
On the Relationship between Sum-Product Networks and Bayesian Networks
(Supplementary Material)

Han Zhao HAN.ZHAO@UWATERLOO.CA
Mazen Melibari MMELIBAR@UWATERLOO.CA
Pascal Poupart PPOUPART@UWATERLOO.CA

David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada

In this supplementary material we provide the proofs for
theorems, lemmas as well as propositions in the main pa-
per. Pseudocode to illustrate the transformation from com-
plete and consistent SPN to normal SPN is also provided.
We start by introducing the notations used in this paper.

1. Notations
We use 1 : N to abbreviate the notation {1, 2, . . . , N}. We
use a capital letter X to denote a random variable and a
bolded capital letter X1:N to denote a set of random vari-
ables X1:N = {X1, . . . , XN}. Similarly, a lowercase letter
x is used to denote a value taken by X and a bolded low-
ercase letter x1:N denotes a joint value taken by the corre-
sponding vector X1:N of random variables. We may omit
the subscript 1 : N from X1:N and x1:N if it is clear from
the context. For a random variableXi, we use xji , j ∈ 1 : J
to enumerate all the values taken by Xi. For simplicity,
we use Pr(x) to mean Pr(X = x) and Pr(x) to mean
Pr(X = x). We use calligraphic letters to denote graphs
(e.g., G). In particular, BNs, SPNs and ADDs are denoted
respectively by B, S and A. For a DAG G and a node v
in G, we use Gv to denote the subgraph of G induced by v
and all its descendants. Let V be a subset of the nodes of
G, then G|V is a subgraph of G induced by the node set V.
Similarly, we use X|A or x|A to denote the restriction of
a vector to a subset A. Other notation will be introduced
when needed.

We revisit the definition of normal SPN:

Definition 7. An SPN is said to be normal if

1. It is complete and decomposable.
2. For each sum node in the SPN, the weights of the

edges emanating from the sum node are nonnegative
and sum to 1.

3. Every terminal node in an SPN is a univariate distribu-
tion over a Boolean variable and the size of the scope
of a sum node is at least 2 (sum nodes whose scope is
of size 1 are reduced into terminal nodes).

2. Proof of Theorem 3
Theorem 3. For any complete and consistent SPN S , there
exists a normal SPN S ′ such that PrS(·) = PrS′(·) and
|S ′| = O(|S|2).

To show this, we first prove the following lemmas.
Lemma 1. For any complete and consistent SPN S over
X1:N , there exists a complete and decomposable SPN S ′
over X1:N such that fS(x) = fS′(x),∀x and |S ′| =
O(|S|2).

Proof. Let S be a complete and consistent SPN. If it is
also decomposable, then simply set S ′ = S and we are
done. Otherwise, let v1, . . . , vM be an inverse topologi-
cal ordering of all the nodes in S, including both terminal
nodes and internal nodes, such that for any vm,m ∈ 1 : M ,
all the ancestors of vm in the graph appear after vm in the
ordering. Let vm be the first product node in the order-
ing that violates decomposability. Let vm1

, vm2
, . . . , vml

be the children of vm where m1 < m2 < · · · <
ml < m (due to the inverse topological ordering). Let
(vmi , vmj), i < j, i, j ∈ 1 : l be the first ordered pair of
nodes such that scope(vmi)

⋂
scope(vmj) 6= ∅. Hence,

let X ∈ scope(vmi
)
⋂

scope(vmj
). Consider fvmi

and
fvmj

which are the network polynomials defined by the
sub-SPNs rooted at vmi

and vmj
.

Expand network polynomials fvmi
and fvmj

into a sum-
of-product form by applying the distributive law between
products and sums. For example, if f(X1, X2) = (Ix1 +
9Ix̄1)(4Ix2+6Ix̄2), then the expansion of f is f(X1, X2) =
4Ix1

Ix2
+ 6Ix1

Ix̄2
+ 36Ix̄1

Ix2
+ 54Ix̄1

Ix̄2
. Since S is com-

plete, then sub-SPNs rooted at vmi
and vmj

are also com-
plete, which means that each monomial in the expansion
of fvmi

must share the same scope. The same applies to
fvmj

. Since X ∈ scope(vmi)
⋂

scope(vmj), then every
monomial in the expansion of fvmi

and fvmj
must con-

tain an indicator variable over X , either Ix or Ix̄. Fur-
thermore, since S is consistent, then the sub-SPN rooted
at vm is also consistent. Consider fvm

=
∏l

k=1 fvmk
=

On the Relationship between Sum-Product Networks and Bayesian Networks (Supplementary Material)

fvmi
fvmj

∏
k 6=i,j fvmk

. Because vm is consistent, we
know that each monomial in the expansions of fvmi

and
fvmj

must contain the same indicator variable of X , either
Ix or Ix̄, otherwise there will be a term IxIx̄ in fvm which
violates the consistency assumption. Without loss of gen-
erality, assume each monomial in the expansions of fvmi

and fvmj
contains Ix. Then we can re-factorize fvm in the

following way:

fvm
=

l∏
k=1

fvmk
= I2x

fvmi

Ix

fvmj

Ix

∏
k 6=i,j

fvmk

= Ix
fvmi

Ix

fvmj

Ix

∏
k 6=i,j

fvmk
= Ixf̃vmi

f̃vmj

∏
k 6=i,j

fvmk

(1)

where we use the fact that indicator variables are idem-
potent, i.e., I2x = Ix and f̃vmi

(f̃vmj
) is defined as the

function by factorizing Ix out from fvmi
(fvmj

). Eq. 1
means that in order to make vm decomposable, we can sim-
ply remove all the indicator variables Ix from sub-SPNs
rooted at vmi

and vmj
and later link Ix to vm directly.

Such a transformation will not change the network poly-
nomial fvm as shown by Eq. 1, but it will remove X from
scope(vmi)

⋂
scope(vmj). In principle, we can apply this

transformation to all ordered pairs (vmi , vmj), i < j, i, j ∈
1 : l with nonempty intersections of scope. However, this is
not algorithmically efficient and more importantly, for lo-
cal components containing Ix in fvm which are reused by
other nodes vn outside of Svm , we cannot remove Ix from
them otherwise the network polynomials for each such vn
will be changed due to the removal. In such a case, we
need to duplicate the local components to ensure that local
transformations with respect to fvm do not affect network
polynomials fvn . We present the transformation in Alg. 1.

Alg. 1 transforms a complete and consistent SPN S into a
complete and decomposable SPN S ′. Informally, it works
using the following identity:

fvm =

 ∏
X∈Ω(vm)

Ix∗

 l∏
k=1

fvmk∏
X∈Ω(vm)∩scope(vmk

) I∗x
(2)

where Ω(vm) ,
⋃

i,j∈1:l,i6=j scope(vmi
)∩scope(vmj

), i.e.,
Ω(vm) is the union of all the shared variables between pairs
of children of vm and Ix∗ is the indicator variable of X ∈
Ω(vm) appearing in Svm . Based on the analysis above, we
know that for each X ∈ Ω(vm) there will be only one kind
of indicator variable Ix∗ that appears inside Svm , otherwise
vm is not consistent. In Line 6, Svm |V is defined as the sub-
SPN of Svm induced by the node set V, i.e., a subgraph of
Svm where the node set is restricted to V. In Lines 5-6,
we first extract the induced sub-SPN SV from Svm rooted
at vm using the node set in which nodes have nonempty

Algorithm 1 Decomposition Transformation
Input: Complete and consistent SPN S.
Output: Complete and decomposable SPN S ′.

1: Let v1, v2, . . . , vM be an inverse topological ordering
of nodes in S.

2: for m = 1 to M do
3: if vm is a non-decomposable product node then
4: Ω(vm)← ⋃

i 6=j scope(vmi)
⋂

scope(vmj)
5: V← {v ∈ Svm | scope(v)

⋂
Ω(vm) 6= ∅}

6: SV ← Svm |V
7: D(vm)← descendants of vm
8: for node v ∈ SV\{vm} do
9: if Pa(v)\D(vm) 6= ∅ then

10: Create p← v ⊗∏X∈Ω(vm)∩scope(v) Ix∗
11: Connect p to ∀f ∈ Pa(v)\D(vm)
12: Disconnect v from ∀f ∈ Pa(v)\D(vm)
13: end if
14: end for
15: for node v ∈ SV in bottom-up order do
16: Disconnect ṽ ∈ Ch(v) ∀scope(ṽ) ⊆ Ω(vm)
17: end for
18: Connect

∏
X∈Ω(vm) Ix∗ to vm directly

19: end if
20: end for
21: Delete all nodes unreachable from the root of S
22: Delete all product nodes with out-degree 0
23: Contract all product nodes with out-degree 1

intersections with Ω(vm). We disconnect the nodes in SV
from their children if their children are indicator variables
of a subset of Ω(vm) (Lines 15-17). At Line 18, we build a
new product node by multiplying all the indicator variables
in Ω(vm) and link it to vm directly. To keep unchanged the
network polynomials of nodes outside Svm that use nodes
in SV, we create a duplicate node p for each such node v
and link p to all the parents of v outside of Svm and at the
same time delete the original link (Lines 9-13).

In summary, Lines 15-17 ensure that vm is decomposable
by removing all the shared indicator variables in Ω(vm).
Line 18 together with Eq. 2 guarantee that fvm is un-
changed after the transformation. Lines 9-13 create nec-
essary duplicates to ensure that other network polynomials
are not affected. Lines 21-23 simplify the transformed SPN
to make it more compact. An example is depicted in Fig. 1
to illustrate the transformation process.

We now analyze the size of the SPN constructed by Alg. 1.
For a graph S, let V(S) be the number of nodes in S and
let E(S) be the number of edges in S. Note that in Lines
8-17 we only focus on nodes that appear in the induced
SPN SV, which clearly has |SV| ≤ |Svm |. Furthermore,
we create a new product node p at Line 10 iff v is reused
by other nodes which do not appear in Svm . This means

On the Relationship between Sum-Product Networks and Bayesian Networks (Supplementary Material)

+

×
vm

×
vn

+

vm1

+

vm2

× ×

Ix1 Ix3
Ix2 Ix̄1

+

×
vm

×
vn

+

vm1

+

vm2

× ×

×
p

Ix3

Ix1 Ix2 Ix̄1Ix3

Figure 1. Transformation process described in Alg. 1 to construct
a complete and decomposable SPN from a complete and consis-
tent SPN. The product node vm in the left SPN is not decompos-
able. Induced sub-SPN Svm is highlighted in blue and SV is high-
lighted in green. vm2 highlighted in red is reused by vn, which
is outside Svm . To compensate for vm2 , we create a new prod-
uct node p in the right SPN and connect it to indicator variable Ix3

and vm2 . Dashed gray lines in the right SPN denote deleted edges
and nodes while red edges and nodes are added during Alg. 1.

that the number of nodes created during each iteration be-
tween Lines 2 and 20 is bounded by V(SV) ≤ V(Svm).
Line 10 also creates 2 new edges to connect p to v and the
indicator variables. Lines 11 and 12 first connect edges to p
and then delete edges from v, hence these two steps do not
yield increases in the number of edges. So the increase in
the number of edges is bounded by 2V(SV) ≤ 2V(Svm).
Combining increases in both nodes and edges, during each
outer iteration the increase in size is bounded by 3|SV| ≤
3|Svm | = O(|S|). There will be at most M = V(S) outer
iterations hence the total increase in size will be bounded
by O(M |S|) = O(|S|2).

Lemma 2. For any complete and decomposable SPN S
over X1:N that satisfies condition 2 of Def. 7,

∑
x fS(x) =

1.

Proof. We give a proof by induction on the height of S.
Let R be the root of S.

• Base case. SPNs of height 0 are indicator variables
over some Boolean variable whose network polyno-
mials immediately satisfy Lemma 2.

• Induction step. Assume Lemma 2 holds for any SPN
with height≤ k. Consider an SPN S with height k+1.
We consider the following two cases:

– The root R of S is a product node. Then in this
case the network polynomial fS(·) for S is de-

fined as fS =
∏

v∈Ch(R) fv . We have∑
x

fS(x) =
∑
x

∏
v∈Ch(R)

fv(x|scope(v)) (3)

=
∏

v∈Ch(R)

∑
x|scope(v)

fv(x|scope(v)) (4)

=
∏

v∈Ch(R)

1 = 1 (5)

where x|scope(v) means that x is restricted to the
set scope(v). Eq. 4 follows from the decompos-
ability of R and Eq. 5 follows from the induction
hypothesis.

– The root R of S is a sum node. The network
polynomial is fS =

∑
v∈Ch(R) wR,vfv . We have∑

x

fS(x) =
∑
x

∑
v∈Ch(R)

wR,vfv(x) (6)

=
∑

v∈Ch(R)

wR,v

∑
x

fv(x) (7)

=
∑

v∈Ch(R)

wR,v = 1 (8)

Eq. 7 follows from the commutative and associa-
tive law of addition and Eq. 8 follows by the in-
duction hypothesis.

Corollary 3. For any complete and decomposable SPN S
over X1:N that satisfies condition 2 of Def. 7, PrS(·) =
fS(·).
Lemma 4. For any complete and decomposable SPN S ,
there exists an SPN S ′ where the weights of the edges em-
anating from every sum node are nonnegative and sum to
1, and PrS(·) = PrS′(·), |S ′| = |S|.

Proof. Alg. 2 runs in one pass of S to construct the re-
quired SPN S ′.
We proceed to prove that the SPN S ′ returned by Alg. 2
satisfies PrS′(·) = PrS(·), |S ′| = |S| and that S ′ satisfies
condition 2 of Def. 7. It is clear that |S ′| = |S| because
we only modify the weights of S to construct S ′ at Line 7.
Based on Lines 6 and 7, it is also straightforward to verify
that for each sum node v in S ′, the weights of the edges
emanating from v are nonnegative and sum to 1. We now
show that PrS′(·) = PrS(·). Using Corollary 3, PrS′(·) =
fS′(·). Hence it is sufficient to show that fS′(·) = PrS(·).
Before deriving a proof, it is helpful to note that for each
node v ∈ S, val(v) =

∑
x|scope(v)

fv(x|scope(v)). We give a
proof by induction on the height of S.

• Base case. SPNs with height 0 are indicator variables
which automatically satisfy Lemma 4.

On the Relationship between Sum-Product Networks and Bayesian Networks (Supplementary Material)

• Induction step. Assume Lemma 4 holds for any SPN
of height≤ k. Consider an SPN S of height k+1. Let
R be the root node of S with out-degree l. We discuss
the following two cases.

– R is a product node. Let R1, . . . , Rl be the
children of R and S1, . . . ,Sl be the correspond-
ing sub-SPNs. By induction, Alg. 2 returns
S ′1, . . . ,S ′l that satisfy Lemma 4. Since R is a
product node, we have

fS′(x) =

l∏
i=1

fS′i(x|scope(Ri)) (9)

=

l∏
i=1

Pr
Si

(x|scope(Ri)) (10)

=

l∏
i=1

fSi(x|scope(Ri))∑
x|scope(Ri)

fSi(x|scope(Ri))
(11)

=

∏l
i=1 fSi(x|scope(Ri))∑

x

∏l
i=1 fSi(x|scope(Ri))

(12)

=
fS(x)∑
x fS(x)

= Pr
S

(x) (13)

Eq. 10 follows from the induction hypothesis and
Eq. 12 follows from the distributive law due to
the decomposability of S.

– R is a sum node with weights w1, . . . , wl ≥ 0.
We have

fS′(x) =

l∑
i=1

w′ifS′i(x) (14)

=

l∑
i=1

wival(Ri)∑l
j=1 wjval(Rj)

Pr
Si

(x) (15)

=

l∑
i=1

wival(Ri)∑l
j=1 wjval(Rj)

fSi(x)∑
x fSi(x)

(16)

=

l∑
i=1

wival(Ri)∑l
j=1 wjval(Rj)

fSi(x)

val(Ri)
(17)

=

∑l
i=1 wifSi(x)∑l

j=1 wjval(Rj)
=

fS(x)∑
x fS(x)

(18)

= Pr
S

(x) (19)

where Eqn. 15 follows from the induction hy-
pothesis, Eq. 17 and 18 follow from the fact that
val(v) =

∑
x|scope(v)

fv(x|scope(v)),∀v ∈ S.

This completes the proof since PrS′(·) = fS′(·) = PrS(·).

Algorithm 2 Weight Normalization
Input: SPN S
Output: SPN S ′

1: S ′ ← S
2: val(Ix)← 1,∀Ix ∈ S
3: Let v1, . . . , vM be an inverse topological ordering of

the nodes in S
4: for m = 1 to M do
5: if vm is a sum node then
6: val(vm)←∑

v∈Ch(vm) wvm,vval(v)

7: w′vm,v ← wvm,vval(v)
val(vm) , ∀v ∈ Ch(vm)

8: else if vm is a product node then
9: val(vm)←∏

v∈Ch(vm) val(v)
10: end if
11: end for

Lemma 5. Given a complete and decomposable SPN S,
there exists an SPN S ′ satisfying condition 3 in Def. 7 such
that PrS′(·) = PrS(·) and |S ′| = O(|S|).

Proof. We give a proof by construction. First, if S is not
weight normalized, apply Alg. 2 to normalize the weights
(i.e., the weights of the edges emanating from each sum
node sum to 1).

Now check each sum node v in S in a bottom-up order.
If |scope(v)| = 1, by Corollary 3 we know the network
polynomial fv is a probability distribution over its scope,
say, {X}. Reduce v into a terminal node which is a dis-
tribution over X induced by its network polynomial and
disconnect v from all its children. The last step is to re-
move all the unreachable nodes from S to obtain S ′. Note
that in this step we will only decrease the size of S, hence
|S ′| = O(|S|).

Proof of Thm. 3. The combination of Lemma 1, 4 and 5
completes the proof of Thm. 3.

3. Proof of Proposition 1
Proposition 1. Given a normal SPN S, let p be a product
node in S with l children. Let v1, . . . , vk be sum nodes
which lie on a path from the root of S to p. Then

Pr
S

(x|scope(p)

∣∣∣ Hv1 = v∗1 , . . . ,Hvk = v∗k) =

l∏
i=1

Pr
S

(x|scope(pi)

∣∣∣ Hv1 = v∗1 , . . . ,Hvk = v∗k) (20)

where Hv = v∗ means the sum node v selects its v∗th
branch and x|A denotes restricting x by set A, pi is the ith
child of product node p.

On the Relationship between Sum-Product Networks and Bayesian Networks (Supplementary Material)

Proof. Consider the sub-SPN Sp rooted at p. Sp can be ob-
tained by restricting Hv1 = v∗1 , . . . ,Hvk = v∗k, i.e., going
from the root of S along the pathHv1 = v∗1 , . . . ,Hvk = v∗k.
Since p is a decomposable product node, Sp admits the
above factorization by the definition of a product node and
Corollary 3.

4. Proof of Theorem 4
We first list the construction algorithms presented in the
main paper and show the following lemma:

Algorithm 3 Build BN Structure
Input: normal SPN S
Output: BN B = (BV ,BE)

1: R← root of S
2: if R is a terminal node over variable X then
3: Create an observable variable X
4: BV ← BV ∪ {X}
5: else
6: for each child Ri of R do
7: if BN has not been built for SRi

then
8: Recursively build BN Structure for SRi

9: end if
10: end for
11: if R is a sum node then
12: Create a hidden variable HR associated with R
13: BV ← BV ∪ {HR}
14: for each observable variable X ∈ SR do
15: BE ← BE ∪ {(HR, X)}
16: end for
17: end if
18: end if

Lemma 6. Given a normal SPN S, the ADDs constructed
by Alg. 4 and 5 encode local CPDs at each node in B.

Proof. It is easy to verify that for each hidden variable H
in B, AH represents a local CPD since AH is a decision
stump with normalized weights.

For any observable variable X in B, let Pa(X) be the set
of parents of X . By Alg. 3, every node in Pa(X) is a
hidden variable. Furthermore, ∀H , H ∈ Pa(X) iff there
exists one terminal node over X in S that appears in the
sub-SPN rooted at H . Hence given any joint assignment
h of Pa(X), there will be a path in AX from the root to
a terminal node that is consistent with the joint assignment
of the parents. Also, the leaves in AX contain normalized
weights corresponding to the probabilities ofX (see Def. 7)
induced by the creation of decision stumps overX in Lines
5-6 of Alg. 4.

Theorem 4. For any normal SPN S over X1:N , the BN B

Algorithm 4 Build CPD using ADD, observable variable
Input: normal SPN S, variable X
Output: ADD AX

1: if ADD has already been created for S and X then
2: AX ← retrieve ADD from cache
3: else
4: R← root of S
5: if R is a terminal node then
6: AX ← decision stump rooted at R
7: else if R is a sum node then
8: Create a node HR into AX

9: for each Ri ∈ Ch(R) do
10: Link BuildADD(SRi , X) as ith child of HR

11: end for
12: else if R is a product node then
13: Find child SRi

such that X ∈ scope(Ri)
14: AX ← BuildADD(SRi

, X)
15: end if
16: store AX in cache
17: end if

Algorithm 5 Build CPD using ADD, hidden variable
Input: normal SPN S, variable H
Output: ADD AH

1: Find the sum node H in S
2: AH ← decision stump rooted at H in S

constructed by Alg. 3, 4 and 5 encodes the same probability
distribution, i.e., PrS(x) = PrB(x),∀x.

Proof. Again, we give a proof by induction on the height
of S.

• Base case. The height of SPN S is 0. In this case,
S will be a single terminal node over X and B will
be a single observable node with decision stump AX

constructed from the terminal node by Lines 5-6 in
Alg. 4. It is clear that PrS(x) = PrB(x),∀x.

• Induction step. Assume PrB(x) = PrS(x),∀x for
any S with height ≤ k, where B is the corresponding
BN constructed by Alg. 3, 4 and 5 from S. Consider
an SPN S with height k+1. LetR be the root of S and
Ri, i ∈ 1 : l be the children of R in S . We consider
the following two cases:

– R is a product node. Let scope(Rt) = Xt, t ∈
1 : l. Claim: there is no edge between Si
and Sj , i 6= j, where Si(Sj) is the sub-SPN
rooted at Ri(Rj). If there is an edge, say, from
vj to vi where vj ∈ Sj and vi ∈ Si, then
scope(vi) ⊆ scope(vj) ⊆ scope(Rj). On the
other hand, scope(vi) ⊆ scope(Ri). So we
have ∅ 6= scope(vi) ⊆ scope(Ri)

⋂
scope(Rj),

which contradicts the decomposability of the

On the Relationship between Sum-Product Networks and Bayesian Networks (Supplementary Material)

product node R. Hence the constructed BN B
will be a forest of l disconnected components,
and each component Bt will correspond to the
sub-SPN St rooted at Rt,∀t ∈ 1 : l, with
height≤ k. By the induction hypothesis we have
PrBt

(xt) = PrSt(xt),∀t ∈ 1 : l. Consider the
whole BN B, we have:

Pr
B

(x) =
∏
t

Pr
Bt

(xt) =
∏
t

Pr
St

(xt) = Pr
S

(x)

where the first equation is due to the d-separation
rule in BNs by noting that each component Bt
is disconnected from all other components. The
second equation follows from the induction hy-
pothesis. The last equation follows from the def-
inition of a product node.

– R is a sum node. In this case, due to the com-
pleteness of S, all the children of R share the
same scope as R. By the construction process
presented in Alg. 3, 4 and 5, there is a hidden
variable H corresponding to R that takes l dif-
ferent values in B. Let w1:l be the weights of
the edges emanating from R in S. For the tth
branch of R, we use Ht to denote the set of hid-
den variables in B that also appear in Bt, and let
H−t = H\Ht, where H is the set of all hidden
variables in B except H . First, we show the fol-
lowing identity:

Pr
B

(x|ht) =
∑
ht

∑
h−t

Pr
B

(x,ht,h−t|H = ht)

=
∑
ht

∑
h−t

Pr
B

(x,ht|ht,h−t) Pr
B

(h−t|ht)

=
∑
ht

∑
h−t

Pr
B

(x,ht|ht) Pr
B

(h−t|ht) (21)

=
∑
ht

Pr
B

(x,ht|ht)
∑
h−t

Pr
B

(h−t|ht) (22)

=
∑
ht

Pr
B

(x,ht|ht)

=
∑
ht

Pr
Bt

(x,ht) = Pr
Bt

(x) (23)

Using this identity, we have

Pr
B

(x) =

l∑
t=1

Pr
B

(ht) Pr
B

(x|H = ht) (24)

=

l∑
t=1

wt Pr
Bt

(x) (25)

=

l∑
t=1

wt Pr
St

(x) = Pr
S

(x) (26)

Eq. 21 follows from the fact that X and Ht are
independent of H−t given H = ht, i.e., we take
advantage of the CSI described by ADDs of X.
Eq. 22 follows from the fact that H−t appears
only in the second term. Combined with the fact
that H = ht is given as evidence in B, this gives
us the induced subgraph Bt referred to in Eq. 23.
Eq. 25 follows from Eq. 23 and Eq. 26 follows
from the induction hypothesis.

Combing the base case and the induction step completes
the proof for Thm. 4.

5. Proof of Theorem 5
Theorem 5. |B| = O(N |S|), where BN B is constructed
by Alg. 3, 4 and 5 from normal SPN S over X1:N .

Proof. For each observable variable X in B, AX is con-
structed by first extracting from S the induced sub-SPN SX
that contains all nodes whose scope includes X and then
contracting all the product nodes in SX to obtain AX . By
the decomposability of product nodes, each product node
in SX has out-degree 1 otherwise the original SPN S vio-
lates the decomposability property. Since contracting prod-
uct nodes does not increase the number of edges in SX , we
have |AX | ≤ |SX | ≤ |S|.
For each hidden variable H in B, AH is a decision stump
constructed from the internal sum node corresponding to
H in S. Hence, we have

∑
H AH ≤ |S|.

Now consider the size of the graph B. Note that only ter-
minal nodes and sum nodes will have corresponding vari-
ables in B. It is clear that the number of nodes in B is
bounded by the number of nodes in S. Furthermore, a hid-
den variable H points to an observable variable X in B iff
X appears in the sub-SPN rooted at H in S, i.e., there is
a path from the sum node corresponding to H to one of
the terminal nodes in X . For a sum node H (which corre-
sponds to a hidden variableH ∈ B) with scope size s, each
edge emanating from H in S will correspond to directed
edges in B at most s times, since there are exactly s ob-
servable variables which are children of H in B. It is clear
that s ≤ N , so each edge emanating from a sum node in
S will be counted at most N times in B. Edges from prod-
uct nodes will not occur in the graph of B, instead, they
have been counted in the ADD representations of the local
CPDs in B. So again, the size of the graph B is bounded by∑

H scope(H)× deg(H) ≤∑H Ndeg(H) ≤ 2N |S|.
There are N observable variables in B. So the total size
of B, including the size of the graph and the size of all the
ADDs, is bounded byN |S|+|S|+2N |S| = O(N |S|).

On the Relationship between Sum-Product Networks and Bayesian Networks (Supplementary Material)

6. Proof of Theorem 6
Theorem 6. For any normal SPN S over X1:N , Alg. 3, 4
and 5 construct an equivalent BN in time O(N |S|).

Proof. First consider Alg. 3. Alg. 3 recursively visits each
node and its children in S if they have not been visited
(Lines 6-10). For each node v in S, Lines 7-9 cost at
most 2 · out-degree(v). If v is a sum node, then Lines 11-
17 create a hidden variable and then connect the hidden
variable to all observable variables that appear in the sub-
SPN rooted at v, which is clearly bounded by the number
of all observable variables, N . So the total cost of Alg. 3
is bounded by

∑
v 2 · out-degree(v) +

∑
v is a sum node N ≤

2V(S) + 2E(S) + NV(S) ≤ 2|S| + N |S| = O(N |S|).
Note that we assume that inserting an element into a set can
be done in O(1) by using hashing.

The analysis for Alg. 4 and 5 follows from the same anal-
ysis as in the proof for Thm. 5. The time complexity
for Alg. 4 and Alg. 5 is then bounded by N |S| + |S| =
O(N |S|).

7. Multiplication and Summing-Out of
Symbolic ADD

Here we provide the algorithms to multiply two symbolic
ADDs and to sum out one hidden variable in a symbolic
ADD. Then we analyze the time and space complexity of
these operations in detail. These two operations will be
applied in the Variable Elimination algorithm in Alg. 8.

Given two symbolic ADDs AX1
and AX2

, Alg. 6 recur-
sively visits nodes in AX1 and AX2 simultaneously. In
general, there are 3 cases: 1) the roots ofAX1 andAX2 are
both variable nodes (Lines 2-14); 2) one of the two roots is
a variable node and the other is a product node (Lines 15-
30); 3) both roots are product nodes or at least one of them
is a sum node (Lines 31-34). We discuss these 3 cases.

If both roots of AX1
and AX2

are variable nodes, there are
two subcases to be considered. First, if they are nodes la-
beled with the same variable (Lines 3-10), then the compu-
tation related to the common variable is shared and the mul-
tiplication is recursively applied to all the children, other-
wise we simply create a symbolic product node ⊗ and link
AX1

and AX2
as its two children (Lines 11-14). Once we

find R1 ∈ AX1 and R2 ∈ AX2 such that R1 6= R2, there
will be no common node that is shared by the sub-ADDs
rooted at R1 and R2. To see this, note that Alg. 6 recur-
sively calls itself as long as the roots of AX1

and AX2
are

labeled with the same variable. Let R be the last variable
shared by the roots ofAX1 andAX2 in Alg. 6. ThenR1 and
R2 must be the children of R in the original SPN S. Since
R1 does not appear in AX2

, then X2 6∈ scope(R1), other-
wise R1 will occur in AX2

and R1 will be a new shared

Algorithm 6 Multiplication of two symbolic ADDs, ⊗
Input: Symbolic ADD AX1 , AX2

Output: Symbolic ADD AX1,X2 = AX1 ⊗AX2

1: R1 ← root of AX1
, R2 ← root of AX2

2: if R1 and R2 are both variable nodes then
3: if R1 = R2 then
4: Create a node R = R1 into AX1,X2

5: for each r ∈ dom(R) do
6: Ar

X1
← Ch(R1)|r

7: Ar
X2
← Ch(R2)|r

8: Ar
X1,X2

← Ar
X1
⊗Ar

X2

9: Link Ar
X1,X2

to the rth child of R in AX1,X2

10: end for
11: else
12: AX1,X2 ← create a symbolic node ⊗
13: Link AX1

and AX2
as two children of ⊗

14: end if
15: else if R1 is a variable node and R2 is ⊗ then
16: if R1 appears as a child of R2 then
17: AX1,X2 ← AX2

18: AR1

X1,X2
← AX1 ⊗AR1

X2

19: else
20: Link AX1

as a new child of R2

21: AX1,X2
← AX2

22: end if
23: else if R1 is ⊗ and R2 is a variable node then
24: if R2 appears as a child of R1 then
25: AX1,X2

← AX1

26: AR2

X1,X2
← AX2

⊗AR2

X1

27: else
28: Link AX2

as a new child of R1

29: AX1,X2
← AX1

30: end if
31: else
32: AX1,X2

← create a symbolic node ⊗
33: Link AX1

and AX2
as two children of ⊗

34: end if
35: Merge connected product nodes in AX1,X2

variable below R, which is a contradiction to the fact that
R is the last shared variable. Since R1 is the root of the
sub-ADD of AX1

rooted at R, hence no variable whose
scope contains X2 will occur as a descendant of R1, other-
wise the scope of R1 will also contain X2, which is again
a contradiction. On the other hand, each node appearing in
AX2

corresponds to a variable whose scope intersects with
{X2} in the original SPN, hence no node in AX2

will ap-
pear in AX1 . The same analysis also applies to R2. Hence
no node will be shared between AX1 and AX2 .

If one of the two roots, say, R1, is a variable node and the
other root, say, R2, is a product node, then we consider two
subcases. IfR1 appears as a child ofR2 then we recursively

On the Relationship between Sum-Product Networks and Bayesian Networks (Supplementary Material)

multiply R1 with the child of R2 that is labeled with the
same variable as R1 (Lines 16-18). If R1 does not appear
as a child of R2, then we link the ADD rooted at R1 to be a
new child of the product node R2 (Lines 19-22). Again, let
R be the last shared node betweenAX1

andAX2
during the

multiplication process. Then both R1 and R2 are children
of R, which corresponds to a sum node in the original SPN
S. Furthermore, both R1 and R2 lie in the same branch
of R in S. In this case, since scope(R1) ⊆ scope(R),
scope(R1) must be a strict subset of scope(R) otherwise
we would have scope(R1) = scope(R) and R1 will also
appear in AX2

, which contradicts the fact that R is the last
shared node between AX1 and AX2 . Hence, here we only
need to discuss the two cases where either their scope is
disjoint (Lines 16-18) or the scope of one root is a strict
subset of another (Lines 19-22).

If the two roots are both product nodes or at least one of
them is a sum node, then we simply create a new product
node and link AX1

and AX2
to be children of the product

node. The above analysis also applies here since sum nodes
in symbolic ADDs are created by summing out processed
variable nodes and we eliminate all the hidden variables
using the inverse topological ordering.

The last step in Alg. 6 (Line 35) simplifies the symbolic
ADD by merging all the connected product nodes with-
out changing the function it encodes. This can be done in
the following way: suppose ⊗1 and ⊗2 are two connected
product nodes in symbolic ADD A where ⊗1 is the par-
ent of ⊗2, then we can remove the link between ⊗1 and
⊗2 and connect ⊗1 to every child of ⊗2. It is easy to ver-
ify that such an operation will remove links between con-
nected product nodes while keeping the encoded function
unchanged.

To sum-out one hidden variable H , Alg. 7 replaces H in A
by a symbolic sum node ⊕ and labels each edge of ⊕ with
weights obtained from AH .

Algorithm 7 Summing-out a hidden variable H from A
using AH , ⊕
Input: Symbolic ADDs A and AH

Output: Symbolic ADD with H summed out
1: if H appears in A then
2: Label each edge emanating fromH with weights ob-

tained from AH

3: Replace H by a symbolic ⊕ node
4: end if

Note that Alg. 6 and 7 apply only to ADDs constructed
from normal SPNs by Alg. 4 and 5 because such ADDs nat-
urally inherit the topological ordering of sum nodes (hidden
variables) in the original SPN S. Otherwise we need to pre-
define a global variable ordering of all the sum nodes and

then arrange each ADD such that its topological ordering
is consistent with the pre-defined ordering. Note also that
Alg. 6 and 7 should be implemented with caching of re-
peated operations in order to ensure that directed acyclic
graphs are preserved.

8. Proof of Theorem 7
Theorem 7. Alg. 8 builds SPN S from BN B with ADDs
in O(N |S|).

Proof. First, it is easy to verify that Alg. 6 takes at most
|AX1

|+ |AX2
| operations to compute the multiplication of

AX1 and AX2 . More importantly, the size of the gener-
ated AX1,X2 is also bounded by |S|. This is because all
the common nodes and edges in AX1

and AX2
are shared

(not duplicated) in AX1,X2
. Also, all the other nodes and

edges which are not shared between AX1
and AX2

will be
in two branches of a product node in S, otherwise they will
be shared by AX1 and AX2 as they have the same scope
which contain both X1 and X2. This means that AX1,X2

can be viewed as a sub-SPN of S induced by the node set
{X1, X2} with some product nodes contracted out. So we
have |AX1,X2

| ≤ |S|.
Now consider the for loop (Lines 3-6) in Alg. 8. The loop
ends once we have summed out all the hidden variables and
there is only one ADD left. Note that there may be only one
ADD in Φ during some intermediate steps, in which case
we do not have to do any multiplication. In such steps, we
only need to perform the sum out procedure without mul-
tiplying ADDs. Since there are N ADDs at the beginning
of the loop and after the loop we only have one ADD, then
there is exactly N − 1 multiplications during the for loop,
which costs at most (N − 1)|S| operations. Furthermore,
in each iteration there is exactly one hidden variable be-
ing summed out. So the total cost for summing out all the
hidden variables in Lines 3-6 is bounded by |S|.
Overall, the operations in Alg. 8 are bounded by (N −
1)|S|+ |S| = O(N |S|).

Algorithm 8 Variable Elimination for BN with ADDs
Input: BN B with ADDs for all observable variables and

hidden variables
Output: Original SPN S

1: π ← the inverse topological ordering of all the hidden
variables present in the ADDs

2: Φ← {AX | X is an observable variable}
3: for each hidden variable H in π do
4: P ← {AX | H appears in AX}
5: Φ← Φ\P ∪ {⊕H ⊗A∈P A}
6: end for
7: return Φ

On the Relationship between Sum-Product Networks and Bayesian Networks (Supplementary Material)

9. Proof of Main Theorems
Theorem 1. There exists an algorithm that converts any
complete and decomposable SPN S over Boolean variables
X1:N into a BN B with CPDs represented by ADDs in time
O(N |S|). Furthermore, S and B represent the same distri-
bution and |B| = O(N |S|).

Proof. The combination of Thm. 4, 5 and 6 proves Thm. 1.

Corollary 1. There exists an algorithm that converts any
complete and consistent SPN S over Boolean variables
X1:N into a BN B with CPDs represented by ADDs in time
O(N |S|2). Furthermore, S and B represent the same dis-
tribution and |B| = O(N |S|2).

Proof. Given a complete and consistent SPN S, we can
first transform it into a normal SPN S ′ with |S ′| = O(|S|2)
if it is not normal. After this the analysis follows from
Thm. 1.

Theorem 2. Given the BN B with ADD representation of
CPDs generated from a complete and decomposable SPN
S over Boolean variables X1:N , the original SPN S can be
recovered by applying the Variable Elimination algorithm
to B in O(N |S|).

Proof. Thm. 2 follows from Thm. 7 and the analysis for
Alg. 6 and Alg. 7.

