any a-vector in RE

3.2.1 Alt-set computations

We can actually construct the values of such plans, and thus obtain much tighter
error bounds, while we perform dynamic programming. We recursively define the

set of alternative plans, or Alt-set for each vector at each stage. We first define
Alt (o) = Sw'(a)

That is, if « is optimal at stage 1, then any vector in its switch set can have

its plan executed. The future alternative set for any ag € R, where 8 = (a, o), is:
FAltk(Ot(a,U)) = {Oz(a,U/) : (VZ) ao-l(z) € Altkil(ag(z))} (3.12)

o4

If « is chosen to be executed at stage k, true expected value may in fact be
given by any vector in FAIt*(q), this is due to future switching of policies at stages

following k. Finally, define
Altf(a) = U{FAIE (&) : o € SuF(a)} (3.13)

If « is in fact optimal at stage k for a given belief state b, but b is approxi-
mated currently and at every future stage, then expected value might be reflected
by any vector in Altk(a). These vectors correspond to every possible course of ac-
tion that could be adopted because of approximation: if we switch vectors at stage
k, we could begin to execute (the plan associated with) any o/ € Suw*(a); and if
we begin executing o', we could end up executing (the plan associated with) any
o' € FAIF ().

Given these Alt-sets, the error associated with belief state approximation is
bounded by the maximum difference in value between any « and one of its Alt-
vectors. These FAIt and Alt-sets can be computed by dynamic programming while
a POMDP is being solved. Furthermore, the DP procedure to compute them is
essentially the same as the incremental pruning DP procedure for N-sets. The con-
struction of FAlt-sets and Alt-sets can be decomposed in three steps that are identical
to Equations 2.16, 2.17 and 2.18 with the proviso that the sets computed are differ-
ent. The first step (Equation 3.14) constructs an intermediary FAlt-set that contains
vectors corresponding, roughly speaking, to the expected value of executing action
a followed by an alternative plan to o(z). The other two steps construct FAlt-sets

and Alt-sets as initially defined in Equations 3.12 and 3.13.

FAltk((X(a,U),z) = {R?al +yM, o0 € Altkil(ag(z))} (3.14)
FAltF(a) = €P FAl(a, 2) (3.15)
2EZ
Al () = U FAl() (3.16)
a’ESU)k(a)

The size of Alt-sets tends to be intractable as it grows exponentially. On

55

— — — Anti-dominated vectors

Anti-dominating vectors

Expected Total Reward

0 b(s) 1
Belief Space

Figure 3.4: Lower surface of anti-dominating vectors

the other hand, our goal is to derive bounds on the loss in expected return. These
bounds are determined by comparing the worst alternative plans to the optimal
plan. The worst conditional plans correspond to the vectors that make up the lower
surface of an Alt-set. Hence, we can significantly reduce the size of Alt-sets by
pruning all anti-dominated vectors (vectors that are dominated from below by one
or several other vectors as in Figure 3.4). This is the analog of pruning dominated
vectors that are not part of the upper surface of an N-set.

Table 3.3 shows an incremental pruning DP procedure to compute an Alt-set
at stage k from the Alt-sets at stage K — 1. The algorithm is essentially the same
as that of Table 2.2 for computing an R-set, with one slight difference: anti-pruning
(pruning of anti-dominated vectors) is used instead of pruning. Two important

observations can be made concerning the very close similarity of the two algorithms:

e Implementation of the DP procedure for Ali-sets is easy. Since the
incremental pruning DP procedure for R-sets is fairly straightforward, so is

the incremental anti-pruning DP procedure for Alt-sets. Furthermore, their

56

PROCEDURE D Paltset(a, k)
Al (a) + 0
for each a4 € Suf(a) do
FAltk(CV(a,U)) «— 0
for each z € Z do

FAltJ“(a(a,U),z) — antiprune({%“l + My o : € Altk_l(ag(z))})

FAltk(oe(a’,,)) — antiprune(FAltk(am,(,)) (&> FAltk(am,(,),z))
AltF (o) « antiprune(Alt* (o) U FAlt’“(a@,U)))
return Alt*(a)
END PROCEDURE

Table 3.3: Alt-set DP procedure

high degree of similarity allows one DP procedure to be generalized with only

a few lines of codes to handle both N-sets and Alt-sets.

e Constructing Alt-sets is an intractable task. The DP procedures for -
sets and Alt-sets are identical from a computational complexity point of view.
We already know that solving POMDPs is intractable in general and so will
be Alt-set construction. Moreover, at each stage k, one Alt-set is computed
per a-vector for a total of |N¥| Alt-sets, whereas only one X-set needs to be
generated. On the other hand, as mentioned in Chapter 2, there is a class
of POMDPs, namely the polynomially action-output-bounded POMDPs, for
which the R-set DP procedure is tractable. One question arises: Is the Alt-set
DP procedure for those POMDPs also tractable? The author conjectures that
the answer is no. Intuitively, lower surfaces of sets of a-vectors may grow

exponentially while their upper surfaces grow polynomially.

3.2.2 Alt-set error bounds

Error bounds can be derived from Alt-sets for the cumulative loss in expected total
return due to several consecutive approximations. For a k-stage POMDP, when the

approximation S is used at every time step and « is the maximizing vector for the

o7

initial belief state, the cumulative error is bounded by the expression E%(c). This
bound can be defined in terms of the vectors in the set Alt§(c):
Ef(a) = max max b-(a—d) (3.17)
bEA(S) a’EAltk(a)
Alternatively, since Altf(c) is the union of the FAlt-sets of each of the vectors
in Swk(a), the bound E%(a) can also be defined in terms of similar bounds for FAIt-

sets, which we denote F¥(a,o):

FE(a, o) = be(a—d 3.18

M) = B B T o

Ef(a) = max F¥(a,d) (3.19)
a’Eka(a)

The bounds E%() and F%(a,a') can be computed using simple pointwise
comparison of a with each o/ € Altf(a) or with each o € FAIt%(o/). Cumulative

approximation error can be bounded globally using:

Ef = max Ef(a 3.20
S S
a€ENk

Furthermore, Efv < U’Sc since alternate vectors provide a much tighter way to

measure cumulative error.
Theorem 3 For any k stages to go (k > 1), E& < UE.

Proof The proof is by induction. First show that the inequality holds for the base

case at one stage to go:

Ei = max max max b (a—d)
aeR! bEA(S) e AlH (a)
= max max max b (a—d)
a€eRl bEA(S) a’ES'wl(a)
— B
= Ul

Then assume that the inequality holds for k£ stages to go:
Eg < U§

58

Finally show that the inequality also holds for k£ + 1 stages to go:

Eg“ = max max max max b-(a—a")
aeNk+l bEA(S) a’eka+1(a) aIIEFAltk+l(al)

= max max max max b-(a—d)+b- (o —a")
aERFFL bEA(S) e ST () ae FAI T (o)

< max max max b- (o —a)
aeRFH bEA(S) e Suft(a)
+ max max max max b-(df —a”)
aEN"’+1 bEA(s) a’ESU}k+1(a) a”EFAltk+1(a’)
< BEF 4 yEE
< BEFL L 4UE

k+1
US

O

For an infinite-horizon problem where the optimal set of a-vectors N* is
available, we can compute switch sets once as in the computation of Ug. To compute

a tighter bound E%, we can construct k-stages of Alt-sets, backing up from N*.

Altt(a) = Sw'(a)
FAltk(a(a,a)) = {a(a,a’) : (Vz) Qgr(z) € Altk_l(aa(z))}

Al (a) = U{FAIF() : o € Su'(a)}

The bound E¥ is computed as for the finite-horizon case (Equations 3.17 and
3.20), and we set
E% = EX +4FU% (3.21)

As for infinite-horizon problems where an e-optimal value function V* was
found, the derivation of an E§ bound appears to be complex. The problem stems
from the fact that Alt-sets cannot be computed directly since the set of a-vectors
R¥ is not available. On the other hand, information about the L, distance between
RF and N* may provide a way to derive such a bound, as for U"S“ In any case, the

derivation of an E§ is an open problem.

59

3.3 Value-directed search

The B, U and FE error bounds derived in the previous section will now be leveraged
to design algorithms to search for a good approximation method. The idea is to find
an approximation scheme that minimizes those bounds. Unlike the previous section,
which was generic in the sense that the bounds derived hold for a wide variety of
approximation methods (including projection schemes, density trees and any other
linear approximation method), we will now focus on algorithms to search within
the class of projection schemes only. Despite their looser bounds (due to their non-
linear properties which force us to construct supersets of the switch sets), projection
schemes are of great interest since they mesh well with DBNs. Furthermore, as we
will see in Section 3.3.1, the class exhibits a nice partial ordering illustrated by
a lattice. This lattice turns out to be very useful to guide the search for a good
projection scheme. Section 3.3.2 introduces a search algorithm which essentially
does a greedy traversal of the lattice.

In the previous section, the bounds were derived assuming that the same
approximation S was used at every time step and for every belief state. In fact, there
was no real need to assume such a uniform approximation since the algorithms work
equally well (provide legitimate bounds) when each switch set is computed with
a (possibly) different approximation method. Therefore, in this section, we will
conduct an independent search to find a good, possibly different, projection scheme
for each switch set. Since we have to compute a switch set for each a-vector in the
optimal set N, we will store with each vector a € N a corresponding projection S,. At
run time, the agent will look up the maximizing vector « for its current belief state b
and perform an approximation S, that simplifies his belief state to S, (b). The reader
may wonder why approximation is needed if it is assumed that the agent knows its
current belief state as well as the maximizing vector. As explained in Chapter 2,
the state variables that define the belief state tend to become correlated over time;

however, in one step, only a few correlations usually creep in. Hence, assuming a

60

projection scheme is used at every time step to break the new correlations as they
creep in, one can usually perform an exact belief update on the projected belief
state. As a result, the agent can tailor its belief state approximation to provide
good results for its currently anticipated course of action. This in turn will lead to

much better performance than using a uniform scheme.

3.3.1 Lattice of projection schemes

We can structure the search for a projection scheme by considering the lattice of
projection schemes defined by subset inclusion. Specifically, we say Si contains So
(written loosely Sy C S7) if every subset of Ss is contained within some subset of
S1. This means that S, is a finer projection than Si. The lattice of projections for
three binary variables is illustrated in Figure 3.5. Each node represents the set of
marginals defining some projection S. Above each node, the subsets corresponding
to its constraining equations are listed (we refer to each such subset as a constraint).
The finest projections (which are the “most approximate” since they assume more
independence) are at the top of the lattice. Edges are labeled with the subset of
variables corresponding to the single constraining equation that must be added to
the parent’s constraints in order to obtain the child’s constraints.

It should be clear that if So C S, then S; offers (not necessarily strictly)

tighter bounds on error when used instead of Sy at any point.

Theorem 4 Let S1 and So be projection schemes such that So C Sy (every marginal

of So is a subset of some marginal of S1). Then,
1. BY < B
2. Ut < U (similarly, Us < UE,)
3. E% < E% (similarly, By < EY)

Proof To see this, imagine that various approximation schemes are used for dif-

ferent a-vectors at different stages, and that Sy is used whenever a € R¥ is

61

Figure 3.5: Lattice of Projection Schemes

62

chosen. If we keep everything fixed but replace So with S; at «, we first
observe that Suf (o) C Suf, (a). This ensures that B (o) < BE (@) and
B’gl < B§2. If all other projection operators are the same, then obviously
U§1 < U§2. Similar remarks apply to the infinite-horizon case. Furthermore,
given the definition of Alt-sets, reducing the switch set for o at stage k by
using Sp instead of So ensures that the Alt-sets at all preceding stages are no
larger (and may well be smaller) than they would be if S, were used. For this

reason, we have that E¥ < E% (and similarly Ef < EY). O

Consequently, as we move down the lattice, the bound on approximation
error gets smaller (i.e., our approximations improve, at least in the worst case).
Of course, the computational effort of monitoring increases as well. The precise
computational effort of monitoring will depend on the structure of the DBN for
the POMDP dynamics and its interaction with the marginals given by the chosen
projection scheme; however, the complexity of inference (i.e., the dominant factors in

the corresponding clique tree), can be easily determined for any node in the lattice.

3.3.2 Greedy search

In a POMDP setting, the agent may have a bounded amount of time to make an
online decision at each time-step. For this reason, efficient belief-state monitoring
is crucial. However, just as solving the POMDP is viewed as an offline operation,
so is the search for a good projection scheme. Thus it will generally pay to ex-
pend some computational effort to search for a good projection scheme that makes
the appropriate tradeoff between decision quality and the complexity of belief state
maintenance. For instance, if any scheme S with at most ¢ constraints offers ac-
ceptable online performance, then the agent need only search the row of the lattice
containing those projection schemes with ¢ constraints. However, the size of this
row is factorial in c. So instead we use the structure of the lattice to direct our

attention toward reasonable projections.

63

We describe here a generic, greedy, anytime algorithm for finding a suitable
projection scheme. We start with the root, and evaluate each of its children. The
child that looks most “promising” is chosen as our current projection scheme. Its
children are then evaluated, and so on; this continues until an approximation is found
that incurs no error (specifically, each switch set is a singleton) or a threshold on the
size of the projection is reached. We assume for simplicity that at most ¢ constraints
will be allowed. The search proceeds to depth ¢ —n in the lattice and at each node,
at most nc children are evaluated, so a total of O(nc? — cn?) nodes are examined.
Since ¢ must be greater than n—the root node itself has n constraints—we assume
O(nc?) complexity. The structure of the lattice ensures that decision quality (as
measured by error bounds) cannot decrease at any step. We note that non-practical
projections (projections for which we cannot construct a clique tree) are included
in the lattice. In Figure 3.5, the only non-practical scheme is S = {AB, AC, BC'}.
During the search, it doesn’t matter if a node corresponding to a non-practical
scheme is traversed, as long as the final node is practical. If it is not practical, then
the best practical sibling of that node is picked or we backtrack until a practical
scheme is found. We also note that since this is a greedy approach, we may not
discover the best projection with a fixed number of constraints. However, it is a
well-structured search space and other search methods for navigating the lattice
could be used.

We now describe an instantiation of this algorithm whereby the B-bound at
a given stage k is minimized. We will later build on this basic search procedure
to develop algorithms that minimize the U and E bounds of finite and infinite-
horizon problems. Given a collection of a-vectors ¥¥, we run the following search
independently for each vector & € X¥. The order does not matter; we will end up
with a projection scheme S for each a-vector, which is applied whenever that a-
vector is chosen as optimal at stage k. We essentially minimize (over S) each term

Bg(a) in the bound B* independently. For a given vector «, the search proceeds

64

from the root in a greedy fashion. Each child S of the current node is evaluated by
computing B (), which basically requires that we compute the switch set Suf(a),
which in turn requires the solution of |[R¥| LP-switch tests. Once the projection
schemes S, for each « are found, the error bound B* is given by the maximum
bound B*(a) as described in the previous section. The number of LPs that must
be solved is O(nc?|R¥|?) since there are O(|R*|) a-vectors and for each a-vector, the
lattice search traverses O(nc?) nodes, each requiring the solution of O(|X¥|) LPs.
The above algorithm can be streamlined considerably. At a given node, when
computing the bound B%(a), it is not necessary to generate the entire switch set of
«. Each vector o/ € R*, if switched to, introduces an error of at most max;, b-(a—a').

Since B («) = max max, b- (a— '), we can test vectors o in decreasing

o' e Sw*(a)
order of contributed error until one vector is found to be in the switch set. The
bound B%(a) is equal to the error contributed by this vector. As a result, instead
of solving |X¥| LPs to determine the bound B%(«) of each node visited, generally,
only a few LPs need to be solved. The number of LPs can be further reduced by
observing that any a-vector that is not in the switch set of a node won’t be in the
switch set of any of its children nor descendants. This is because descendants possess
constraints that form a superset of this node’s constraints. Thus, at any child, we
can avoid computing the LP-switch tests for the vectors that are known not to be in
that node’s switch set. When those two techniques are combined, one can show that
the number of LP-switch tests to be performed at each node is on average a small
constant, which reduces the overall complexity of finding good projection schemes
for each a-vector in R* to O(nc?|R¥|).

There is another possible speed-up. When testing whether two different
schemes S; and Sy allow switching to some a-vector, the LPs to be solved for each
scheme are similar, differing only in the constraints dictated by each projection
scheme. This similarity can be exploited computationally by using techniques that

take advantage of the numerous common constraints if we solve similar LPs “con-

65

currently” (for instance, by solving a stripped down LP that has only the common
constraints and using the dual simplex method to account for the extra constraints).
Though details are beyond the scope of this thesis, from experience, these techniques
tend to be faster in practice than solving each LP from scratch. The greedy search
can take full advantage of these techniques: each child has only one additional con-
straint (compared to its parent), so not only can structure be shared across children,
but the parent’s solution can be exploited as well. This computational trick could
potentially reduce the worst-case running time to O(nc|X¥|) LPs. Further theoretical
and practical investigation remains to be done.

The above B-bound search algorithm has a running time of O(nc?|R*|) LPs
(or perhaps only O(nc|X¥|) LPs) whereas the ®*-set DP procedure must solve at least
Q(|®*]) LPs. When integrating the B-bound search algorithm to the DP procedure

2 (or

for computing X¥, the overhead incurred is at most a multiplicative factor nc
perhaps only nc). Although the usual sources of intractability (large state space
and large R-sets) limit the applicability of this search algorithm, it can be applied
to POMDPs that can be readily solved today, since the overhead incurred is not too
significant.

To conclude this chapter, a brief description of algorithms that extend the

B-bound search to U-bounds and E-bounds is presented.

e Finite-horizon U-bound search: The U-bound for a k-stage POMDP is
the discounted sum of the B-bounds for each stage. Hence, it suffices to
minimize each B-bound in order to minimize the U-bound. Therefore, the

search consists of k& B-bound searches, one for each set X* (1 < i < k).

e Infinite-horizon optimal U-bound search: Similarly the bound U* is
minimized when the bound B* is minimized. Thus, the search boils down to

one B-bound search for the set N*.

e Infinite-horizon e-optimal U-bound search: Once again, the upper bound

66

(B* + p1)/(1 — v) is minimized when B* is minimized and therefore a single

B-bound search is conducted for the set N¥.

Finite-horizon E-bound search: The bound E* is minimized when the
bounds E¥(a) are minimized for each vector o € R¥. In turn, using Equa-
tion 3.19, the bound E*(a) is minimized when the switch set Su*(a) contains
vectors o/ with corresponding error bounds F*(«, o) that are as small as pos-
sible. Hence one can conduct an F-bound search in the same way than a B-
bound search with one slight modification: at each node, select the child with
the most promising (smallest) E-bound. At i stages to go of a k-stage POMDP,
the agent would first construct the FAlt-sets of each vector a € 8’. Then the
agent would search a good projection scheme for each vector o € R’. As for
the B-bound search, the lattice is traversed in a greedy fashion. At each node
S, the corresponding switch set Suf () is constructed and the bound E%(«)
is simply the worst bound F¥(«, ') for some vector o € Sufi(a). Once the
|N?| projection searches are completed, the Alt-set of each vector is constructed

and the process starts over for the previous stage until k£ stages to go.

Infinite-horizon optimal F-bound search: According to Equation 3.21,
the bound E* is minimized when both bounds E* and U* are also minimized.
Therefore, the search consists of k consecutive E-bound searches for the set N*.
We should also conduct a B-bound search for ®* (to minimize U*); however,
this B-bound search is identical to the first E-bound search and therefore
redundant. In practice, the projections applied would be those found during

the k*" E-bound search.

67

Chapter 4

Vector Space Analysis

The value-directed framework introduced so far has allowed us to analyze the im-
pact of approximate belief state monitoring on decision quality. This analysis was
conceptually simple and remained at a fairly high level. The idea was simply to look
at all the possible courses of action as a result of one approximation (switch set) or
several consecutive approximations (Alt-set) and to derive several bounds, which,
roughly speaking, measure the loss in expected total return assuming the worst pos-
sible course of action (we could switch to) was implemented. In turn, these bounds
have allowed us to structure the class of projection schemes in a lattice, which can be
traversed greedily to find a fairly good projection. From a decision theoretic point
of view, this may all seem pretty satisfying, but from a practical perspective, the
algorithms are generally intractable and from a conceptual perspective, the frame-
work provides little insight as to which properties of projection schemes cause or
prevent plan switching.

In order to provide some insights, this chapter analyzes approximation meth-
ods from a linear algebra perspective. More precisely, a vector space analysis is car-
ried out. Appendix A provides an overview of some of the basics of linear algebra
that will be useful for the development of the current chapter. Section 4.1 reveals

that each projection scheme allows approximations only in some directions defined

68

by a subspace. On the other hand, a similar analysis of the value function shows that
a-vectors can determine “gradients” indicating the variability of the value function
in different directions. Therefore, approximations in directions where the variance
is similar for most a-vectors should be preferred since switching is less likely to
happen.

From a practical perspective, these observations will be used in Section 4.2 to
design faster algorithms than those proposed in Chapter 3, however yielding looser
bounds. The LP-switch test introduced so far took into account approximation
distance and direction. The idea will be to relax this LP to focus mainly on direction.
As a result, the simplified switch test has an efficient solution algorithm that does
not require an LP anymore.

Finally, Section 4.3 presents a vector-space search algorithm. It differs from
previous value-directed search algorithms as it doesn’t aim to directly minimize any
error bound. Rather, it seeks a projection scheme that allows approximations in

directions where a-vectors have a similar variance.

4.1 Vector space formulation

Given a projection S, let b and &’ = S(b) be points in belief space. Define d = b’ — b
as the displacement vector that goes from b to b'. We are about to show that all such
displacement vectors are part of a special subspace that is entirely determined by
the projection S. A subspace is an important concept that allows us to characterize
the possible directions of displacement vectors.

The subspace determined by a projection is actually defined by its marginals.
For instance, assume a state space defined by the binary variables X and Y. Pro-
jection § = {X,Y} determines a set of linear equations constraining the probability

distribution o’ in terms of b. These equations are the same as those of the form

69

b(M) = b/(M) in Table 3.2.

b(zy) + b(xy) + b(zy) + b(zy) = b'(zy) + V' (zy) + V' (zy) + V' (29)
blzy) +b(zy) = V' (zy) + b (zy)

b(zy) +b(zy) = b (zy) +b'(3y)

Using the fact that d = b’ — b, the above equations can be rewritten in terms

of displacement vectors as follows:

d(zy) + d(zy) + d(Ty) + d(TY) = 0 (4.1)
d(zy) +d(zy) = 0 (4.2)
dzy) +d(zy) = 0 (4.3)

Geometrically, we can interpret each equation as a hyperplane and the in-
tersection of those hyperplanes is a line through the origin representing a one-
dimensional subspace (an example is given below to illustrate the resulting sub-
space). This subspace, which corresponds to the equations’ solution space, captures
the set of all displacement vectors resulting from the application of S. Since all
possible displacement vectors lie on the same line, they must all have the same
direction. Here, vectors with opposite orientations are assumed to have the same
direction.

To illustrate, let b(z) = 0.3 and b(y) = 0.4. The approximate belief state,

assuming the correlation between X and Y is broken, is computed as follows:

= b(z)b(y) =0.12
= b(z)(1 —b(y)) =0.18
= (1—b(z))b(y) =0.28

= (1 b(@)))(1 ~ b(y)) = 0.42

Figure 4.1 shows a three-dimensional belief space for belief states zy, zy, Ty

70

b(xy)
1

b(xy)+b(xy)=0.4 b(xy)+b(xy)=0.3

0.4+,
o3 \.. B
/\ PN SRR '.
03<. .\ 1 b(xy)
1 Solution Space
b(xy)

Figure 4.1: Solution space of possible exact belief states b

and zj." All exact belief states b that satisfy b(x) = 0.3 lie in a hyperplane and
similarly for b(y) = 0.4. Their intersection is the line of exact belief states that are
mapped to b’ by S. Since b’ also lies on this line, then all the displacement vectors
between b and b’ have the same direction. Had we picked marginals different than
0.3 and 0.4, the hyperplanes would move, but remain parallel, and so would their

intersection, yielding a line with the same direction.

Definition 1 Let Dg be the subspace spanned by the set of all displacement vectors

possibly induced by projection scheme S.

In general, the set of displacement vectors induced by a projection S lies in
a (2" — c¢)-dimensional subspace, which we denote Dg. Here n is the number of
state variables and c is the number of constraints (or marginals). Dg has 2" — ¢
dimensions since it is the solution space of ¢ linearly independent equations, each
corresponding to a constraint d(M) = 0. Equations 4.1, 4.2 and 4.3 are examples

of constraints of the form d(M) =0 for M = (), M = X and M =Y respectively.

1Only three dimensions corresponding to b(zy), b(zj) and b(Zy) are represented since
b(Zy) follows from the fact that probability distributions sum up to 1.

71

Those equations are linearly independent since the marginals M in each constraint
correspond to different subsets of variables. This becomes more obvious when we
rewrite each equation d(M) = 0 as a dot product vy, - d = 0. Here vy, is a vector
of 0’s and 1’s, such that every component set to 1 corresponds to a state with all
variables in M set to true, and every component set to 0 corresponds to a state with
at least one variable in M set to false. The following three vectors correspond to
the marginals determined by the projection S = {X,Y}.
Ty TY TY TY

vw = (1 1 1 1)

vx = (1 1 0 0)

vww = (1 0 1 0)

Definition 2 Let Dg: be the subspace spanned by the vectors vy corresponding to

the marginals defined by projection scheme S.

The subspace D§ is closely related to Dg since it is its null space, or in other

words, Dg: is the set of all vectors perpendicular to every vector in DS,
Proposition 1 D¢ is the null space of Dg.

Proof Two vectors are perpendicular to each other when their dot product is 0.
Since vy - d = 0 for all vectors vps that span ng- and for all displacement
vectors d that span Dg, it follows that all vectors in Dé are perpendicular to
every vector in Dg. Similarly one can show that all vectors perpendicular to

. 1L
Dg are in Dg. O

4.2 Vector space switch test

The subspaces Dg and ng- are very important as they allow us to design a simplified
switch test. Let’s say we are interested to know if o; € Sw(e;). Define o5 = o; — 5,

to be a vector representing the difference in expected value for executing «; instead

72

of a;. When o5 € Dé, we can show that there is no switch from «; to ;. On the
other hand, if a;; ¢ Dé‘, there may be a switch. Thus, based on whether a;; is in
Dé‘ or not one can construct a superset of the switch set.

The idea behind the vector space (VS) switch test, is best explained by a
picture. Figure 4.2 shows a top down view of a two dimensional belief space? with
two different partitions. The first partition is given by the solid lines which define
|N| regions, each corresponding to the area R, for each vector a € R. The second
partition is given by the dotted line which separates two regions corresponding to the
areas where o; dominates «; and vice-versa. Let’s denote those areas Rai and Raj.
The LP-switch test, as defined in Section 3.1, verifies if there exists a belief state
b € Ry, such that S(b) € R,,. Alternatively, a VS-switch test verifies if there exists
a belief state b € Rai such that S(b) € Raj. Below, Theorem 5 shows that when a
VS-switch test is negative (that is, there doesn’t exist any belief state b € Rai such
that S(b) € Raj), the corresponding LP-switch test is also negative and therefore
a; ¢ Sw(a;). The reverse is not true, so a positive VS-switch test only indicates

that a; may be in Sw(w;).

Theorem 5 If ~3b € Ry, such that S(b) € Raj, then —3b € Ry, such that S(b) €
Ra;.

Proof Let’s show that the converse holds, that is, if 3b € Ry, such that S(b) € R,
then 3b € Rai such that S (b) € Raj. It should be fairly obvious that R,, C Rm
since R, corresponds to the area where c;; dominates all other vectors in X and
Rai correponds to the region where o; dominates ;. By the same argument,

R,; is also a subset of Raj. Thus, when there is a belief state b € R,, such

that S(b) € Ra;, then b is also in Ry, and S(b) is also in R,, O

The optimization program corresponding to a VS-switch test is given in Ta-

ble 4.1. This optimization program is essentially the switch test program of Table 3.1

2There are 3 states s1, s2 and s3 but only two dimensions are necessary since probability
distributions sum up to 1.

73

b(s)4

=

O

Figure 4.2: Belief space regions for each a-vector

max

st. b(—aj) >z
S) - (aj —ay) >z
2sb(s) =1
b(s) >0 Vs

Table 4.1: VS-switch test for projection schemes. The optimization program has a
strictly positive objective function when there exists a belief state b € Rai such that
S(b) € Raj and a non-positive objective function where there doesn’t exists such a
belief state.

with the exception that all the constraints involving a-vectors other than «; and o
have been removed. Since projection schemes yield non-linear approximations, we
can define a linear VS-switch test as in Table 4.2. This LP is a relaxation of the LP
switch test of Table 3.2. As demonstrated in Theorem 1 for LP-switch tests, linear
VS-switch tests can be used to construct supersets of the switch sets obtained by
a non-linear VS-switch tests. For practical reasons, we will consider from now on
exclusively the linear version of VS-switch tests and we will refer to them simply as

VS-switch tests.

74

B(M)=bM) VMCM,1<I<n

25 b(s) =
b(s) >0 Vs
b'(s) >0 Vs

Table 4.2: Linear VS-switch test for projection schemes. This LP has a strictly
positive objective function when there exists belief states b € Rai and V' € R, ; such
that (M) = b/(M) for all marginals M defined by projection S and a non-positive
objective function when there doesn’t exist such belief states.

We will now show how a (linear) VS-switch test is equivalent to verifying
whether D§ contains «;; or not. More precisely, the VS-switch test is positive when
a;ij ¢ Dé and negative when «;; € Dé. The idea is to consider «;; as a gradient that
measures the error induced by an approximation when comparing the expected total
return of o; to o;. Recall that the vector «;; measures the difference in expected
total return between o; and «;. After an approximation, if this difference changes
considerably, the agent is likely to choose the wrong maximizing a-vector. Let’s
call relative error this change in the relative assessment of o; with respect to «;.

Formally, the relative error is quantified as follows:

relative error = b(a; — a;) — S(b)(o; — ;)
= b Oéz'j - S(b) . az’j

= d- Qg (4.4)

Here o;; can be viewed as a gradient since approximations corresponding to
a displacement vector d in the same direction as «;; (parrallel to «;;) maximimize
the magnitude of the dot product d-«;;. In general, the angle between d and «;; is a
good indicator of approximation error. In particular, if they are perpendicular, their
dot product is zero and the relative assessment of «; and a; remains unchanged,

preventing any switch. By definition, the subspace Dé is the set of vectors perpen-

75

dicular to all displacement vectors possibly induced by S, so when «;; is a member
of Dé‘, all possible displacement vectors are perpendicular to a;; and consequently
there cannot be a switch from «; to «;. Below, Theorem 6 gives a formal proof of
the equivalence between the VS-switch test and the subspace membership test “is

Qg € Dé‘?”.

Theorem 6 There exists no b € R,,, b € Raj such that b/(M) = b(M) for all
marginals M defined by S iff o;; € ng-.

Proof First, suppose that 3b € R, b € Raj such that /(M) = b(M) for all
marginals M defined by S, let’s show that «;; ¢ Di Since b € Rai then
b- (e — ;) > 0. Similarly, because b’ € Ry, it follows that —b' - (e — ;) > 0.
If we add those two inequalities together, we get (b—b')- (i —) = d- a5 > 0.

By definition, a;; € D3 iff d-o;; = 0 Vd € Dg, so a;; is not an element of Dz.

Next, suppose that a;; ¢ ng-, then let’s show that 3b € Ra,-, b e Raj such that
V(M) = b(M) for all marginals M defined by S. Since a;; ¢ Dg, then there
exists a displacement vector d € Dg such that d-a;; # 0. WLOG let d-o;; > 0.3
For any sufficiently small vector d € Dg, there exist b € Rai,b' € Raj such
that d = b — b'. Finally, since d € Dg, then by definition d(M) = 0 VM and
consequently b(M) =V (M) VM. O

Although we could use the LP in Table 4.2 to carry out VS-switch tests, there
is a much more efficient method based on the subspace membership criteria. The
idea is to decompose «;; in two orthogonal vectors corresponding to the projections
of a;; on ng- and Dg. Below, proj(a, D) stands for the projection of the vector «

on the subspace D.
a;j = proj(aij, Dg) + proj(aij, Ds) (4.5)

If a;; € D¢, then proj(aij, D§) = a;; and consequently proj(a;j, Dg) is

the zero vector; otherwise, proj(a;;, Dg) # «;j and consequently proj(cij, Dg)

3If d - a;j < 0, then pick d' = —d since —d - a;; > 0.

76

is a non zero vector. Based on this observation we can determine if o;; € qu-
by measuring the length of proj(ai;, Ds): ||proj(eij, Ds)|l2 = 0 when «;; € Dg,
and ||proj(aij, Dg)|l2 > 0 when a;; ¢ D&. In particular, the squared length of
proj(a;j, Dg) can be computed by the following equation:
lproj(cuj, Ds)l5 = aij - g — Y (e - v)? (4.6)
vEng-
Here Dé is an orthonormal basis spanning the subspace Dé. Theorem 7

shows how to derive the above expression.
Theorem 7 Let ’Dg: be an orthonormal basis spanning the subspace Dé‘, then

lproj(cij, Ds)ll3 = auj - iy — > (cvij - v)?

veDé
Proof
lproj(aij, Ds)ll5 = |leslls — llproj(eiz, Dg)ll3 (4.7)
= ayj-a— || Y proj(ai,v)l; (4.8)
ve’Dé

= wj-ai— Y |lproj(aij,v)ll; (4.9)

T)E'Dé
= o — Z (cij - v)? (4.10)

UE’D;-

Equation 4.7 follows since Dg and Dﬁ are complementary orthogonal sub-
spaces. In Equation 4.8, a projection on a subspace is equivalent to the sum
of the projections on each vector of an orthonormal basis of this subspace. In
Equation 4.9, the squared length of a sum of orthogonal vectors is the sum
of the squared length of each othogonal vector. Finally, in Equation 4.10, the
squared length of the projection of c;; on some unit vector v is by definition

the squared dot product of ;; and v. O

In order to compute expression 4.6, we need an orthonormal basis that spans

the subspace Dé. An orthonormal basis is a basis with two special properties: all

(e

its vectors are normal (length equal to one) and pairwise orthogonal (perpendicular
to each other). In general, any spanning set of vectors can be transformed into
an orthonormal basis by applying the Gram-Schmidt orthogonalization process and
normalizing the resulting vectors. The subspace Dé: was originally defined by the
spanning set of vectors wys corresponding to the constraint for each marginal M,
hence this set can be used to generate several orthonormal bases. In this thesis, we
shall consider one orthonormal basis in particular—which we will refer to as Dé‘—
because of its factored representation. For problems involving binary variables,
every vector in our choice of Dg consists of a sequence of 1’s and —1’s (before
normalization). The basis vector vys associated with subset M has a 1 in every
component corresponding to a state with an even number of true variables in M
and —1 in every component corresponding to a state with an odd number of true
variables in M. The vector is then normalized by dividing by /[S[. For instance,
projection scheme S = {XY,Y Z} has six marginals (§, X, Y, Z, XY and YZ),

yielding the following basis vectors:*

TYz ITYZ TYz ITYZ TYz ITYZ ITYz TYZ
9 = (1 1 1 1 1 1)/ |S]
ox =(-1 -1 -1 -1 1 1 1 1) / VIS
vy = (-1 -1 1 1 -1 -1 1 1)/ VS|
vz = (-1 1 -1 1 -1 1 =1 1) / /IS
ixy = (1 1 -1 -1 -1 -1 1 1)/ |S|
vz = (1 -1 -1 1 1 -1 -1 1)/ |S]

We now have all the necessary information to carry out very efficient VS-
switch tests. The running time of such switch tests is much lower than that of
LP-switch tests. A VS-switch test boils down to the computation of Expression 4.6
which requires O(c) dot products. In turn, each dot product requires O(|S|) ele-

mentary operations, for a total running time of O(c|S|). The use of factored repre-

4This definition of D& can be generalized to non-binary variables.

78

sentations such as ADDs improves considerably this running time. More precisely,
each basis vector has components that take only two values, yielding a very compact
ADD representation. The number of operations required to compute the dot prod-
uct of two factored vectors is essentially linear in the size of the intersection of their
ADD representation. The basis vectors have a very small ADD representation since
every state takes one of two possible values. Similarly, the vector «;; also has a small
ADD representation since we assume that the POMDP is fairly structured. Thus,
the number of operations for a dot product is often a small constant independent of
the size of the state space. Hence, for sufficiently structured POMDPs, the effective
running time of a VS-switch test tends to be O(c).

In comparison, solving the linear program of an LP-switch test is polynomial
in the number of constraints ¢ and the size of the state space. Furthermore, ADDs
do not provide a speed up as important for LPs since the effective state space is
the intersection of the abstract state space of all the constraints instead of only two
vectors for dot products. In particular, as explained in Section 3.1, LP-switch tests
for projection schemes do not benefit at all from ADDs. Hence, VS-switch tests
provide a much more efficient and practical method to compute switch sets. On the
other hand, this efficiency gain results from the use of relaxed constraints, which
means that the switch set computed is really a superset. In turn, this has an impact
on the quality of the B, U and F bounds since they will be looser, however the
algorithms to compute them remain unchanged.

The running time of the greedy lattice search when using VS-switch tests is
significantly improved. With LP-switch tests, it was O(nc?|R|) LPs (or O(nc*+*|R||S|*)
elementary operations, assuming an LP requires a number of operations that is a
polynomial of degree k in terms of ¢ and |S|) whereas with VS switch tests, it is
O(nc®|R||S]) elementary operations. Note here that the upper bounds on running
times are given in terms of the size of the full state space |S| since there are prob-

lems for which factored representations do not provide any savings, however, the

79

reader should keep in mind that in practice, many POMDPs are structured and al-
low ADDs (for instance) to reduce their effective state space considerably (possibly

linear in the number of variables instead of the number of states).

4.3 Vector space search

In this section, we describe an alternative search method based on the relative error
(expression 4.6). We call it the vector-space search or in short the VS search. It
differs from the previous B-bound search and E-bound search in that it doesn’t try
to minimize an error upper bound. The fact is that in practice, minimizing the
worst possible error doesn’t necessarily lead to good average results.

The basic idea behind the VS search is rooted in the observation that the
more perpendicular is the direction of an approximation with respect to «;j;, the
smaller is the magnitude of the relative error and consequently, the less likely a
switch will occur. Thus, the VS search seeks a projection S which defines a dis-
placement subspace Dg that is as perpendicular as possible to all gradients c;;.
Technically, this is done by minimizing the squared length of the projection of each
gradient o;; on Dg (as in Equation 4.6).

It is interesting to note that the length of proj(a;j, Dg) has a special in-
terpretation: it corresponds to the greatest (absolute) relative error rate for an
approximation in some direction d € Dg. The relative error rate for an approxi-
mation corresponding to the displacement vector d, is given by the relative error

induced by a unit displacement in the direction of d:

4
ldll2

By definition, the projection of a vector a on some subspace D is:

lproj(a, D)||2 = sup |-—— -
dep |ldl]2

Hence, by minimizing expression 4.6, we are essentially minimizing the (squared)

worst relative error rate that may occur as a result of some projection S. When

80

ignoring the distance between the exact and approximate belief states, the relative
error rate gives us a handle to quantify how bad an approximation in some direction
is likely to be. Each projection S constrains approximations to directions within the
subspace Dg. The direction d € Dg with the highest (absolute) relative error rate
is this worst relative error rate which also happens to be ||proj(a;;, Dg)||2. Thus, it
makes sense to try to minimize expression 4.6.

When searching for a good projection S for belief space region R,,, there
are |[R| — 1 a-vectors we would like to prevent switching to. Ideally this would be
accomplished by minimizing simultaneously expression 4.6 for every gradient o;;
(j # 4). In the absence of any prior concerning the relative importance of each

gradient, we suggest two simple schemes:

e Minimize the sum of the squared length of each projection:

Z Hp"'Oj(aijaDS)”% = Z Qg * Qg5 — Z (o OZZJ (4..11)

i J#i veDF
e Minimize the squared length of the greatest projection:

I?QX ||pT0j(C¥Z],DS)||2 = I?;}X (vij - @ij — ZL'U @ij) (4.12)
vEDE

Of course, many other schemes could be proposed and if the practitionner
has some prior knowledge, it should definitely be used.

Given a vector ¢; € N, the VS search finds a good projection S as follows.
Starting at the root, traverse the lattice downwards in a greedy manner. At each
node, pick the most promising child by minimizing Equation 4.11 or Equation 4.12.
The computational complexity of a VS search is fairly low as it avoids LPs. Its
running time is O(nc®|R|?|S|), since one good projection must be found for each
of the |R| regions R,. For each region, O(nc?) nodes in the lattice are traversed,
each requiring the evaluation of Equation 4.11 or 4.12 which both take O(c|R||S])

elementary operations.

81

As with the B-bound and E-bound search procedures, the VS search can also
be streamlined but in a different way. The constraints of a node S are essentially the
same as the constraints of its parent node S’ with one extra constraint corresponding
to the marginal M that labels the edge connecting the two nodes. Since there is one

basis vector per constraint, the following equation holds:
Dy = Dg U {om}

In turn this means that Equations 4.11 and 4.12 can be computed incremen-

tally as the lattice is traversed downwards:

> llproj(aiz, D)3 = > lproj(cis, Ds)ll3 — oar -
i i
max |proj(a;j, Ds)ll3 = max ||proj(eyj, Ds))|l3 — oar -
J#i J#i

Incremental computation reduces the running time to O(nc?|R[%|S|) since
only one dot product needs to be computed instead of one for each of the ¢ con-
straints. This running time is significantly smaller than O(nc?**|R||S|¥) for the
B-bound or E-bound greedy search with LP-switch tests. As for the B-bound or
E-bound greedy search with VS-switch tests, the running time O(nc3|®||S|) is com-
parable. The VS search has an extra |RX| factor, but one less ¢ factor. In practice,
IR| is usually larger than c, so the VS search is actually slower. Again, the reader
should keep in mind that the upper bounds on running times are given in terms of
|S|, but in practice, factored representation can drastically reduce the size of the

effective state space for structured POMDPs.

82

Chapter 5

Empirical Evaluation

This chapter evaluates empirically the algorithms proposed so far. First, in Sec-
tion 5.1, the factory example introduced in Chapter 1 is revisited with specific
transition probabilities and reward functions. We show how a value-directed ap-
proach yields a better choice of projection schemes than distance based approaches
that try to minimize the KL-divergence, L or Le norms. The experiments carried
out with this factory example are very simple and serve only as a proof of concept.

In Section 5.2, more extensive experiments are carried out to evaluate the
quality of the approximation algorithms as well as their running time. The reader
should be warned however that those experiments are still limited in scope and
complexity, and may not be representative of typical real world problems. This is
because we are not yet in a position to solve large interesting POMDPs. Therefore
the three problems used to carry out the experiments are simple and fairly structured
so that the number of a-vectors representing a value function remains manageable
and the representation of each a-vector can be factored and made compact. The

goal of these experiments is threefold:
e Compare the running time of different search algorithms.

e Compare the B, U and E error bounds, which measure the expected loss in

a worst case scenario, to the agverage loss realized for 5000 random policy

83

executions.

e Compare the average loss due to projections obtained by different search al-

gorithms.

Note that those experiments do not evaluate the belief state monitoring speed
up obtained by the application of different projection schemes. This is because the
focus of this thesis is on approximation quality which had not been investigated
thoroughly in the literature. The reader is referred to Boyen and Koller [3] for

experiments illustrating the speed up obtained by projection schemes.

5.1 Proof of Concept

Let’s revisit the factory problem described in Section 1.2 to illustrate the benefits
of value-directed approximation. The aim is to demonstrate that minimizing belief
state error as measured by KL-divergence, L1 or Lo norms is not always appropriate
when approximate monitoring is used to implement an optimal policy. Below, the
factory problem is made concrete through a process involving seven stages, with
only one or two actions per stage (thus at some stages no choice needs to be made),
and no observations. Yet, even such a simple system shows the benefits of allowing
the value function to influence the choice of approximation schemes.

We suppose there is a seven-stage manufacturing process whereby four parts
are produced using three machines, M, M1, and M2. Parts P1, P2, P3, and P/ are
each stamped in turn by machine M. Once stamped, parts P! and P2 are processed
separately (one after the other) on machine M1, while parts P3 and P/ are processed
together on M2. Machine M may be faulty (FM), with prior probability Pr(FM).
When the parts are stamped by M, parts P1 and P2 may become faulty (F1, F2),
with higher probability of fault if M holds. Parts P3 and P/ may also become faulty
(F3, F}), again with higher probability if FM; but F8 and F/ are both less sensitive
to FM than F1 and F2 (e.g., Pr(F1|FM) = Pr(F2|FM) > Pr(F3|FM) = Pr(F4|FM)).

84

Stages to go Actions | Transitions Rewards

7) Stamp P1 Stamp P1 only affects F1 no reward
if FM at previous step
then Pr(F1) = 0.8 else Pr(F1) = 0.1

6) Stamp P2 Stamp P2 only affects F2 no reward
if FM at previous step
then Pr(F2) = 0.8 else Pr(F2) = 0.1

5) Stamp P3 Stamp P3 only affects F3: no reward
if FM at previous step
then Pr(F3) = 0.1 else Pr(F3) = 0.05

4) Stamp P4 Stamp P4 only affects F4: no reward
if FM at previous step
then Pr(F4) = 0.1 else Pr(F4) = 0.05

3) Process/Reject P1 Process P1 all variables are persistant if FLthenOelse 8
Reject P1 all variables are persistant 4 for every state
2) Process/Reject P2 Process P2 all variables are persistant if F2then 0 else 8
Reject P2 all variables are persistant 4 for every state
1) Process/Reject P3,P4 | Process P3,P4 | al variables are persistant if F3 & F4 then -2000
if ~F3 & ~F4 then 16
otherwise 8
Reject P3,P4 | all variables are persistant 3.3 for every state

Table 5.1: POMDP specifications for the factory example

If P1 or P2 are processed on machine M{ when faulty, a cost is incurred; if processed
when OK, a gain is had; if not processed (rejected), no cost or gain is had. When
P3 and P/ are processed (jointly) on M3, a greater gain is had if both parts are
OK, a lesser gain is had when one part is OK, and a drastic cost is incurred if both
parts are faulty (e.g., machine M3 is destroyed). The specific problem parameters
are given in Table 5.1.

Figure 5.1 shows the dependencies between variables for the seven-stage DBN
of the example.! Tt is clear with three stages to go that all the variables are corre-

lated. If approximate belief state monitoring is required for execution of the optimal

'We have imposed certain constraints on actions to keep the problem simple; with the
addition of several variables, the problem could easily be formulated as a “true” DBN with
identical dynamics and action choices at each time slice.

85

Figure 5.1: DBN for the factory example

policy (admittedly unlikely for such a simple problem!), a suitable projection scheme
could be used.

Notice that the decisions to process PI and P2 for 3 or 2 stages-to-go are
independent: they depend only on Pr(F1) and Pr(F2), respectively, but not on the
correlation between the two variables. Thus, though these become quite strongly
correlated with five stages to go, this correlation can be ignored without any impact
on the decision one would make at those points. Conversely, F'8 and Fj become
much more weakly correlated with three stages to go; but the optimal decision at
the final stage does depend on their joint probability. Were we to ignore this weak
correlation, we run the risk of acting suboptimally.

We ran the B-bound search algorithm (with LP-switch tests) of Section 3.3
and, as expected, it suggested projection schemes that break all correlations except
for FM and F& with four stages to go, and F3 and F/ with three, two, and one
stage(s) to go. The latter, Pr(F3, F/), is clearly needed (at least for certain prior
probabilities on FM) to make the correct decision at the final stage; and the former,

Pr(FM, F3), is needed to accurately assess Pr(F3, F) at the subsequent stage. Thus

86

Correlation ‘ Ly ‘ Ly ‘ KL ‘ Loss
F1/F2 0.7704 |1 0.3092 | 0.4325 | 1.0
F3/Fy 0.9451 | 0.3442 | 0.5599 | 0.0

Table 5.2: Comparison of different distance measures

we maintain an approximate belief state with marginals involving no more than two
variables, yet we are assured of acting optimally.

In contrast, if one chooses a projection scheme for this problem by minimiz-
ing KL-divergence, Li-distance, or Lo-distance, different correlations will generally
be preserved. For instance, assuming a uniform prior over FM (i.e., machine M
is faulty with probability 0.5), Table 5.2 shows the approximation error that is in-
curred according to each such measure when only the correlation between F1 and F2
is maintained or when only the correlation between F3 and F/ is maintained. All of
these “direct” measures of belief state error prefer the former. However, the loss in
expected value due to the former belief state approximation is 1.0, whereas no loss
is incurred using the latter. To test this further, we also compared the approxima-
tion preferred using these measures over 1000 (uniformly) randomly-generated prior
distributions. If only the F1/F2-correlation is preserved with one stage to go, then
in 520 instances a non-optimal action is executed with an average loss of 0.6858.
This clearly demonstrates the potential advantage of using a value-directed method

to choose good approximation schemes.

5.2 Experiments

Three test problems were used to carry out the more extensive experiments. The first
POMDP is essentially the coffee problem introduced by Boutilier and Poole [2]. The
second POMDP is a variation of the widget problem described by Draper, Hanks and
Weld [10]. The third POMDP is inspired from the pavement maintenance problem

described by Puterman [32]. Since the analysis of the experiments doesn’t require

87

Problem | State Space Size Size of N Solution Time

full ‘ effective | maximum ‘ average (sec)
Coffee 32 12 102 56 47
Widget 32 14 205 121 397
Pavement | 128 85 39 16 250

Table 5.3: Solution statistics for the three test problems

any specific domain knowledge, the exact specifications of these three problems can
be found in Appendix B.

Before getting into the details of the experiments, it is important to point
out a few statistics regarding each test problem. Table 5.3 shows the solution time
to find an optimal solution for a discounted finite-horizon of 15 steps. In fact, all
the experiments that follow assume a finite discounted horizon of 15 steps (unless
otherwise stated). In the table are also included the size of the state space as well as
the average and maximum number of a-vectors necessary to represent the optimal
value function at each of the 15 stages. We remind the reader that the size of the
state space and the number of a-vectors are critical features of a POMDP that have
a direct impact on the solution time, as well as the algorithms proposed in this
thesis. The state space column is divided in two: the full state space corresponds to
IR| and the effective state space is the largest intersection of abstract state spaces
encountered in an LP-dominance test. Since all algorithms were implemented using
ADDs, their running time depends on the size of the effective state space rather
than the full state space, with one exception, LP-switch tests. As explained in
Section 3.1.1, LP-switch tests do not benefit from ADDs since the intersection of
all abstract state spaces (corresponding to ADD representations of the constraints

defined by a projection scheme) is the full state space.

88

Problem | Solution Time | B-bound search | E-bound search | VS search

LP VS LP VS max | sum

(sec) (sec) (sec) (sec) (sec) | (sec) | (sec)

Coffee 47 1019 30 4379 2651 151 | 154
widget 397 10142 109 89605 | 48695 | 707 | 703
Pavement 250 345 35 841 126 97 96

Table 5.4: Search running time

5.2.1 Search running time

The first experiment compares the time required to search for good projection
schemes by minimizing different error bounds. Table 5.4 shows the timing of all
search algorithms proposed in Chapters 3 and 4 to find a good projection for each
a-vector in all the optimal value functions of the first 15 stages. All search algo-
rithms perform a lattice search within the set of projection schemes that partition
variables in disjoint subsets. This is because projection schemes with overlapping
subsets of variables may or may not be practical depending on whether they allow
the construction of a clique tree. The clique tree enables an explicit representation
of the belief state which is often necessary for Bayesian inference. Since the focus of
this thesis is on approximation quality and due to time constraints, the Bayes net
infrastructure for detecting projection schemes that do not allow the construction
of a clique tree was not implemented. In principle, there is no technical reason that
should prevent such an implementation. Hence, the search is limited to projection
schemes with disjoint subsets. Furthermore, assuming that marginals of at most
two variables provide a suitable efficiency/accuracy tradeoff, the lattice is traversed
until all children of a node correspond to projection schemes with a marginal of more
than two variables. This last node is the projection scheme returned by the search.
We should point out that in all the experiments to follow, the search algorithms
are restricted to projection schemes with marginals of at most two variables (unless

otherwise stated).

89

As a reminder, the B-bound search traverses the lattice greedily by minimiz-
ing the worst error induced by a single approximation. Switching can be determined
by computing LP-switch tests (Section 3.1.1) or VS-switch tests (Section 4.2). In
Table 5.4, as expected, the running time when using VS-switch tests is much less
since there are no LPs to be solved. Furthermore, as mentioned above, LP-switch
tests are the only algorithms that cannot benefit from the use of compact represen-
tations and therefore have a running time dependent on the size of the full state
space instead of the effective state space. Note that a U-bound search is essentially
the same as a B-bound search and therefore the running times are identical. A
U-bound is computed by adding the E-bounds of the current and previous stages.
The time required for this sum is a negligible constant when compared to the search
itself.

As for the E-bound search, it also traverses the lattice greedily, but by min-
imizing the cumulative error induced by consecutive approximations. Hence, in
addition to the lattice traversal, it constructs switch sets and Alt-sets. This explains
why the running time for an F-bound search is much longer than for a B-bound
search. Once again, switch tests in the E-bound search can be performed using LPs
or the vector space formulation and as expected the latter is significantly faster than
the former.

Finally, the VS search consists of a greedy traversal of the lattice whereby the
relative error rate is minimized. That is, the gradients «;; are made as perpendicular
as possible to the subspace of displacement vectors D. Since there are several
gradients to take into consideration, we can minimize (among other things) the sum
of all relative error rates or their mazimum. For either criteria (sum vs max), the
running time is roughly the same and it is significantly faster than B-bound and E-
bound search algorithms that use LP-switch tests, but a bit slower if VS-switch tests
are used for the B-bound search. This is because, on one hand, the VS search does

not solve any LP (when compared to LP-switch tests), but on the other hand, it has

90

a stronger dependence on the number of a-vectors (when compared to VS-switch
tests).

An important observation regarding this experiment is that the time to search
for good projections can be much worse than that of solving POMDPs, which we
know is already intractable. In fact, only the search procedures that avoid solving
LPs scale well when larger problems need to be tackled. The VS procedures have
a running time that is roughly of the same order of magnitude as the solution

procedures.

5.2.2 Error bound evaluation

In the second experiment, the B, U and F bounds are compared to the average error
incurred in 5000 random policy executions. Tables 5.5, 5.6 and 5.7 show the results
of the experiment for each test problem. In each table there is one column per search
algorithm and one row per error bound (or error average). All entries in a table are
interpreted as an error bound or an error average (indicated by the row label) for a
given search algorithm (indicated by the column label). The first two rows evaluate
the error due to a single approximation at 15 stages to go. The average error is the
average loss incurred for 5000 random initial belief states generated from a uniform
distribution. Note that the same 5000 samples were used to evaluate all search
algorithms in all tables. The last three rows evaluate the cumulative error due to
several approximations during the execution of a 15-stage policy. The average error
denotes the average cumulative loss for those same 5000 uniformly random initial
belief states.

Looking at the tables, it is striking how large the B, U and E bounds are
compared to the average error observed. This is explained in part by the fact that
the bounds are concerned with the worst case scenario whereas the errors obtained
through sampling are averaged out. The second reason is that the bounds are not

tight. As mentioned in Section 3.1, the switch sets computed when dealing with

91

Error B-bound search E-bound search VS search
LP VS LP VS max sum
Single Average | 0.001301 | 0.006278 | 0.006278 | 0.006278 | 0.001336 | 0.001349
Approx. | B-bound | 3.284000 | 5.915000 | 4.391000 | 5.915000 | 3.284000 | 3.284000
Several | Average | 0.014351 | 0.016113 | 0.016113 | 0.016113 | 0.015433 | 0.010733
Approx. | U-bound 24.85 42.47 32.60 42.47 24.85 24.85
E-bound | 13.084810 | 13.084810 | 13.084810 | 13.084810 | 13.084810 | 13.084810

Table 5.5: Coffee problem: error bound comparisons at 15 stages to go

Error B-bound search E-bound search VS search
LP VS LP VS max sum
Single Average | 0.035180 | 0.035193 | 0.035193 | 0.035193 | 0.008152 | 0.008144
Approx. | B-bound | 3.408000 | 3.627000 | 3.408000 | 3.627000 | 3.408000 | 3.408000
Several | Average | 0.050858 | 0.050818 | 0.050818 | 0.050818 | 0.051912 | 0.051719
Approx. | U-bound | 34.93 37.42 34.95 37.42 34.95 34.93
E-bound | 8.381117 | 8.381117 | 8.381117 | 8.381117 | 8.381117 | 8.381117

Table 5.6: Widget problem: error bound comparisons at 15 stages to go

Error B-bound search FE-bound search VS search
LP VS LP VS max sum
Single Average | 0.001510 | 0.001510 | 0.001510 | 0.001510 | 0.001417 | 0.001415
Approx. | B-bound | 5.386000 | 5.690000 | 5.386000 | 5.690000 | 5.368000 | 5.616000
Several | Average | 0.006640 | 0.006640 | 0.006640 | 0.006640 | 0.007101 | 0.002753
Approx. | U-bound 38.57 40.80 38.87 40.80 38.99 39.52
FE-bound | 23.217647 | 35.392262 | 23.497992 | 35.392262 | 23.873747 | 24.384092

Table 5.7: Pavement problem: error bound comparisons at 15 stages to go

92

projection schemes (nonlinear approximations) are really supersets of the switch
set. Switch sets are an integral part of the computation of the B, U and E bounds,
meaning that they are all potentially loose. Similarly, when VS-switch tests are
used instead of LP-switch tests, a potentially larger superset of the switch set is
constructed. Moreover, the U bound is loose by definition, since it simply adds up
the B bounds. We introduced the £ bound as a tighter alternative to the U bound,
however it is also loose as it relies on Alt-sets which are really supersets of the set
of all alternative plans.

The large difference between bounds and sampled averages suggests two

things:

e There may not be any point in computing those error bounds, since in practice
it is very unlikely to suffer a loss as large as indicated by the bounds. Although
the bounds currently appear meaningless, their relative scale may still provide
useful information for choosing a good projection. It would also be interesting
to see how the bounds compare to the average loss when their looseness is
contained. For instance, linear approximation methods allow the computation
of exact switch sets, which could significantly improve the bounds’ tightness.
Finally, as future work, one should consider improving the £ bound by con-

structing Alt-sets as close as possible to the actual set of alternative plans.

e Search algorithms that try to minimize an error bound may not be appropriate
in practice. On the other hand, all search algorithms seem to perform equally
well since the error bounds and the error averages are all similar. The third

experiment (next section) will shed some light regarding this observation.

5.2.3 Search algorithm comparison

In the third experiment, we compare the projection schemes found by different

search algorithms. Interestingly enough, this comparison reveals that most of the

93

projections found by algorithms that minimize a bound (i.e., B-bound search with
LP or VS-switch tests and E-bound search with LP or VS-switch tests) all yield
very similar (if not identical) projections. There is an explanation to this. When
traversing the lattice, those algorithms always select the child with the smallest
bound (B or E). However, when all children have the same bound, those algo-
rithms all break ties in the same way, by simply choosing the first child (of some
predetermined ordering). It turns out that for most problems, the nodes at the top
of the lattice correspond to very fine projection schemes (that preserve few corre-
lations) and therefore allowing switching to most if not all a-vectors representing
the value function. As defined in Sections 3.1-3.2, the B and E bounds correspond
respectively to the single and cumulative error associated with the a-vector in the
switch set that contributes the largest such error. Hence, when all the children of a
node allow switching to most or all a-vectors, the a-vector with the largest single
or cumulative error is likely to be in the switch set of all children, meaning that
they all have the same B or F bound. Thus at the beginning of any B or E-bound
search, the search is still progressing within the top part of the lattice, yielding
roughly the same projections regardless of which bound is minimized. Note that
this phenomena is amplified by the fact that supersets of the switch sets are com-
puted, and this is even worse when VS-switch tests are used. A possible solution
to this problem would be to start the search at some node further down the lattice.
For example, one could heuristically pick as a starting node, a projection scheme
that would preserve certain correlations that appear important when examining the
Bayes net dynamics and the reward functions.

As for VS search algorithms, they do not suffer from the above problem. This
is because they minimize the maximum relative error rate or the squared sum of all
relative error rates. These quantities are very sensitive to the marginals defined by
different projection schemes. From a linear algebra point of view, the marginals of

each projection scheme defines a subspace D of displacement vectors. The angles

94

between this subspace and each gradient «;; determine the relative error rates. Since
those angles change with each projection scheme, ties between children rarely occur
and the lattice traversal for each VS search tends to be different.

Figures 5.2, 5.3 and 5.4 compare the average cumulative error for the max VS
search (minimize mazimum relative error rate), the sum VS search (minimize sum
of squared relative error rates) and the B-bound search with LP-switch tests. The
other B-bound and E-bound search algorithms were not included in the comparisons
as they yield very similar or identical projection schemes than the B-bound search
with LP-switch tests. The graphs indicate the average cumulative loss in terms of
the number of stages to go for the same 5000 policy executions (starting in different
initial belief states chosen uniformly randomly) that were used in the experiment
of the previous section. In theory, error bars cannot be negative, however, because
the initial belief states were sampled randomly, it may happen that the average
discounted cumulative reward is higher than the optimal expected total reward.
Furthermore, error bars do not necessarily increase monotonically with the number
of stages to go in general. When a switch occurs, it usually is to a plan of lower
expected total reward. However, if the current plan is not optimal (due to previous
approximations), a switch may be beneficial as it may be to a plan of higher expected
total reward, essentially diminishing the error caused by previous approximations.
On the other hand, as shown by the graphs, the average cumulative error tends to
increase with the number of stages to go. Since POMDPs are assumed to have finite
reward functions, this error eventually stops growing. More experiments would be
required to show when the error levels off in practice.

In Figure 5.4, the graph for the pavement problem indicates a sudden large
cumulative error at 7 stages to go for the B-bound search and at 8 stages to go
for the max VS search. After those stages, the error diminishes for a few stages
and starts growing again. This intriguing behavior is easily explained by Figure 5.5

which shows the error due to a single approximation at each stage. It turns out

95

x 107
20

I I I I I
Il B-bound search (with LP—switch tests)

[Max VS search

[] Sum VS search
151 -
10 -
| | ‘ |
o+ -— IID _ -_ IID |IH ‘lH IID |‘D ||D _

Average cumulative error

=0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Stages to go

Figure 5.2: Coffee problem: comparison of the average cumulative error obtained
by different search algorithms

that a large error is incurred at 7 and 8 stages to go for the B-bound search and
the max VS search algorithms, which explains the sudden jump in cumulative error
at those stages in Figure 5.4. Then, for a few stages, approximations do not yield
any error, so the cumulative error naturally decreases due to the discount factor. It
starts growing again at 13 stages to go when some errors start appearing.

For the coffee and pavement problems, the cumulative error bars correspond-
ing to the sum VS search are lower than those corresponding to the max VS search
and the B-bound search, whereas for the widget problem, the B-bound search algo-
rithm provides the smallest cumulative errors. From those graphs it is not possible

to decide which search method is likely to perform better than the others in general.

96

0.06 T T T T T T T
Il B-bound search (with LP-switch tests)
I Max VS search

] Sum VS search

0.05 |
0.04 -
0.03} n
0.02} n
0.01} ‘ | -

| snndnl f

-0.01 ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Stages to go

Average cumulative error

Figure 5.3: Widget problem: comparison of the average cumulative error obtained
by different search algorithms

97

x 107

12 I I I I I I I
Il B-bound search (with LP—switch tests)
I Max VS search
[] Sum VS search
10 B
8 - -
S
5]
2 6f i
8
=}
€
3
o
S 4t .
]
g
<
2 - -
o ——— ——— =—c m=c ——— @O (5 (m} - — _ _ O D .
_2 | | | | | | | | | | | | | | |

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Stages to go

Figure 5.4: Pavement problem: comparison of the average cumulative error obtained
by different search algorithms

98

0.012 T T T T T T T
Il B-bound search (with LP-switch tests)
I Max VS search

] Sum VS search

0.01 ,

0.008 - n

0.006 |- 1

Average single error

0.004

0.002

0 ! ! ! ! ! ! ! ! ! ! !
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Stages to go

Figure 5.5: Pavement problem: comparison of the average error due to a single
approximation at each stage for different search algorithms

99

Furthermore, the results of the experiment may be biased by the choice of a uniform
prior when picking the 5000 initial random belief states. The prior definitely influ-
ences the frequency with which some alternative plans are executed and therefore,
further experimentation and/or a theoretical analysis would be required to assess
the impact of the prior distribution on the performance of each search algorithm.

It is also interesting to compare the average number of plan switches that
occur during a policy execution when applying the projection schemes found by
those three search algorithms (Figures 5.6, 5.7 and 5.8). Although the average
cumulative error is the quantity that a decision theoretic agent wants to minimize,
the average number of plan switches provides an interesting benchmark since VS
search algorithms were designed to minimize the likelihood of switching. As with
the average cumulative error, there isn’t a search algorithm that clearly leads to
fewer switches on average than the others for all three test problems.

If we compare the average number of switches for different test problems, it
is interesting to note that good approximate belief state monitoring for the widget
problem seems to be inherently harder than for the coffee problem which in turn
seems to be inherently harder than for the pavement problem. Regardless of which
search algorithm is used, the average number of switches is much higher for the
widget problem than for the coffee problem, which in turn is also higher than for
the pavement problem. This suggests a correlation with the average number of a-
vectors necessary to represent the value functions. In fact, as indicated in Table 5.4,
the widget problem has the highest average number of a-vectors per value-function
followed by the coffee problem and finally the pavement problem. Once again,
further investigation is needed to assess the potential correlation between the number
of a-vectors and the likelihood of switching.

In a last comparison, we look at the progress (in terms of reducing the average
cumulative error) achieved while traversing the lattice downwards. In Section 3.3,

we showed that any descendant of a node has a corresponding projection scheme

100

1.6 T T T T T T T
Il B-bound search (with LP—switch tests)
I Max VS search

14 [Sum VS search

=
N
T
I

=
T
|

Average cumulative number of switches
[=} o
[«2) ©
T T
| |

o
N
T
!

1 2 3 4 5 6 7 8 9 100 11 12 13 14 15
Stages to go

Figure 5.6: Coffee problem: comparison of the average cumulative number
switches for different search algorithms

101

25 T T T T T T T
Il B-bound search (with LP—switch tests)
I Max VS search
[] Sum VS search
2 i
[%2]
[}
<
£
=
(%]
ks
5 1.5 N
Qo
IS
=]
c
[
=
8
>
E af 1
o
()
(o))
o
g
P4
0.5F i
0

1 2 3 4 5 6 7 8 9 0 11 12 13 14 15
Stages to go

Figure 5.7: Widget problem: comparison of the average cumulative number of
switches for different search algorithms

102

0.35 T T T T T T T
Il B-bound search (with LP-switch tests)
I Max VS search

] Sum VS search

0.3 ,

0.25 ,

0.2 n

0.15f n

Average cumulative number of switches

0.05f n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Stages to go

Figure 5.8: Pavement problem: comparison of the average cumulative number
switches for different search algorithms

103

of

that guarantees (not necessarily strictly) smaller B, U and E bounds. Similarly, in
Section 4.3, we showed how the relative error rate decreases monotonically as we go
down the lattice. In practice, the real question is: if we allow our favorite algorithm
to search deeper in the lattice, does the average cumulative error diminish? Figures
5.9, 5.10 and 5.11 show that the average cumulative error does in fact tend to
decrease when the number of stages to go is large. Those three graphs compare
the average cumulative error when a search algorithm is restricted to projection
schemes with marginals of at most one variable, at most two variables and at most
three variables. Results for the B-bound search, max VS search and sum VS search
are presented for the coffee problem.?

Note that there is only one projection scheme with marginals of at most one
variable and this is when none of the correlations are preserved (i.e., all variables are
independent). This naive projection scheme can be considered as a base case since
it is at the top of the lattice and there are no simpler projection schemes. Figures
5.9, 5.10 and 5.11 confirm that it is usually possible to do much better than the

naive base case.

2The widget and pavement problems yield similar results.

104

0.035 T T T T T T
Il At most 1 variable per marginal
[at most 2 variables per marginal
1 At most 3 variables per marginal
0.03F -
0.025 -
S
5 0.02 -
[
=
8
>
E 0.015F i
>
o
[
[o))
o
g 0.01} s
0.005 | | | -
ol ,,,lID__Dl_H IH I I IH I I H
_0005 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Stages to go

Figure 5.9: B-bound search with LP-switch tests for the coffee problem: comparison
of the average cumulative error when the search is restricted to projection schemes
with marginals of at most 1, 2, or 3 variables.

105

0.035 T T T T T T
Il At most 1 variable per marginal
[at most 2 variables per marginal
1 At most 3 variables per marginal
0.03F -
0.025 -
S
5 0.02 -
[
=
©
>
E 0.015F i
>
o
[
[o))
o
g 0.01} s
0.005 | | | ‘ -
of I _,H ol IH I I ID IH IH H I
_0005 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Stages to go

Figure 5.10: Max VS search for the coffee problem: comparison of the average
cumulative error when the search is restricted to projection schemes with marginals
of at most 1, 2, or 3 variables.

106

0.035 T T T T T T
Il At most 1 variable per marginal
[at most 2 variables per marginal
1 At most 3 variables per marginal
0.03F -
0.025 -
S
5 0.02 -
[
=
©
>
E 0.015F i
>
o
[
[o))
o
g 0.01} s
0.005 | ‘ B
Jow Jah R LR 14
_0005 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Stages to go

Figure 5.11: Sum VS search for the coffee problem: comparison of the average
cumulative error when the search is restricted to projection schemes with marginals
of at most 1, 2, or 3 variables.

107

Chapter 6

Conclusion

6.1 Summary

The primary contribution of this thesis consists of a value-directed framework to
perform approximate but efficient belief state monitoring. This framework uses the
value function to measure the loss in expected total return incurred when approxi-
mating belief states during a policy execution. In Chapter 3, various bounds (B, U
and F) on the loss in expected value were derived. The general idea is to construct
the set of all plans that may be executed as a result of a single approximation (switch
set) or several consecutive approximations (Alt-set) and to measure the difference
in expected total return between the best and the worst plans. These bounds are
generic since they can be computed for a wide range of approximation methods in-
cluding projection schemes and any linear approximation method (such as density
trees). From a practical point of view, the bounds’ usefulness is unclear. On one
hand, as shown by the experiments in Chapter 5, the average error tends to be
significantly smaller than the bounds. This is because the bounds are concerned
with the worst case scenario and the algorithms to compute them introduce some
looseness. On the other hand, the relative scale of the bounds may provide useful
information to choose a good projection.

The bounds are then used to direct the search for a good projection scheme

108

by traversing the lattice of projection schemes in a greedy fashion that seeks to
minimize some bound. Although in theory the search algorithms guided by those
bounds are sound, in practice, several nodes at the top of the lattice exhibit the
same error bounds, which provide poor guidance to the search. Furthermore, from
a computational point of view, the running time of those search algorithms (B-
bound and E-bound search with LP-switch tests) are worse than that of solving a
POMDP which is already intractable. As a remedy to those various problems, a
vector space formulation was introduced in Chapter 4. It enabled us to define VS-
switch tests as an alternative to LP-switch tests. The former has the advantage of
avoiding the use of LPs which reduces considerably the overall running time of the
search algorithms. On the other hand, this speed up is made possible by introducing
more looseness in the bounds.

The vector space analysis also reveals that each projection defines a sub-
space of directions in which the belief state is approximated. Since the difference
in expected return between a pair of a-vectors varies more in some directions than
others we can try to select good projection schemes that allow approximations in
directions of low variance for most pairs of a-vectors. Using the relative error rate
as a quantity to minimize during the search (instead of some error bound) leads to
the VS search algorithms defined in Chapter 4. These provide alternative search
algorithms, which unlike the different B-bound and E-bound search algorithms, do
not suffer from guidance problem since the relative error rate is usually different
for each node (even near the top of the lattice). Furthermore, the running time of
VS procedures scales better when tackling large POMDPs as it is roughly the same

order of magnitude as the solution procedure.

6.2 Future Framework Enhancements

A brief experimental evaluation of the framework was carried out in Chapter 5. Al-

though limited in scope due to the lack of efficient solution algorithms for POMDPs,

109

the experiments enabled us to show how the different algorithms behave in prac-
tice on a few test problems. The framework came out of a theoretical study of the
approximate belief state monitoring problem and therefore it suffers from several
practical deficiencies. A number of directions may be taken to improve the prac-
ticality of the bounds and the algorithms. For instance, the primary drawback of
the bounds is their looseness. Further research to develop algorithms that compute
tighter switch sets and Alt-sets is necessary. Also, the bounds are concerned with
the worst case scenario, so it would be nice to know under what circumstances this
worst case scenario, or some other really bad scenarios, are likely to occur and with
what frequency. In the end, since an agent seeks to maximize the expectation of
its total return, what really matters is not so much the worst case, but rather the
average case. Therefore, it would be desirable to have a better understanding of
how approximate belief state monitoring influences the agent’s returns on average.

The experiments carried out were concerned with finite-horizon POMDPs
only. Although the author believes that most of the results obtained for finite-
horizon problems translate into very similar results for infinite-horizon problems,
further experimentation remains to be done. An important question arises for
infinite-horizon problems: we know that the cumulative error tends to increase with
the number of stages to go and that it remains bounded (since rewards are assumed
to be finite), so in the long run, what does the average cumulative error converge
to? Most importantly, how far is it from optimal? This is a key issue for which
theoretical as well as practical insights would be desirable.

As for the search algorithms, they suffer from the same sources of intractabil-
ity as the algorithms to solve POMDPs. In this work, we used factored represen-
tations as much as possible to counter one source of intractability, namely, the size
of the state space. However, not all POMDPs allow a small enough factored rep-
resentation and another source of intractability remains: the exponentially growing

number of a-vectors. Hence, the proposed algorithms are intractable in the same

110

way that solution algorithms are. Further research is necessary to develop more ad-
vanced techniques that can mitigate those sources of intractability for some classes
of POMDPs. It is interesting to note that in the event where such techniques would
be developed, then the solution algorithms as well as the search algorithms should
become tractable for the same classes of POMDPs.

Currently, the framework provides an analysis for approximation methods
such as projection schemes, density trees and any other linear approximation method.
It would be nice to extend it to sampling methods as they are simple to use, very effi-
cient and they do not assume discrete state variables. In the literature, approximate
belief state monitoring methods that use some form of sampling include particle fil-
tering [12, 11], Monte Carlo algorithms [24], condensation algorithms [20], survival
of the fittest [23], etc. As with the other approximation methods, those sampling
schemes have been applied to monitor general dynamical systems free of any deci-
sion process. Value-directed versions of those sampling methods would essentially
concentrate the sampling efforts to sensitive areas of the belief space for which the
optimal plan to execute is less certain. Sampling methods can also be combined with
projection schemes for a further speed up as proposed by Doucet, Freitas, Murphy
and Russell [8]. This method, called Rao-Blackwellised particle filtering, should also
be analyzed from a value-directed point of view.

Finally, an interesting extension would be to integrate this value-directed
framework to the algorithms that solve POMDPs. In other words, as POMDPs are
being solved, the solution algorithms could take into account the fact that belief
states will be approximated. Ultimately, a decision theoretic agent would seek a
bounded-optimal solution to its POMDP since it would try to compute a policy
with the highest expected total return given some bound on the amount of time it

has to monitor its belief state during policy execution.

111

Appendix A

Basics of Vector Spaces

In what follows, we present a brief overview of some relevant notions of linear algebra
for the development of Chapter 4. For a more thorough overview, the reader is

referred to any introductory textbook of linear algebra.

Definition 3 A wvector space is roughly speaking a set V of wvectors, with two

operations (vector addition and scalar multiplication) such that:
e For all vectors vi,v9 € V,u1 +v9 €V

e For any scalar ¢ and for any vectorv eV, cv €V

For our purposes, the set of all |S|-dimensional (real) vectors is a vector space

which contains all a-vectors as well as all belief states.

Definition 4 Let V be a vector space, then a subspace of V is a subset W which

1s itself a vector space.

Geometrically, a subspace can be viewed as a set of vectors that are uncon-
strained in length, but constrained in direction. For instance, let V be the vector
space corresponding to R>2. The z-axis is a one dimensional subspace of V that con-
tains all vectors of the form (z,0,0). Since all those vectors are parallel (they are

on the z-axis), then they have the same direction (assuming we ignore orientation).

112

The yz-plane is another subspace which contains all vectors of the form (0,y, z).

Those vectors can have several directions but they are restricted to the yz-plane.

Definition 5 Let W be a subspace of V, then we define the null space of W as
the largest subspace W of V' such that for all w € W,w' € W+, the dot product of

w and w' is zero (w-w' =0).

It is interesting to note that the dot product of two vectors is zero if and
only if they are perpendicular. More generally, recall that the dot product of two

vectors v and w is proportional to the cosine of the angle 6, between them:
v-w = ||v]|2]|w||2 cos Oy

Hence, when two vectors are perpendicular, their dot product is zero. Since
the vectors of a subspace and its null space are pairwise perpendicular, we can say
that a susbpace and its null space are perpendicular subspaces. For example, the
z-axis subspace is the null space of the yz-plane subspace in 2 and they are clearly

perpendicular.

Definition 6 Let V be a wvector space, then a set of vectors W is a spanning
set of V if every v € V s a linear combination of the vectors in W. That is,

V=D yew CiWi, where w; € W and ¢; is some scalar.

Definition 7 The vectors of some set W are linearly independent if and only if

2w;ew Ciw; = 0 is satisfied only when c; =0 for all 1.

Definition 8 Let V' be a vector space, then a basis B is a smallest spanning set of

V' composed of linearly independent vectors.

Definition 9 The dimensionality of a subspace V is given by the smallest number

of linearly independent vectors necessary to span it.

Thus the number of dimensions of a subspace V' corresponds to the size of a

basis for V.

113

Definition 10 Let V be a vector space, then an orthonormal basis B is a basis

of V such that:
e Vv € B, v is normal: |jv|j2 = 1.

e Yui,v9 € B, v1 and vy are orthogonal: vy - vo = 0.

Any basis can be transformed into an orthonormal basis by applying the
Gram-Schmidt orthogonalization process. Orthonormal bases are useful when com-

puting the linear projection of a vector on some subspace.

Definition 11 The linear projection of a vector v on some other vector w is
roughly speaking the component of v that is parallel to (has the same direction as)

w. Formally, the projection proj(v,w) of v on w is:
. v-w
proj(v,w) = mw
In turn, the linear projection of a vector v on some vector space V is roughly
speaking the greatest component of v that is parallel to (has the same direction as)
some vector v’ € V. If V has an orthonormal basis B, then one can compute the
projection proj(v,V) of v on V as follows:
proj(v,V) = 3 proj(v,w;)

w; €EB

V- w;
2 Twill

= Z (v - w;)w;

w; €EB

114

Appendix B

Test Problems

The full specifications for the coffee delivery problem, the widget production problem
and the pavement maintenance problem follow. The notation used to specify each
POMDP is similar to the notation used by Hoey and St.Aubin on their SPUDD
(Stochastic Planning using Decision Diagrams) website (http://www.cs.ubc.ca/
spider/jhoey /spudd/submit.html) to describe MDPs using ADDs.

Each POMDP specification includes:

Set of state variables.

Set of actions.

Set of observations.

Transition function for each action. A transition function is described by a set
of conditional probability tables (CPTs) indicating the probabilistic depen-
dencies of each state variable (at the current time step) on the state variables
at the current and previous time step. Each CPT is represented compactly by

a decision tree.

e Observation function for each action. An observation function describes the
probabilistic depencies of each observation on the current state variables. As

for transition functions, the dependencies are represented using decision trees.

115

e Reward function. For each action, a decision tree describes the immediate

reward earned in terms of the value of the current state variables.

¢ Discount factor (number between 0 and 1).

B.1 Coffee Delivery

The coffee delivery problem is a variation on the problem introduced by Boutilier
and Poole [2]. Roughly speaking, a robot must deliver coffee to a user when the
user wants coffee (variable wc is true), but doesn’t have any coffee (variable hc is
false). The robot has two actions: getC (to get coffee) and testC (to verify if the
user wants coffee). When the robot gets coffee, it must go across the street to the
local coffee shop to buy coffee. When doing this, it may get wet (variable w is true)
if it is raining (variable r is true) and the robot doesn’t have any unmbrella (variable
u is false). Generally speaking, the robot earns rewards when the user wants coffee
(we is true) and has coffee (hc is true), and it is penalized otherwise. The robot
is further penalized if it gets wet. A small cost is incurred each time it gets coffee,

since going across the street consumes a significant amount of energy.

variables (w r hc u wc)

actions (getC testC)

observations (ob_wc ob_nwc)

action getC
r (r (1.0) (0.0))
u (u (1.0) (0.0))
w (r (u (w (1.0) (0.0))
(w (1.0) (1.0)))

116

(u (w (1.0) (0.0))
(w (1.0) (0.0))))
hc (hc (1.0) (0.9))
we (we (0.1) (0.0))

endaction

action testC
r (r (1.0) (0.0))
u (u (1.0) (0.0))
w (w (1.0) (0.0))
hc (he (0.7) (0.0))
we (we (1.0) (0.3))

endaction

observation getC
ob_wc (1.0)
obnwc (0.0)

endobservation

observation testC
ob_wc (wec (0.8) (0.1))
obnwc (wc (0.2) (0.9))

endobservation

reward

getC (w (hc (wc (0.0) (-2.0))
(we (-4.0) (-2.0)))
(hc (wec (1.0) (-1.0))

117

(we (-3.0) (-1.0))))

testC (w (hc (wc (0.5) (-1.5))
(wec (-3.5) (-1.5)))

(hc (wc (1.5) (-0.5))
(we (-2.5) (-0.5))))

endreward

discount 0.90

B.2 Widget Production

The following problem is a variation on the widget problem introduced by Draper,
Hanks and Weld [10]. A manufacturing robot is in charge of processing widgets. A
widget can be flawed (f7), slightly flawed (sifl), painted (pa), shipped (sh) or rejected
(re). Using the inspect action, the robot can detect (more or less) whether or not a
widget is flawed or slightly flawed. When a widget is not flawed nor slightly flawed,
the goal of the robot is to paint it and then to ship it. If it is slightly flawed, it should
first repair it, then paint it and ship it. Finally, if it is flawed, it should simply reject
it. When the robot is done processing a widget it notifies the supervisor and starts
processing a new random widget. As it notifies the supervisor, it also gets a reward
if a painted widget without any flaw was shipped or a flawed widget was rejected.

Otherwise, it is penalized for processing the widget improperly.

variables (f1 slfl pa sh re)

actions (inspect repair paint ship reject notify)

observations (bad slbad ok)

118

action inspect
f1 (£f1 (1.0) (0.0))
s1fl (s1fl (1.0) (0.0))
pa (pa (1.0) (0.0))
sh (sh (1.0) (0.0))
re (re (1.0) (0.0))

endaction

action repair
f1 (f1 (1.0) (0.0))
s1fl (s1fl (f1 (1.0)

(sh (1.0)
(re (1.0)
(0.05))))
(0.0))

pa (pa (1.0) (0.0))
sh (sh (1.0) (0.0))
re (re (1.0) (0.0))

endaction

action paint
f1 (f1 (1.0) (0.0))
s1fl (s1fl (1.0) (0.0))
pa (pa (1.0)
(sh (0.0)
(re (0.0)
(0.95))))
sh (sh (1.0) (0.0))

119

re (re (1.0) (0.0))

endaction

action ship
f1 (£f1 (1.0) (0.0))
s1fl (s1fl (1.0) (0.0))
pa (pa (1.0) (0.0))
sh (re (0.0) (1.0))
re (re (1.0) (0.0))

endaction

action reject
f1 (f1 (1.0) (0.0))
s1fl (s1fl (1.0) (0.0))
pa (pa (1.0) (0.0))
sh (sh (1.0) (0.0))
re (sh (0.0) (1.0))

endaction

action notify
f1 (0.3)
s1f1l (0.3)
pa (0.0)
sh (0.0)
re (0.0)

endaction

observation inspect

120

bad (f1 (1.0) (0.05))
slbad (f1 (0.0)
(s1f1l (0.95) (0.0)))
ok (f1 (0.0)
(s1fl (0.0) (0.95)))

endobservation

observation repair
bad (0.0)
slbad (0.0)
ok (1.0)

endobservation

observation paint
bad (0.0)
slbad (0.0)
ok (1.0)

endobservation

observation ship
bad (0.0)
slbad (0.0)
ok (1.0)

endobservation

observation reject

bad (0.0)
slbad (0.0)

121

ok (1.0)

endobservation

observation notify
bad (0.0)
slbad (0.0)
ok (1.0)

endobservation

reward
inspect (-0.2)
repair (-0.45)
paint (-0.45)
ship (0.0)
reject (0.0)
notify (sh (f1 (-2.0)
(s1fl (-1.0)
(pa (1.0) (-0.5))))
(re (f1 (1.0) (-1.0))
(-0.5)))

endreward

discount 0.95

B.3 Pavement Maintenance

This problem is inspired from the pavement maintenance problem described by
Puterman [32]. The idea is to find an optimal maintenance schedule to minimize

the cost of road maintenance. Every year, the local government must decide if it

122

should redo the pavement, patch it, inspect it, or simply do nothing. This decision
is based on an estimate of 7 binary attributes of the pavement (state variables a,
b, ¢, d, e, f, g). Brand new pavement with no imperfections has all 7 attributes set
to true. Over the years, the pavement gradually deteriorates and consequently the
variables representing those attributes stochastically tend to become false. There are
two classes of attributes, the surface attributes (variables a, b, e, f) and the internal
attributes (variables ¢, d, g). The patch action fixes only the surface attributes
whereas the redo action fixes all attributes. Each action has an inherent cost that
varies with the amount of work required. An additional cost measuring voters’
dissatisfaction with respect to the general state of the roads is also incurred. The
goal of the goverment is to minimize the combination of those costs as indicated by

the negative reward function below.

variables (a b cd e f g)

actions (patch redo inspect nothing)

observations (good ok bad)

action nothing

a (a (0.9) (0.0))

b (b (0.8) (0.0))

c (¢ (a (0.9) (0.6))
(0.0))

d (d (b (1.0) (0.8))
(0.0))

e (e (0.9) (0.0))

f (£ (0.8) (0.0))

g (g (£ (e (1.0) (0.9))

123

(0.8))
(0.0))

endaction

action

a

b

C

(a
(b
(c

(d

(e

(£

(g

inspect

(0.9) (0.0))

(0.8) (0.0))

(a (0.9) (0.6))

(0.0))

(b (1.0) (0.8))

(0.0))

(0.9) (0.0))

(0.8) (0.0))

(f (e (1.0) (0.9))
(0.8))

(0.0))

endaction

action

a
b

C

(0.
(0.

(c

(d

(0.
(0.

(g

patch

9

95)

(a (0.9) (0.6))
(0.0))

(b (1.0) (0.8))
(0.0))

85)

95)

(f (e (1.0) (0.9))

124

(0.8))
(0.0))

endaction

action redo
a (1.0)
b (1.0)
c (0.95)
d (0.9)
e (1.0)
f (1.0)
g (0.95)

endaction

observation nothing
good (1.0)
ok (0.0)
bad (0.0)

endobservation

observation inspect
good (f (a (b (0.9) (0.7))
(0.8))
(b (0.7) (0.1)))
ok (f (a (b (0.1) (0.3))
(0.2))
(0.0))
bad (f (0.0)

125

(® (0.3) (0.9)))

endobservation

observation patch
good (g (d (¢ (0.7) (0.6))
(0.4))
(0.3))
ok (g (0.2) (0.6))
bad (g (d (¢ (0.1) (0.2))
(0.4))
(0.1))

endobservation

observation redo
ok (1.0)
cr (0.0)
ho (0.0)

endobservation

reward
inspect (¢ (d (g (-0.5) (-1.5))
(-2.5))
(g (-2.5) (-3.5)))
nothing (¢ (d (g (0.0) (-1.0))
(-2.0))
(g (-2.0) (-3.0)))
patch (¢ (d (g (-1.0) (-2.0))
(-3.0))

126

(g (-3.0) (-4.0)))
redo (c (d (g (-6.0) (-7.0))
(-8.0))

(g (-8.0) (-9.0)))

endreward

discount 0.90

127

1]

Bibliography

K. J. Astrom. Optimal control of Markov decision processes with incomplete

state estimation. J. Math. Anal. Appl., 10:174-205, 1965.

Craig Boutilier and David Poole. Computing optimal policies for partially
observable decision processes using compact representations. In Proceedings of
the Thirteenth National Conference on Artificial Intelligence, pages 1168-1175,
Portland, OR, 1996.

Xavier Boyen and Daphne Koller. Tractable inference for complex stochas-
tic processes. In Proceedings of the Fourteenth Conference on Uncertainty in

Artificial Intelligence, pages 33—42, Madison, WI, 1998.

Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman. Act-
ing optimally in partially observable stochastic domains. In Proceedings of the
Twelfth National Conference on Artificial Intelligence, pages 1023-1028, Seat-
tle, 1994.

Anthony R. Cassandra, Michael L. Littman, and Nevin L. Zhang. Incremental
pruning: A simple, fast, exact method for POMDPs. In Proceedings of the
Thirteenth Conference on Uncertainty in Artificial Intelligence, pages 54-61,
Providence, RI, 1997.

Hsien-Te Cheng. Algorithms for Partially Observable Markov Decision Pro-
cesses. PhD thesis, University of British Columbia, Vancouver, 1988.

128

[7]

[10]

[11]

[12]

[13]

[14]

[15]

Thomas Dean and Keiji Kanazawa. A model for reasoning about persistence

and causation. Computational Intelligence, 5(3):142-150, 1989.

Arnaud Doucet, Nando de Freitas, Kevin Murphy, and Stuart Russell. Rao-
Blackwellised particle filtering for dynamic Bayesian networks. In Proceedings
of the Sizteenth Conference on Uncertainty in Artificial Intelligence, pages 176—
183, Stanford, 2000.

A. Drake. Observation of a Markov process through a noisy channel. PhD
thesis, Massachusetts Institute of Technology, 1962.

Denise Draper, Steve Hanks, and Daniel Weld. Probabilistic planning with
information gathering and contingent execution. In Proceedings of the Second

International Conference on AI Planning Systems, pages 31-36, Chicago, 1994.

J. E. Handschin. Monte Carlo techniques for prediction and filtering of non-

linear stochastic processes. Automatica, 6:555-563, 1970.

J. E. Handschin and D. Q. Mayne. Monte Carlo techniques to estimate the con-
ditional expectation in multi-stage non-linear filtering. International Journal

of Control, 9(5):547-559, 1969.

Eric A. Hansen. An improved policy iteration algorithm for partially observ-
able MDPs. In Proceedings of Conference on Neural Information Processing

Systems, pages 1015-1021, Denver, CO, 1997.

Eric A. Hansen. Solving POMDPs by searching in policy space. In Proceedings
of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pages

211-219, Madison, Wisconsin, 1998.

Eric A. Hansen and Zhengzhu Feng. Dynamic programming for POMDPs
using a factored state representation. In Proceedings of the Fifth International

Conference on Al Planning Systems, Breckenridge, CO, 2000. 130-139.

129

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Eric J. Hansen. Finite-memory control of partially observable systems. PhD

thesis, University of Massachusetts Amherst, Amherst, 1998.

Milos Hauskrecht. Value-function approximations for partially observable
Markov decision processes. Journal of Artificial Intelligence Research, 13:33-94,

2000.

Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig Boutilier. SPUDD: Stochas-
tic planning using decision diagrams. In Proceedings of the Fifteenth Conference

on Uncertainty in Artificial Intelligence, pages 279-288, Stockholm, 1999.

Cecil Huang and Adnan Darwiche. Inference in belief networks: A procedural

guide. Approzimate Reasoning, 11:1-158, 1994.

Michael Isard and Andrew Blake. CONDENSATION—conditional density
propagation for visual tracking. International Journal of Computer Vision,

29(1):5-18, 1998.

Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K.
Saul. An introduction to variational methods for graphical models. Machine

Learning, 37:183-233, 1999.

Leslie Pack Kaelbling, Michael Littman, and Anthony R. Cassandra. Planning
and acting in partially observable stochastic domains. Artificial Intelligence,

101:99-134, 1998.

Keiji Kanazawa, Daphne Koller, and Stuart Russell. Stochastic simulation
algorithms for dynamic probabilistic networks. In Proceedings of the Eleventh
Conference on Uncertainty in Artificial Intelligence, pages 346-351, Montreal,
1995.

G. Kitagawa. Monte Carlo filter and smoother for non-gaussian nonlinear state

space models. Journal of Computational and Graphical Statistics, 5:1-25, 1996.

130

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Uffe Kjaerulff. A computational scheme for reasoning in dynamic probabilistic
networks. In Proceedings of the Eighth Conference on Uncertainty in Artificial
Intelligence, pages 121-129, Stanford, 1992.

Daphne Koller and Raya Fratkina. Using learning for approximation in stochas-
tic processes. In Proceedings of the 15th International Conference on Machine

Learning, pages 287-295, Madison, 1998.

Michael L. Littman, Anthony R. Cassandra, and Leslie Pack Kaelbling. Ef-
ficient dynamic-programming updates in partially observable Markov decision

processes. Technical Report CS-95-19, Brown University, 1995.

Michael L. Littman, Judy Goldsmith, and Martin Mundhenk. The computa-
tional complexity of probabilistic planning. Journal of Artificial Intelligence

Research, 9:1-36, 1998.

William S. Lovejoy. A survey of algorithmic methods for partially observed

Markov decision processes. Annals of Operations Research, 28:47-66, 1991.

Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of proba-
bilistic planning and infinite-horizon partially observable Markov decision prob-
lems. In Proceedings of the Sizteenth National Conference on Artificial Intelli-

gence, pages 541-548, Orlando, 1999.

George E. Monahan. A survey of partially observable Markov decision pro-

cesses: Theory, models and algorithms. Management Science, 28:1-16, 1982.
M. L. Puterman. Markov decision problems. Wiley, New York, 1994.

Y. Sawagari and T. Yoshikawa. Discrete-time Markovian decision processes
with incomplete state observation. Annals of Mathematical Statistics, 41:78—

86, 1970.

131

[34]

[35]

[36]

[37]

[38]

Richard D. Smallwood and Edward J. Sondik. The optimal control of par-
tially observable Markov processes over a finite horizon. Operations Research,

21:1071-1088, 1973.

Edward J. Sondik. The optimal control of partially observable Markov Decision
Processes. PhD thesis, Stanford university, Palo Alto, 1971.

Edward J. Sondik. The optimal control of partially observable Markov processes
over the infinite horizon: Discounted costs. Operations Research, 26:282-304,

1978.

Sebastian Thrun. Monte Carlo POMDPs. In Proceedings of Conference on

Neural Information Processing Systems, pages 1064-1070, Denver, 1999.

Nevin L. Zhang and Wenju Liu. Planning in stochastic domains: Problem
characteristics and approximation. Technical Report HKUST-CS96-31, Hong
Kong University of Science and Technology, 1996.

132

