
On the Relationship between Sum-Product Networks and Bayesian Networks

Han Zhao HAN.ZHAO@UWATERLOO.CA
Mazen Melibari MMELIBAR@UWATERLOO.CA
Pascal Poupart PPOUPART@UWATERLOO.CA

David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada

Abstract
In this paper, we establish some theoretical con-
nections between Sum-Product Networks (SPNs)
and Bayesian Networks (BNs). We prove that ev-
ery SPN can be converted into a BN in linear time
and space in terms of the network size. The key
insight is to use Algebraic Decision Diagrams
(ADDs) to compactly represent the local condi-
tional probability distributions at each node in the
resulting BN by exploiting context-specific inde-
pendence (CSI). The generated BN has a simple
directed bipartite graphical structure. We show
that by applying the Variable Elimination algo-
rithm (VE) to the generated BN with ADD rep-
resentations, we can recover the original SPN
where the SPN can be viewed as a history record
or caching of the VE inference process. To help
state the proof clearly, we introduce the notion of
normal SPN and present a theoretical analysis of
the consistency and decomposability properties.
We conclude the paper with some discussion of
the implications of the proof and establish a con-
nection between the depth of an SPN and a lower
bound of the tree-width of its corresponding BN.

1. Introduction
Sum-Product Networks (SPNs) have recently been pro-
posed as tractable deep models (Poon & Domingos, 2011)
for probabilistic inference. They distinguish themselves
from other types of probabilistic graphical models (PGMs),
including Bayesian Networks (BNs) and Markov Networks
(MNs), by the fact that inference can be done exactly in lin-
ear time with respect to the size of the network. This has
generated a lot of interest since inference is often a core
task for parameter estimation and structure learning, and
it typically needs to be approximated to ensure tractabil-

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

ity since probabilistic inference in BNs and MNs is #P-
complete (Roth, 1996).

The relationship between SPNs and BNs, and more broadly
with PGMs, is not clear. Since the introduction of SPNs in
the seminal paper of Poon & Domingos (2011), it is well
understood that SPNs and BNs are equally expressive in
the sense that they can represent any joint distribution over
discrete variables1, but it is not clear how to convert SPNs
into BNs, nor whether a blow up may occur in the con-
version process. The common belief is that there exists
a distribution such that the smallest BN that encodes this
distribution is exponentially larger than the smallest SPN
that encodes the same distribution. The key behind this
belief lies in SPNs’ ability to exploit context-specific inde-
pendence (CSI) (Boutilier et al., 1996).

While the above belief is correct for classic BNs with tabu-
lar conditional probability distributions (CPDs) that ignore
CSI, and for BNs with tree-based CPDs due to the repli-
cation problem (Pagallo, 1989), it is not clear whether it is
correct for BNs with more compact representations of the
CPDs. The other direction is clear for classic BNs with tab-
ular representation: given a BN with tabular representation
of its CPDs, we can build an SPN that represents the same
joint probability distribution in time and space complexity
that may be exponential in the tree-width of the BN. Briefly,
this is done by constructing a junction tree and translating
it into an SPN2. However, to the best of our knowledge,
it is still unknown how to convert an SPN into a BN and
whether the conversion will lead to a blow up when more
compact representations than tables and trees are used for
the CPDs.

In this paper, we prove that by adopting Algebraic Deci-
sion Diagrams (ADDs) (Bahar et al., 1997) to represent the
CPDs at each node in a BN, every SPN can be converted
into a BN in linear time and space complexity in the size of
the SPN. The generated BN has a simple bipartite structure,

1Joint distributions over continuous variables are also possi-
ble, but we will restrict ourselves to discrete variables in this pa-
per.

2http://spn.cs.washington.edu/faq.shtml

On the Relationship between Sum-Product Networks and Bayesian Networks

which facilitates the analysis of the structure of an SPN in
terms of the structure of the generated BN. Furthermore,
we show that by applying the Variable Elimination (VE)
algorithm (Zhang & Poole, 1996) to the generated BN with
ADD representation of its CPDs, we can recover the origi-
nal SPN in linear time and space with respect to the size of
the SPN.

Our contributions can be summarized as follows. First, we
present a constructive algorithm and a proof for the con-
version of SPNs into BNs using ADDs to represent the lo-
cal CPDs. The conversion process is bounded by a lin-
ear function of the size of the SPN in both time and space.
This gives a new perspective to understand the probabilis-
tic semantics implied by the structure of an SPN through
the generated BN. Second, we show that by executing VE
on the generated BN, we can recover the original SPN in
linear time and space complexity in the size of the SPN.
Combined with the first point, this establishes a clear re-
lationship between SPNs and BNs. Third, we introduce
the subclass of normal SPNs and show that every SPN
can be transformed into a normal SPN in quadratic time
and space. Compared with general SPNs, the structure of
normal SPNs exhibit more intuitive probabilistic semantics
and hence normal SPNs are used as a bridge in the conver-
sion of general SPNs to BNs.

2. Related Work
The SPN, as an inference machine, has a close connec-
tion with the broader field of knowledge representation and
knowledge compilation. In knowledge compilation, the
reasoning process is divided into two phases: an offline
compilation phase and an online query-answering phase. In
the offline phase, the knowledge base, either propositional
theory or belief network, is compiled into some tractable
target language. In the online phase, the compiled target
model is used to answer a large number of queries effi-
ciently. The key motivation of knowledge compilation is to
shift the computation that is common to many queries from
the online phase into the offline phase. As an example,
Arithmetic Circuits (ACs) have been studied and used ex-
tensively in both knowledge representation and probabilis-
tic inference (Darwiche, 2000; Huang et al., 2006; Chavira
et al., 2006). Rooshenas & Lowd (2014) recently showed
that ACs and SPNs can be converted mutually without an
exponential blow-up in both time and space. As a direct re-
sult, ACs and SPNs share the same expressiveness for prob-
abilistic reasoning. Another representation closely related
to SPNs in propositional logic and knowledge representa-
tion is the deterministic-Decomposable Negation Normal
Form (d-DNNF) (Darwiche & Marquis, 2001). Like SPNs,
d-DNNF formulas can be queried to answer satisfiability
and model counting problems. We refer interested readers

to Darwiche & Marquis (2001) and Darwiche (2001) for
more detailed discussions.

Since their introduction by Poon & Domingos (2011),
SPNs have generated a lot of interest as a tractable class
of models for probabilistic inference in machine learn-
ing. Discriminative learning techniques for SPNs have
been proposed and applied to image classification (Gens
& Domingos, 2012). Later, automatic structure learn-
ing algorithms were developed to build tree-structured
SPNs directly from data (Dennis & Ventura, 2012; Peharz
et al., 2013; Gens & Domingos, 2013; Rooshenas & Lowd,
2014). SPNs have also been applied to various fields and
have generated promising results, including activity mod-
eling (Amer & Todorovic, 2012), speech modeling (Peharz
et al., 2014) and language modeling (Cheng et al., 2014).
Theoretical work investigating the influence of the depth of
SPNs on expressiveness exists (Delalleau & Bengio, 2011),
but is quite limited. As discussed later, our results rein-
force previous theoretical results about the depth of SPNs
and provide further insights about the structure of SPNs by
examining the structure of equivalent BNs.

3. Preliminaries
We start by introducing the notation used in this paper. We
use 1 : N to abbreviate the notation {1, 2, . . . , N}. We
use a capital letter X to denote a random variable and a
bolded capital letter X1:N to denote a set of random vari-
ables X1:N = {X1, . . . , XN}. Similarly, a lowercase letter
x is used to denote a value taken by X and a bolded low-
ercase letter x1:N denotes a joint value taken by the corre-
sponding vector X1:N of random variables. We may omit
the subscript 1 : N from X1:N and x1:N if it is clear from
the context. For a random variableXi, we use xji , j ∈ 1 : J
to enumerate all the values taken by Xi. For simplicity,
we use Pr(x) to mean Pr(X = x) and Pr(x) to mean
Pr(X = x). We use calligraphic letters to denote graphs
(e.g., G). In particular, BNs, SPNs and ADDs are denoted
respectively by B, S and A.

To ensure that the paper is self contained, we briefly re-
view some background material about Algebraic Decision
Diagrams and Sum-Product Networks.

3.1. Algebraic Decision Diagram

We first give a formal definition of Algebraic Decision Di-
agrams (ADDs) for variables with Boolean domains and
then extend the definition to domains corresponding to ar-
bitrary finite sets.

Definition 1 (Algebraic Decision Diagram (Bahar et al.,
1997)). An Algebraic Decision Diagram (ADD) is a graph-
ical representation of a real function with Boolean input
variables: f : {0, 1}N 7→ R, where the graph is a rooted

On the Relationship between Sum-Product Networks and Bayesian Networks

DAG. There are two kinds of nodes in an ADD. Terminal
nodes, whose out-degree is 0, are associated with real val-
ues. Internal nodes, whose out-degree is 2, are associated
with Boolean variables Xn, n ∈ 1 : N . For each internal
node Xn, the left out-edge is labeled with Xn = FALSE
and the right out-edge is labeled with Xn = TRUE.

We extend the original definition of an ADD by allowing
it to represent not only functions of Boolean variables, but
also any function of discrete variables with a finite set as
domain. This can be done by allowing each internal node
Xn to have |Xn| out-edges and label each edge with xjn, j ∈
1 : |Xn|, where Xn is the domain of variable Xn and |Xn|
is the number of values Xn takes. Such an ADD represents
a function f : X1 × · · · × XN 7→ R, where × means the
Cartesian product between two sets. Henceforth, we will
use our extended definition of ADDs throughout the paper.

For our purpose, we will use an ADD as a compact graphi-
cal representation of local CPDs associated with each node
in a BN. This is a key insight of our constructive proof pre-
sented later. Compared with a tabular representation or
a decision tree representation of local CPDs, CPDs rep-
resented by ADDs can fully exploit CSI (Boutilier et al.,
1996) and effectively avoid the replication problem (Pa-
gallo, 1989) of the decision tree representation.

We give an example in Fig. 1 where the tabular representa-
tion, decision-tree representation and ADD representation
of a function of 4 Boolean variables is presented. Another
advantage of ADDs to represent local CPDs is that arith-
metic operations such as multiplying ADDs and summing-
out a variable from an ADD can be implemented efficiently
in polynomial time. This will allow us to use ADDs in the
Variable Elimination (VE) algorithm to recover the original
SPN after its conversion to a BN with CPDs represented by
ADDs. Readers are referred to Bahar et al. (1997) for a
more detailed and thorough discussion about ADDs.

3.2. Sum-Product Network

Before introducing SPNs, we first define the notion of net-
work polynomial, which plays an important role in our
proof. We use I[X = x] to denote an indicator that returns
1 when X = x and 0 otherwise. To simplify the notation,
we will use Ix to represent I[X = x].
Definition 2 (Network Polynomial (Poon & Domingos,
2011)). Let f(·) ≥ 0 be an unnormalized probability
distribution over a Boolean random vector X1:N . The
network polynomial of f(·) is a multilinear function∑

x f(x)
∏N

n=1 Ixn
of indicator variables, where the sum-

mation is over all possible instantiations of the Boolean
random vector X1:N .

Intuitively, the network polynomial is a Boolean expan-
sion (Boole, 1847) of the unnormalized probability dis-

tribution f(·). For example, the network polynomial of a
BN X1 → X2 is Pr(x1, x2)Ix1Ix2 + Pr(x1, x̄2)Ix1Ix̄2 +
Pr(x̄1, x2)Ix̄1

Ix2
+ Pr(x̄1, x̄2)Ix̄1

Ix̄2
.

Definition 3 (Sum-Product Network (Poon & Domingos,
2011)). A Sum-Product Network (SPN) over Boolean vari-
ables X1:N is a rooted DAG whose leaves are the indicators
Ix1
, . . . , IxN

and Ix̄1
, . . . , Ix̄N

and whose internal nodes are
sums and products. Each edge (vi, vj) emanating from a
sum node vi has a non-negative weight wij . The value of
a product node is the product of the values of its children.
The value of a sum node is

∑
vj∈Ch(vi)

wijval(vj) where
Ch(vi) are the children of vi and val(vj) is the value of
node vj . The value of an SPN S[Ix1 , Ix̄1 , . . . , IxN

, Ix̄N
] is

the value of its root.

The scope of a node in an SPN is defined as the set of vari-
ables that have indicators among the node’s descendants:
For any node v in an SPN, if v is a terminal node, say,
an indicator variable over X , then scope(v) = {X}, else
scope(v) =

⋃
ṽ∈Ch(v) scope(ṽ). Poon & Domingos (2011)

further define the following properties of an SPN:

Definition 4 (Complete). An SPN is complete iff each sum
node has children with the same scope.

Definition 5 (Consistent). An SPN is consistent iff no vari-
able appears negated in one child of a product node and
non-negated in another.

Definition 6 (Decomposable). An SPN is decomposable
iff for every product node v, scope(vi)

⋂
scope(vj) = ∅

where vi, vj ∈ Ch(v), i 6= j.

Clearly, decomposability implies consistency in SPNs. An
SPN is said to be valid iff it defines a (unnormalized) prob-
ability distribution. Poon & Domingos (2011) proved that
if an SPN is complete and consistent, then it is valid. Note
that this is a sufficient, but not necessary condition. In this
paper, we focus only on complete and consistent SPNs as
we are interested in their associated probabilistic seman-
tics. For a complete and consistent SPN S, each node v in
S defines a network polynomial fv(·) which corresponds to
the sub-SPN rooted at v. The network polynomial defined
by the root of the SPN can then be computed recursively by
taking a weighted sum of the network polynomials defined
by the sub-SPNs rooted at the children of each sum node
and a product of the network polynomials defined by the
sub-SPNs rooted at the children of each product node. The
probability distribution induced by an SPN S is defined as
PrS(x) , fS(x)∑

x fS(x) , where fS(·) is the network polyno-
mial defined by the root of the SPN S .

4. Main Results
In this section, we state the main results obtained in this
paper and then provide a discussion. Due to the space limit,

On the Relationship between Sum-Product Networks and Bayesian Networks

X1 X2 X3 X4 f(·) X1 X2 X3 X4 f(·)
0 0 0 0 0.4 1 0 0 0 0.4
0 0 0 1 0.6 1 0 0 1 0.6
0 0 1 0 0.3 1 0 1 0 0.3
0 0 1 1 0.3 1 0 1 1 0.3
0 1 0 0 0.4 1 1 0 0 0.1
0 1 0 1 0.6 1 1 0 1 0.1
0 1 1 0 0.3 1 1 1 0 0.1
0 1 1 1 0.3 1 1 1 1 0.1

(a) Tabular representation.

X1

X3 X2

X4 0.3 X3 0.1

0.4 0.6
X4 0.3

0.4 0.6

(b) Decision-Tree representation.

X1

X3

X2

X4 0.3
0.1

0.4 0.6

(c) ADD representation.

Figure 1. Different representations of the same Boolean function. The tabular representation cannot exploit CSI and the Decision-Tree
representation cannot reuse isomorphic subgraphs. The ADD representation can fully exploit CSI by sharing isomorphic subgraphs,
which makes it the most compact representation among the three representations. In Fig. 1(b) and Fig. 1(c), the left and right branches
of each internal node correspond respectively to FALSE and TRUE.

we refer the reader to the supplementary material for all the
proof details. To keep the presentation simple, we assume
without loss of generality that all the random variables are
Boolean unless explicitly stated. It is straightforward to
extend our analysis to discrete random variables with finite
support. For an SPN S, let |S| be the size of the SPN, i.e.,
the number of nodes plus the number of edges in the graph.
For a BN B, the size of B, |B|, is defined by the size of the
graph plus the size of all the CPDs in B (the size of a CPD
depends on its representation, which will be clear from the
context). The main theorems are:

Theorem 1. There exists an algorithm that converts any
complete and decomposable SPN S over Boolean variables
X1:N into a BN B with CPDs represented by ADDs in time
O(N |S|). Furthermore, S and B represent the same distri-
bution and |B| = O(N |S|).

As it will be clear later, Thm. 1 immediately leads to the
following corollary:

Corollary 1. There exists an algorithm that converts any
complete and consistent SPN S over Boolean variables
X1:N into a BN B with CPDs represented by ADDs in time
O(N |S|2). Furthermore, S and B represent the same dis-
tribution and |B| = O(N |S|2).

Remark 1. The BN B generated from S in Theorem 1 and
Corollary 1 has a simple bipartite DAG structure, where
all the source nodes are hidden variables and the terminal
nodes are the Boolean variables X1:N .

Remark 2. Assuming sum nodes alternate with product
nodes in SPN S, the depth of S is proportional to the max-
imum in-degree of the nodes in B, which, as a result, is
proportional to a lower bound of the tree-width of B.

Theorem 2. Given the BN B with ADD representation of
CPDs generated from a complete and decomposable SPN

S over Boolean variables X1:N , the original SPN S can be
recovered by applying the Variable Elimination algorithm
to B in O(N |S|).
Remark 3. The combination of Theorems 1 and 2 shows
that distributions for which SPNs allow a compact repre-
sentation and efficient inference, BNs with ADDs also al-
low a compact representation and efficient inference (i.e.,
no exponential blow up).

To make the upcoming proofs concise, we first define a
normal form for SPNs and show that every complete and
consistent SPN can be transformed into a normal SPN in
quadratic time and space without changing the network
polynomial. We then derive the proofs with normal SPNs.
Note that we only focus on SPNs that are complete and con-
sistent. Hence, when we refer to an SPN, we assume that it
is complete and consistent without explicitly stating this.

4.1. Normal Form

For an SPN S, let fS(·) be the network polynomial defined
at the root of S. Define the height of an SPN to be the
length of the longest path from the root to a terminal node.
Definition 7. An SPN is said to be normal if

1. It is complete and decomposable.
2. For each sum node in the SPN, the weights of the

edges emanating from the sum node are nonnegative
and sum to 1.

3. Every terminal node in the SPN is a univariate dis-
tribution over a Boolean variable and the size of the
scope of a sum node is at least 2 (sum nodes whose
scope is of size 1 are reduced into terminal nodes).

Theorem 3. For any complete and consistent SPN S, there
exists a normal SPN S ′ such that PrS(·) = PrS′(·) and
|S ′| = O(|S|2).

On the Relationship between Sum-Product Networks and Bayesian Networks

An example of a normal SPN constructed from a general
SPN is depicted in Fig. 2.

+

× × ×

+ + + +

Ix1
Ix̄1

Ix2
Ix̄2

10
6

9

6

4 9
1 6

14 2
8

+

× × ×

X1 X1 X2 X2

(0.6, 0.4) (0.9, 0.1) (0.3, 0.7) (0.2, 0.8)

4
7 6

35

9
35

Normal Form

Figure 2. Transform an SPN into a normal form. Terminal nodes
which are probability distributions over a single variable are rep-
resented by a double-circle.

4.2. SPN to BN

In order to construct a BN from an SPN, we require the
SPN to be in a normal form, otherwise we can first trans-
form it into a normal form by Thm. 3 using the algorithms
provided in the supplementary material.

Let S be a normal SPN over X1:N . Before showing how
to construct a corresponding BN, we first give some intu-
itions. One useful view is to associate each sum node in
an SPN with a hidden variable. For example, consider a
sum node v ∈ S with out-degree l. Since S is normal, we
have

∑l
i=1 wi = 1 and wi ≥ 0,∀i ∈ 1 : l. This natu-

rally suggests that we can associate a hidden discrete ran-
dom variable Hv with multinomial distribution Prv(Hv =
i) = wi, i ∈ 1 : l for each sum node v ∈ S. Therefore,
S can be thought as defining a joint probability distribu-
tion over X1:N and H = {Hv | v ∈ S, v is a sum node}
where X1:N are the observable variables and H are the
hidden variables. When doing inference with an SPN, we
implicitly sum out all the hidden variables H and compute
PrS(x) =

∑
h PrS(x,h). Associating each sum node in

an SPN with a hidden variable not only gives us a concep-
tual understanding of the probability distribution defined
by an SPN, but also helps to elucidate one of the key prop-
erties implied by the structure of an SPN as summarized
below:

Proposition 1. Given a normal SPN S, let p be a product
node in S with l children. Let v1, . . . , vk be sum nodes
which lie on a path from the root of S to p. Then

Pr
S

(x|scope(p)

∣∣∣ Hv1
= v∗1 , . . . ,Hvk = v∗k) =

l∏
i=1

Pr
S

(x|scope(pi)

∣∣∣ Hv1 = v∗1 , . . . ,Hvk = v∗k) (1)

where Hv = v∗ means the sum node v selects its v∗th
branch and x|A denotes restricting x by set A, pi is the ith
child of product node p.

Note that there may exist multiple paths from the root to
p in S. Each such path admits the factorization stated in
Eq. 1. Eq. 1 explains two key insights implied by the struc-
ture of an SPN that will allow us to construct an equivalent
BN with ADDs. First, CSI is efficiently encoded by the
structure of an SPN using Proposition 1. Second, the DAG
structure of an SPN allows multiple assignments of hidden
variables to share the same factorization, which effectively
avoids the replication problem present in decision trees.

Based on the observations above and with the help of the
normal form for SPNs, we now proceed to prove the first
main result in this paper: Thm. 1. First, we present the
algorithm to construct the structure of a BN B from S in
Alg. 1. In a nutshell, Alg. 1 creates an observable variable

Algorithm 1 Build BN Structure
Input: normal SPN S
Output: BN B = (BV ,BE)

1: R← root of S
2: if R is a terminal node over variable X then
3: Create an observable variable X
4: BV ← BV ∪ {X}
5: else
6: for each child Ri of R do
7: if BN has not been built for SRi then
8: Recursively build BN Structure for SRi

9: end if
10: end for
11: if R is a sum node then
12: Create a hidden variable HR associated with R
13: BV ← BV ∪ {HR}
14: for each observable variable X ∈ SR do
15: BE ← BE ∪ {(HR, X)}
16: end for
17: end if
18: end if

X in B for each terminal node overX in S (Lines 2-4). For
each internal sum node v in S, Alg. 1 creates a hidden vari-
able Hv associated with v and builds directed edges from
Hv to all observable variables X appearing in the sub-SPN
rooted at v (Lines 11-17). The BN B created by Alg. 1 has
a directed bipartite structure with a layer of hidden vari-
ables pointing to a layer of observable variables. A hidden
variable H points to an observable variable X in B iff X
appears in the sub-SPN rooted at H in S.

We now present Alg. 2 and 3 to build ADDs for each ob-
servable variable X and hidden variable H in B. For each
hidden variable H , Alg. 3 builds AH as a decision stump3

obtained by finding H and its associated weights in S.
Consider ADDs built by Alg. 2 for observable variables
Xs. Let X be the current observable variable we are con-
sidering. Basically, Alg. 2 is a recursive algorithm applied
to each node in S whose scope intersects with {X}. There

3A decision stump is a decision tree with one variable.

On the Relationship between Sum-Product Networks and Bayesian Networks

Algorithm 2 Build CPD using ADD, observable variable
Input: normal SPN S, variable X
Output: ADD AX

1: if ADD has already been created for S and X then
2: AX ← retrieve ADD from cache
3: else
4: R← root of S
5: if R is a terminal node then
6: AX ← decision stump rooted at R
7: else if R is a sum node then
8: Create a node HR into AX

9: for each Ri ∈ Ch(R) do
10: Link BuildADD(SRi , X) as ith child of HR

11: end for
12: else if R is a product node then
13: Find child SRi such that X ∈ scope(Ri)
14: AX ← BuildADD(SRi , X)
15: end if
16: store AX in cache
17: end if

Algorithm 3 Build CPD using ADD, hidden variable
Input: normal SPN S, variable H
Output: ADD AH

1: Find the sum node H in S
2: AH ← decision stump rooted at H in S

are three cases. If the current node is a terminal node, then
it must be a probability distribution overX . In this case we
simply return the decision stump at the current node. If the
current node is a sum node, then due to the completeness of
S, we know that all the children of R share the same scope
with R. We first create a node HR corresponding to the
hidden variable associated with R into AX (Line 8) and
recursively apply Alg. 2 to all the children of R and link
them to HR respectively. If the current node is a product
node, then due to the decomposability of S, we know that
there will be a unique child of R whose scope intersects
with {X}. We recursively apply Alg. 2 to this child and
return the resulting ADD (Lines 12-15).

Equivalently, Alg. 2 can be understood in the following
way: we extract the sub-SPN induced by {X} and con-
tract4 all the product nodes in it to obtain AX . Note that
the contraction of product nodes will not add more edges
into AX since the out-degree of each product node in the
induced sub-SPN must be 1 due to the decomposability of
the product node. We illustrate the application of Alg. 1, 2
and 3 on the normal SPN in Fig. 2, which results in the BN
B with CPDs represented by ADDs shown in Fig. 3.

Theorem 4. For any normal SPN S over X1:N , the BN B
constructed by Alg. 1, 2 and 3 encodes the same probability
distribution, i.e., PrS(x) = PrB(x),∀x.

4In graph theory, the contraction of a node v in a DAG is the
operation that connects each parent of v to each child of v and
then delete v from the graph.

The proof is by induction on the height of S (see the sup-
plementary material for more details).

Theorem 5. |B| = O(N |S|), where BN B is constructed
by Alg. 1, 2 and 3 from normal SPN S over X1:N .

Theorem 6. For any normal SPN S over X1:N , Alg. 1, 2
and 3 construct an equivalent BN in time O(N |S|).

4.3. BN to SPN

Algorithm 4 Multiplication of two symbolic ADDs, ⊗
Input: Symbolic ADD AX1 , AX2

Output: Symbolic ADD AX1,X2 = AX1 ⊗AX2

1: R1 ← root of AX1 , R2 ← root of AX2

2: if R1 and R2 are both variable nodes then
3: if R1 = R2 then
4: Create a node R = R1 into AX1,X2

5: for each r ∈ dom(R) do
6: Ar

X1
← Ch(R1)|r

7: Ar
X2
← Ch(R2)|r

8: Ar
X1,X2

← Ar
X1
⊗Ar

X2

9: Link Ar
X1,X2

to the rth child of R in AX1,X2

10: end for
11: else
12: AX1,X2 ← create a symbolic node ⊗
13: Link AX1 and AX2 as two children of ⊗
14: end if
15: else if R1 is a variable node and R2 is ⊗ then
16: if R1 appears as a child of R2 then
17: AX1,X2 ← AX2

18: AR1
X1,X2

← AX1 ⊗A
R1
X2

19: else
20: Link AX1 as a new child of R2

21: AX1,X2 ← AX2

22: end if
23: else if R1 is ⊗ and R2 is a variable node then
24: if R2 appears as a child of R1 then
25: AX1,X2 ← AX1

26: AR2
X1,X2

← AX2 ⊗A
R2
X1

27: else
28: Link AX2 as a new child of R1

29: AX1,X2 ← AX1

30: end if
31: else
32: AX1,X2 ← create a symbolic node ⊗
33: Link AX1 and AX2 as two children of ⊗
34: end if
35: Merge connected product nodes in AX1,X2

It is known that a BN with CPDs represented by tables can
be converted into an SPN by first converting the BN into
a junction tree and then translating the junction tree into
an SPN. The size of the generated SPN, however, will be
exponential in the tree-width of the original BN since the
tabular representation of CPDs is ignorant of CSI. Hence,
the generated SPN loses its power to compactly represent
some BNs with high tree-width, yet, with CSI in its CPDs.

In this section, we focus on BNs with ADDs that are con-
structed using Alg. 2 and 3 from normal SPNs. We show

On the Relationship between Sum-Product Networks and Bayesian Networks

+

× × ×

X1 X1 X2 X2

(0.6, 0.4) (0.9, 0.1) (0.3, 0.7) (0.2, 0.8)

4
7

6
35

9
35

H

X1 X2

HAH =

4
7

6
35

9
35

h1 h2 h3

H = AX1

X1 X1

0.6 0.4 0.9 0.1

h1

h2
h3

x1
x̄1

x1
x̄1

HAX2 =

X2 X2

0.3 0.7 0.2 0.8

h1 h2

h3

x2
x̄2

x2
x̄2

Figure 3. Construct a BN with CPDs represented by ADDs from an SPN. On the left, the induced sub-SPNs used to create AX1 and
AX2 by Alg. 2 are indicated in blue and green respectively. The decision stump used to create AH by Alg. 3 is indicated in red.

that when applying VE to those BNs with ADDs we can
recover the original normal SPNs. The key insight is that
the structure of the original normal SPN naturally defines
a global variable ordering that is consistent with the topo-
logical ordering of every ADD constructed.

In order to apply VE to a BN with ADDs, we need to
show how to apply two common operations used in VE,
i.e., multiplication of two factors and summing-out a hid-
den variable, on ADDs. For our purpose, we use a sym-
bolic ADD as an intermediate representation during the in-
ference process of VE by allowing symbolic operations,
such as +,−,×, / to appear as internal nodes in ADDs.
In this sense, an ADD can be viewed as a special type
of symbolic ADD where all the internal nodes are vari-
ables. The same trick was applied by (Chavira & Dar-
wiche, 2007) in their compilation approach. For example,
given symbolic ADDs AX1 over X1 and AX2 over X2,
the multiplication of those ADDs returns a new symbolic
ADD AX1,X2

over X1, X2 such that AX1,X2
(x1, x2) ,

(AX1
⊗AX2

) (x1, x2) = AX1
(x1) × AX2

(x2). To sim-
plify the presentation, we choose the inverse topological
ordering of the hidden variables in the original SPN S as
the elimination order used in VE. This helps to avoid the
situations where a multiplication is applied to a sum node
in symbolic ADDs. Other elimination orders could be used,
but a more detailed discussion of sum nodes is needed. The
algorithm for multiplying two symbolic ADDs is listed in
Alg. 4. It is important to point out here that the time com-
plexity of multiplication between two symbolic ADDs is
O(|S|), i.e., bounded by the size of the original SPN S
since all the ADDs constructed by Alg. 2 are induced sub-
SPNs with contraction of product nodes from the original
SPN S. Please refer to the supplementary material for a
more detailed analysis of the linear complexity of Alg. 4.

To sum-out one hidden variable H , we simply replace H
in A by a symbolic sum node ⊕ and label each edge of
⊕ with weights obtained from AH . The algorithm to im-
plement the summing-out operation in a symbolic ADD is
presented in Alg. 5. Note that Alg. 4 and 5 apply only
to ADDs constructed from normal SPNs by Alg. 2 and 3
because such ADDs naturally inherit the topological order-
ing of sum nodes (hidden variables) in the original SPN
S. Otherwise we need to pre-define a global variable or-
dering of all the sum nodes and then arrange each ADD
such that its topological ordering is consistent with the pre-
defined ordering. Note also that Alg. 4 and 5 should be
implemented with caching of repeated operations in order
to ensure that directed acyclic graphs are preserved.

We now present the Variable Elimination (VE) algorithm
in Alg. 6 used to recover the original SPN S , taking multi-
plication and summing-out as two operations ⊗ and ⊕ re-
spectively. In each iteration of Alg. 6, we select one hidden
variable H in ordering π, multiply all the symbolic ADDs
AX in which H appears and then sum-out H from the new
ADD. The algorithm keeps going until all the hidden vari-
ables have been summed out and there is only one symbolic
ADD left in Φ. The final symbolic ADD gives us the SPN
S which can be used to build BN B. Note that the SPN
returned by Alg. 6 may not be literally equal to the original
SPN since during the multiplication of two symbolic ADDs
we effectively remove redundant nodes by merging con-
nected product nodes. Hence, the SPN returned by Alg. 6
could have a smaller size while representing the same prob-
ability distribution. An example is given in Fig. 4 to illus-
trate the recovery process. The BN in Fig. 4 is the one
constructed in Fig. 3.

Theorem 7. Alg. 6 builds SPN S from BN B with ADDs
in O(N |S|).

On the Relationship between Sum-Product Networks and Bayesian Networks

H = AX1

X1 X1

0.6 0.4 0.9 0.1

h1

h2

h3

x1 x̄1 x1 x̄1

⊗
HAX2 =

X2 X2

0.3 0.7 0.2 0.8

h1
h2

h3

x2 x̄2 x2 x̄2

H

⊗ ⊗ ⊗X2 X1 X2 X1

0.3 0.7 0.6 0.4 0.2 0.8 0.9 0.1

h1
h2

h3

x2 x̄2 x1 x̄1 x2 x̄2 x1 x̄1

Multiplication

+

× × ×

X2 X1 X2 X1

(0.3, 0.7) (0.6, 0.4) (0.2, 0.8) (0.9, 0.1)

4
7 6

35

9
35

Summing Out

Figure 4. Multiply AX1 and AX2 that contain H and then sum out H . The final SPN is isomorphic with the SPN in Fig. 3.

Algorithm 5 Summing-out a hidden variable H from A
using AH , ⊕
Input: Symbolic ADDs A and AH

Output: Symbolic ADD with H summed out
1: if H appears in A then
2: Label each edge emanating fromH with weights fromAH

3: Replace H by a symbolic ⊕ node
4: end if

Algorithm 6 Variable Elimination for a BN with ADDs
Input: BN B with ADDs for all observable and hidden variables
Output: Original SPN S

1: π ← inverse topological order of hidden variables in ADDs
2: Φ← {AX |X is an observable variable}
3: for each hidden variable H in π do
4: P ← {AX |H appears in AX}
5: Φ← Φ\P ∪ {⊕H ⊗A∈P A}
6: end for
7: return Φ

5. Discussion and Conclusion
Thm. 1 together with Thm. 2 establish a relationship be-
tween BNs and SPNs: SPNs are no more powerful than
BNs with ADD representation. Informally, a model is con-
sidered to be more powerful than another one if there ex-
ists a distribution that can be encoded in polynomial size
in some input parameter N , while the other model requires
exponential size in N to represent the same distribution.
The key is to recognize that the CSI encoded by the struc-
ture of an SPN as stated in Proposition 1 can also be en-
coded explicitly with ADDs in a BN. We can also view
an SPN as an inference machine that efficiently records
the history of the inference process when applied to a BN.
Based on this perspective, an SPN is actually storing the
calculations to be performed (sums and products), which
allows online inference queries to be answered quicky. The
same idea also exists in other fields, including propositional
logic (d-DNNF) and knowledge compilation (AC).

The constructed BN has a simple bipartite structure, no
matter how deep the original SPN is. However, we can
relate the depth of an SPN to a lower bound on the tree-
width of the corresponding BN obtained by our algorithm.
Without loss of generality, let’s assume that product layers
alternate with sum layers in the SPN we are considering.
Let the height of the SPN, i.e., the longest path from the
root to a terminal node, be K. By our assumption, there

will be at least bK/2c sum nodes in the longest path. Ac-
cordingly, in the BN constructed by Alg. 1, the observable
variable corresponding to the terminal node in the longest
path will have in-degree at least bK/2c. Hence, after mor-
alizing the BN into an undirected graph, the clique-size of
the moral graph is bounded below by bK/2c + 1. Note
that for any undirected graph the clique-size minus 1 is al-
ways a lower bound of the tree-width. We then reach the
conclusion that the tree-width of the constructed BN has
a lower bound of bK/2c. In other words, the deeper the
SPN, the larger the tree-width of the BN constructed by our
algorithm and the more complex are the probability distri-
butions that can be encoded. This observation is consistent
with the conclusion drawn in (Delalleau & Bengio, 2011)
where the authors prove that there exist families of distri-
butions that can be represented much more efficiently with
a deep SPN than with a shallow one, i.e. with substantially
fewer hidden internal sum nodes. Note that we only give a
proof that there exists an algorithm that can convert an SPN
into a BN without any exponential blow-up. There may ex-
ist other techniques to convert an SPN into a BN with a
more compact representation and also a smaller tree-width.

High tree-width is usually used to indicate a high inference
complexity, but this is not always true as there may exist
lots of CSI between variables, which can reduce inference
complexity. CSI is precisely what enables SPNs and BNs
with ADDs to compactly represent and tractably perform
inference in distributions with high tree-width. In con-
trast, in a Restricted Boltzmann Machine, which is an undi-
rected bipartite Markov network, CSI may not be present
or not exploited, which is why practitioners have to re-
sort to approximate algorithms, such as contrastive diver-
gence (Carreira-Perpinan & Hinton, 2005). Similarly, ap-
proximate inference is required in bipartite diagnostic BNs
such as the Quick Medical Reference network (Shwe et al.,
1991) since causal independence is insufficient to reduce
the complexity, while CSI is not present or not exploited.

Although we mainly focus on the relationship between
SPNs and BNs, our analysis can be straightforwardly ap-
plied to the relationship between SPNs and MNs. The in-
sight lies in the fact that we can always moralize a BN into
an MN and an ADD can also be used to encode poten-
tial functions defined by cliques in MNs. Our work also
provides a new direction for future research about SPNs
and BNs. Structure and parameter learning algorithms for
SPNs can now be used to indirectly learn BNs with ADDs.

On the Relationship between Sum-Product Networks and Bayesian Networks

References
Amer, Mohamed R and Todorovic, Sinisa. Sum-product

networks for modeling activities with stochastic struc-
ture. In Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, pp. 1314–1321.
IEEE, 2012.

Bahar, R Iris, Frohm, Erica A, Gaona, Charles M, Hachtel,
Gary D, Macii, Enrico, Pardo, Abelardo, and Somenzi,
Fabio. Algebraic decision diagrams and their applica-
tions. Formal methods in system design, 10(2-3):171–
206, 1997.

Boole, George. The mathematical analysis of logic. Philo-
sophical Library, 1847.

Boutilier, Craig, Friedman, Nir, Goldszmidt, Moises,
and Koller, Daphne. Context-specific independence in
bayesian networks. In Proceedings of the Twelfth inter-
national conference on Uncertainty in artificial intelli-
gence, pp. 115–123. Morgan Kaufmann Publishers Inc.,
1996.

Carreira-Perpinan, Miguel A and Hinton, Geoffrey E. On
contrastive divergence learning. In Proceedings of the
tenth international workshop on artificial intelligence
and statistics, pp. 33–40. Citeseer, 2005.

Chavira, Mark and Darwiche, Adnan. Compiling bayesian
networks using variable elimination. In IJCAI, pp. 2443–
2449, 2007.

Chavira, Mark, Darwiche, Adnan, and Jaeger, Manfred.
Compiling relational bayesian networks for exact infer-
ence. International Journal of Approximate Reasoning,
42(1):4–20, 2006.

Cheng, Wei-Chen, Kok, Stanley, Pham, Hoai Vu, Chieu,
Hai Leong, and Chai, Kian Ming A. Language mod-
eling with sum-product networks. In Fifteenth Annual
Conference of the International Speech Communication
Association, 2014.

Darwiche, Adnan. A differential approach to inference in
bayesian networks. In UAI, pp. 123–132, 2000.

Darwiche, Adnan. Decomposable negation normal form.
Journal of the ACM (JACM), 48(4):608–647, 2001.

Darwiche, Adnan and Marquis, Pierre. A perspective on
knowledge compilation. In IJCAI, volume 1, pp. 175–
182. Citeseer, 2001.

Delalleau, Olivier and Bengio, Yoshua. Shallow vs. deep
sum-product networks. In Advances in Neural Informa-
tion Processing Systems, pp. 666–674, 2011.

Dennis, Aaron and Ventura, Dan. Learning the architecture
of sum-product networks using clustering on variables.
In Advances in Neural Information Processing Systems,
pp. 2042–2050, 2012.

Gens, Robert and Domingos, Pedro. Discriminative learn-
ing of sum-product networks. In Advances in Neural
Information Processing Systems, pp. 3248–3256, 2012.

Gens, Robert and Domingos, Pedro. Learning the structure
of sum-product networks. In Proceedings of The 30th In-
ternational Conference on Machine Learning, pp. 873–
880, 2013.

Huang, Jinbo, Chavira, Mark, and Darwiche, Adnan. Solv-
ing map exactly by searching on compiled arithmetic cir-
cuits. In AAAI, volume 6, pp. 3–7, 2006.

Pagallo, Giulia. Learning DNF by decision trees. In IJCAI,
volume 89, pp. 639–644, 1989.

Peharz, Robert, Geiger, Bernhard C, and Pernkopf, Franz.
Greedy part-wise learning of sum-product networks.
In Machine Learning and Knowledge Discovery in
Databases, pp. 612–627. Springer, 2013.

Peharz, Robert, Kapeller, Georg, Mowlaee, Pejman, and
Pernkopf, Franz. Modeling speech with sum-product
networks: Application to bandwidth extension. In
Acoustics, Speech and Signal Processing (ICASSP),
2014 IEEE International Conference on, pp. 3699–3703.
IEEE, 2014.

Poon, Hoifung and Domingos, Pedro. Sum-product net-
works: A new deep architecture. In Proc. 12th Conf.
on Uncertainty in Artificial Intelligence, pp. 2551–2558,
2011.

Rooshenas, Amirmohammad and Lowd, Daniel. Learning
sum-product networks with direct and indirect variable
interactions. In Proceedings of The 31st International
Conference on Machine Learning, pp. 710–718, 2014.

Roth, Dan. On the hardness of approximate reasoning. Ar-
tificial Intelligence, 82(1):273–302, 1996.

Shwe, Michael A, Middleton, B, Heckerman, DE, Hen-
rion, M, Horvitz, EJ, Lehmann, HP, and Cooper, GF.
Probabilistic diagnosis using a reformulation of the
INTERNIST-1/QMR knowledge base. Methods of in-
formation in Medicine, 30(4):241–255, 1991.

Zhang, Nevin Lianwen and Poole, David. Exploiting causal
independence in bayesian network inference. Journal of
Artificial Intelligence Research, 5:301–328, 1996.

