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Abstract
Sum-Product Networks (SPN) have recently emerged as a new class of tractable probabilistic mod-
els. Unlike Bayesian networks and Markov networks where inference may be exponential in the
size of the network, inference in SPNs is in time linear in the size of the network. Since SPNs rep-
resent distributions over a fixed set of variables only, we propose dynamic sum product networks
(DSPNs) as a generalization of SPNs for sequence data of varying length. A DSPN consists of a
template network that is repeated as many times as needed to model data sequences of any length.
We present a local search technique to learn the structure of the template network. In contrast to
dynamic Bayesian networks for which inference is generally exponential in the number of vari-
ables per time slice, DSPNs inherit the linear inference complexity of SPNs. We demonstrate the
advantages of DSPNs over DBNs and other models on several datasets of sequence data.
Keywords: Tractable Probabilistic Models; Dynamic Sum-Product Networks; Sequence Data.

1. Introduction

Probabilistic graphical models (Koller and Friedman, 2009) such as Bayesian networks (BNs) and
Markov netwoks (MNs) provide a general framework to represent multivariate distributions while
exploiting conditional independence. Over the years, many approaches have been proposed to learn
the structure of those networks (Neapolitan, 2004). However, even if the resulting network is small,
inference may be intractable (e.g., exponential in the size of the network) and practitioners must
often resort to approximate inference techniques. Recent work has focused on the development of
alternative probabilistic models such as arithmetic circuits (ACs) (Darwiche, 2003) and sum-product
networks (SPNs) (Poon and Domingos, 2011) for which inference is guaranteed to be tractable (e.g.,
linear in the size of the network for SPNs and ACs). This means that the networks learned from data
can be directly used for inference without any further approximation. So far, this work has focused
on learning models for a fixed number of variables based on fixed-length data (Lowd and Domingos,
2012; Dennis and Ventura, 2012; Gens and Domingos, 2013; Peharz et al., 2013; Rooshenas and
Lowd, 2014).

We present Dynamic Sum-Product Networks (DSPNs) as an extension to SPNs that model se-
quence data of varying length. Similar to Dynamic Bayesian networks (DBNs) (Dean and Kanazawa,
1989), DSPNs consist of a template network that repeats as many times as the length of a data se-
quence. We describe an invariance property for the template network that is sufficient to ensure that
the resulting DSPN is valid (i.e., encodes a joint distribution) by being complete and decomposable.
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Since existing structure learning algoritms for SPNs assume a fixed set of variables and fixed-length
data, they cannot be used to learn the structure of a DSPN. We propose a general anytime search-
and-score framework with a specific local search technique to learn the structure of the template
network that defines a DSPN based on data sequences of varying length. We demonstrate the ad-
vantages of DSPNs over static SPNs, DBNs, hidden Markov models (HMMs) and recurrent neural
networks (RNNs) with synthetic and real sequence data.

2. Background

Definition 1 (Sum-Product Network (Poon and Domingos, 2011)) A sum-product network (SPN)
over n binary variables X1, ..., Xn is a rooted directed acyclic graph whose leaves are the indica-
tors Ix1 , ..., Ixn and Ix̄1 , ..., Ix̄n , and whose internal nodes are sums and products. Each edge (i, j)
emanating from a sum node i has a non-negative weight, wij . The value of a product node is the
product of the values of its children. The value of a sum node is

∑
j∈Ch(i) wijvj , where Ch(i) is the

set of children of i and vj is the value of node j. The value of an SPN is the value of its root.

The value of an SPN can be seen as the output of a network polynomial whose variables are the
indicator variables and the coefficients are the weights (Darwiche, 2003). This polynomial repre-
sents a joint probability distribution over the variables if the SPN is valid. Completeness and decom-
posability (see below) are sufficient conditions for validity (Darwiche, 2003; Poon and Domingos,
2011) that impose some conditions on the scope of each node, which is the set of variables that
appear in the sub-SPN rooted at that node.

Definition 2 (Completeness) An SPN is complete iff all children of the same sum node have the
same scope.

Definition 3 (Decomposability) An SPN is decomposable iff all children of the same product node
have disjoint scopes.

Several basic distributions can be encoded by simple SPNs. For instance, a univariate distribu-
tion can be encoded using an SPN whose root node is a sum that is linked to each indicator of a
single variable X (Fig. 1(a)). A factored distribution over a set of variables X1, ..., Xn is encoded
by a root product node linked to univariate distributions for each variable Xi (Fig. 1(b)). A naive
Bayes model is encoded by a root sum node linked to a set of factored distributions (Fig. 1(c)) and
a product of naive Bayes models is encoded by a root product node linked to a set of naive Bayes
models (Fig. 1(d)).

Inference queries Pr(X = x|Y = y) can be answered by taking the ratio of the values obtained
by two bottom up passes of an SPN. In the first pass, we initialize Ix = 1, Ix̄ = 0, Iy = 1, Iȳ = 0
and set all remaining indicators to 1 in order to compute a value proportional to the desired query.
In the second pass, we initialize Iy = 1, Iȳ = 0 and set all remaining indicators to 1 in order to
compute the normalization constant. The linear complexity of inference in SPNs is an appealing
property given that inference for other models such as BNs is exponential in the size of the network
in the worst case.

While SPNs are computational graphs based on which it is difficult to infer the relationships
between the variables (e.g., conditional independence), Zhao et al. (2015) showed how to convert
SPNs into equivalent bipartite Bayesian networks without any exponential blow up. In contrast, the
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Figure 1: (a) Univariate distribution over a binary variable x. (b) Factored distribution over three
binary variables x, y, and z. (c) naive Bayes model over three binary variables x, y, and z. (d)
Product of naive Bayes models.

compilation of a Bayesian network into an equivalent SPN may yield an exponential blow up. SPNs
are syntactically equivalent to arithmetic circuits (ACs) (Park and Darwiche, 2004) in the sense that
they can be reduced to each other in linear time and space.

An extension to network polynomials for dynamic Bayesian networks (DBNs) was given in
(Brandherm and Jameson, 2004). A procedure based on variable elimination is proposed to compile
a DBN into a recursive network polynomial that can be represented by a special AC that we call
dynamic AC. Since there is a risk that the compiled dynamic AC will be intractable, the authors use
the Boyen-Koller (Boyen and Koller, 1998) method to approximate the output with a factored rep-
resentation. Thus, compiling a DBN to a dynamic AC does not reduce the complexity of inference,
but only makes it linear in the size of the compiled dynamic AC, which could be intractable. In
contrast, we propose an approach to learn tractable models directly from sequence data.

3. Dynamic Sum-Product Networks

We propose dynamic SPNs (DSPNs) as a generalization of SPNs for modeling sequence data of
varying length. While DSPNs are equivalent to dynamic ACs (i.e., reducible to each other without
any blow up), we develop a structure learning algorithm that learns a tractable DSPN directly from
sequence data (instead of learning a DBN from data and then compiling it into a potentially expo-
nentially larger DSPN or dynamic AC). We also show sufficient conditions to ensure that estimated
DSPNs are valid and therefore permit exact sequential inference in linear time.

Consider temporal sequence data that is generated by n variables (or features) over T time steps:〈
〈X1, X2, . . . , Xn〉1 , 〈X1, X2, . . . , Xn〉2 , . . . , 〈X1, X2, . . . , Xn〉T

〉
where Xi, i = 1 . . . n is a random variable

in one time slice and T may vary with each sequence. Note that non-temporal sequence data such
as sentences (sequence of words) can also be represented by sequences of repeated features. We
will label the set of repeating variables as a slice and we will index slices by t even if the sequence
is not temporal, for uniformity.

A DSPN models sequences of varying length with a fixed number of parameters by using a
template that is repeated at each slice. This is analogous to DBNs where the template corresponds
to the network that connects two consecutive slices.

Definition 4 (Template network) A template network for a slice of n binary variables at time t,
〈X1, X2, . . . , Xn〉t, is a directed acyclic graph with k roots and k + 2n leaf nodes. The 2n leaf
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Figure 2: (a) An example of a generic template network. Notice the interface nodes in red. (b)
A generic example of a complete DSPN unrolled over 3 time slices. Two template networks are
stacked on the bottom network and capped by the top network.
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an equal number of roots are interface nodes to and from the template for the previous and next
slices, respectively. The interface and interior nodes are either sum or product nodes. Each edge
(i, j) emanating from a sum node i has a non-negative weight wij as in a SPN. Furthermore, we
define a bijective mapping f between the input and output interface nodes.

Fig. 2(a) shows a generic template network. In addition, we define two special networks.

Definition 5 (Bottom network) A bottom network for the first slice of n binary variables,
〈X1, X2, . . . , Xn〉1, is a directed acyclic graph with k roots and 2n leaf nodes. The 2n leaf nodes
are the indicator variables, Ix1

1
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, ..., Ix̄1

n
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the template network for the next slice. The interface and interior nodes are either sum or product
nodes. Each edge (i, j) emanating from a sum node i has a non-negative weight wij as in a SPN.

Definition 6 (Top network) Define a top network as a rooted directed acyclic graph composed of
sum and product nodes with k leaves. The leaves of this network are interface nodes, which were
introduced previously. Each edge (i, j) emanating from a sum node i has a non-negative weight wij

as in a SPN.

Consider a data sequence of length T . A DSPN of T slices is obtained by stacking T − 1
template networks of Def. 4 on top of a bottom network. This is capped by a top network. Two
networks are stacked by merging the input interface nodes of the upper network with the output
interface nodes of the lower network. Figure 2(b) shows an example with 3 slices of 2 variables
each.

As we mentioned previously, completeness and decomposability are sufficient to ensure the
validity of an SPN. While one could check that each sum node in the DSPN is complete and each
product node is decomposable, we provide a simpler way to ensure that any DSPN is complete and
decomposable. In particular, we describe an invariance property for the template network that can be
verified directly in the template without unrolling the DSPN. This invariance property is sufficient
to ensure that completeness and decomposability are satisfied in the DSPN for any number of slices.
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Definition 7 (Invariance) A template network over 〈X1, ..., Xn〉t is invariant when the scope of
each input interface node excludes variables {Xt

1, ..., X
t
n} and for all pairs of input interface nodes,

i and j, the following properties hold:

1. scope(i) = scope(j) ∨ scope(i) ∩ scope(j) = ∅

2. scope(i) = scope(j) ⇐⇒ scope(f(i)) = scope(f(j))

3. scope(i) ∩ scope(j) = ∅ ⇐⇒ scope(f(i)) ∩ scope(f(j)) = ∅

4. all interior and output sum nodes are complete

5. all interior and output product nodes are decomposable

Here f is the bijective mapping that indicates which input nodes correspond to which output
nodes in the interface.

Intuitively, a template network is invariant if we can assign a scope to each input interface node such
that each pair of input interface nodes has the same scope or disjoint scopes, and the same relation
holds between the scopes of the corresponding output nodes. Scopes of pairs of corresponding
interface nodes must be the same or disjoint because a product node is decomposable when its
children have disjoint scopes and a sum node is complete when its children have identical scope.
Hence, verifying the identity or disjoint relation of the scopes for every pair of input interface
nodes helps us in verifying the completeness and decomposability of the remaining nodes in the
template. Theorem 8 below shows that the invariance property of Def. 7 can be used to ensure that
the corresponding DSPN is complete and decomposable.

Theorem 8 If (a) the bottom network is complete and decomposable, (b) the scopes of all pairs of
output interface nodes of the bottom network are either identical or disjoint, (c) the scopes of the
output interface nodes of the bottom network can be used to assign scopes to the input interface
nodes of the template and top networks in such a way that the template network is invariant and
the top network is complete and decomposable, then the corresponding DSPN is complete and
decomposable.

Proof We sketch a proof by induction (see the extended version for more details (Melibari et al.,
2016)). For the base case, consider a single-slice DSPN (bottom network) capped with a top net-
works. The bottom network is complete and decomposable by assumption. Since the interface
output nodes of the bottom network are merged with the input interface nodes of the top network,
they are assigned the same scope, which ensures that the top network is also complete and decom-
posable. For the induction step, assume that a DSPN of T slices is complete and decomposable.
Consider a DSPN of T + 1 slices that shares the same bottom network and the same first T − 1
copies of the template network as the DSPN of T slices. Hence the bottom network and the first
T − 1 copies of the template network in the DSPN of T +1 slices are complete and decomposable.
Since the next copy of the template network is invariant when its input interface nodes are assigned
the scopes with the same identity and disjoint relations as the scopes of the output interface nodes of
the bottom network, it is also complete and decomposable. Similarly, the top network is complete
and decomposable.
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4. Structure Learning of DSPN

As a DSPN is an SPN, we could ignore the repeated structure and learn an SPN for the number of
variables corresponding to the longest sequence. Shorter sequences could be treated as sequences
with missing data for the unobserved slices. Unfortunately, this is intractable for very long se-
quences because the inability to model the repeated structure implies that the SPN will be very large
and the learning computationally intensive. This approach may be feasible for datasets that contain
only short sequences, nevertheless the amount of data needed may be prohibitively large because in
the absence of a repeating structure the number of parameters is much higher. Furthermore, the SPN
could be asked to perform inference on a sequence that is longer than any of the training sequences,
and it is likely to perform poorly.

Alternately, it is tempting to apply existing algorithms to learn the repeated structure of the
DSPN. Unfortunately, this is not possible. As existing algorithms assume a fixed set of variables,
one could break data sequences into fixed-length segments corresponding to each slice. An SPN
can be learned from this dataset of segments. However, it is not clear how to use the resulting SPN
to construct a template network because a regular SPN has a single root while the template network
has multiple roots and an equal number of input leaves that are not indicator variables. One would
have to treat each segment as independent data instances and could not answer queries about the
probability of some variables in one slice given the values of other variables in other slices.

We present an anytime search-and-score framework to learn the structure of the template SPN
in a DSPN. It starts with an arbitrary structure and then generates several neighbouring structures.
It ranks the neighbouring structures according to a scoring function and selects the best neighbour.
These steps are repeated until a stopping criterion is met. This framework can be instantiated in
multiple ways based on the choice for the initial structure, the neighbour-generation process, the
scoring function and the stopping criterion. We proceed with the description of a specific instantia-
tion below, although other instantiations are possible.

Without loss of generality, we propose to use product nodes as the interface nodes for both
the input and output of the template network.1 We also propose to use a bottom network that is
identical to the template network after removing the nodes that do not have any indicator variable as
descendent. This way we can design a single algorithm to learn the structure of the template network
since the bottom network will be automatically determined from the learned template. We also
propose to fix the top network to a root sum node directly linked to all the input product nodes. For
the template network, we initialize the SPN rooted at each output product node to a factored model
of univariate distributions. Figure 2(a) shows an example of this initial structure with two interface
nodes and three variables. Each output product node has four children where each child is a sum
node corresponding to a univariate distribution. Three of those children are univariate distributions
linked to the indicators of the three variables, while the fourth sum node is a distribution over the
interface input nodes. On merging the interface nodes for repeated instantiations of the template, we
obtain a hierarchical mixture model. We begin with a single interface node and iteratively increase
their number until the score stops improving. Alg. 1 summarizes the steps to compute the initial
structure.

1. WLOG assume that the DSPN alternates between layers of sum and product nodes. Since a DSPN consists of a
repeated structure, there is flexibility in choosing the interfaces of the template. We chose the interfaces to be at
layers of product nodes, but the interfaces could be shifted by one level to layers of sum nodes or even traverse
several layers to obtain a mixture of product and sum nodes. These boundaries are all equivalent subject to suitable
adjustments to the bottom and top networks.
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Algorithm 1 Initial Structure

Input: trainSet, validationSet, 〈X1, ..., Xn〉 (variables for a slice)
Output: templNet: Initial Template Network Structure
g ← factoredDistribution(〈X1, ..., Xn〉)
newTempl← train(g, trainSet)
repeat templNet← newTempl; newTempl← train(templNet ∪ {g}, trainSet)
until likelihood(newTempl, validationSet) < likelihood(templNet, validationSet)

A simple scoring function is to use the likelihood of the data since exact inference in DSPNs can
be done quickly. If the goal is to produce a generative model of the data, then the likelihood of the
data is a natural criterion. If the goal is to produce a discriminative model for classification, then the
conditional likelihood of some class variables given the remaining variables is a suitable criterion.
For a given structure, parameters can be estimated using various parameter learning algorithms
including gradient ascent (Poon and Domingos, 2011) and expectation maximization (Poon and
Domingos, 2011; Peharz, 2015).

Our neighbour generation process (Alg. 2) begins by sampling a product node uniformly and
replacing the sub-SPN rooted at that product node by a new sub-SPN. Note that to satisfy the
decomposability property, a product node must partition its scope into disjoint scopes for each of
its children. Also note that different partitions of the scope can be seen as different conditional
independencies between the variables (Gens and Domingos, 2013). Hence, the search space of a
product node generally corresponds to the set of all partitions of its scope. We use the ’restricted
growth string (RGS)’ encoding of partitions to define a lexicographical order of the set of all possible
partitions (Knuth, 2006). We can select the next partition according to the lexicographic ordering or
by sampling from a distribution over all possible partitions. The distribution can be uniform in the
absence of prior knowledge or an informed one otherwise.

Since the search space is exponential in the number of variables in the scope of the product node,
we greedily split the scope into mutually independent subsets according to pairwise independence
tests applied recursively similar to (Gens and Domingos, 2013). In case no independent subsets are
found, we sample a partition at random when the number of variables is greater than some threshold
and select the next partition according to the lexicographic ordering otherwise. Alg. 3 describes the
process of finding the next partition based on which we construct a product of naive Bayes models
(Fig. 1(d)) where each naive Bayes model has two children that encode factored distributions. This
may increase or decrease the size of the template network depending on whether the new product
of naive Bayes models replaces a bigger or smaller sub-SPN at the sampled product node.

Since constructing the new template, learning its parameters, and computing its score can be
done in a time that is linear in the size of the template network and the dataset, each iteration of the
anytime search-and-score algorithm scales linearly with the size of the template network and the
amount of data.

Theorem 9 The network templates produced by Alg. 1 and 2 are invariant.

Proof Let the scope of all input interface nodes be identical. The initial structure of the template
network is a collection of factored distributions over all the variables. Hence the output interface
nodes all have the same scope (which includes all the variables). Hence, Alg. 1 produces an ini-
tial template network that is invariant. Alg. 2 replaces the sub-SPN of a product node by a new
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Algorithm 2 Generate neighbour (improved template network)

Input: trainSet, validationSet, templNet
Output: templNet

repeat
n← sample product node uniformly from templNet
newPartition← GetPartition(n)
n′ ← construct product of naiveBayes models based on newPartition
newTempl← replace n by n′ in templNet

until likelihood(newTempl, validationSet) < likelihood(templNet, validationSet)

Algorithm 3 GetPartition
Input: product node n
Output: nextPartition

if |scope(n)| > threshold then
{s1, ..., sk} ← partition scope(n) into indep. subsets
if k > 1 then return ∪ki=1GetPartition(si)
else return random partition of scope(n)

else return next lexicographic partition of scope(n) according to the RGS encoding

sub-SPN, which does not change the scope of the product node. This follows from the fact that the
new partition used to construct the new sub-SPN has the same variables as the original partition.
Since the scope of the product node under which we change the sub-SPN does not change, all nodes
above that product node, including the output interface nodes, preserve their scope. Hence Alg. 2
produces neighbour template networks that are invariant.

5. Experiments

We evaluate the performance of our anytime search-and-score method for DSPNs on several syn-
thetic and real-world sequence datasets. In addition, we measure how well the DSPNs model the
data by comparing the negative log-likelihoods with those of static SPNs learned using Learn-
SPN (Gens and Domingos, 2013), and with other dynamic models such as Hidden Markov Models
(HMM), DBNs and recurrent neural networks (RNNs). The threshold in Alg. 3 was set to 6 in all
experiments.

The synthetic datasets include three dynamic processes with different structures: sequences
of observations sampled from (i) an HMM with one hidden variable, (ii) the well-known Water
DBN (Jensen et al., 1989) and (iii) the Bayesian automated taxi (BAT) DBN (Forbes et al., 1995).
We also evaluate DSPNs with 5 real-world sequence datasets from the UCI repository (Lichman,
2013). They include applications such as online handwriting recognition (Alimoglu and Alpaydin,
1996) and speech recognition (Hammami and Sellam, 2009; Kudo et al., 1999).

We first compare DSPNs to the true model on the synthetic datasets. As LearnSPN cannot be
used with data of variable length, we include it in the synthetic datasets experiment only, where we
sample sequences of fixed length. Table 1 shows the negative log-likelihoods based on 10-fold cross
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Dataset HMM-Samples Water BAT
(#i, length, #oVars) (100, 100, 1) (100, 100, 4) (100, 100, 10)
True model 62.2 ± 0.8 249.6 ± 1.0 628.2 ± 2.0
LearnSPN 65.4 ± 0.7 270.4 ± 0.9 684.4 ± 1.3
DSPN 62.5 ± 0.7 252.4 ± 0.9 641.6 ± 1.1

Table 1: Mean negative log-likelihood and standard error based on 10-fold cross validation for
the synthetic datasets. (#i,length,#oVars) indicates the number of data instances, length of each
sequence and number of observed variables. Lower likelihoods are better.

Dataset ozLevel PenDigits ArabicDigits JapanVowels ViconPhysic
(#i,length,#oVars) (2533,24,2) (10992,16,7) (8800,40,13) (640,16,12) (200,3026,27)
HMM 56.7 ± 1.1 74.2 ± 0.1 327.5 ± 0.4 94.3 ± 0.3 40862 ± 369
HMM-SPN 49.8 ± 0.9 67.7 ± 0.6 305.8 ± 1.8 89.8 ± 1.2 38410 ± 440
RNN 16.2 ± 0.7 68.7 ± 1.3 303.6 ± 6.4 78.8 ± 2.3 57217 ± 873
Search-Score DBN 40.2 ± 4.7 67.3 ± 2.3 263.7 ± 4.6 75.6 ± 2.5 -
Reveal DBN 52.4 ± 2.5 74.4 ± 0.2 260.2 ± 1.0 71.3 ± 1.2 -
DSPN 33.0 ± 1.0 63.5 ± 0.3 257.9 ± 0.5 68.8 ± 0.3 36385 ± 682

Table 2: Mean negative log-likelihood and standard error based on 10-fold cross validation for the
real world datasets. (#i,length,#oVars) indicates the number of data instances, average length of the
sequences and number of observed variables.

validation for the synthetic datasets. In all three synthetic datasets, DSPN learned generative models
that exhibited likelihoods that are close to that of the true models. It also outperforms LearnSPN in
all three cases.

Next, we compare DSPNs to classic HMMs with parameters learned by Baum-Welch (Baum
et al., 1970), HMM-SPNs where each observation distribution is an SPN (Peharz et al., 2014), fully
observable DBNs whose structure is learned by the Reveal algorithm (Liang et al., 1998) from the
BayesNet Toolbox (Murphy, 2001), partially observable DBNs, whose structure and hidden vari-
ables are learned by search and score (Friedman et al., 1998), and RNNs with one input node, one
hidden layer consisting of long short term memory (LSTM) units (Hochreiter and Schmidhuber,
1997) and one output sigmoid unit with a cross-entropy loss function. We select LSTM units due
to their popularity and success in sequence learning (Sutskever et al., 2014). The input node corre-
sponds to the value of the current observation and the output node to the predicted value of the next
observation in the sequence. We train the network by backpropagation through time (bptt) trun-
cated to 20 time steps (Williams and Peng, 1990) with a learning rate of 0.01. Our implementation
is based on the Theano library (Theano Development Team, 2016) in Python.

Table 2 shows the results for the real datasets. DSPNs outperform the other approaches except
for one dataset where the RNN achieved better results. DSPNs are more expressive than classic
HMMs and HMM-SPNs since our search and score algorithm has the flexibility of learning a suit-
able structure with multiple interface nodes for the transition dynamics where as the structure of the
transition dynamics is fixed with a single hidden variable in classic HMMs and HMM-SPNs. DSPNs
are also more expressive than the fully observable DBNs found by Reveal since the sum nodes in
the template networks implicitly denote hidden variables. DSPNs are as expressive as the partially
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observable DBNs found by search and score, but better results are achieved by DSPNs because their
linear inference complexity allows us to explore a larger space of structures more quickly. DSPNs
are less expressive than RNNs since DSPNs are restricted to sum and product nodes while RNNs
use sum, product, max and sigmoid operators. Nevertheless, RNNs are notoriously difficult to train
due to the non-convexity of their loss function and vanishing/exploding gradient issues that arise in
backpropagation through time. This explains why RNNs did not outperform DSPNs on 4 of the 5
datasets.

Table 3 shows the time to learn and do inference with the DBN, RNN and DSPN models (the
HMM models are omitted since they do not learn any structure for the transition dynamics and
therefore are not as expressive). All models were trained till convergence or up to two days. We
report the total time for learning with Reveal and the time per iteration for learning with the other
algorithms since they are anytime algorithms. Learning DSPNs is generally faster than training
RNNs and search-and-score DBNs. The time to do inference for all the sequences in each dataset
when one variable is observed and the other variables are hidden is reported in the right hand side of
the table. DSPNs and RNNs are fast since they allow exact inference in linear time with respect to
the size of their network, while the DBNs obtained by Reveal and search-and-score are slow because
inference may be exponential in the number of hidden variables if they all become correlated.

6. Conclusion

Existing methods for learning SPNs become inadequate when the task involves modeling sequence
data such as time series data points. The specific challenge is that sequence data could be composed
of instances of different lengths. Motivated by dynamic Bayesian networks, we presented a new
model called dynamic SPN, which utilized a template network as a building block. We also defined
a notion of invariance and showed that invariant template networks can be composed safely to
ensure that the resulting DSPN is valid. We provided an anytime algorithm based on the framework
of search-and-score for learning the structure of the template network from data. As our experiments
demonstrated, a DSPN fits sequential data better than static SPNs (produced by LearnSPN). We also
showed that the DSPNs found by our search-and-score algorithm achieve higher likelihood than
competing HMMs, DBNs and RNNs on several temporal datasets. While approximate inference is
typically used in DBNs to avoid an exponential blow up, inference can be done exactly in linear
time with DSPNs.

Dataset
Learning Time (Seconds) Inference Time (Seconds)

Reveal
Per Iteration

Reveal RNN SS DBN DSPN
RNN SS DBN DSPN

ozLevel 952 56 108 54 6.3 0.1 15.6 0.1
PenDigits 3,977 558 1,463 475 15.0 0.2 30.7 0.1
ArabicDigits 16,549 2572 14,911 2,909 53.6 2.5 465.8 2.9
JapaneseVowls 516 55 363 51 15.2 0.2 69.2 0.5
ViconPhysical - 4705 - 6734 - 2274 - 1825

Table 3: Comparisons of the learning and inference times of the networks learned by Reveal, RNN,
Search-Score DBN (SS DBN) and DSPN.
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