
Towards Global Reinforcement Learning

Milen Pavlov
University of Waterloo
Waterloo, ON, Canada

milen.pavlov@gmail.com

Pascal Poupart
University of Waterloo
Waterloo, ON, Canada

ppoupart@cs.uwaterloo.ca

Abstract

There has been substantial progress in the field of Reinforcement Learning (RL) in
recent years. Many RL applications have achieved remarkable success by taking
advantage of as much prior knowledge (PK) as possible. However, they often do
so through problem-specific heuristics, due to the lack of a general framework
capable of incorporating broad PK. We take the first steps towards a global RL
framework - one that incorporates PK over multiple learning components, to learn
about all of them simultaneously. Specifically, we consider PK over both model
dynamics and policy. We construct a prior belief that reflects both components of
PK, use this belief to select actions and update the belief upon new evidence.

1 Introduction

There has been substantial progress in the field of Reinforcement Learning (RL) in recent years.
A remarkable example was the successful application of RL to the control logic of a biped robot,
enabling it to quickly learn to walk on virtually any terrain [1]. Another was using RL to control
a helicopter, performing complex maneuvers in real-time [2]. A common aspect of several suc-
cess stories is the implicit incorporation of domain knowledge into the learning problem. Domain
knowledge (also referred to as prior knowledge (PK)) helps by restricting the learning space and
thus accelerating the learning process. In the helicopter story, symmetries about the position and
orientation of the helicopter are exploited to reduce the complexity of the theoretical model. In the
biped story, PK is specified in terms of dependencies between control parameters, which are used to
reduce the number of unknown control parameters, which in turn greatly reduces learning time.

While it is clear that incorporating PK in RL problems is beneficial, discovering how to do so
is not always straightforward. Due to the lack of a general RL framework to allow the explicit
specification of all available PK, RL applications often resort to implicitly incorporating PK through
problem-dependent heuristics. This severely limits the generalizability of these approaches.

There exist several frameworks (e.g., Bayesian RL [3], Inverse RL [4] and policy gradient algo-
rithms [5]) that allow for explicit specification of some PK. However, in all cases they only allow
specification of a single PK component (e.g., model dynamics, reward functions and policies, re-
spectively) and only allow learning about that single component. We take the first steps towards a
framework that facilitates the specification and incorporation of PK over all components to simul-
taneously learn about all. The challenge is to combine all pieces of information, keeping in mind
that they are related in different ways and, since specified independently, they may present incon-
sistencies. In this paper, we develop two approaches based on constraint satisfaction techniques
to incorporate information about model dynamics and policy, and learn about both simultaneously.
While the first approach does not generally converge to an optimal policy, the second approach can
be used with any existing Bayesian RL algorithm and offers the same convergence guarantees as the
chosen Bayesian RL algorithm.
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2 Background

A Markov Decision Process (MDP) is defined as a tuple 〈S,A, T,R〉, where S is the set of states, A
is the set of actions, T (s, a, s′) = Pr(s′ | s, a) is a transition function that specifies the probability
of reaching state s′ as a result of performing action a in state s and R(s, a) is a reward function that
encodes the rewards associated with performing a in s. A policy π : S → A is a mapping from
states to actions. The goal of RL is to find an optimal policy π∗ for an MDP with unknown transition
parameters. An optimal policy is defined as a policy that achieves maximum long-term expected
rewards from any state. Long-term expected rewards are given using a value function V π(s), which
is computed by Bellman’s equation: V π(s) = R(s, π(s)) + γΣs′T (s, π(s), s′)V π(s′). Therefore,
π∗(s) ≡ argmaxaR(s, a) + γΣs′T (s, a, s′)V π

∗
(s′).

We consider Bayesian RL (BRL) since it offers a principled approach to incorporate a wide range of
PK in a belief over the unknown MDP parameters. If we denote each unknown transition value
T (s, a, s′) with θsas′ then the belief B is a distribution over all θsas′ . B : θ → [0, 1]. The
belief is updated after each transition, to take into account the new evidence about T . Specif-
ically, after observing a transition (s, a, s′), the posterior belief B′ is computed by Bayes’ rule:
B′(θ) = kB(θ)θsas′ . In practice, belief update is made easy if both the prior and posterior be-
long to the same family of distributions. This is true for beliefs encoded with mixtures of Dirich-
lets, since Dirichlet distributions are conjugate priors of multinomials [6]. A Dirichlet distribution
Dir(θ,n) = kΠiθ

ni−1
i parameterizes the probability distribution over a multinomial θ using pos-

itive hyperparameters ni, where ni can be thought of as the number of times the θi-probability
event has been observed. A Dirichlet mixture DirMix(θ, c,n) = ΣiciΠjθ

nij−1
j is parameterized

by weights ci and hyperparameters ni that define single Dirichlets. The normalization constants k
of single Dirichlets are subsumed by the weights. We can show that belief update using Dirichlet
mixtures is performed in closed form using Bayes rule. After a transition (ŝ, â, ŝ′), we have

B′(θ) = kθŝ,â,ŝ′ΣiciΠsas′(θsas′)nisas′

= DirMix(θ, c′,n+ δ([s, a, s′] = [ŝ, â, ŝ′]))

where c′ are the renormalized weights and δ(a = b) is the Kronecker delta that returns 1 if a = b
and 0 otherwise. In practice, belief update amounts to simply incrementing the hyperparameters
corresponding to the observed transition and renormalizing.

There are numerous Bayesian algorithms for RL that take advantage of PK to perform efficient
learning. For instance, the BEETLE algorithm [7] uses PK over model dynamics to compute a
policy mapping from belief states to actions. Bayesian Q-learning [8] takes PK over a measure of
the value of information that is expected to be gained by performing an exploratory action. This can
be thought of as a prior over value functions. Inverse BRL [4] uses PK over reward functions to learn
the true reward function. Bayesian policy gradient algorithms [5] take advantage of PK over policy
gradients to learn about policies. In a recent paper [9], Doshi et al. make use of domain knowledge
over both transition dynamics and policy, however, while transition information is taken in the form
of a prior distribution in the usual way, policy information is used through an oracle, which may
not always be available in learning problems. Note that existing approaches are all limited in the
types of PK they can incorporate. In fact, in most cases they only consider PK over a single MDP
component, which allows them to learn only about that component. Our work takes the first steps
towards a framework that incorporates PK over multiple unknown components and simultaneously
learns about all of them.

3 The Global Reinforcement Learning Framework

We present a reinforcement learning framework that incorporates broad types of PK. Specifically, we
consider three types of knowledge. The first is a prior probability distribution over transition models,
denoted P̄ (θ). It is often the case that we have some knowledge about how some actions will affect
the world even before starting to learn - such knowledge is stored in P̄ (θ). The second is a prior
over (stochastic) policies, denoted P̄ (π).1 Similarly, in many cases we could have information about

1This prior can be thought as a belief about the optimality of each policy. While this interpretation is flawed
when multiple policies are optimal, this is fine since our work does not distinguish between priors that differ
only in their probabilities for optimal policies.
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which actions are preferable, even if we do not fully understand their effects - such information is
stored in P̄ (π). Finally, the third piece is the knowledge implicit in Bellman’s equation. We derive
from it a loss function L(θ,π) that encodes the degree of inconsistency between a model and a
policy (assumed to be optimal).2

L(θ,π) = max
s
V ∗(θ, s)− V π(θ, s) (1)

This third piece of knowledge is present in every learning problem and links P̄ (θ) and P̄ (π).

A Bayesian reinforcement learning framework must specify how learning agents perform the fol-
lowing three steps: 1) incorporating PK into an initial belief, 2) using this belief to select actions
and 3) updating the belief according to the effects of the performed actions. We explore two ways of
implementing the above steps. One encodes the agent’s belief as a joint distribution over transition
models and policies, while the other - as a marginal distribution over models only.

3.1 Agent’s Belief as a Joint Distribution

Step 1. Construct an initial belief distribution from PK. The inputs are P̄ (θ), P̄ (π) and L(θ,π).
The output is the joint distributionB(θ,π). We encode this distribution as a joint mixture of Dirich-
lets, as this presents a convenient way of representing, and later, updating the belief.

B(θ,π) = ΣijcijΠsas′(θsas′)nisas′Πsa(πsa)mjsa (2)

The belief is constructed by computing the hyperparameters ni and mj of the single Dirichlet
distributions, as well as the weights cij of the mixture. In theory, this belief should satisfy the
following constraints:∣∣∣∣∣∣

∀θ :
∫

π
B(θ,π)dπ = P̄ (θ)

∀π :
∫

θ
B(θ,π)dθ = P̄ (π)

∀θ,π,π′ : L(θ,π) ≥ L(θ,π′)⇒ B(θ,π) ≤ B(θ,π′)
(3)

However, the variables in the above constraints (namely, the hyperparameters and weights) are ex-
pressed in terms of exponents and multiplicative factors, which makes solving this formulation of
the problem too difficult. Instead, since the Dirichlet mixture can be thought of as a polynomial, we
approximate it by first obtaining basis functions that satisfy the first two constraints independently,
then we weigh the basis functions so that all three constraints are satisfied. The latter is made easy
by the fact that the only variables are the weights, which are expressed in linear terms.

We consider the unweighted single Dirichlets in (2) as components for building basis functions.
Specifically, a basis function βij(θ,π) is constructed from its components βi(θ) and βj(π) in the
following way:

βij(θ,π) = βi(θ)βj(π)
βi(θ) = Πsas′(θsas′)nisas′ , βj(π) = Πsa(πsa)mjsa

We construct each set of components iteratively, using the appropriate constraint from (3). We use
the first constraint to construct βi(θ). This constraint says that the marginal over models should be
equal (or approximately equal) to the prior over models. We achieve this by minimizing some error
terms εθ, such that

∀θ :
1
εθ
≤ 1
P̄ (θ)

[∫
π

Σijcijβi(θ)βj(π)dπ
]
≤ εθ

We proceed incrementally, starting with the case when i = j = 1. Then, there is only one basis
function and the above equation reduces to

∀θ :
1
εθ
≤ 1
P̄ (θ)

[∫
π

c11Πsas′(θsas′)n1sas′Πsa(πsa)m1sadπ

]
≤ εθ

After pushing the integral to the right and taking the log, we obtain

∀θ : − log εθ ≤ log z1 + Σsas′n1sas′ log θsas′ − log P̄ (θ) ≤ log εθ

where z1 is some constant, which subsumes the weight c11 and the integral over policies (itself given
by the multinomial Beta function). It is not possible to enforce the above constraint over all models

2While we use the max-norm over s in Eq. 1, any of the Lp norms is fine too.
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θ, since there are infinitely many of them. However, we can sample some θ uniformly at random
and make sure it holds for those samples. Let θk denote the k-th of K samples. Then, we have a set
of K linear constraints to satisfy, while minimizing some norm of log ε =

⋃
θ log εθ. We can see

that the expression between the two inequality signs above is equivalent to the difference between
vectorsAx and b, where

x =
(
log z1 n1s1a1s1 n1s1a1s2 · · · n1s|S|a|A|s|S|

)T
b =

(
log P̄ (θ1) log P̄ (θ2) · · · log P̄ (θK)

)T
A =


1 log(θ1s1a1s1) log(θ1s1a1s2) · · · log(θ1s|S|a|A|s|S|)
1 log(θ2s1a1s1) log(θ2s1a1s2) · · · log(θ2s|S|a|A|s|S|)
...

...
...

. . .
...

1 log(θKs1a1s1) log(θKs1a1s2) · · · log(θKs|S|a|A|s|S|)


We solve for x by minimizing the Euclidean distance between Ax and b. The solution is given by
solving the linear system ATAx = ATb. Finally, from x we can extract the hyperparameters n1,
which give us the basis function component β1(θ).

Now we look at the difference between Ax and b. This difference is known as the residual. Let
us denote the positively-shifted residual (formally defined below) with ψ1. We will attempt to fit
another monomial to approximate ψ1. To do this we use the same matrix A as above, but we set
b = logψ1. The minimization is performed in the same way as above to obtain n2. In general, to
find hyperparameters ni we need to determine the value of each ψik,

ψik = P̄ (θk)− Σi−1
j=1zjΠsas′(θsas′)njsas′ − shifti−1,

where shifti−1 = min
1≤k≤K

{
P̄ (θk)− Σi−1

j=1zjΠsas′(θsas′)njsas′
}
− 1

and minimize the Euclidean distance betweenAx and the new b,

b =
(
logψi1 logψi2 · · · logψiK

)T
Note that taking the log of ψki is always allowed, since the shift term ensures ψi is strictly positive.
In particular, the −1 term in the shift ensures ψi is never zero, while the rest ensures it is never
negative. The iteration continues until the residual drops below a certain threshold, meaning our
desired level of approximation has been achieved.

Applying the same methodology to the second constraint in (3) we can find the hyperparameters
mj . In this way, we construct all basis functions βij(θ,π). Next, we must weigh them properly so
as to satisfy all three constraints. Using basis function notation, this means

minimize ε

subject to ∀θk : −ε ≤
∫

π Σijcijβij(θk,π)dπ − P̄ (θk) ≤ ε

∀πk
′

: −ε ≤
∫

θ Σijcijβij(θ,πk
′
)dθ − P̄ (πk

′
) ≤ ε

∀θk,πk
′
,πk

′′
: L(θk,πk

′
) ≥ L(θk,πk

′′
)⇒ Σijcijβi(θk)

[
βj(πk

′
)− βj(πk

′′
)
]
≤ ε

Note that the only variables are the the weights cij , which are expressed in linear terms. We use
the Simplex method [10] to solve for them. The values of the weights and hyperparameters together
define the agent’s initial belief B.

Step 2. Action selection is done by sampling a policy from the belief’s marginal. The belief’s
marginal is given by∫

θ B(θ,π) =
∫

θ Σijcijβi(θ)βj(π)dθ = ΣjzjΠsa(πsa)mjsa (4)

where zj is a normalization constant, computed by the multinomial Beta function. We can see that
the marginal has the form of a Dirichlet mixture. The agent samples a policy from this mixture and
selects an action according to that policy. This action selection method naturally progresses from
high exploration to high exploitation as the marginal belief over policies converges.
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Step 3. Suppose an agent with current belief B is in state ŝ, performs action â and observes next
state ŝ′. Then, the updated belief B′ is computed as follows.

B′(θ,π) = p(θ,π | ŝ, â, ŝ′)

=
p(θ,π) p(ŝ, â, ŝ′ | θ,π)

p(ŝ, â, ŝ′)
= z B(θ,π) θŝ,â,ŝ′

= zΣijcijΠsas′(θsas′)nisas′+δ([s,a,s
′]=[ŝ,â,ŝ′])Πsa(πsa)mjsa

where the normalization factor z can be factored into the weights cij and computed using the multi-
nomial Beta function for each corresponding Dirichlet. Note that in practice the update is performed
simply by incrementing the hyperparameters corresponding to the observed transition.

Known Limitations. There is one major limitation of the approach discussed in this section. Recall
that learning about the policy is performed by increasing the weights of policy basis function compo-
nents βj that correspond to high-utility policies. However, the components βj are pre-computed and
their number - finite. When the agent has converged to the underlying model of the environment, he
will increase the weight of the best component β∗j and will act according to policies sampled from
that component. However, this is not equivalent to using the optimal policy. In fact, to guarantee
convergence to the optimal policy one would have to include in the agent’s initial belief all possible
components βj , of which there are infinitely many. It is clear that encoding the agent’s belief as a
joint mixture of Dirichlets, while convenient, does not generally guarantee optimal rewards.

3.2 Agent’s Belief as a Marginal Distribution

Another approach we consider is one where the belief is encoded as a marginal mixture of Dirichlets
over models only. As we will see, this allows the agent to incorporate Bellman’s equation in a way
that avoids the problematic need for infinitely many basis functions.

Step 1. The inputs are the same as before: P̄ (θ), P̄ (π) and L(θ,π). However, the output consists
of two distributions: a marginalB(θ) over transition models and a conditional distribution P (π | θ)
that tells us how consistent a given policy is with a given transition model. Using those two distri-
butions, we can obtain the joint distribution trivially: B(θ,π) = B(θ)P (π | θ). The conditional
distribution P (π | θ) is constructed directly from the loss function.

P (π | θ) =
e−L(θ,π)t

Σπe−L(θ,π)t

where t is a temperature parameter that specifies how peaked the resulting distribution will be. This
method is similar to Boltzmann exploration. Since the belief B(θ) is taken only with respect to
transition models, we can encode it using a single mixture of Dirichlets.

B(θ) = ΣiciΠsas′(θsas′)nisas′ (5)

Then, we need to find the weights and hyperparameters that satisfy the following constraints.∣∣∣∣ ∀θ : B(θ) = P̄ (θ)
∀π :

∫
θ
P (π | θ)B(θ)dθ = P̄ (π)

As before, since we cannot enforce the constraints for all θ and π, we sample K transition models
θk andK ′ policiesπk

′
uniformly at random, and attempt to satisfy the constraints for those samples.

Using the same sampled points, we can also approximate the integral in the second constraint with
a sum. However, we must be careful to ensure the probabilities of sampled transition models sum
up to one. We introduce auxiliary variables pk ∈ [0, 1] (one for each sampled θk) and rewrite the
constraints as follows. ∣∣∣∣ ∀θk : ΣiciΠsas′(θksas′)

nisas′ = P̄ (θk)
∀πk′ : ΣkP (πk

′ | θk) pk = P̄ (πk
′
)

pk =
ΣiciΠsas′(θksas′)

nisas′

Σk′pk′
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We proceed by using the second constraint alone to compute the pk values. This is straightforward,
since the constraint represents a linear system. Next, we satisfy the remaining constraints to obtain
the values of the weights and hyperparameters of the belief B(θ). This is done by building and
weighing basis functions in the same way as described in the previous section.

This approach has the advantage of building only basis functions corresponding to transition models
and using them, together with the conditional distribution P (π | θ), to reason about optimal policies.
Since the basis functions are constantly updated through the closed-form belief update, even in the
case where erroneous PK is given the framework will still be able to converge to the true model of
the environment (albeit more slowly) and select optimal actions from then on.

Steps 2 and 3. Note that the belief constructed in the previous step incorporates three types of PK,
as discussed before. Nevertheless, it is much like conventional beliefs in the Bayesian reinforcement
learning literature, in the sense that it is encoded as a probability distribution over transition models.
Therefore, any existing approach can be used for the action selection and belief update steps. In our
experiments, we consider the BEETLE algorithm [7].

4 Experiments and Results

We perform four tests to assess the performance of the GRL framework: (1) we test whether the two
proposed approaches converge to the optimal policy, (2) whether constructing a belief by incorpo-
rating PK over policies and model dynamics is at all worthwhile, (3) how varying the parameters of
the model affects accuracy and (4) how the framework scales with increasing problem size.

We perform the experiments on two learning environments: a trivial 2-state 2-action abstract world
and a more realistic task assistance scenario. Fig. 1a shows the 2-state world, its actions, transition
probabilities and rewards. This world serves as a “proof-of-concept” for verifying basic algorithmic
functionality. It is clearly not suitable for testing more complex properties, such as scalability and
accuracy. Inspired by assistive technologies such as robotic assistants in nursing homes [11] and
decision-theoretic models for task assistance [12], we also test our framework on a task assistance
scenario. This scenario defines a set of state variables, which a person can modify in order to reach
some goal configuration. The actions in the model are prompt cues, that are given to the person to
assist them with making correct choices. The system must learn about the unknown behaviour of
each person at different steps of the task. Prior knowledge about a specific person or the population
can tremendously speed up adaptation to the person. This task assistance scenario allows us to vary
the size of the problem by varying the number of state variables that define the state of the world.
We vary the number of state variables from 2 to 7, which gives us problems of 36 to 8192 states and
18 to 128 unknown parameters.

Prior Knowledge. For the 2-state problem, we specify PK using Dirichlet distributions with hyper-
parameters as specified in Fig. 1a (with values in grey). Intuitively, we can interpret the values as
occurrence counts for particular events (e.g., “I believe performing a1 in s1 has a high chance of
leading back to s1, as if I had observed this happen 14 times out of 14 + 6 = 20 trials”). In this test
problem, our agent has a strong sense of the effects of action a1, but is uncertain about a2’s. The
optimal policy here is to perform a2 in s1 and a1 in s2. We give the agent a strong belief about the
policy by setting the hyperparameters corresponding to optimal actions to 50 and the rest to 1.

The task assistance problem is modeled as a factored MDP. The structure and parameters of the
conditional probability tables (CPTs) are known except for the behaviour of the user. In many
applications including this one, it is reasonable to assume that the environment dynamics can be
estimated from data except for human behaviours, which vary with each person. Hence, the agent
learns the behaviour CPT as it interacts with the user. Since it is often the case that users can carry
out most of the steps independently, we start with model and policy priors that mildly believe that
not prompting is optimal and the user will exhibit the correct behaviour at each step of the task
(hyperparameters set to 3 for no prompt and correct behaviour and 1 for all prompts and incorrect
behaviours). Note that a caregiver familiar with the user could specify a stronger and personalized
prior for the expected behaviour and the best prompting strategy.

Experiment 1: Convergence. We test whether the two approaches discussed in Sect. 3 eventually
converge to the optimal policy. We consider three agents: Agent 1 acts using a joint mixture belief,
Agent 2 uses a marginal mixture belief and Agent 3 uses the optimal policy. The last agent is
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considered as a frame of reference. We use the 2-state problem for this experiment. Cumulative
rewards gained by the three agents over 100 steps are shown in Fig. 1b.
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Figure 1: a) A simple 2-state test world. Transition probabilities are given by middle numbers of arc labels.
Trailing numbers (in grey) specify PK over models in terms of hyperparameter values. b) Rewards accumulated
by agents using different learning strategies. Agent 1 uses a joint mixture belief, Agent 2 - a marginal mixture
belief, Agent 3 - the optimal policy.

Agent 2 converges to the optimal policy reasonably quickly - this is evident from the fact that his
reward curve becomes roughly parallel to that of Agent 3. However, Agent 1 converges to a subop-
timal policy. This is due to the limitation of the joint mixture approach discussed in Sect. 3. Due to
this limitation, we do not consider the joint mixture approach in the following experiments.

Experiment 2: Utility of Joint Belief. We test whether incorporating PK over policies and transi-
tion models in the initial belief is beneficial. For the 2-state world, we construct the agent’s belief
B(θ) using the marginal mixture approach of Sect. 3. This belief takes into account the aforemen-
tioned PK. We also construct the naı̈ve belief, B′(θ) = P̄ (θ). To see which belief offers a better
representation of the true environment, we compare the average Euclidean distance between the true
model of the environment θ∗ and K sampled models θkB and θkB′ from the two beliefs B and B′.
Running 50 simulations with K = 1000 samples from each belief yields average distances that are
||θ∗ − θkB || = 0.5645 and ||θ∗ − θkB′ || = 0.7155. This shows a 21% improvement in belief ac-
curacy using B, which confirms the intuitive claim that incorporating additional PK (namely, P̄ (π)
and L(θ,π)) pays off. In general, incorporating any good PK over policies will improve accuracy.

Experiment 3: Accuracy. Since our approach approximates some integrals and samples constraints
over the parameter space, we verify how the quality of the approximation varies with the number of
model parameters. We evaluate accuracy by computing the inverse of the average distance between
the true model and sampled models from the constructed belief. Using the notation introduced in
the previous experiment, we have: distance = Σk||θ∗ − θkB ||/K. We perform this test on the task
assistance scenario, by varying two parameters: the size of the learning problem and the number
of sampled points used in belief construction. Fig. 2a shows the distance surface for K = 1000
in problems of 18 to 128 unknowns when the belief is constructed using 100 to 1000 samples.
As expected, accuracy is reduced with increasing problem size. On the other hand, increasing the
number of sampled points for belief construction seems to help up to 300 samples and does not show
a significant increase any further. This indicates that using a sample size of 300 is a good choice
for the task assistance problem. We also computed distances in terms of KL-divergence (instead of
Euclidean norm), however the surface was similar to Fig. 2a, so it is not included here.

Experiment 4: Scalability. The bottleneck of the marginal mixture method is building the loss
function, which has to compute value functions for every model-policy pair. Asymptotic (theoreti-
cal) analysis shows that the time required is quadratic in the number of samples and quadratic in the
number of states. The marginal mixture method also exhibits a cubic dependency on the number of
unknown parameters, due to solving linear constraints. However, in practice this is overshadowed
by the computation of the loss function. Fig. 2b shows belief construction times for task assistance.

Note that we did not include any experiment to evaluate the overall performance of Bayesian RL
based on the marginal mixture approach since any existing approach for belief updating and action
selection can be used and these approaches have already been evaluated in the literature.
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Figure 2: a) Distance surface for various model parameters. b) Belief construction time.

5 Conclusion

We proposed a framework that incorporates PK in terms of model dynamics, policy and the knowl-
edge implicit in Bellman’s equation. We discussed two methods for belief construction, of which
one was shown to overcome limitations intrinsically present in the other. We empirically showed that
broad PK is beneficial to incorporate and that our framework scales reasonably well with increasing
problem size. This work presents the first step towards a Global reinforcement learning.

Future work. Global reinforcement learning is only in its infancy. Here we have discussed the
encoding of PK about model dynamics and policy. The other obvious component we would like to
incorporate PK about is the optimal value function. It may also be worthwhile to investigate other
ways of specifying PK. Currently, we incorporate PK in terms of distributions over models, how-
ever, it should also be possible to specify particular constraints on actions or transition probabilities
and incorporate those directly into the constraint satisfaction problems used for belief construction.
Finally, the framework could be extended to partially observable domains.
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