
Sum-Product-Max Networks for Tractable Decision Making

Mazen Melibari §, Pascal Poupart §, Prashant Doshi ‡

§ David R. Cheriton School of Computer Science, University of Waterloo, Canada
‡ Dept. of Computer Science, University of Georgia, Athens, GA 30602, USA
§ {mmelibar,ppoupart}@uwaterloo.ca, ‡pdoshi@cs.uga.edu

Abstract
Investigations into probabilistic graphical models
for decision making have predominantly centered on
influence diagrams (IDs) and decision circuits (DCs)
for representation and computation of decision rules
that maximize expected utility. Since IDs are typi-
cally handcrafted and DCs are compiled from IDs, in
this paper we propose an approach to learn the struc-
ture and parameters of decision-making problems
directly from data. We present a new representation
called sum-product-max network (SPMN) that gen-
eralizes a sum-product network (SPN) to the class
of decision-making problems and whose solution,
analogous to DCs, scales linearly in the size of the
network. We show that SPMNs may be reduced to
DCs linearly and present a first method for learn-
ing SPMNs from data. This approach is significant
because it facilitates a novel paradigm of tractable
decision making driven by data.

1 Introduction
Influence diagram (ID) has been the graphical language of
choice for probabilistically modeling decision-making prob-
lems [Shachter, 1986; Tatman and Shachter, 1990]. IDs
extend the probabilistic inference of Bayesian networks
with decision and utility nodes to allow the computation
of expected utility and decision rules. IDs offer a gen-
eral language that can represent factored decision-making
problems such as completely- or partially-observable deci-
sion problems [Smallwood and Sondik, 1973; Kaelbling et
al., 1998]. However, unlike Bayesian networks that have
witnessed a rich portfolio of algorithms to automatically
learn their structure from data [Tsamardinos et al., 2006;
Friedman and Goldszmidt, 1998; Friedman and Koller, 2003],
no algorithms exist to the best of our knowledge for learning
the structure and parameters of IDs from data.

Recent investigations into new models for tractable prob-
abilistic inference such as arithmetic circuits [Huang et al.,
2006] and sum-product networks [Poon and Domingos, 2011]
that are suited to learn models from large datasets could
help fill this gap. Specifically, several approaches to di-
rectly learn a network polynomial that is graphically repre-
sented as a network of sum and product nodes from data

have been devised [Poon and Domingos, 2011; Adel et al., ;
Gens and Domingos, 2013; Lowd and Rooshenas, 2013]. Eval-
uations of the polynomial provide the joint or conditional
distributions as desired and are performed in time that is lin-
ear in the size of the network. Thus, arithmetic circuits and
sum-product networks represent a tractable class of inference
models compared to the generally intractable inferencing of
Bayesian networks.

Motivated by tractable inference, we generalize sum-
product networks to a new class of problems that involve
probabilistic decision making, in this paper. To enable this,
we introduce two new types of nodes: max nodes to represent
the maximization operation over different possible values of
a decision variable, and utility nodes to represent the utility
values. We refer to the resulting network as a sum-product-
max network (SPMN), whose solution provides a decision
rule that maximizes the expected utility in linear time. The
semantics of the max node is that its output is the decision that
leads to the maximal value among all decisions. Analogously
to sum-product networks, we introduce a set of properties that
guarantee the validity of the SPMN, such that the solution
of an SPMN will correspond to the expected utility obtained
from a valid embedded probabilistic model and utility function
that are encoded by the network. We also show that a SPMN
is reducible to a DC in steps linear in the size of the network.

We present methods to learn the structure and parameters of
valid SPMNs from decision-theoretic data. Such data not only
consists of instances of the random state variables but also
possible decision(s) and the corresponding valuation(s). This
is a significant advance because it brings machine learning
to decision making, which has so far relied on handcrafted
expert models. To evaluate new methods for learning SPMNs
in this paper and in the future, we establish an initial testbed
of datasets each reflecting a realistic non-sequential decision-
making problem.

2 Background
Traditional probabilistic graphical models [Koller and Fried-
man, 2009] such as Bayesian networks, Markov networks and
IDs allow a compact representation of probability distributions
and decision-theoretic problems. However, the compactness
of the representation does not ensure that inference and deci-
sion making can be done tractably (inference is #P-hard and
decision making is PSpace-hard).

2.1 Arithmetic Circuit and Sum-Product Network
An Arithmetic Circuit (AC) [Park and Darwiche, 2004] con-
sists of a directed acyclic graph of sums and products for the
interior nodes and numerical values for the leaves. ACs were
initially proposed as compiled representations of Bayesian and
Markov networks that allow fast inference. As most time in
inference queries is spent deciding what arithmetic operations
to perform rather than actually performing the operations, one
can cache the arithmetic operations that should be performed
for any query into an AC. When a query is received, it is an-
swered quickly simply by performing a bottom-up pass on the
AC. While this speeds up inference tremendously, it doesn’t
change the complexity of inference (still #P-hard). This is be-
cause an exponential blow up in the size of the AC may occur
while constructing it from a Bayesian or Markov network.

More recently, Poon et al. [2011] proposed sum-product
networks (SPN), which are equivalent to ACs in the sense that
ACs and SPNs are reducible to each other in linear time and
space. An SPN is also a directed acyclic graph of sums and
products with the difference that outgoing edges from sum
nodes are labeled with numerical values and the leaves are
indicator variables. Instead of compiling SPNs from Bayesian
networks, which may also yield an exponential blow up, Poon
et al. [2011] proposed to learn SPNs directly from data. This
ensures that the resulting model is necessarily tractable for
inference. In comparison, learning methods for Bayesian and
Markov networks yield tractable networks in terms of space,
but not always in terms of inference time and their compilation
into ACs could be exponentially large. Nevertheless, SPNs
learned from data can be converted into proportionally-sized
ACs, and more recently techniques have also been presented
to learn ACs directly from data [Lowd and Domingos, 2012].

2.2 Decision Circuits
A DC extends an AC with max nodes for optimized deci-
sion making. In other words, a DC is a directed acyclic graph
where the interior nodes are sums, products and max operators,
while the leaves are numerical values and indicator variables.
Bhattacharjya and Shachter [2007] proposed DCs as a repre-
sentation that ensures exact evaluation and solution of IDs in
time linear in the size of the network. However, similar to ACs,
DCs are obtained by compiling IDs, which may yield an expo-
nential blow up in their size. More recently, separable value
functions and conditional-independence between subproblems
in IDs is exploited to produce more compact DCs [Shachter
and Bhattacharjya, 2010].

3 Sum-Product-Max Networks
We introduce SPMNs and establish their equivalence with
DCs.

3.1 Definition and Solution
SPMNs generalize SPNs [Poon and Domingos, 2011] by
introducing two new types of nodes to an SPN: max and utility
nodes. We begin by defining an SPMN.

Definition 1 (SPMN) An SPMN over decision variables
D1, . . . , Dm, random variables X1, . . . , Xn, and utility func-
tions U1, . . . , Uk is a rooted directed acyclic graph. Its leaves

are either binary indicators of the random variables or util-
ity nodes that hold constant values. An internal node of an
SPMN is either a sum, product or max node. Each max node
corresponds to one of the decision variables and each outgo-
ing edge from a max node is labeled with one of the possible
values of the corresponding decision variable. Value of a max
node i is maxj∈Children(i) vj , where Children(i) is the set
of children of i, and vj is the value of the subgraph rooted at
child j. The sum and product nodes are defined as in the SPN.

0.6 0.00.3 1.0X X

* *

+

0.2 0.8

* *

+

0.4 0.6

MAXD

T
ru
e

F
alse

Figure 1: Example SPMN for one decision and one random
variable. Notice the rectangular max node and the utility nodes
(diamonds) in the leaves.

Figure 1 shows a generic example SPMN for a decision-
making problem with a single decision D and binary random
variable X1. Indicator nodes X = T and X = F return a 1
and 0 respectively, when the random variable X is true, and
vice versa if X is false.

We now turn to recall the concepts of information sets and
partial ordering. The information sets I0, . . . , Im are sub-
sets of the random variables such that the random variables
in the information set Ii−1 are observed before the decision
associated with variable Di, 1 ≤ i ≤ m, is made. Any in-
formation set may be empty and variables in Im need not
be observed before some decision node. An ordering be-
tween the information sets may be established as follows:
I0 ≺ D1 ≺ I1 ≺ D2 ≺ ... ≺ Dm ≺ Im. This is a partial or-
der, denoted byP≺, because variables within each information
set may be observed in any order.

Next, we define a set of properties to ensure that a SPMN
encodes a function that computes the maximum expected util-
ity (MEU) given some partial order between the variables and
some utility function U .
Definition 2 (Completeness of Sum Nodes) An SPMN is
sum-complete iff all children of the same sum node have the
same scope.
The scope of a node is the set of all random variables asso-
ciated with indicators and decision variables associated with
max nodes that appear in the SPMN rooted at that node.
Definition 3 (Decomposability of Product Nodes) An
SPMN is decomposable iff no variable appears in more than
one child of a product node.

Definition 4 (Completeness of Max Nodes) An SPMN is
max-complete iff all children of the same max node have the
same scope, where the scope is as defined previously.
Definition 5 (Uniqueness of Max Nodes) An SPMN is max-
unique iff each max node that corresponds to a decision vari-
able D appears at most once in every path from root to leaves.

Together, these properties allow us to define a valid SPMN.
Definition 6 (Validity) A SPMN is valid if it is sum-complete,
decomposable, max-complete, and max-unique.
Evaluation An SPMN is evaluated by setting the indicators
that are consistent with the evidence to 1 and the rest to 0.
Then, we perform a bottom-up pass of the network during
which operators at each node are applied to the values of the
children. The optimal decision rule is found by tracing back
(i.e., top-down) through the network and choosing the edges
that maximize the decision nodes.

We may obtain the maximum expected utility of an ID
representing a decision problem with a partial order P≺ and
utility function U by using the Sum-Max-Sum rule [Koller
and Friedman, 2009], in which we alternate between summing
over the variables in an information set and maximizing over
the decision variable that requires the information set. Theo-
rem 1 makes a connection between SPMNs and the maximum
expected utility as obtained from applying the Sum-Max-Sum
rule. We use the notation S(e) to indicate the value of a SPMN
when evaluated with evidence e.
Theorem 1 The value of a valid SPMN S is identical to the
maximum expected utility obtained from applying the Sum-
Max-Sum rule that utilizes the partial order on the random
and decision variables: S(e) = MEU(e | P≺,U).
Proof of this theorem involves establishing by induction that
the bottom-up evaluation of a valid SPMN corresponds exactly
to applying an instance of the Sum-Max-Sum rule and is given
in [tes, 2016].

3.2 Equivalence of SPMNs and DCs
SPMNs and DCs are syntactically and structurally different,
but we establish that they are semantically equivalent. The
main difference is that all numerical values in DCs appear
at the leaves whereas edges emanating from sum nodes are
labeled with weights in SPMNs. We can convert an SPMN
into a DC by inserting a product node at the end of each
weighted edge and moving the edge weight to a leaf under
the newly created product node – this adds two nodes in the
corresponding DC for each labeled edge. Hence, SPMNs are
more compact than DCs because they contain less nodes, but
semantically equivalent. However, the transformation is linear
with respect to the number of edges in the SPMN because it
involves adding precisely two nodes per labeled edge. In the
worst case, the size of the corresponding DC in terms of nodes
will be at most thrice the total number of nodes in the SPMN
– this increase is proportional.

4 Learning SPMNs
In this section we propose methods to learn the structure and
parameters of SPMNs from data. Since these methods gener-
alize existing ones for SPNs, it will be easier to describe how

to learn SPMNs, but with the understanding that DCs can be
readily obtained from SPMNs as we discussed previously.

4.1 Structure Learning
Our method for learning SPMNs labeled as LearnSPMN gen-
eralizes LearnSPN [Gens and Domingos, 2013], which is a
recursive top-down learning method for SPNs. This allows au-
tomated learning of computational models of decision-making
problems from appropriate data. LearnSPMN extends Learn-
SPN to generate the two new types of nodes introduced in
SPMNs: max and utility nodes. Equally important, the gener-
alization also requires modifying a core part of LearnSPN so
that the learned structure respects the constraints that are im-
posed by the partial order P≺ on variables involved in the de-
cision problem. Algorithm 1 describes the structure-learning
method and Fig. 2 visualizes how the algorithm proceeds.

Algorithm 1: LearnSPMN
input :D: instances, V: set of variables, i: infoset index, P≺:

partial order
output :
if |V| = 1 then

if the variable V in V is a utility then
u← estimatePr(V = True) from D;
return a utility node with the value u

else
return smoothed univariate distribution over V

else
rest← P≺[i+ 1...];
if P≺[i] is a decision variable then

for v ∈ decision values of P≺[i] do
Dv ← subset of D where P≺[i] = v

return MAXv LearnSPMN(Dv, rest, i + 1,P≺)
else

Try to partition V into independent subsets Vj while
keeping rest in one partition;
if a partition is found then

return
∏

j LearnSPMN(D,Vj, i,P≺)
else

partition D into clusters Dj of similar instances;

return
∑

j
|Dj |
|D| × LearnSPMN(Dj,V, i,P≺)

LearnSPMN takes as input a dataset D and a partial
order P≺. Each utility variable in the data is first con-
verted into a binary random variable, say U , independent
from other utility variables by using the well-known Cooper
transformation [Cooper, 1998]. 1 Specifically, Pr(U =
true|Parents(U)) = u−umin

umax−umin
where umin and umax are

the minimum and maximum values for that utility variable in
the data and Parents(U) is a joint assignment of the variables
that U depends on. Next, we duplicate each instance a fixed
number of times and replace the utility value of each instance
by an i.i.d. sample of true or false from the corresponding
distribution over U . Consequently, utility variables may be
treated as traditional random variables in the learning method.

1The same Cooper transformation also plays a key role in solving
IDs as a probabilistic inference problem.

If |𝑉|= 1

If the variable 𝑉 in 𝑽 is a utility

Return a utility node with
the estimated value of
Pr(𝑉 = 𝑇𝑟𝑢𝑒) U

Otherwise

+

V=0 V=1

If the current item in the partial order is a decision node

Return a max node

Otherwise, recurse

return a smoothed
univariate distribution
over V

MAX

Current Dataset
otherwise

Try to partition V into independent subsets, while
keeping all the variables in the rest of the partial
order together.

If a partition found

×

If no partition
found, cluster into
similar instancesReturn a product node

Recurse with the same item in the partial order

+

Recurse with the next item in the partial order

Figure 2: Similar to LearnSPN, LearnSPMN is a recursive algorithm that respects the partial order and extends it to work with
max and utility nodes.

Algorithm 1 iterates through the partial order P≺. For each
decision variable D, a corresponding max node is created.
For each set V of random variables in an information set of
the partial order, the algorithm constructs an SPN of sum and
product nodes by recursively partitioning the random variables
in non-correlated subsets and by partitioning the dataset into
clusters of similar instances. As in the original LearnSPN,
LearnSPMN can be implemented using any suitable method
to partition the variables and the instances. For example, a
pairwise χ2 or G-test can be used to find, approximately, a
partitioning of the random variables into independent subsets.
Clustering algorithms such as EM and K-means can be used
to partition the dataset into clusters of similar instances.

Figure 3 shows an example SPMN learned using our gener-
alized structure learning algorithm from decision-making data
as described above. The dataset is one of those utilized later
in the paper for evaluation.

4.2 Parameter Learning
Let D be a dataset with |D| instances, where each instance
ei is a tuple of values of observed random variables denoted
as x, values of decision variables denoted as d, and a single
utility value u that represents the utility of the joint assignment
of values for x and d; i.e., ei = 〈x,d, U(x,d) = u〉. Algo-
rithm 2 gives an overview of the parameter-learning method.
The method is split into two subtasks: (i) Learning the values
of the utility nodes, and (ii) learning the embedded probability
distribution.

Algorithm 2: SPMN Parameter Learning
input :S: SPMN, D: Dataset
output :SPMN with learned parameters
S ← learnUtilityValues(S,D);
S ← SPMN− EM(S,D);

Learning the Values of the Utility Nodes
The first subtask is to learn the values of the utility nodes in
the SPMN. We start by introducing the notion of specific-
scope. The specific-scope for an indicator node is the value

of the random variable that the indicator represents; for all
other nodes the specific-scope is the union of their childrens’
specific-scopes. For example, an indicator node Ix for X = x
has the specific-scope {x}, while an indicator node Ix̄ for
X = x̄ has the specific-scope {x̄}. A sum node over Ix and
Ix̄ has the specific-scope {x, x̄}.

A product node that has two children, one with specific-
scope {x, x̄} and another one with specific-scope {y}, will
have the specific-scope {x, x̄, y}. A simple procedure that
performs a bottom-up pass and propagates the specific-scope
of each node to its parents can be used to define the specific-
scope of all the sum and product nodes in a SPMN.

Next, for each unique instance ei in D we perform a top-
down pass where we follow all the nodes whose values in ei
are consistent with their specific-scopes. If we reach a utility
node, then we increment a counter associated with the value
(true or false) of that utility variable in the data. Once all
instances are processed, we set each utility node to the ratio
of true values (according to the counters) since this denotes
the normalized utility based on Cooper’s transformation (see
Sec. 4.1).

Learning the Embedded Probability Distribution
The second subtask is to learn the parameters of the embedded
probability distribution. In particular, we seek to learn the
weights on the outgoing edges from the sum nodes. This is
done by extending an expectation-maximization (EM) based
technique for learning parameters of SPNs [Peharz, 2015]
to make it suitable for SPMNs. For each instance ei in the
dataset, we set the indicators to their values in xi (the observed
values of the random variables in instance ei). This is followed
by computing the expected utility by evaluating the SPMN
using a bottom-up pass as described in Section 3. To integrate
the decisions di, each max node will multiply the value of
its children with either 0 or 1 depending on the value of the
corresponding decision in the instance. This multiplication is
equivalent to augmenting the SPMN with indicators for max
nodes. Since our concern is the weights of the sum nodes
only in this subtask, all utility nodes may be treated as hidden
variables with fixed probability distributions, where summing
them out will always result in value 1.

SysSt

SysStIOFail

IOFailLogicFail LogicFailROutcomeROutcome ROutcomeU1

*

U2

*

U3

*

+

w1 w2

*

+

w3

w4

U4

*

U5

*

U6

*

+

w5 w6

*

+

w7

w8

MAXRDecision

True False

*

U7

*

U8

*

MAXRDecision

True False

*

+

w9

w10

Figure 3: An example SPMN learned from the Computer Diagnostician dataset using LearnSPMN. The partial order used is
{SysSt} ≺ RDecision ≺ {LogicFail, IOFail, ROutcome}. Three different indicators used for ROutcome because it is a
ternary random variable

Algorithm 3: SPMN EM Up
input :S: SPMN, ek: instance
output :SPMN with upward-evaluation values for all nodes
- Set S indicators according to ek;
for node i in a bottom-up order of S do

if i is a sum node then
Si(k)←

∑
j∈Children(i) Sj(k)

if i is a product node then
Si(k)←

∏
j∈Children(i) Sj(k)

if i is a max node then
Si(k)←

∑
j∈Children(i) Iek[i]=jSj(k)

Algorithm 4: SPMN EM Down
input :S: SPMN after bottom-up evaluation, ek: instance
output :SPMN with partial derivatives values for all nodes
for node i in a top-down order of S do

if i is a sum node then
for j ∈ Children(i) do

∂S
∂Sj
← ∂S

∂Sj
+ wi,j

∂S
∂Si

;
if i is a max node then

for j ∈ Children(i) do
∂S
∂Sj
← ∂S

∂Sj
+ Iek[i]=j

∂S
∂Si

;
if i is a product node then

for j ∈ Children(i) do
∂S
∂Sj
← ∂S

∂Sj
+

∏
k∈Children(i)−j Sk;

We also perform a top-down pass to compute the gradient
of the nodes. The expected counts of each child of a sum node
is maintained using a counter for each child. We normalize
and assign those values to the edges from the sum nodes at
the end of each iteration. This process is repeated until the
weights converge. Algorithm 5 gives the algorithm for EM.

Algorithm 5: SPMN-EM
input :S: SPMN, D: Dataset
output :SPMN with learned weights
S ← randomInitilization(S);
repeat

for ek ∈ D do
S ← SPMN EM Up(S, ek);
S ← SPMN EM Down(S, ek);
Ni,j ← 0 For each child j of sum node i;
Ni,j ← Ni,j +

1
S(k)

∂S
∂i

+ Si(k)Wi,j ;

Wi,j =
Ni,j∑

l∈Chd(N) Ni,l

until convergence;

5 Experimental Results
We evaluate the LearnSPMN algorithm by applying it to a
testbed of 10 data sets whose attributes consist of state and
decision variables and corresponding utility values. Three of
the datasets were created by simulating a randomly generated
directed acyclic graph of nodes whose conditional probabil-
ity tables and utility tables were populated by values from
symmetric Dirichlet distributions. Consequently, these are
strictly synthetic data sets with no connection to real-world
decision-making problems. The other seven data sets repre-
sent real-world decision-making situations in fields spanning
different disciplines including health informatics, IT support,
and trading. Each of these data set was obtained by simulating
an expert system ID. Table 1 gives some descriptive statistics
for these data sets such as the number of decision variables in
each, the sizes of the data sets, the complexity of solving the
underlying expert ID. The real-world datasets and associated
metadata are available for download [tes, 2016].

We applied LearnSPMN described in the previous section
on each of these datasets. The last column of Table 1 re-

Dataset #Dec var |ID| |Dataset| |SPMN|
Random-ID 1 3 116 100K 730
Random-ID-2 5 283 100K 922
Random-ID 3 8 580 100K 2940
Export textiles 1 10 10K 73
Powerplant airpollution 2 17 10K 158
HIV screening 2 46 50K 213
Computer diagnostician 1 50 50K 186
Test strep 2 71 200K 205
Lungcancer staging 3 314 200K 274
Car Evaluation 1 3457 100K 8466

Table 1: Problem, datasets, and learned models statistics.
#Dec var is the number of decisions variables in the prob-
lem, |ID| is the total representational size of the influence
diagram (total clique size + sepsets), |Dataset| is the size of
the dataset, and |SPMN| is the size of the learned SPMN.
ports the size of the SPMN that was learned for each dataset.
While the size is usually larger than the total representational
complexity of the corresponding ID, the run time complexity
of SPMN is linear in the size of the network. Furthermore,
SPMNs analogous to SPNs tend to have deep structures that
are particularly suited to model the hidden variables. On the
other hand, the run time complexity of solving the ID may be
exponential in the size of the ID.

MEU
Data set ID SPMN ID EU ∆ %
Random-ID 1 0.6676 0.6188 0.6676 0
Random-ID 2 0.8159 0.7617 0.8159 0
Random-ID 3 0.9035 0.8832 0.8428 10.30
Export textiles 0.7068 0.6487 0.7068 0
Powerplant airpollution 0.7480 0.7281 0.6280 5.39
HIV screening 0.9497 0.9420 0.9497 0
Computer diagnostician 0.6740 0.6254 0.6740 0
Test strep 0.9987 0.9586 0.9987 0
Lungcancer staging 0.7021 0.6635 0.6957 7.63
Car Evaluation 0.5267 0.4814 0.5267 0

Table 2: Comparison of MEUs of the expert ID (true model)
and learned SPMN. The optimal decision rule from the learned
SPMN when plugged into the true model yields the EU shown
in the fourth column. A discrepancy between the ID’s MEU
and EU due to the SPMN’s decision rule means that the rule
from the SPMN does not match the one from the ID. MEU for
SPMN is the mean of 10-fold cross-validation. The largest
std. error across the folds among all the datasets was 0.00012.

To evaluate the correctness of the learned representation,
we exploit the fact that the true model –the expert ID– is also
available to us. However, we note that this may not be the
case in practice. Subsequently, we solve the SPMN bottom up
to compute the MEU and compare it with the MEU obtained
from the IDs. We report this comparison in Table 2. Notice that
the MEU from the learned SPMN differs from that obtained
from the ID. This is expected because the SPMN is learned
from a finite set of data that is necessarily an approximate
representation of a probabilistic decision-making problem.
However, the optimal decision rule may still coincide with

that from the ID. Therefore, we enter the decision rule from the
SPMN into the ID and report on the obtained EU in the fourth
column as well. Notice that it coincides with the MEU from
the ID for all but 3 of the datasets. A deeper analysis of the
SPMN’s decision rule reveals that it differs from the optimal
decisions less than or about 10% of the time as reported in
the fifth column. We obtained the difference between the two
decision rules by executing both on testing datasets and noting
the percentage of selected actions that differ.

MEU time (ms)
Data set Learning (s) SPMN ID
Random-ID 1 18.20 1.43 39.47
Random-ID-2 22.66 1.92 29.44
Random-ID 3 69.20 4.21 20.76
Export textiles 1.84 0.21 16.26
Powerplant airpollu 1.30 0.40 17.44
HIV screening 8.80 0.57 40.37
Computer diagnostician 5.69 0.35 17.51
Test strep 18.93 0.52 16.35
Lungcancer staging 16.28 0.53 20.70
Car Evaluation 201.87 9.81 27.29

Table 3: Learning time for SPMNs in seconds and a compari-
son between the MEU computation time of SPMNs and the
expert ID in milliseconds.

Finally, we report on the time taken to learn the SPMN
and to compute the MEU by both the SPMN and the expert
IDs in Table 3. A comparison between the times for the two
decision-making representations demonstrates more than an
order of magnitude in speed up in computing the MEU by the
SPMN given that the two models are available.

6 Concluding Remarks
SPMNs offer a new model for decision making whose solution
complexity is linear in the size of the model representation.
They generalize SPNs to decision-making problems and are re-
ducible to DCs.We presented an early method to learn SPMNs
from non-sequential decision-making data that learns valid net-
works, which also satisfy any problem-specific partial ordering
on the variables. Experiments on a new testbed of decision-
making data reveal that the optimal decision rules from the
learned SPMNs often coincide with those from the true model
– expert system IDs – although the MEU from the learned
model differs. Importantly, the time taken to compute the max-
imum expected utility is more than an order of magnitude less
compared to the time taken by IDs. We conclude that SPMN
is a viable decision-making model that is significantly more
tractable than previous models such as IDs. Importantly, these
models can be learned directly from data thereby providing a
way to combine machine learning and decision making, which
is critically needed for pragmatic applications of automated
decision making at a time when large datasets are pervasive.
An important avenue for future work is to investigate more
efficient structure learning algorithms; here search-and-score
templates offer an alternative.

Acknowledgments
This research was supported in part by a grant from Huawei
Technologies to Pascal Poupart and Mazen Melibari as well
as a grant from ONR to Prashant Doshi with award number
N000141310870. The authors acknowledge feedback from
participants of the University of Waterloo AI Seminar series.
Prashant Doshi performed this research while on a leave of ab-
sence at the University of Waterloo, and thanks the University
for its support.

References
[Adel et al.,] Tameem Adel, David Balduzzi, and Ali Ghodsi.

Learning the structure of sum-product networks via an svd-
based algorithm.

[Bhattacharjya and Shachter, 2007] Debarun Bhattacharjya
and Ross D Shachter. Evaluating influence diagrams with
decision circuits. In Proceedings of the conference on Un-
certainty in artificial intelligence, pages 9–16, 2007.

[Cooper, 1998] G. F Cooper. A method for using belief net-
works as influence diagrams. 1998.

[Friedman and Goldszmidt, 1998] Nir Friedman and Moises
Goldszmidt. Learning bayesian networks with local struc-
ture. In Learning in graphical models, pages 421–459.
Springer, 1998.

[Friedman and Koller, 2003] Nir Friedman and Daphne
Koller. Being bayesian about network structure. a bayesian
approach to structure discovery in bayesian networks. Ma-
chine learning, 50(1-2):95–125, 2003.

[Gens and Domingos, 2013] Robert Gens and Pedro Domin-
gos. Learning the structure of sum-product networks. In
Proceedings of The 30th International Conference on Ma-
chine Learning, pages 873–880, 2013.

[Huang et al., 2006] Jinbo Huang, Mark Chavira, and Adnan
Darwiche. Solving map exactly by searching on compiled
arithmetic circuits. In AAAI, volume 6, pages 3–7, 2006.

[Kaelbling et al., 1998] Leslie Kaelbling, Michael Littman,
and Anthony Cassandra. Planning and acting in partially ob-
servable stochastic domains. Artificial Intelligence, 101:99–
134, 1998.

[Koller and Friedman, 2009] Daphne Koller and Nir Fried-
man. Probabilistic graphical models: principles and tech-
niques. MIT press, 2009.

[Lowd and Domingos, 2012] Daniel Lowd and Pedro Domin-
gos. Learning arithmetic circuits. arXiv preprint
arXiv:1206.3271, 2012.

[Lowd and Rooshenas, 2013] Daniel Lowd and Amirmoham-
mad Rooshenas. Learning markov networks with arithmetic
circuits. In Proceedings of the Sixteenth International Con-
ference on Artificial Intelligence and Statistics, pages 406–
414, 2013.

[Park and Darwiche, 2004] James D Park and Adnan Dar-
wiche. A differential semantics for jointree algorithms.
Artificial Intelligence, 156(2):197–216, 2004.

[Peharz, 2015] Robert Peharz. Foundations of Sum-Product
Networks for Probabilistic Modeling. PhD thesis, Aalborg
University, 2015.

[Poon and Domingos, 2011] Hoifung Poon and Pedro
Domingos. Sum-product networks: A new deep archi-
tecture. In Proc. 12th Conf. on Uncertainty in Artificial
Intelligence, pages 2551–2558, 2011.

[Shachter and Bhattacharjya, 2010] Ross Shachter and De-
barun Bhattacharjya. Dynamic programming in infuence
diagrams with decision circuits. In Twenty-Sixth Annual
Conference on Uncertainty in Artificial Intelligence (UAI),
pages 509–516, 2010.

[Shachter, 1986] Ross D. Shachter. Evaluating influence dia-
grams. Operations Research, 34(6):871–882, 1986.

[Smallwood and Sondik, 1973] Richard Smallwood and Ed-
ward Sondik. The optimal control of partially observable
Markov decision processes over a finite horizon. Opera-
tions Research, 21:1071–1088, 1973.

[Tatman and Shachter, 1990] Joseph A. Tatman and Ross D.
Shachter. Dynamic programming and influence diagrams.
IEEE Transactions on Systems, Man, and Cybernetics,
20(2):365–379, 1990.

[tes, 2016] Evaluation testbed and supplementary file.
https://github.com/decisionSPMN, 2016. Ac-
cessed: April 20, 2016.

[Tsamardinos et al., 2006] Ioannis Tsamardinos, Laura E
Brown, and Constantin F Aliferis. The max-min hill-
climbing bayesian network structure learning algorithm.
Machine learning, 65(1):31–78, 2006.

