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Abstract
A major task of sports analytics is to rank players
based on the impact of their actions. Recent meth-
ods have applied reinforcement learning (RL) to as-
sess the value of actions from a learned action value
or Q-function. A fundamental challenge for esti-
mating action values is that explicit reward signals
(goals) are very sparse in many team sports, such
as ice hockey and soccer. This paper combines Q-
function learning with inverse reinforcement learn-
ing (IRL) to provide a novel player ranking method.
We treat professional play as expert demonstra-
tions for learning an implicit reward function. Our
method alternates single-agent IRL to learn a re-
ward function for multiple agents; we provide a
theoretical justification for this procedure. Knowl-
edge transfer is used to combine learned rewards
and observed rewards from goals. Empirical evalu-
ation, based on 4.5M play-by-play events in the Na-
tional Hockey League (NHL), indicates that player
ranking using the learned rewards achieves high
correlations with standard success measures and
temporal consistency throughout a season.

1 Valuing Actions and Players
A major task of sports statistics is player evaluation, which
supports drafting, coaching, and trading decisions. The most
common approach is to quantify the impact of players’ ac-
tions [Schuckers and Curro, 2013; Liu and Schulte, 2018;
Decroos et al., 2019]. Whereas actions with immediate im-
pact on goals, such as shots, are relatively easy to evalu-
ate, valuing actions with medium-term effects is challeng-
ing. Several RL models have been proposed to tackle
this issue [Routley and Schulte, 2015; Schulte et al., 2017;
Liu and Schulte, 2018]. These RL models use goals as the ex-
plicit reward signals, but the very sparse reward presents two
fundamental problems for Q-function learning: (1) Across
game contexts, the Q-values show little variance. (2) Actions
closely connected to goals are valued most highly and hence
the performance evaluation is biased towards offensive play-
ers. To tackle the sparse reward issue, we propose a novel in-
verse reinforcement learning method with domain knowledge
(IRL-DK) to recover a reward function for game dynamics.

In IRL [Ng et al., 2000], agents are assumed to act by opti-
mizing an unobserved internal reward function. The learning
task is to estimate the agents’ rewards from their observed be-
havior (demonstrations). Sports are different from the general
IRL settings, because some aspects of a player’s reward can
be inferred from domain knowledge. For instance, scoring
a goal should have a relatively high reward because it helps
the team to win a game. To benefit from both IRL and do-
main knowledge, we introduce IRL-DK, which adopts trans-
fer learning methods to combine the reward inferred from
demonstrations and the one inferred from our domain knowl-
edge. The final aggregated reward for a team is used to cal-
culate a team Q-function.

We leverage single-agent IRL for multi-agent Markov
Games through an alternating learning framework. Given
observations of two teams A and B, we first treat team B
as part of A’s environment, then learn a reward function for
team A in a single-agent Markov decision process (MDP).
The procedure is repeated with the role of teams A and B
reversed. We give a mathematical justification for this pro-
cedure in the sense that the single-agent MDP value function
for one team agrees with its Markov Game value function.
We apply alternation to generic Home and Away teams.

As in previous RL work, the Q-function can be used to
value actions and rank players. We apply IRL-DK to the
2018-19 play-by-play data in the NHL. The resulting distri-
bution of top players is mixed among offensive and defen-
sive players rather than concentrated among offensive play-
ers. Empirical comparison among 7 player evaluation metrics
shows the high correlations with standard success measures
and temporal consistency of our method.

Contributions. Our main contributions may be summa-
rized as follows.

1. A novel application of IRL to learning reward for teams
in professional sports. Our method is general and can be
applied to multi-agent dynamics in other domains.

2. A transfer learning method for combining sparse explicit
rewards with learned dense implicit rewards.

3. An alternating learning procedure for leveraging single-
agent IRL: For each agent in turn, the other agents are
treated as part of the environment to define a single-
agent MDP. We justify this procedure theoretically.



2 Related Work
We discuss previous work most related to our approach.

Player Evaluation. Most approaches use the total value of
a player’s actions to rank players [Albert et al., 2017]. This
reduces player evaluation to action evaluation. One approach
to defining expected impact for all actions is to train a clas-
sifier to predict whether an action will be followed by a goal
within a fixed look-ahead horizon. A recent example is the
VAEP method [Decroos et al., 2019] (see Sec. 8). State-of-
the-art methods use Q-function learning to assess the proba-
bility of scoring the next goal after a player’s action. Exam-
ples include Scoring Impact [Routley and Schulte, 2015] and
the GIM metric [Liu and Schulte, 2018] (see Sec. 8).

Multi-agent IRL is much less researched than single-agent
IRL. A novel aspect of our work is combining learned re-
wards with explicitly observed rewards specified by domain
knowledge. The most closely related work applies single-
agent IRL to learn an individual reward function for World
of Warcraft players [Wang et al., 2019]. They aim to model
individual motivations, not to value actions and rank players.

Our work uses IRL for describing agent behaviour,
whereas most other IRL work has the control objective of
building optimal agents. Previous work assumes that ex-
pert agents are following a Nash equilibrium distribution,
which defines optimality in Markov Games [Yu et al., 2019;
Wang and Klabjan, 2018]. Our optimality assumption is re-
lated but fundamentally different: Let π̂A,π̂B be two policies
for agents A and B estimated directly from the data that rep-
resent the agents’ observed behaviour (cf. Sec. 4). Let r̂A
and r̂B be two internal reward functions inferred from the
data, where πrAA and πrBB are the inferred policies that opti-
mize the agents’ respective inferred reward functions. Our
assumption is that agents optimize against the observed poli-
cies of other agents (i.e., π̂A and π̂B form an approximate
Nash equilibrium). Previous control work computes policies
such that agents optimize against the inferred optimal policies
of other agents (i.e., πr̂AA and πr̂BB form an approximate Nash
equilibrium). For describing a real-world domain like sports,
our assumption is more realistic because i) teams have direct
access only to the observed behavior of other teams, not to
others’ internal strategies (πr̂), and ii) when an opponent’s
observed behavior π̂ falls shorts of their optimal strategy πr̂,
successful teams take advantage of it.

IRL and Knowledge Transfer. Mendez et al. (2018) con-
sider reward knowledge transfer among multiple tasks in an
on-line setting. We consider knowledge transfer between two
reward functions for the same task. Wulfmeier et al. (2016)
incorporate a known reward function using pretraining. We
also initialize our model with pre-trained parameters consis-
tent with domain knowledge, but further use a Gaussian ker-
nel regularization during training.

3 Markov Game Model for Ice Hockey
We review the Markov Game formalism and show how it can
be applied to ice hockey.

3.1 Markov Games and Decision Processes
Markov Games [Littman, 1994] extend MDPs to game the-
ory [Von Neumann and Morgenstern, 1947]. Formally, a
Markov Game [Littman, 1994] can be represented as a tu-
ple G = 〈S,A, r, γ, T 〉, where S is a finite set of states,
A = (A1, . . . ,Ak) is a collection of finite action sets, one
for each agent 1, . . . , k. For each agent, there is a real-valued
reward function ri : S×Ai → R, and a shared discount factor
0 < γ < 1. The transition function T : S×A→ PD(S) rep-
resents the environmental dynamics. (The notation PD(X)
denotes the set of probability distributions over a finite set
X .) An MDP is a single-agent Markov Game with k = 1.

A policy for agent i is a mapping πi : S → PD(Ai).
We assume the on-policy setting with a fixed policy vector
π1, . . . , πk. Note that since an agent’s action probability is a
function of the current game state, the agents’ actions are in-
dependent of each other given the current game state. Focus-
ing on a single agent i, we adopt game theory notation where
−i refers to the vector of the k−1 other agents. For instance,
a policy vector can be decomposed as π = (πi, π−i). Given a
policy vector, a Markov Game defines a game value function
for each agent i and state, which we denote by Gπi,π−ii (s).
The game value represents the expected cumulative reward
for agent i if the game starts in the state s, and satisfies the
Bellman equation:

G
πi,π−i
i (s) =

∑
ai

∑
a−i

πi(ai|s)π−i(a−i|s)×

[ri(s, ai, a−i) + γ
∑
s′

T (s′|ai, a−i, s)Gπi,π−ii (s′)], (1)

where a−i = (a1, . . . , ai−1, ai+1, . . . , ak) is a vector of ac-
tions by the agents other than i, and π−i(a−i|s) is the prob-
ability of these independent actions given the policies of the
agents other than i. This Bellman equation has a unique so-
lution [Sutton and Barto, 1998].

3.2 Ice Hockey Markov Game
Ice hockey is one of the four major sports played in North
America. Each team tends a goal. Players skate on ice con-
trolling a puck with a stick. A team scores a goal when it
moves the puck into the the opposing team’s goal. The match
winner is the team with the most goals. A complete list of
rules is available on-line (www.nhl.com).

We utilize a proprietary play-by-play dataset constructed
by SPORTLOGiQ company. This dataset captures informa-
tion of the NHL games from October 2018 to April 2019,
which contains 4,534,017 events, covering 31 teams, 979
players and 1,202 games. The data consists of game events
around the puck, including the location and timestamp of a
certain event, the identity of the player in possession and the
action taken by this player, and other game context features
(score difference, manpower, period, etc.). The X and Y coor-
dinates are adjusted to the range [-100, 100] and [-42.5, 42.5]
in feet, where the origin is center ice, the x-axis is along the
length of the rink, and the y-axis is along the width.

As in previous work, [Routley and Schulte, 2015; Schulte
et al., 2017] our Markov Game model for ice hockey uses a
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Figure 1: System Flow for Alternating IRL

factored state space where a state is a list of values for fea-
tures that represent the match context. The features include
game context, team identity (H/A) and location (L). A game
context comprises Goal Difference (GD), ManPower (MP),
and Period (P). GD is calculated as the number of home goals
minus the number of away goals, ranging from -8 to 8. MP
specifies shorthanded, even strength, and powerplay. P rep-
resents the current period, ranging from 1 to 3. (We do not
consider overtime play.) We divide the hockey rink into 6 re-
gions indexed by L based on the two blue lines to divide the
X axis. We add an absorbing goal state for each team, with
no transition out of it. The dataset records 27 different action
types, and home and away teams share the same action space.
We treat home team H and away team A as two agents in the
game. At each timestamp, only one agent performs an action,
and the agent not controlling the puck chooses no operation.

As in previous work [Routley and Schulte, 2015], each
ice hockey game is modeled as a semi-episodic task [Sut-
ton and Barto, 1998], where games switch from episode
to episode. Each episode starts either at the beginning of
the game or right after a goal, and ends up with a goal or
the end of the game. The transition function is calculated
using the observed frequency T (s, a, s′) = p(s′|s, a) =
O(s, a, s′)/O(s, a), where O(·) counts the occurrence num-
ber in our dataset.

4 Alternating Learning for Multi-Agent IRL
Figure 1 illustrates the system flow of our alternating IRL for
two agents A and B. First, estimate a policy π̂B for agent
B. Given the policy π̂B , agent B can be treated as part of
the environment for agent A. This reduces learning a reward
function for agent A to a single-agent problem. Second, we
repeat this procedure, with the roles of A and B reversed.
Since the estimated policies for each team do not change, the
loop is not repeated more than once.

The following definitions formalize this design and support
a theoretical justification: We show that given a fixed pol-
icy vector π−i, from agent i’s perspective, a Markov Game
G = 〈S,A, r, γ, T 〉 is equivalent to a single-agent MDP. We
define the marginal MDP as M(π−i) := 〈S,Ai, r′, γ, T ′〉,
where

• r′(s, ai) =
∑
a−i

ri(s, ai, a−i) · π−i(a−i|s)

• T ′(s′|ai, s) =
∑
a−i

T (s′|ai, a−i, s) · π−i(a−i|s).

Proposition 1. Given a Markov Game G and policy vector
π−i for the agents other than i, the values of any policy πi for

Algorithm 1 Alternating IRL for two agents Markov Game
A and B.
Input: Partial Markov Game G = 〈S,AA,AB , γ, T 〉
Data: State-Action Event Data D
Output: Learned reward functions r̂A and r̂B
Calls: Single-Agent IRL procedure φ that learns reward r̂ =
φ(M,D) given MDPM \r, D

1: estimate maximum-likelihood policy π̂B from data D
2: T ′(s′|aA, s) =

∑
aB
T (s′|aA, aB , s) · π̂B(aB |s)

3: partial MDP M \ r := 〈S,AA, γ, T ′〉
4: r̂A := φ(M,D).

/*end learning reward for agent A*/
5: estimate maximum-likelihood policy π̂A from data D
6: T ′(s′|aB , s) =

∑
aA
T (s′|aA, aB , s) · π̂A(aA|s)

7: partial MDP M \ r := 〈S,AB , γ, T ′〉
8: r̂B := φ(M,D).

/*end learning reward for agent B*/
9: return r̂A, r̂B

agent i is the same in G and the marginal MDP M(π−i):

G
πi,π−i
i (s) = V πi(s) (2)

The proof is in the Appendix. Algorithm 1 gives pseudo-
code for leveraging single-agent IRL based on Proposition 1.
In our sports application, A represents a generic Home team,
and B a generic Away team. We show in Section 5 the design
of a single-agent procedure φ to incorporate sparse observed
rewards (which in our sports application represent goals).

5 IRL with Domain Knowledge
We use alternating learning procedure to leverage any single-
agent IRL procedure φ for a multi-agent Markov Game. For
our experiments, we choose maximum entropy (MaxEnt) IRL
because it provides an interpretable linear model for a re-
ward function and scales to our large dataset. We first review
the basic method and then present a new contribution: show-
ing how MaxEnt IRL can be extended to incorporate domain
knowledge in the form of explicitly given reward labels.

5.1 Maximum Entropy IRL
In MaxEnt IRL [Ziebart et al., 2008], each state s is assigned
a feature vector fs ∈ Rk, and the reward function is param-
eterized as a linear function of a state with reward weights
θ ∈ Rk as rθ(s) = θTfs. The state reward can be inter-
preted as the expected value over actions of the MDP reward
r(s, a). The reward value for a trajectory ζ is simply the cu-
mulative reward of visited states,

r(ζ) =
∑
sj∈ζ

θTfsj = θ
Tf ζ ,

where f ζ =
∑
sj∈ζ fsj is called the feature count of the

trajectory. The observed agents’ feature counts are calculated
as f̃ = 1

m

∑
ζ f ζ , where m is the number of trajectories.

Assuming that agents follow a maximum entropy [Jaynes,
1957] policy, the probability of a demonstrated trajectory ζ
increases exponentially with higher rewards. Eq. 4 in [Ziebart



et al., 2008] shows that under mild assumptions, the exponen-
tial trajectory probability can be approximated by the expres-
sion

P (ζ|θ, T ) = erζ

Z(θ, T )

∏
st+1,at,st∈ζ

PT (st+1|at, st) (3)

where Z(θ, T ) is the partition function and T is the state tran-
sition distribution. Fixing T , the optimal θ̂ maximizes the
log-likelihood L(θ) of the demonstrations

θ̂ = argmax
θ

L(θ) = argmax
θ

∑
ζ

logP (ζ|θ, T ). (4)

The maximum is obtained using gradient ascent; the gradi-
ent of L(θ) is the difference between observed and expected
feature counts, which can be expressed in terms of state visi-
tation frequencies Ds. The frequency of visiting a state given
a policy can be computed with an iterative algorithm

∇L(θ) = f̃ −
∑
ζ

P (ζ|θ, T )f ζ = f̃ −
∑
si

Dsifsi . (5)

5.2 MaxEnt IRL with Domain Knowledge
Directly using an IRL algorithm to recover the reward func-
tion from game dynamics models what situations professional
players want to be in, that is, their internal reward function
rθ. But the MaxEnt approach fails to learn the importance of
goals in a game, mainly because goals are such rare events in
ice hockey. Previous RL methods define the reward function
explicitly in terms of goals. The rule reward function rK
(for knowledge) assigns reward 1 for scoring a goal (i.e., get-
ting the puck into the net) and 0 for other actions. Our knowl-
edge transfer approach combines the MaxEnt likelihood func-
tion with the goal reward function through regularization:

θ̂ = argmax
θ

L(θ) + λk(rθ, rK), (6)

where rθ = θTψ, rK = θTKψ, ψ = [fs1 , ...,fsn ] ∈ Rk×n
is the state feature matrix, λ is a trade-off parameter, and k
is a kernel function that bridges the disparity between learned
and knowledge reward functions. In this paper we use a Gaus-
sian kernel k(xi, xj) = exp{−||xi − xj ||2/2}. Following
[Wulfmeier et al., 2016], we pre-train a parameter vector θK
to match our domain knowledge rK and initialize θ with θK .
The gradient for θ is given by

∇θ = f̃ −
∑
si

Dsifsi −ψ[λ exp(−
1

2
||rθ − rK ||2) ◦ (||rθ − rK ||)]T

(7)
This completes the description of our learning method. We
next derive the regularizer (6) from a previous knowledge
transfer framework.
Maximum Mean Discrepancy (MMD) [Gretton et al.,
2012] is an established framework for transferring knowledge
between two distributions over random variables. Let X and
Y be two random variables. Formally, MMD defines the fol-
lowing difference measure

dHk(X,Y ) = sup
f∈Hk

(EX [f(X)]− EY [f(Y )]), (8)

where Hk endowed by a kernel function k(x, x′) is a Hilbert
space of functions f(x) → R with inner product, known as
a reproducing kernel Hilbert space (RKHS) [Gretton et al.,
2012]. Given observations x of X and y of Y , an unbiased
estimation of squared MMD is given by:

d̂2Hk(X,Y ) =
1

n2x

nx∑
i=1

nx∑
j=1

k(xi, xj) +
1

n2y

ny∑
i=1

ny∑
j=1

k(yi, yj)

− 2

nxny

nx∑
i=1

ny∑
j=1

k(xi, yj). (9)

Since θ̂ is a function of a sample, it denotes a random vari-
able. As a result, rθ̂ also defines a random variable, which we
denote as Rθ̂ with observation rθ̂. We also associate with rK
a constant random variable RK with observation rK .

As kernel function k is a Gaussian kernel in most knowl-
edge transfer frameworks [Long et al., 2017], the optimal θ̂
is derived by

θ̂ = argmax
θ

L(θ)− αd̂2Hk(Rθ, RK)

= argmax
θ

L(θ) + 2αk(rθ, rK), (10)

where we have used the fact that the first two terms in Equa-
tion (9) are constant for a Gaussian kernel. Setting λ = 2α
yields Equation (6).

6 Evaluating the Learned Reward and Policy
We examine two IRL methods for sports data that apply the
alternating algorithm 1 with two different single-agent IRL
procedures φ. IRL-DK is our full method, with regularized
MaxEnt objective (6). IRL maximizes the MaxEnt objec-
tive (4) without regularization. Hyperparameters were set as
follows. λ = 1 for IRL-DK, λ = 0 for IRL. Discount factor
γ = 0.9 for all methods. The learning rate for gradient ascent
was 0.001, set for optimum convergence.1

We report different properties of the IRL-DK learned re-
ward function from the ice hockey data.
Reward Density. Since our goal is to complement the
sparse observed rewards with a dense reward signal that cov-
ers many situations, we would want the variance of learned
rewards to be substantially higher than that of goal rewards.
Table 1 verifies that this is the case: the standard deviation
(STD) of learned rewards is an order of magnitude higher, and
the STD of the Q-function derived from the learned rewards
is two orders of magnitude higher than that of the Q-function
derived from goal rewards. The computation of the Q-values
for IRL-DK is discussed in Section 7.1. For the goal reward
function, we used the Q-values provided by [Liu and Schulte,
2018], the state-of-the-art RL method for the goal reward.
Policy Evaluation. To evaluate how well the reward func-
tion recovered by our model rationalizes players’ behavior,
we solve the MDP for the learned reward functions to ob-
tain two optimal policies πθ̂

H and πθ̂
A for the home and away

1Code available at https://github.com/miyunluo/IRL-icehockey.

https://github.com/miyunluo/IRL-icehockey
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Figure 2: Average of gradients during training for IRL and IRL-DK

Items Mean STD
Rule reward function (goals) 0.0000 0.0383
IRL-DK learned reward function 0.7964 0.1281
Q-values from goals (GIM) 0.4222 0.0963
Q-values from IRL-DK 5.1863 1.2207

Table 1: IRL-DK produces a dense reward signal with substantially
higher variance than sparse explicit goal rewards.

teams respectively. Then we compare the demonstrated tra-
jectories with the probabilistic distribution over trajectories
generated by the policies, using two common metrics: neg-
ative log-likelihood (NLL) and modified Hausdorff Distance
(MHD) [Wulfmeier et al., 2016].

NLL(ζ) = − log
∏
t

P (st+1|st, at)× π(at|st) (11)

MHD({ζd}, {ζg}) = max(h({ζd}, {ζg}), h({ζg}, {ζd}))

h({ζ}, {ζ̂}) = 1

|{ζ}|
∑
ζi∈{ζ}

min
ζ̂j∈{ζ̂}

||ζi − ζ̂j ||

(12)
NLL calculates how likely the demonstrations are under

policy π, and MHD is a spatial measure of the distance
between demonstrated and generated trajectories. Table 2
shows the average results for both home/away teams. The
policies optimal for the IRL reward with domain knowledge
outperform their counterparts on both metrics.

Learning Performance. Figure 2 shows the gradient
changes during training for IRL and IRL-DK respectively.
IRL is very unstable with oscillating gradients and fails to
completely converge. Combining IRL with domain knowl-
edge leads to a smoother training and faster convergence.

Methods NLL HMD
Rule reward function (goals) 185.0 13.37
IRL learned reward function 53.9 9.71
IRL-DK learned reward function 49.5 7.77

Table 2: Evaluation of trajectory likelihoods under optimal policies
derived from different reward functions. lower numbers indicate bet-
ter approximations of expert behavior. For definitions see the text.

7 Player Ranking
We assess the learned reward function in a downstream ap-
plication, player ranking. We first define the action impact
values and then give examples of player ranking.

7.1 Action Impact Values
Action impact, which quantifies the difference made by an
action, has been used for player evaluation [Routley and
Schulte, 2015; Schulte et al., 2017; Liu and Schulte, 2018].
We adopt action impact values as a function of game context
(Markov state) [Routley and Schulte, 2015]. For the home
team H , the impact is defined by

impactH (s, a) ≡ Qπ
θ̂
H

H (s, a)− V π
θ̂
H

H (s), (13)
where H is the team executing the action a, and the policy

πθ̂
H is obtained by solving the single-agent MDP for the home

team given the learned reward (cf. Section 6). Impact for the
away team is defined similarly. The action impact function
measures how much an action improves over the average ac-
tion.

7.2 Player Rankings
Following [Liu and Schulte, 2018], the ranking score for a
player is the sum of this player’s total action impact values

Scorei =
∑
s,a

niD(s, a)× impactteami(s, a), (14)

whereD denotes our dataset, i is the playerId, niD(s, a) is the
occurrence number that player i performed action a at state s
observed fromD, and teami is the team of player i. The total
impact is not normalized for time-on-ice (TOI), because TOI
correlates with player strength. Dividing the ranking score by
TOI therefore reduces the score differences among players.
Note that impact values can be both positive and negative, so
the total impact reflects the net value of a player’s actions,
rather than the total number of the actions.

Different from [Routley and Schulte, 2015; Liu and
Schulte, 2018] where all the players are evaluated together,
we evaluate offensive players (Center, Left Wing, Right
Wing) and defensive players (Defenceman, Goalie) sepa-
rately with the following considerations. First, previous RL
methods with sparse reward rank offensive players higher
than defensive players in most cases. Second, these two types
of players play different roles in a team under diverse strate-
gies leading to distinct behavior.

Tables 3 and 4 list the top-10 highest impacts offensive and
defensive players by our algorithm. All these players are fan-
tasy NHL stars according to recent NHL 2019-20 top players
news. Our ranking can be used to identify promising players.
For instance, Miro Heiskane just began his career in 2017
and drew salaries below other top ranking players but is nom-
inated as a top-50 defenceman by NHL [Reese, 2019]. Our
ranking does not have apparent bias towards offensive play-
ers compared with two recent RL methods, Score Impact (SI)
[Routley and Schulte, 2015] and Goal Impact Metric (GIM)
[Liu and Schulte, 2018]. For instance, comparing the top-50
players, for the SI metric they are all offensive players, for
GIM all but one are offensive player, whereas our method
contains 32 defencemen.



Name Assists Goals Points Team Salary
Anze Kopitar 38 22 60 LA 11,000,000

Aleksander Barkov 61 35 96 FLA 6,900,000
Dylan Larkin 41 32 73 DET 7,000,000

Nathan Mackinnon 58 41 99 COL 6,750,000
Leon Draisaitl 55 50 105 EDM 9,000,000
Mark Scheifele 46 38 84 WPG 6,750,000
Jonthan Toews 46 35 81 CHI 9,800,000

Connor McDavid 75 41 116 EDM 14,000,000
Jack Eichel 54 28 82 BUF 10,000,000

Ryan O’Reilly 53 30 83 CAR 6,000,000

Table 3: 2018-19 Top-10 offensive players

Name Assists Goals Points Team Salary
Drew Doughty 37 8 45 LA 12,000,000

Brent Burns 67 16 83 SJ 10,000,000
Roman Josi 41 15 56 NSH 4,000,000

John Carlson 57 13 70 WSH 12,000,000
Morgan Rielly 52 20 72 TOR 5,000,000

Ryan Suter 40 7 47 MIN 9,000,000
Mark Giordano 57 17 74 CGY 6,750,000
Duncan Keith 34 6 40 CHI 3,500,000

Erik Gustafsson 43 17 60 CHI 1,800,000
Miro Heiskane 21 12 33 DAL 925,000

Table 4: 2018-19 Top-10 defensive players

8 Player Ranking Empirical Evaluation
Similar to clustering problems, there is no ground truth for
player evaluation. To assess player evaluation metrics, we
follow previous work [Routley and Schulte, 2015; Schulte et
al., 2017; Liu and Schulte, 2018] and compute their correla-
tion with commonly used statistic measurements like Assists,
Goals, Points, as these statistics are generally regarded as im-
portant measures of a player’s ability to impact a game.

We compare our method with the following player evalua-
tion metrics. Metrics derived from a Markov model include SI
and GIM. These metrics use only the observed goal reward,
no inferred rewards. Scoring Impact (SI) is most related to
our method, also based on a discrete Markov Game model
[Routley and Schulte, 2015; Schulte et al., 2017]. Goal Im-
pact Metric (GIM) uses a deep Q-network to predict Q-values
and defines the difference between two consecutive Q-values
as action impact [Liu and Schulte, 2018].

We also compare a number of player metrics not based
on a Markov model. Plus-minus (+/-) is a commonly used
basic metric to measure the influence of player presence on
goal scoring [Macdonald, 2011]. Win-Above-Replacement
(WAR) estimates the difference of team’s wining chance if
a target player is replaced by an average player [Gerstenberg
et al., 2014]. Expected Goal (EG) weights each shot by its
chance of leading to a goal [Macdonald, 2012]. Valuing Ac-
tions by Estimating Probabilities (VAEP) defines the impact
of an action as its offensive score plus defensive score [De-
croos et al., 2019]. These two scores are defined as the differ-
ences between two consecutive scoring and conceding prob-
abilities.

8.1 Season Totals: Correlations with Standard
Success Measures

The following experiment computes the correlations with
success measures over the entire 2018-19 season. The

Methods Assists GP Goals GWG SHG PPG S
+/- 0.269 0.086 0.282 0.278 0.118 0.124 0.156

VAEP 0.215 0.185 0.215 0.089 -0.074 0.160 0.239
WAR 0.591 0.322 0.742 0.571 0.179 0.610 0.576
EG 0.656 0.629 0.633 0.489 0.099 0.391 0.737
SI 0.717 0.633 0.975 0.665 0.249 0.770 0.860

GIM 0.757 0.772 0.781 0.518 0.147 0.477 0.795
IRL 0.855 0.872 0.812 0.587 0.123 0.513 0.901

IRL-DK 0.882 0.887 0.824 0.607 0.125 0.537 0.907

Methods Points SHP PPP FOW P/GP SFT/GP PIM
+/- 0.285 0.179 0.157 0.012 0.306 0.109 0.100

VAEP 0.235 -0.076 0.185 0.021 0.204 0.129 0.172
WAR 0.692 0.147 0.605 0.040 0.699 0.396 0.145
EG 0.694 0.183 0.508 0.254 0.644 0.713 0.355
SI 0.869 0.204 0.708 0.135 0.728 0.639 0.361

GIM 0.818 0.151 0.561 0.289 0.705 0.751 0.372
IRL 0.891 0.207 0.696 0.294 0.741 0.818 0.437

IRL-DK 0.908 0.213 0.734 0.298 0.769 0.820 0.446

Table 5: Correlation with success measures (offensive)

Methods Assists GP Goals GWG SHG PPG S
+/- 0.173 0.132 0.144 0.177 0.235 -0.116 0.113

VAEP 0.054 -0.045 0.005 0.010 0.384 0.071 -0.016
WAR 0.204 0.028 0.365 0.275 0.097 0.246 0.186
EG 0.589 0.688 0.507 0.321 0.327 0.306 0.679
SI 0.607 0.488 0.934 0.449 0.491 0.457 0.709

GIM 0.702 0.862 0.596 0.263 0.130 0.170 0.764
IRL 0.809 0.941 0.686 0.415 0.268 0.347 0.908

IRL-DK 0.852 0.959 0.701 0.439 0.289 0.360 0.920

Methods Points SHP PPP FOW P/GP SFT/GP PIM
+/- 0.175 0.107 -0.05 0.095 0.169 0.067 0.072

VAEP 0.042 0.065 -0.003 0.101 0.064 -0.036 -0.031
WAR 0.252 0.128 0.266 0.174 0.279 0.006 -0.089
EG 0.611 0.278 0.399 0.118 0.503 0.694 0.360
SI 0.720 0.174 0.488 0.103 0.521 0.499 0.272

GIM 0.730 0.085 0.358 0.140 0.471 0.706 0.438
IRL 0.841 0.281 0.549 0.182 0.557 0.776 0.549

IRL-DK 0.865 0.307 0.571 0.185 0.574 0.778 0.570

Table 6: Correlation with success measures (defensive)

NHL official website provides 14 standard success mea-
sures (www.nhl.com/stats/player), including Assists, Goals,
Points, Game Play (GP), Game Wining Goal (GWG), Short-
handed Goal (SHG), Power-play Goal (PPG), Shots (S),
Short-handed Point (SHP), Power-play Point (PPP), Face-off
Win Percentage (FOW), Points per game (P/GP), Shifts per
game (SFT/GP), and Penalty Minute (PIM). The results for
offensive and defensive players are shown in Tables 5 and 6.

Our method achieves the highest correlation in 10 out of
14 success measures except for goal and three goal related
items (GWG, SHG, and PPG). For these measures, only SI
shows a higher correlation, because it is dominated by goal
action. For GWG, our results are comparable to SI for both
offensive and defensive player measures. For SHG and PPG,
it achieves the second best results or comparable to the sec-
ond best. The traditional plus-minus correlates poorly with all
success measures. VAEP only achieves little correlation with
success measures because their model is a classifier built on
data with few positive labels and tends to assign similar im-
pact value to all actions. EG is only the fourth best metric,
because it only takes shots into account. IRL-DK achieves
higher correlations than GIM, the most recent method, for ev-
ery success measure except for SHG. The difference is espe-
cially pronounced for defencemen and non-goal related mea-
sures (e.g. points), due to GIM’s goal bias. Compared to



Figure 3: Correlations between round-by-round metrics and season
totals for offensive players

the no-knowledge IRL baseline, the correlations of IRL-DK
are consistently higher but not by much. This is evidence
that providing a denser reward signal with either inverse RL
method improves player rankings.

8.2 Round-by-Round Correlations: Predicting
Future Performance from Past Performance

A sport season normally consists of several rounds. A team
or player will finish n competitions at the end of round n. We
compute the correlation between player values at the end of
round n and three main success measures, Assists, Goals, and
Points, over the whole sport season. This experiment assesses
the predictive power of different metrics, which allow us to
infer the future performance of players. We also compute the
auto-correlation for different metrics between players’ round
values and final season values. Auto-correlation evaluates the
temporal consistency of a metric [Pettigrew, 2015]. Since
most players’ strengths are stable throughout a season, a good
player metric should show temporal consistency.

We focus on the four machine learning methods VAEP, SI,
GIM, and IRL-DK. Figure 3 shows round-by-round corre-
lation with Assists, Goals, Points, and the auto-correlation
between round values and season total for offensive players.
(Results for defensive players are similar, but not shown due
to the page limit.) IRL-DK is the most stable model measured
by auto-correlation, and is the best at predicting success mea-
sures, even at the very beginning of the season.

9 Conclusion
We investigated multi-agent inverse reinforcement learning
for professional ice hockey game analytics, a novel applica-
tion area for AI. Our aim was to recover reward for com-
plex game dynamics, which addresses the sparse reward is-
sue for RL models. We introduced a transfer learning based

regularization approach to incorporate domain knowledge in
IRL. Based on the recovered reward function and calculated
Q-values, we computed a context-aware player performance
metric that provides a comprehensive evaluation for both of-
fensive and defensive players in NHL by taking all their ac-
tions into account. In experiments our method shows no ob-
vious bias for any player position, achieves highest correla-
tion with most standard success measures among competing
methods, and is most temporally consistent. While we have
focused on ice hockey for concreteness, the IRL with domain
knowledge method can be easily applied to a Markov Game
model for any similar team sport. Another important direc-
tion for future work is to learn reward functions at different
levels, for instance, for individual teams and players.
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A Proof of Proposition 1
We show that the Bellman equation for the marginal MDP is
the same as for the Markov Game. Since each Bellman equa-
tion has a unique value function as a solution, this implies
that the value functions are the same. The value function of a
marginal MDP (Sec. 4) is

V πi(s) =
∑
ai

πi(ai|s)[r′(s, ai) + γ
∑
s′

T ′(s′|ai, s)V πi(s′)]

=
∑
ai

πi(ai|s)[
∑
a−i

r(s, ai, a−i)π−i(a−i|s)

+ γ
∑
s′

∑
a−i

T (s′|ai, a−i, s)π−i(a−i|s)V πi(s′)]

=
∑
ai

∑
a−i

r(s, ai, a−i)πi(ai|s)π−i(a−i|s)

+ γ
∑
s′

∑
ai

∑
a−i

T (s′|ai, a−i, s)πi(ai|s)π−i(a−i|s)

This equation agrees with the Markov Game value function.

B VAEP Implementation
VAEP probabilities are estimated by building a probabilis-
tic binary classifier for predicting whether a given possession
will end in a goal. The original VAEP work [Decroos et al.,
2018], utilized both a neural network and a tree classifier,
and reported very similar performance for both. Our dataset
contains 4.5M records, whereas the VAEP dataset posted on-
line contains only 2.7M. In most recent version [Decroos et
al., 2019], a gradient-boosted tree was applied to a dataset
of over 11K games, but we were not able to scale the on-line
code to our dataset (https://github.com/ML-KULeuven/socce
raction). Instead, we utilized a neural network with an LSTM
layer followed by two fully connected layers (100 and 50
ReLU nodes), and a sigmoid output layer. The trace length of
LSTM is 10, corresponding to the VAEP default look-ahead
of k = 10. We trained for 10 epochs on the whole dataset.

https://github.com/ML-KULeuven/socceraction
https://github.com/ML-KULeuven/socceraction
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