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Abstract

Probabilistic graphical models provide a gen-
eral and flexible framework for reasoning
about complex dependencies in noisy do-
mains with many variables. Among the var-
ious types of probabilistic graphical mod-
els, sum-product networks (SPNs) have re-
cently generated some interest because ex-
act inference can always be done in linear
time with respect to the size of the network.
This is particularly attractive since it means
that learning an SPN from data always yields
a tractable model for inference. However,
existing parameter learning algorithms for
SPNs operate in batch mode and do not scale
easily to large datasets. In this work, we
explore online algorithms to ensure that pa-
rameter learning can also be done tractably
with respect to the amount of data. More
specifically, we propose a new Bayesian mo-
ment matching (BMM) algorithm that oper-
ates naturally in an online fashion and that
can be easily distributed. We demonstrate
the effectiveness and scalability of BMM in
comparison to online extensions of gradient
descent, exponentiated gradient and expecta-
tion maximization on 20 classic benchmarks
and 4 large scale datasets.

1 Introduction

Sum-Product networks (SPNs) were first proposed
by [Poon and Domingos, 2011] as a new type of
probabilistic graphical models. An SPN consists of an
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acyclic directed graph of sums and products that com-
putes a non-linear function of its inputs. SPNs can be
viewed as deep neural networks where non-linearity
is achieved by products instead of sigmoid, softmax,
hyperbolic tangent or rectified linear operations. They
also have clear semantics in the sense that they encode
a joint distribution over a set of leaf random variables
in the form of a hierarchical mixture model. To better
understand this distribution, SPNs can be converted
into equivalent traditional probabilistic graphical
models such as Bayesian networks (BNs) and Markov
networks (MNs) by treating sum nodes as hidden
variables [Zhao et al., 2015]. An important advantage
of SPNs over BNs and MNs is that inference can be
done without any approximation in linear time with
respect to the size of the network. Hence, SPNs are
gaining in popularity as a tractable class of proba-
bilistic graphical models. SPNs have been used in
image completion tasks [Poon and Domingos, 2011],
activity recognition [Amer and Todorovic, 2012,
Amer and Todorovic, 2015], speech model-
ing [Peharz et al., 2014b] and language model-
ing [Cheng et al., 2014].

A variety of algorithms have been proposed to
learn the structure [Rooshenas and Lowd, 2014,
Gens and Domingos, 2013] and the parame-
ters [Poon and Domingos, 2011] of SPNs from
data. Since existing algorithms operate in a batch
way, they do not scale to large datasets. In this
work, we explore online algorithms that can process
a dataset in one sweep and can continuously refine
the parameters of an SPN with a fixed structure
based on streaming data. It is relatively easy to
extend gradient descent (GD), exponentiated gra-
dient and expectation maximization (EM) to the
online setting by restricting the algorithms to a
single iteration (i.e., single pass through the data)
in which incremental updates to the parameters are
performed after processing each data point. Since
those algorithms maximize the likelihood of the data,
they are subject to overfitting and local optima (the
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optimization problem is non-convex). Furthermore,
restricting the algorithms to a single iteration means
that some information is lost. We propose a new
Bayesian learning algorithm that does not frame the
problem as optimization and therefore does not suffer
from local optima. Furthermore, Bayesian learning
is robust to overfitting and naturally operates in an
online, asynchronous and distributed fashion since
Bayes theorem allows us to incrementally update
the posterior after each data point and the updates
can be computed in any order and distributed on
different machines. The main issue with Bayesian
learning is that the posterior is often intractable,
which is the case for parameter learning in SPNs. To
that effect, we propose to approximate the posterior
after each update with a tractable distribution that
matches some moments of the exact, but intractable
posterior. We call this algorithm online Bayesian
Moment Matching (oBMM). The approximation
introduced by moment matching yields a loss of
information, however we show that oBMM performs
better than online expectation maximization (oEM),
online Exponentiated Gradient (oEG), and Stochastic
gradient descent (SGD) on a suite of benchmarks
and some large language modeling problems. We also
demonstrate the scalability of oBMM by distributing
the computation on many machines.

The paper is structured as follows. Section 2 reviews
SPNs as well as parameter learning algorithms includ-
ing gradient descent, exponentiated gradient and EM.
It also explains how to apply online versions of GD
and EM to parameter learning in SPNs. Section 3 de-
scribes oBMM to approximate Bayesian learning by
moment matching. Section 4 demonstrates the effec-
tiveness and scalability of oBMM in comparison to
oEG, oEM, and SGD on a set of benchmarks and four
large language modeling problems. Finally, Section 5
concludes and discusses future work.

2 Background

2.1 Sum-Product Networks (SPNs)

Consider a set of random variables X =
{X1, X2, ..., Xn}. A sum-product network
(SPN) [Poon and Domingos, 2011] is a probabilistic
graphical model that can be used to express a joint
distribution over those random variables. An SPN
consists of a rooted acyclic directed graph where the
interior nodes are sums or products and the leaves are
indicator variables (e.g., IX=x). There is one indicator
variable per variable assignment that returns 1 when
the assignment is true and 0 otherwise. The edges
emanating from sum nodes are labeled with weights
wnm (where n is the source node, m is the destination

node, and wnm > 0). An SPN can be viewed as
a function of the indicator variables that can be
evaluated in a bottom up pass. For a joint assignment
e of the indicator variables, the value Vn(e) of a node
n is computed recursively as follows:

Vn(e) =


1 n is an indicator set to 1 in e
0 n is an indicator set to 0 in e∏
m∈children(n) Vm(e) n is a product∑
m∈children(n) wnmVm(e) n is a sum

(1)

An SPN can be used to encode a joint distribution over
X, which is defined by the graphical structure and the
weights. The probability of a joint assignment X = x
is proportional to the value at the root of the SPN
induced by setting the indicators according to the joint
assignment.

Pr(X = x) =
Vroot(e(x))

Vroot(1)
(2)

Here e(x) indicates that IXi=xi
= 1 when xi ∈ x and

0 otherwise. The normalization constant needed to
obtain a probability is Vroot(1) where 1 is a vector of
all 1’s indicating that all the indicator variables are set
to 1. Intuitively, by setting all the indicator variables
to 1, the SPN will sum up the contributions of all the
joint assignments. Eq. 2 can also be used to compute
the marginal probability of a partial assignment Y = y
as long as we define the indicator assignment e(y) in
such a way that IXi=xi = 1 when xi ∈ y or Xi 6∈ Y,
and 0 otherwise. This means that the indicators for the
variables outside of the partial assignment are all set to
1 since we need to sum out the variables outside of the
partial assignment. Conditional probabilities can also
be computed by evaluating two partial assignments:

Pr(Y = y|Z = z) =
Pr(Y = y,Z = z)

Pr(Z = z)
(3)

=
Vroot(e(y, z))

Vroot(e(z))
(4)

Since joint, marginal and conditional queries can all be
answered by two network evaluations, exact inference
takes linear time with respect to the size of the net-
work. This is a remarkable property since inference in
Bayesian and Markov networks may take exponential
time in the size of the network.

An SPN is said to be valid when it represents a dis-
tribution and Eq. 2 and 4 can be used to answer in-
ference queries correctly [Poon and Domingos, 2011].
Decomposability and completeness are sufficient con-
ditions that ensure validity. Below we define decom-
posability and completeness in terms of the scope of a
node.
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Definition 1 (Scope) The scope of a node n is the
set of all variables that appear in the leaf indicators of
the sub-SPN rooted at n.

We can compute the scope of each node in a bot-
tom up pass as follows. If n is a leaf indicator
IXi=xi

, then scope(n) = {Xi}, otherwise scope(n) =
∪m∈children(n)scope(m).

Definition 2 (Decomposability) An SPN is de-
composable when each product node has children with
disjoint scopes.

Definition 3 (Completeness) An SPN is complete
when each sum node has children with identical scope.

2.2 Learning SPNs

Several algorithms have been proposed
to learn the parameters and the struc-
ture of an SPN [Dennis and Ventura, 2012,
Gens and Domingos, 2013, Peharz et al., 2013,
Lee et al., 2013, Rooshenas and Lowd, 2014,
Adel et al., 2015]. Parameter learning algorithms
estimate the weights of an SPN for a fixed structure.
Below, we review gradient descent (GD), and expec-
tation maximization (EM) since they are the two
most popular parameter learning algorithms for SPNs
and they can be adapted easily to online learning.
We also briefly introduce exponentiated gradient
(EG) [Kivinen and Warmuth, 1997], which has been
frequently used in machine learning to train convex
models in the online setting.

2.2.1 Stochastic Gradient Descent (SGD)

Gradient descent has been proposed
by [Poon and Domingos, 2011] to train SPNs in
batch mode. The basic idea is to treat an SPN as a
deep computational graph with probabilistic output,
so that gradient descent can be applied to maximize
the log-likelihood of the training data. Just as in
other deep models, the gradient vector of model
parameters in SPNs can be computed using the chain
rule in a top-down fashion. Hence the computational
complexity of GD for each instance scales linearly
in the size of the network. Besides its conceptual
simplicity, another advantage of GD is that it can
be easily adapted to online learning by making
updates after each observation, which is known as the
stochastic gradient descent (SGD) algorithm. SGD
is an off-the-shelf learning algorithm for many deep
models. However, the model parameters need to be
projected back into the feasible region after each
iteration of SGD. Given a data instance x, the update

formula of SGD in SPNs can be expressed as follows

wk+1 ←
[
wk − tk (∇wVroot(e(x))−∇wVroot(1))

]
ε
(5)

where tk is the step size in the kth iteration, [w]ε =
max{ε, w} is the projection operator to ε−positive re-
gion (w ≥ ε > 0).

2.2.2 Exponentiated Gradient (oEG)

Explicit projection is required in SGD in order to keep
all the intermediate solutions in the feasible region. As
an alternative, exponentiated gradient (EG) was pro-
posed by [Kivinen and Warmuth, 1997] to train lin-
ear separators in the online setting. After that, EG
has been widely applied in both online and batch
settings to train convex models, including log-linear
structured predictors [Globerson et al., 2007], condi-
tional random fields and max-margin Markov net-
works [Collins et al., 2008], etc. EG has not been ap-
plied in training SPNs or other related nonconvex deep
architectures. However, EG yields a natural training
paradigm that admits a multiplicative update in each
iteration so that there is no need to project interme-
diate gradients back to the feasible region. For this
reason, we also treat EG as a candidate online learn-
ing algorithm for SPNs.

2.2.3 Expectation Maximization (oEM)

SGD is widely applicable to any deep models with dif-
ferentiable objective functions. However, it fails to
exploit the structure that the Vroot(e(x)) can be nor-
malized to obtain a joint probability in SPNs. To uti-
lize the generative nature of SPNs, EM has been pro-
posed [Peharz, 2015] as another approach to learn the
parameters of SPNs. The key observation here is that
we can treat sum nodes in SPNs as hidden variables
in a mixture model. More specifically, for each sum
node n in a SPN, n can be viewed as a multinomial
random variable, where the number of values taken by
n corresponds to the number of edges emanating from
n. Such intuitive explanation will not affect the in-
ference procedure for the observable variables in SPNs
because all the sum nodes are summed out in the in-
ference phase. This perspective leads to the possibil-
ity of applying the EM algorithm to learn the model
parameters of SPNs. Again, EM can be extended to
online computation by making an incremental update
after each observation [Liang and Klein, 2009]. We re-
fer interested readers to [Peharz, 2015] for more details
about the EM algorithm in SPNs.
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3 Online Bayesian Moment Matching

We propose to use Bayesian learning to ob-
tain a new online algorithm. As pointed out
by [Broderick et al., 2013] Bayesian learning naturally
lends itself to online learning and distributed compu-
tation. In the case of an SPN, the weights are the
parameters to be learned. Bayesian learning starts by
expressing a prior Pr(w) over the weights. Learning
corresponds to computing the posterior distribution
Pr(w|data) based on the data observed according to
Bayes’ theorem:

Pr(w|data) ∝ Pr(w) Pr(data|w) (6)

Since the data consists of a set of instances x1:N =
{x1, ...,xN} that is assumed to be sampled identically
and independently from some underlying distribution,
we can rewrite Bayes’ theorem in a recursive way that
facilitates incremental online learning:

Pr(w|x1:n+1) ∝ Pr(w|x1:n) Pr(xn+1|w) (7)

The computation of the posterior in Bayes’ theorem
can also be distributed over several machines that each
process a subset of the data. For example, suppose
that we have K machines and a dataset of KN in-
stances, then each machine (indexed by k) can com-
pute a posterior Pr(w|x(k−1)N+1:kN ) over N instances.
Those posteriors can be combined to obtain the pos-
terior of the entire dataset as follows:

Pr(w|x1:KN ) = Pr(w)

K∏
k=1

Pr(w|x(k−1)N+1:kN )

Pr(w)
(8)

Hence, exact Bayesian learning can be performed nat-
urally in an online and distributed fashion. Unfortu-
nately, the computation of the posterior is often in-
tractable. This is the case for parameter learning in
SPNs. Thus, we propose to approximate the posterior
obtained after each data instance with a tractable dis-
tribution by matching a set of moments. We first de-
scribe how to estimate the parameters of an SPN with
a fixed structure by exact Bayesian learning. Then we
discuss the exponential complexity of this approach
and how to circumvent this intractability by Bayesian
moment matching.

3.1 Exact Bayesian Learning

The parameters of an SPN consist of the weights asso-
ciated with the edges emanating from each sum node.
The first step is to define a prior over the weights.
While the weights can be any non-negative number,
any SPN can be transformed into an equivalent nor-
mal SPN with normalized weights (i.e., wij ≥ 0 and∑
j wij = 1 ∀i ∈ sumNodes) that correspond to local

distributions [Peharz et al., 2015, Zhao et al., 2015].
Without loss of generality, we will restrict ourselves
to normal SPNs since the likelihood of a data in-
stance Pr(x) is obtained by a single network evaluation
Vroot(e(x)) (i.e., the normalization constant Vroot(1) is
always 1 in Eq. 2) and this allows us to use a Dirich-
let for the prior over each local distribution associated
with the weights of each sum node. We start with a
prior that consists of a product of Dirichlets with re-
spect to the weights wi· = {wij |j ∈ children(i)} of
each sum node i:

Pr(w) =
∏

i∈sumNodes

Dir(wi·|αi·) (9)

The posterior is obtained by multiplying the prior by
the likelihood Vroot(x) of each data instance:

Pr(w|x1:n+1) ∝ Pr(w|x1:n)Vroot(x
n+1) (10)

Since a network evaluation consists of an alternation
of sums and products, we can rewrite Vroot(x) as a
polynomial with respect to the weights. Furthermore,
this polynomial can always be re-written as a sum of
monomials that each consists of a product of weights:

Vroot(x) =
∑
c

monomialxc (w) =
∑
c

∏
ij∈monomialxc

wij

(11)
Intuitively, if we distribute the sums over the prod-
ucts in the network evaluation, we obtain a large sum
of small products of weights where each product of
weights is a monomial. The number of monomials is
exponential in the number of sum nodes. Note that
products of Dirichlets are conjugate priors with re-
spect to monomial likelihood functions. This means
that multiplying a monomial by a product of Dirich-
lets gives a distribution that is again a product of
Dirichlets. However, since our likelihood function is
a polynomial that consists of a sum of monomials, the
posterior becomes a mixture of products of Dirichlets:

Pr(w|x) (12)

=
∏

i∈sumNodes

Dir(wi·|αi·)
∑
c

monomialxc (w) (13)

=
∑
c

kc
∏

i∈sumNodes

Dir(wi·|αi· + δx,ci· ) (14)

where δx,cij =

{
1 ij ∈ monomialxc
0 ij 6∈ monomialxc

(15)

The nice thing about the above derivation is that the
posterior has a closed form (mixture of products of
Dirichlets), however it is computationally intractable.
The number of mixture components is exponential in
the number of sum nodes after the first data instance
(in the worst case). If we repeatedly update the pos-
terior after each data instance according to Eq. 7, the
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number of mixture components will grow exponen-
tially with the amount of data and doubly exponen-
tially with the number of sum nodes.

3.2 Moment Matching

Moment matching is a popular frequentist technique
to estimate the parameters of a distribution based
on the empirical moments of a dataset. For in-
stance, it has been used to estimate the parame-
ters of mixture models, latent Dirichlet allocation
and hidden Markov models while ensuring consis-
tency [Anandkumar et al., 2012]. Moment matching
can also be used in a Bayesian setting to approxi-
mate an intractable posterior distribution. More pre-
cisely, by computing a subset of the moments of an
intractable distribution, another distribution from a
tractable family that matches those moments can be
selected as a good approximation. Expectation prop-
agation [Minka and Lafferty, 2002] is a good example
of such an approach. We describe how to use Bayesian
Moment Matching to approximate mixtures of prod-
ucts of Dirichlets obtained after processing each data
instance by a single product of Dirichlets.

A Dirichlet Dir(wi·|αi·) ∝
∏
j(wij)

αij−1 is defined by
its hyper-parameters α. However it could also be de-
fined by a set of moments. Consider the following first
and second order moments which are expectations of
wij and w2

ij :

1. MDir(wij) =
∫
wij

wijDir(wi·|αi·)dwij

2. MDir(w
2
ij) =

∫
wij

w2
ijDir(wi·|αi·)dwij

We can express the hyperparameters αij in terms of
the above moments as follows:

αij = MDir(wij)
MDir(wij)−MDir(w

2
ij)

MDir(w2
ij)− (MDir(wij))2

∀ij

(16)
When approximating a distribution P by a Dirichlet,
we can compute the moments MP (wij) and MP (w2

ij)
of P and then use Eq. 16 to set the hyperparame-
ters of the Dirichlet so that it has the same first and
second order moments. More generally, since we are
interested in approximating a joint distribution P (w)
by a product of Dirichlets, we can compute the mo-
ments MP (wi·)(wij) and MP (wi·)(w

2
ij) of each marginal

P (wi·) in order to set the hyperparameters αi· of each
Dirichlet in the product of Dirichlets. Hence, instead
of explicitly computing the intractable posterior after
each data instance, we compute the first and second or-
der moments of the posterior which are sufficient to ap-
proximate the posterior by Bayesian moment matching
with a product of Dirichlets. It turns out that we can

exploit the structure of SPNs to compute efficiently
the first and second order moments of the posterior.
Algorithm 1 describes how to compute a moment of
the posterior in one bottom-up pass. Since the num-
ber of moments is linear in the size of the network and
computing each moment is also linear, the overall time
to approximate the posterior by a product of Dirichlets
is quadratic in the size of the network.

Algorithm 1 Compute marginal moment for wkij (k
is an exponent indicating the order of the moment) in
the posterior obtained after observing x

1: if isLeaf(node) then
2: return Vnode(e(x))
3: else if isProduct(node) then
4: return

∏
child computeMoment(child)

5: else if isSum(node) and node == i then
6: return

∑
childMDir(w

k
ijwi,child)×

7: computeMoment(child)
8: else
9: return

∑
child wnode,child computeMoment(child)

10: end if

In practice, many structure learning algorithms
produce SPNs that are trees (i.e., each node
has a single parent) [Dennis and Ventura, 2012,
Gens and Domingos, 2013, Peharz et al., 2013,
Rooshenas and Lowd, 2014, Peharz et al., 2014a,
Adel et al., 2015]. When an SPN is a tree, it is
possible to compute all the moments simultaneously
in time that is linear in the size of the network. The
key is to compute two coefficients coef0i , coef

1
i at each

node i in a top-down pass of the network. Algorithm 2
shows how those coefficients are computed. Once we
have the coefficients, we can compute each moment
as follows:

Mposterior(w
k
ij) =

∫
wi·

wkijDir(wi·|αi·)(coef0i

+ coef1i
∑
j′

wij′Vj′(e(x)))dwi· (17)

Here, coef0i and coef1i are additive and multiplicative
coefficients respectively that capture quantities in the
SPN above node i. We compute those coefficients in
a top down fashion. At the root, coef0root is initial-
ized to 0 since there is nothing above the root to be
added. Similarly, coef1root is initialized to 1 since there
is nothing above the root to be multiplied. Then, as
we go down the SPN, the coefficients of the parent and
network values of the siblings of node i are combined
into coef0i and coef1i .
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Algorithm 2 computeCoefficients(node) based on x
and prior

∏
iDir(wi·|αi·)

1: if isRoot(node) then
2: coef0node ← 0
3: coef1node ← 1
4: else if isProduct(parent(node)) then
5: coef0node ← coef0parent
6: coef1node ← coef1parent

∏
sibling Vsibling(e(x))

7: else if isSum(parent(node)) then

8:
coef0node ← coef0parent

+
∑
sibling

αparent,sibling∑
j αparent,j

Vsibling(e(x))

9: coef1node ← coef1parent
αparent,node∑

j αparent,j

10: end if
11: if isNotLeaf(node) then
12: computeCoefficients(child) ∀child
13: end if

4 Experiments

We evaluated oBMM on 2 sets of datasets; 20
small datasets and 4 large datasets. The 20
datasets span diverse sets of domains, and the
number of variables range from 16 to 1556 bi-
nary variables. These datasets were used be-
fore for comparisons in [Gens and Domingos, 2013,
Rooshenas and Lowd, 2014]. The 4 large datasets are
bag of words datasets and they are publicly available
online from the UCI machine learning repository. Each
dataset contains a collection of documents and the
corresponding word counts. The number of variables
(dictionary size) ranges from 6906 to 102660 variables.
The variables are binarized by ignoring the word count
and only used 0 or 1 for the absence or presence of a
word in a document.

In order to evaluate the performance of oBMM, we
evaluated it and compared it to three online algo-
rithms: stochastic gradient descent (SGD), online ex-
ponentiated gradient (oEG) and online expectation
maximization (oEM). We measure both the qual-
ity of the three algorithms in terms of average log-
likelihood scores on the held-out test data sets and
their scalability in terms of running time. To test
the statistical significance of the results, we apply the
Wilcoxon signed rank test [Wilcoxon, 1950] to com-
pute the p-value and report statistical significance
with p-value less than 0.05. The log-likelihood scores
for the structural learning algorithm from LearnSPN
[Gens and Domingos, 2013] are reported as a reference
for the comparison of the three online parameter learn-
ing algorithms. The online algorithms are not ex-
pected to beat a structural learning algorithm, but
we will show that online algorithms can outperform
LearnSPN for the large datasets in terms of running

time and accuracy.

Since we don’t do structural learning, a fixed structure
is used to perform the experiments. We used a simple
structure generator which can take 2 hyperparameters
(number of variables, and the depth of the SPN) and
generate the SPN accordingly. The generator keeps
track of the scope at each node and it starts from a
sum node as the root node that has all variables in
the scope. Recursively, for each sum node, a number
of children product nodes are generated with the same
scope as the sum node, and for each product node, a
number of children sum nodes are generated while ran-
domly factoring the scope among the children. When
the level at a product node is 2 or less, a number of
children sum nodes are generated such that each child
has only a single variable in its scope. Finally, a sum
node that contains a single variable in its scope, two
leaf nodes are generated corresponding to the indica-
tors of the variables. For the small datasets, SPNs of
depth 6 are used, while for the large datasets SPNs of
depth 4 are used.

Online Bayesian Moment matching (oBMM) doesn’t
have any hyper-parameters to tune, except for the
prior which we set randomly by selecting hyperparam-
eters αij uniformly at random in [0, 1]. For the online
Distributed Bayesian Moment Matching (oDMM), the
training set is partitioned into 10 smaller sets, and each
set is sent to a different machine to be processed. Once
the machines finish, the output sum-product networks
are collected and combined into a single sum-product
network. For SGD and oEG, we use backtracking line
search to shrink the step size if the log-likelihood scores
on the training set decreases. The initial step size is
set to 1.0 for all data sets. oEM does not require a
learning rate nor weight shrinking. To avoid possible
numeric underflow we use a smoothing constant equal
to 0.01 in all the experiments.

Table 1 shows the average log-likelihoods on the
test sets for various algorithms. oBMM outper-
forms the rest of the online algorithms in 19 out
of the 20 datasets. The results show that oBMM
has significantly better log-likelihood on most of the
datasets. Surprisingly, oBMM matches the perfor-
mance of LearnSPN in 11 datasets despite the fact that
the structure used for oBMM is generated randomly.
The advantage of online algorithms over batch algo-
rithms including LearnSPN appears when the dataset
size increases to the limit since it becomes hard to
fit it in memory. Tables 2 and 3 show the likelihood
scores and the running times of different methods on
large datasets. Dashes are used to indicate that the
algorithm didn’t finish in a week or the training data
could not fit in memory. We were able to run Learn-
SPN only on the KOS dataset since the rest of the
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Table 1: Log-likelihood scores on 20 data sets. The best results among oBMM, SGD, oEM, and oEM are
highlighted in bold font. ↑ (↓) indicates that the method has significantly better (worse) log-likelihoods than
oBMM under Wilcoxon signed rank test with p value < 0.05.

Dataset Var# LearnSPN oBMM SGD oEM oEG
NLTCS 16 -6.11 -6.07 ↓-8.76 ↓-6.31 ↓-6.85
MSNBC 17 -6.11 -6.03 ↓-6.81 ↓-6.64 ↓-6.74
KDD 64 -2.18 -2.14 ↓-44.53 ↓-2.20 ↓-2.34
PLANTS 69 -12.98 -15.14 ↓-21.50 ↓-17.68 ↓-33.47
AUDIO 100 -40.50 -40.7 ↓-49.35 ↓-42.55 ↓-46.31
JESTER 100 -53.48 -53.86 ↓-63.89 ↓-54.26 ↓-59.48
NETFLIX 100 -57.33 -57.99 ↓-64.27 ↓-59.35 ↓-64.48
ACCIDENTS 111 -30.04 -42.66 ↓-53.69 -43.54 ↓-45.59
RETAIL 135 -11.04 -11.42 ↓-97.11 ↓-11.42 ↓-14.94
PUMSB-STAR 163 -24.78 -45.27 ↓-128.48 ↓-46.54 ↓-51.84
DNA 180 -82.52 -99.61 ↓-100.70 ↓-100.10 ↓-105.25
KOSAREK 190 -10.99 -11.22 ↓-34.64 ↓-11.87 ↓-17.71
MSWEB 294 -10.25 -11.33 ↓-59.63 ↓-11.36 ↓-20.69
BOOK 500 -35.89 -35.55 ↓-249.28 ↓-36.13 ↓-42.95
MOVIE 500 -52.49 -59.50 ↓-227.05 ↓-64.76 ↓-84.82
WEBKB 839 -158.20 -165.57 ↓-338.01 ↓-169.64 ↓-179.34
REUTERS 889 -85.07 -108.01 ↓-407.96 -108.10 ↓-108.42
NEWSGROUP 910 -155.93 -158.01 ↓-312.12 ↓-160.41 ↓-167.89
BBC 1058 -250.69 -275.43 ↓-462.96 -274.82 ↓-276.97
AD 1556 -19.73 -63.81 ↓-638.43 ↓-63.83 ↓-64.11

Table 2: Log-lielihood scores on 4 large datasets. The best results are highlighted in bold font, and dashes ”-”
are used to indicate that an algorithm didn’t finish or couldn’t load the dataset into memory.

Dataset Var# LearnSPN oBMM oDMM SGD oEM oEG
KOS 6906 -444.55 -422.19 -437.30 -3492.9 -538.21 -657.13
NIPS 12419 - -1691.87 -1709.04 -7411.20 -1756.06 -3134.59
ENRON 28102 - -518.842 -522.45 -13961.40 -554.97 -14193.90
NYTIMES 102660 - -1503.65 -1559.39 -43153.60 -1189.39 -6318.71

Table 3: Running time in minutes on 4 large datasets. The best running time is highlighted in bold font, and
dashes ”-” are used to indicate that an algorithm didn’t finish or couldn’t load the dataset into memory.

Dataset Var# LearnSPN oBMM oDMM SGD oEM oEG
KOS 6906 1439.11 89.40 8.66 162.98 59.49 155.34
NIPS 12419 - 139.50 9.43 180.25 64.62 178.35
ENRON 28102 - 2018.05 580.63 876.18 694.17 883.12
NYTIMES 102660 - 12091.7 1643.60 5626.33 5540.40 6895.00
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datasets didn’t finish in a week or they were too big to
fit in memory. Both oBMM and oDMM outperform
LearnSPN, which runs 16 times slower than oBMM
and 166 times slower than oDMM. oBMM and oDMM
also outperform SGD by a large margin on the large
data sets. In terms of the running time, oDMM is sig-
nificantly faster than the rest of the algorithms since
we are distributing the training data over multiple ma-
chines.

5 Conclusion

SPNs gained popularity for being able to provide exact
inference in linear time, however learning the parame-
ters in a tractable way is still challenging. In this pa-
per, we explored online algorithms for learning the pa-
rameters of an SPN tractably. We also proposed online
Bayesian Moment Matching as an online framework for
parameters learning, and we showed how to distribute
the algorithm over many machines. We showed how
oBMM outperforms the rest of the algorithms, we also
showed that distributing the algorithm over multiple
machines is very effective when running time is the
bottleneck.
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