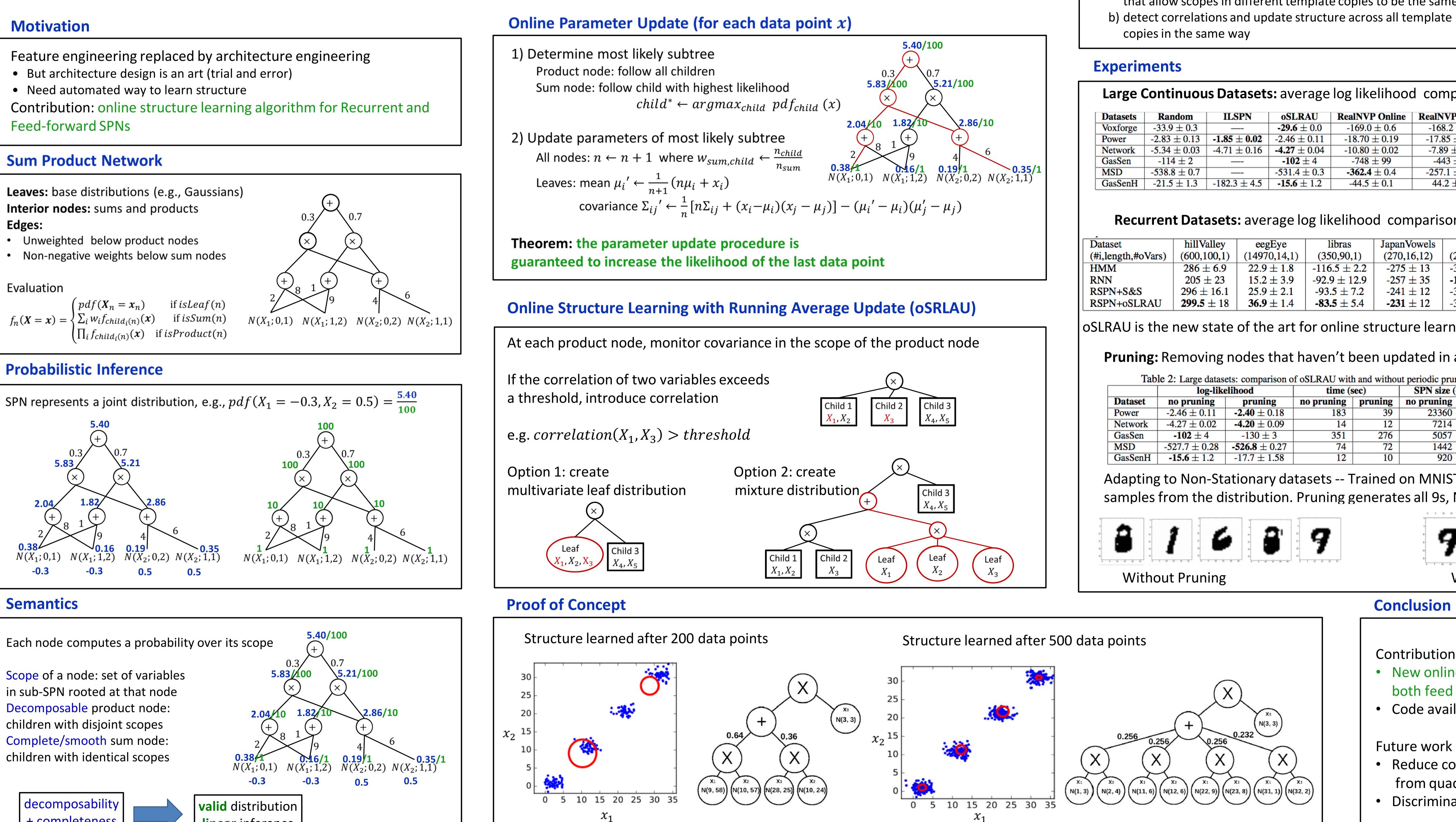
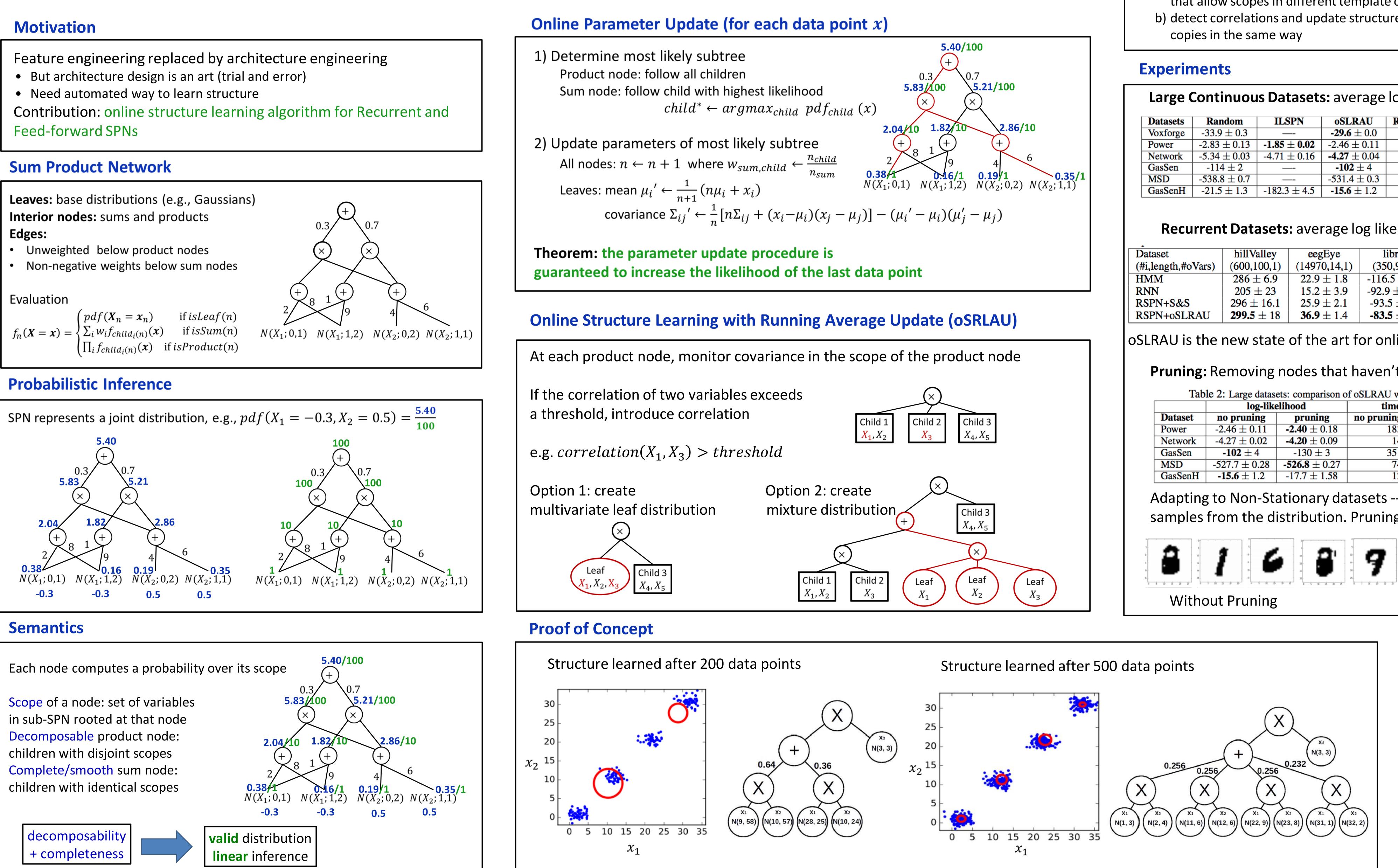
Online Structure Learning for Feed-Forward and Recurrent Sum-Product Networks

Agastya Kalra, Abdullah Rashwan, Wilson Hsu, Pascal Poupart University of Waterloo, Waterloo Al Institute, Vector Institute <u>agastya.kalra@gmail.com, {arashwan,wwhsu,ppoupart}@uwaterloo.ca</u>

if isLeaf(n) $pdf(\boldsymbol{X}_n = \boldsymbol{x}_n)$ if isSum(n) $\prod_i f_{child_i(n)}(\mathbf{x})$ if isProduct(n)





VECTOR INSTITUTE

Prashant Doshi University of Georgia pdoshi@cs.uga.edu

George Trimponias Huawei Noah's Ark Lab <u>g.trimponias@Huawei.com</u>

Recurrent SPNs (stacked copies of a template network)

- 1) Unroll network with as many template copies as length of data sequence
- 2) Share parameters across all template copies
- 3) Online parameter update: same as for feedforward networks
- 4) Online structure update:
- that allow scopes in different template copies to be the same

Large Continuous Datasets: average log likelihood comparison

Datasets	Random	ILSPN	oSLRAU	RealNVP Online	RealNVP Offline
Voxforge	-33.9 ± 0.3		-29.6 ± 0.0	-169.0 ± 0.6	-168.2 ± 0.8
Power	-2.83 ± 0.13	$\textbf{-1.85} \pm \textbf{0.02}$	-2.46 ± 0.11	-18.70 ± 0.19	-17.85 ± 0.22
Network	-5.34 ± 0.03	-4.71 ± 0.16	-4.27 ± 0.04	-10.80 ± 0.02	-7.89 ± 0.05
GasSen	-114 ± 2		-102 ± 4	-748 ± 99	-443 ± 64
MSD	-538.8 ± 0.7		-531.4 ± 0.3	-362.4 ± 0.4	-257.1 ± 2.03
GasSenH	-21.5 ± 1.3	-182.3 ± 4.5	-15.6 ± 1.2	-44.5 ± 0.1	44.2 ± 0.1

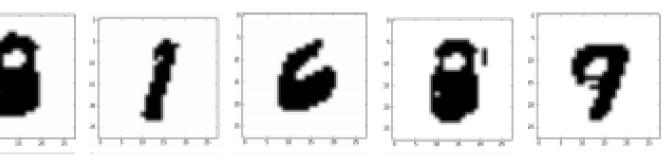
Recurrent Datasets: average log likelihood comparison

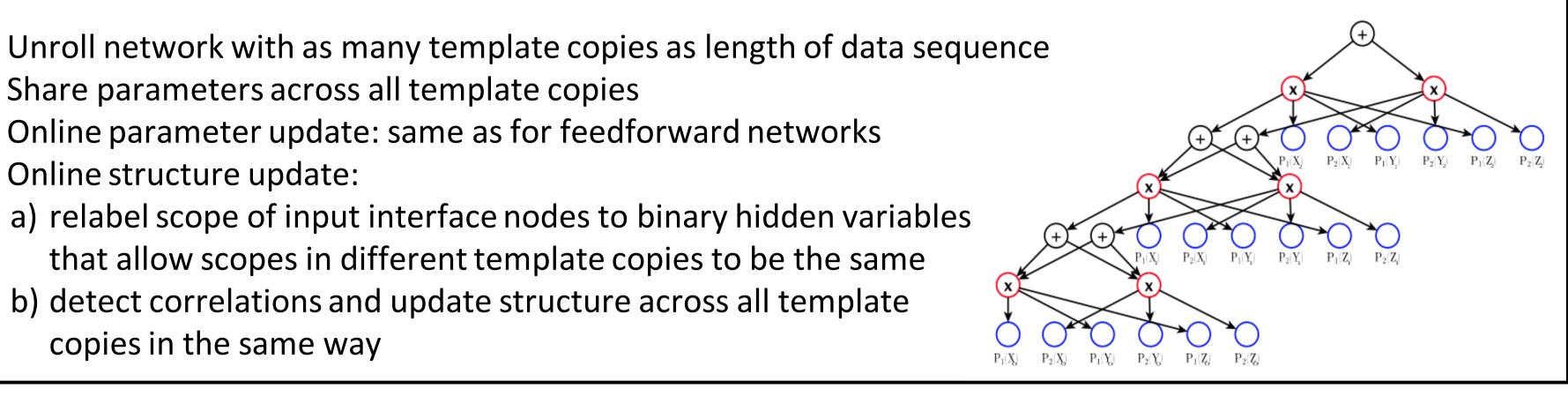
Dataset	hillValley	eegEye	libras	JapanVowels	ozLevel
(#i,length,#oVars)	(600,100,1)	(14970,14,1)	(350,90,1)	(270,16,12)	(2170,24,2)
HMM	286 ± 6.9	22.9 ± 1.8	-116.5 ± 2.2	-275 ± 13	-34.6 ± 0.3
RNN	205 ± 23	15.2 ± 3.9	$\textbf{-92.9} \pm \textbf{12.9}$	-257 ± 35	-15.3 \pm 0.8
RSPN+S&S	296 ± 16.1	25.9 ± 2.1	-93.5 ± 7.2	-241 ± 12	-34.4 ± 0.4
RSPN+oSLRAU	299.5 ± 18	36.9 ± 1.4	-83.5 ± 5.4	-231 ± 12	-30.1 ± 0.4

Pruning: Removing nodes that haven't been updated in a certain timeframe

	log-likelihood		time (sec)		SPN size (# nodes)	
Dataset	no pruning	pruning	no pruning	pruning	no pruning	pruning
Power	-2.46 ± 0.11	$\textbf{-2.40}\pm0.18$	183	39	23360	5330
Network	-4.27 ± 0.02	-4.20 \pm 0.09	14	12	7214	5739
GasSen	-102 ± 4	-130 ± 3	351	276	5057	1749
MSD	-527.7 ± 0.28	-526.8 \pm 0.27	74	72	1442	1395
GasSenH	-15.6 ± 1.2	-17.7 ± 1.58	12	10	920	467

Adapting to Non-Stationary datasets -- Trained on MNIST sorted from 0-9, then generated samples from the distribution. Pruning generates all 9s, No pruning generates many digits.





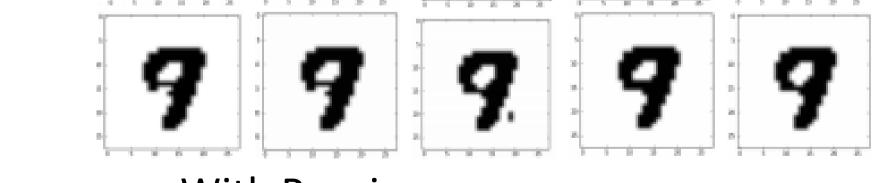
oSLRAU is better than

- Incremental LearnSPN (ILSPN) Real Non-Volume Preserving (RealNVP)
- Random Structures for gaussian SPNs.

RSPN + oSLRAU is much faster and more accurate than

- RSPN + Search and Score.
- OSLRAU is the new state of the art for online structure learning in both recurrent and regular SPNs

RAU with and without periodic pruning.	with and without periodic pruning.
--	------------------------------------



With Pruning

Conclusion

Contributions:

- New online structure learning algorithm for both feed forward and recurrent SPNs
- Code available: github.com/kalraa/spnz-sl

Future work

- Reduce complexity w.r.t. # of features from quadratic to linear
- Discriminative structure learning