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Abstract 
Within a spoken dialog system, the dialog model is 
responsible for tracking the current state of the 
conversation, and the dialog manager is responsible for 
action selection and planning.  This work shows how a 
dialog model can be represented as a factored Partially 
Observable Markov Decision Process (POMDP), and how 
automated techniques can be used to produce a dialog 
manager.  It then shows how direct comparisons can be 
made between automated and handcrafted dialog managers, 
and also how handcrafted dialog managers in this context 
can be easily improved.  Finally, the work describes how a 
speech recognition confidence score can be incorporated 
into the model.  To test our proposals, an example problem 
is presented, and a variant of Point-Based Value Iteration is 
used for policy improvement.  Empirical comparisons show 
that the POMDP-based model outperforms fully-observable 
Markov Decision Processes and hand-crafted dialog 
managers. 

1 Introduction 
Spoken Dialog Systems help users achieve some goal through spoken language.  Within a 
Spoken Dialog System, a Dialog Manager (DM) interprets evidence from the 
conversation and decides what system action to take to reliably and efficiently satisfy a 
user’s goal.  Actions might include asking a question, confirming a user’s goal, querying 
a database, or stating information. 

The dialog management task is complex for several reasons.  First, the system observes 
the user’s actions via automated speech recognition and language parsing: imperfect 
technologies which corrupt the evidence available to the system.  Second, each user 
action (even if it could be observed accurately) provides incomplete information about a 
user’s goal, so the system must assemble evidence over time to infer a user’s goal.  
Because the user might change their goal at any point, inconsistent evidence could either 
be due to a channel (speech recognition) error or due to a changed user goal.  Thus, 
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deciding how to interpret conflicting evidence is a challenge.  Finally, the system must 
make trade-offs between the “cost” of gathering additional information (increasing its 
certainty of the user’s goal, but prolonging the conversation) and “cost” of committing to 
an incorrect user goal.  That is, the system must perform planning to decide what 
sequence of actions to take to best to achieve the user’s goal despite having imperfect 
information about that goal.   

For all of these reasons, the dialog management problem can be regarded as planning 
under uncertainty.  Researchers have previously applied both (fully-observable) Markov 
Decision Processes (MDPs) and Partially Observable Markov Decision Processes 
(POMDPs) to the dialog management problem. 

The application of MDPs to the dialog management problem is first explored in (Levin 
and Pieraccini, 1997).  (Levin et al., 1998) and (Levin et al., 2000) provide a formal 
treatment of how an MDP may be applied to the dialogue management task.  (Walker et 
al., 1998) and (Singh et al, 2002) show application to practical systems.   

Building an MDP model typically requires extensive training data, which is expensive to 
collect.  To address this issue, researchers have explored training with user models 
(Scheffler and Young, 2002), methods for generalizing actions to new situations 
(Denecke et al., 2004)).  , and “bootstrapping” a solution using supervised learning 
(Williams and Young, 2003).  More thorough investigations of state space and reward 
functions have also been undertaken (Pietquin, 2004). 

Fully-Observable Markov Decision Processes take a principled approach to planning in 
which a dialog strategy can be automatically determined from a designer’s specification 
of desired outcomes, or from users’ feedback.  Further, the quality of the “plan”  can be 
automatically improved over time with reinforcement learning techniques that  interact 
with the environment.   

However, because MDPs assume the current state of the environment (i.e., the dialog) is 
known exactly, they do not naturally or precisely model “noisy” evidence.  Thus one 
might hypothesize that MDP-based techniques would under-perform POMDP-based 
techniques in the Dialog Management domain.  (Roy et al., 2000) tests this hypothesis by 
evaluating an MDP and a POMDP version of the same spoken dialog system.1  Two 
evaluations are conducted – one using a user model, and another with a small handful of 
usability subjects.   In each case, the POMDP version of the spoken dialog system gains 
more reward per unit time than the MDP version.  Further, the authors show a trend that 
as speech recognition errors increase, the margin by which the POMDP outperforms the 
MDP increases. 

While (Roy et al., 2000) show promise for the POMDP technique, many issues are left 
unaddressed.  First, the state space of 13 states is handcrafted, and there is a tight 
coupling between the user’s goal, the user’s action, and the state of the conversation.   It 
is not clear how to separate these components in a principled way, and thus it is not clear 
how to apply the ideas in this work to other dialog systems.  Second, the dynamics of the 
problem are handcrafted, and it is not clear how the transition or observation function 

                                                 
1 The POMDP version is solved as an “Augmented MDP” which summarizes the multi-dimensional belief 
state as the single most likely state and the (real-valued) entropy of the belief state. 
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should be estimated.  Finally, the reward function used in (Roy et al., 2000) contains 
rewards for only “right-answer”, “wrong-answer” and “neither,” yet a more nuanced 
reward function, taking into account “appropriate” dialog behavior – seems appealing.  
However, a more nuanced reward measure would require that the state space includes a 
“dialog state” – i.e., information such as whether a piece of information has been 
requested already, has been confirmed, etc.  The state space in (Roy et al., 2000) does not 
include an explicit dialog state.   

(Zhang et al., 2001) extends the work in (Roy et al., 2000) in several ways.  First, the 
authors add five “hidden” system states to account for various types of dialog trouble, 
such as different sources of speech recognition errors, or the lack of a response from the 
user.  These “hidden” system states are combined with states representing the user’s goal 
to form a factored state space.  Second, the authors use 2-stage temporal Bayesian 
Networks to combine observations from a variety of sources (e.g., parse score, acoustic 
confidence score, etc.)  Finally, the authors compare a range of solution techniques, 
including MDP, the so-called Q-MDP approximation, and grid-based approximation, 
which they find is most successful when evaluated using a model. 

In comparison to (Roy et al., 2000), (Zhang et al., 2001) demonstrated the utility of 
adding “hidden” system states to model dialog trouble, and the ability of grid-based 
solution techniques to perform policy improvement on a small POMDP which captures 
basic elements of the dialog management problem.  However, several issues are still left 
unaddressed.  First, the “user model” (i.e., how the user is likely to respond in a given 
situation) and the “speech recognition model” (i.e., what kinds of errors the speech 
recognizer is likely to make) are conflated into the POMDP observation function.  The 
authors indicate that the system dynamics are “handcrafted, depending a lot on the 
experience of the developer.”  It is not clear how to form the POMDP observation 
function, nor estimate its parameters in practice.  Second, although the reward function 
has costs for various “repair” actions such as asking the user to repeat, confirming, or 
troubleshooting, these actions are given fixed penalties.  The reward measures are not 
used to guide “appropriate” behavior for the current dialog state: in fact, a persistent 
dialog state is not included in the state space. 

This paper makes several contributions in the area of Dialog Management through novel 
insight into the Dialog Management problem combined with recent work in the POMDP 
community.  This paper introduces: 

•  A factored architecture for describing POMDPs applied to spoken dialog 
management.  Unlike past POMDP-based (or MDP-based) dialog management work, 
our factored representation adds a component for the state of the dialog from the 
standpoint of the user, enabling reward measures for the “appropriateness” of system 
actions.  It also creates separate distributions for the user model and the speech 
recognition model, which reduces the number of components which need to be 
calculated, and allows groups of parameters to be estimated separately.2  These 

                                                 
2 In the literature, factored models have also been explored as a technique to address large state spaces.  In 
this work we don’t make use of the factored architecture when performing optimization.  Here we propose 
the factored architecture as a technique to more easily incorporate real data into the model.   We plan to 
explore using the factored architecture to assist with policy optimization in future work. 
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components are also quite general and easy to adapt for dialog managers applied to 
various tasks. 

•  A method to convert a hand-crafted policy into a POMDP policy and makes direct 
comparisons with automated solutions.  Hand-crafted policies are often used as a 
baseline for dialog managers created with automated technique, yet past work has not 
shown a method for performing this comparison.  We also show a simple method to 
improve the performance of a hand-crafted policy by incorporating elements of basic 
POMDP solution techniques.  This is particularly interesting given that domain 
experts can often specify simple hand-crafted dialog managers, which can then be 
automatically refined. 

•  A principled method to integrate a speech recognition “confidence score” into this 
architecture.  A “confidence score” is a metric of reliability provided by the speech 
recognizer.  Past work has relied on discretizing the confidence score; however, it is 
not clear how this discretization should be performed.  In this paper we show how a 
continuous confidence score can be naturally incorporated into the belief state update.  

We show proof-of-concept in terms of both tractability and effectiveness for each of 
these concepts through a testbed DM problem.  With our factored model, we demonstrate 
how to represent a more expressive dialogue model than previously applied to POMDPs, 
and show how recent algorithms developed in the POMDP community applied to this 
problem produce dialog managers which outperform both MDP and handcrafted 
baselines. 

The paper is organized as follows.  Section 2 presents background on spoken dialog 
systems, POMDPs, and relevant solution techniques.  Section 3 presents the factored 
architecture.  Section 4 shows an example testbed system using this architecture, and 
compares it to a baseline MDP system.  Section 5 describes a method to compare these 
results with a hand-crafted controller, and how a handcrafted controller can be easily 
improved by applying insights from the POMDP literature.  Section 6 describes a method 
for integrating confidence score into the architecture and shows results.  Section 7 
concludes. 

2 Background 

2.1 Spoken dialog systems 
In this work, we define a spoken dialog system to be a machine which helps a user to 
achieve some goal through spoken language.  A typical spoken dialog system consists of 
the components shown in . 

The user enters the conversation with the intention of fulfilling a goal, us .  To achieve 
this, the user takes a communicative action, ua , where ua  might be represented by slot-
value pairs, dialog acts, speech acts, or a number of other formalisms.  The user’s action 

ua  is encoded into a sequence of words which is rendered as a speech signal, uâ , and 
provided to the machine as input.  uâ  is then processed by a speech recognition and 
language understanding component, which produces an observation o in an attempt to 
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reconstruct ua .  The recognition process is error-prone, and in general we cannot regard o 
as faithfully representing ua .  The speech recognition and language understanding 
component may also provide additional information such as a confidence score c which 
attempts to provide a clue about the reliability of o.  Alternative hypotheses for ua  might 
also be provided, perhaps with their own confidence scores. 

us

ua
uâ

co,

s

ma

mâ

Speech 
Recognition &

Language
Understanding

Dialog
Model

Dialog
Manager

Language &
Speech 

Generation

 
Figure 1: Overview of a typical spoken dialog system.  See text for description. 

o and c (if c is available) are then passed to the dialog model component.  The dialog 
model component attempts to track the state of the dialog, s, based in part on o.  s might 
include components for the values of the slots which must be provided by the user, 
whether each slot has been confirmed, the confidence recorded for each slot, etc.   

Based on s, the dialog manager decides what machine action, ma , to take next.3  This 
action may serve to communicate with the user through a question or statement or be a 
“processing” action such as consulting a database.4 

The machine action ma  is also required to capture and update the current state of the 
dialog and is also provided to the dialog model.  ma , o and the current dialog state s form 
the complete input to the dialog model, which produces the next dialog state s′  as its 
output. 

                                                 
3 There may be more information in the dialog state s than is required by the dialog manager.  For example, 
it may be important to track the value a user has provided for a slot (such as from=London), but that value 
might not be important for action selection (for example, ask(to), or confirm(from)).  For this reason, 
spoken dialog systems sometimes include a state estimator, which maps the complete state s to an 
estimated state, which forms the input to the dialog manager. 
4 For clarity of exposition, “processing” actions are not shown in the diagram. 
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Communicative system actions ma  are passed to the language and speech generation 
components, which render ma  as speech mâ  to the user.  The language and speech 
generation component typically first generates a word string, and then converts this word 
string into the speech signal mâ  using pre-recorded utterances or text-to-speech 
technology. 

Creation of the dialog management (DM) component has historically been approached as 
a design problem, and many frameworks have been proposed to enable human experts to 
efficiently craft a dialog manager.  Typical design decisions address the uncertainty 
introduced by the error-prone speech and language understanding components – e.g., 
when to confirm, re-ask, or accept a slot.  Dialog managers are also responsible for 
making progress toward satisfying the user’s goal; thus, they must often make trade-offs 
between accuracy and efficiency.   

Designing successful dialog managers by hand is difficult in part because the state space 
of s is often very large, and selecting actions appropriate for each state is a tedious 
process.  Further, the effects of the uncertainty introduced by the recognition and 
understanding component is not always well understood, and user behavior patterns can 
be difficult to predict at design time, requiring time-consuming development iterations. 

To address these issues, researchers have begun applying decision-theoretic techniques, 
the focus of this paper, to the dialog modelling and dialog management problems. 

2.2 Partially Observable Markov Decision Processes 
To define a Partially-Observable Markov Decision Processes (POMDP) it is easiest to 
start with a Markov Decision Process (MDP).  An MDP is defined by a tuple {S, Am, T, 
R} where S is a set of states, Am is a set of actions that an agent may take, T defines a 
transition probability ),|( massp ′  (sometimes called the transition matrix), and R defines 
the expected (immediate, real-valued) reward ),( masr .5  At each time-step, the machine 
is in a particular state s .  The machine selects an action ma , receives a reward r , and 
transitions to a state 's , where 's  depends only on s  and ma .  The goal of the agent is to 
maximise the cumulative, infinite-horizon, discounted reward R (sometimes called the 
return) over an infinite horizon: 

 ∑
∞

=

=
0

),(
t

tmt
t asrR λ  (1) 

 
where λ  is a geometric discount factor, 10 ≤≤ λ .   

A policy, mAs ∈)(π , is a mapping from states to actions; an optimal policy, mAs ∈)(*π , 
is one which maximises cumulative reward over time.  It can be shown that an MDP 

                                                 
5 The reward function may also be a function of the next state s’.  Also, some definitions of an MDP 
include a discount factor λ , and the initial state, s0.  In the literature, the system action is often written as 
an un-subscripted a.  In this work, we will model both system and user actions, and here have chosen to 
write the system action explicitly as am for clarity. 
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evaluated over an infinite horizon in which {S, Am, T, R, λ } are fixed has a deterministic 
policy )(* sπ  which is independent of time step t.  An influence diagram depiction of an 
MDP is shown in .  

s

am

r

s'

am'

r'

Timestep n Timestep n+1
  

Figure 2: Influence diagram representation of an MDP.  s and a are discrete.  Unfilled circles indicate 
random, observed variables; diamonds indicate real-valued utilities and squares show decision nodes.  

Arrows indicate direction of influence.   

POMDPs extend Markov Decision Processes by removing the requirement that the 
current state is known precisely.  Instead, the machine makes observations which give 
incomplete information about the true current state, and the machine maintains a 
distribution over MDP states which is referred to as a belief state.  

Formally, a POMDP is defined as a tuple {S, A, T, R, O, Z}, where {S, A, T, R} define an 
MDP, O is a set of observations, and Z defines an observation function given by 

),|( masop ′′ .6   

At a given time step, we no longer know the precise state s – rather, we maintain the 
belief state, b.  We write tb to indicate the distribution over all states at time t, and )(sbt to 
indicate the probability of being in a particular state s at time t. 

The immediate reward is computed as the expected reward over belief states, ),( tmt abρ : 

 ∑
∈

=
Ss

tmttmt asrsbab ),()(),(ρ , (2) 

and the return is again the discounted sum of immediate rewards at each time step: 

                                                 
6 This can be read as “The probability of making an observation given that action a was taken and the 
underlying MDP transitioned to state s’.”  Also, some definitions of a POMDP include the discount factor, 
λ , and the initial belief state, b0. 
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 ∑ ∑ ∑
∞

=

∞

= ∈

==
0 0

),()(),(
t t

tm
Ss

t
t

tmt
t asrsbabR λρλ . (3) 

 

At each time step, the next belief state )(sb ′′  can be computed exactly as shown in 
Equation (12).  

We note here that the set of observations may be discrete & finite, discrete & infinite, 
continuously-valued, or a mixture of these types.  In this work we will make use of 
several observation types.  An influence diagram depiction of a POMDP is shown in . 

o

s

am

r

o'

s'

am'

r'

Timestep n Timestep n+1
  

Figure 3: Influence diagram representation of a POMDP.  Symbols are the same as used in ; shaded 
circles indicate unobserved random variables.  o can be discrete & finite, discrete & infinite, 

continuously valued, or a mixture of these types.  Note that as depends on the belief state b(s) – the 
distribution over all states – and not the true current (unobservable) state. 

2.3 Optimization 
Although POMDPs and MDPs consist of a defined tuple, in practice we may or may not 
know the values of the functions T, R, and for POMDPs, Z.  If these values are known, 
we can apply analytic methods to improve a policy.  If these values are not known and 
not easily estimated, we can observe actual interactions with a real or simulated 
environment to improve a policy with reinforcement learning. 

Policy improvement with a simulated environment is particularly appealing when the 
environment can be readily modelled but not easily mapped to the MDP parameters – for 
example, when the environment maintains some internal, hidden state.  For example 
(Scheffler and Young, 2002) and (Pietquin, 2004) optimized policies for MDP-based 
dialog managers using interactions with a simulated user and speech recognizer.  The 
user model in each case has a consistent goal (i.e., an internal state) which is not directly 
observable by the MDP.  
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One of the strengths of POMDPs is that they can represent a hidden internal state directly 
– i.e., a POMDP can contain a probabilistic user model and maintain a distribution over 
true user goals.  Hence, in this work, we will assume that a probabilistic user model & 
speech recognition model can be constructed and embedded into a POMDP, directly 
yielding values for T and Z.   Thus, this work focuses on POMDP policy improvement 
using analytic methods rather than through interaction. 

Policy improvement for POMDPs is notoriously difficult.  First, because belief space is 
real-valued, an optimal infinite-horizon policy may consist of an arbitrary partitioning of 
S-dimensional space.7  Moreover, the size of the policy space grows exponentially with 
the size of the observation set and doubly exponentially with the distance (in timesteps) 
from the horizon. Searching for an (exact) optimal policy using value iteration is also 
plagued by the so-called “curse of dimensionality” – the dimensionality of the belief 
space grows exponentially with the number of state variables (Kaelbling et al., 1998). 

Nevertheless, real-world problems tend to exhibit a significant amount of structure that 
can be exploited to speed up computation.  State abstraction (Boutilier and Poole, 1996) 
and compression techniques (Poupart and Boutilier, 2002), (Poupart and Boutilier, 2004), 
(Roy and Gordon, 2002) can be used to mitigate the curse of dimensionality.  Similarly, 
point-based value iteration (Pineau et al., 2003), (Spaan and Vlassis, 2004) and bounded 
policy iteration algorithms (Poupart and Boutilier, 2003), (Poupart and Boutilier, 2004) 
can be used to mitigate the complexity of policy spaces. 

In this work, we use a randomized value iteration algorithm called Perseus (Spaan and 
Vlassis, 2004).  Perseus heuristically  selects a small set of representative belief points, 
and iteratively applies value updates to those points.  Whereas an iteration (also called a 
“back-up”) of policy improvement performed on real-valued belief space runs in 
exponential time, an iteration of policy improvement  on a finite set of points runs in 
quadratic time.  In Perseus, belief point selection can be done in a number of ways.  We 
select belief points by sampling trajectories through belief space.  That is, we record 
visited belief points in random trajectories obtained by choosing actions at random. The 
recorded belief points form a subset of the reachable belief states   

Point-based value iteration algorithms (including Perseus) have been shown to 
outperform grid-based methods on a variety of problems (Pineau et al., 2003), (Spaan and 
Vlassis, 2004).  Whereas grid-based methods maintain only a value at each belief point, 
Perseus maintains both a value and a gradient at each belief point.  This property enables 
Perseus to generalize to unexplored belief points better than grid-based approximations. 

In this work we also extend Perseus to perform policy improvement on problems with 
observations composed of discrete and continuous components.  In Perseus, point-based 
backups are done by considering all observations.  As described in (Hoey and Poupart, 
2005), we handle continuous observations by sampling a subset of them.  As the number 
of sampled observations increases, the quality of the solution improves. 

                                                 
7 Technically an |S|-dimensional simplex. 
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3 A factored POMDP architecture for Spoken Dialog 
Systems 

3.1 Method 
Our proposal is to formulate the Dialog Manager of a Spoken Dialog System as a 
POMDP as follows. 

First, we break the POMDP state variable Ss ∈ into three components: (1) the user’s 
goal, uu Ss ∈ ; (2) the user’s action, uu Aa ∈ ; and (3) the state of the dialog, dd Ss ∈ .  
The POMDP state s is given by the tuple },,{ duu sas .  We note that, from the machine’s 
perspective, all of these components are unobservable.   

The state variables are described as follows: 

•  First, the user’s goal, us , gives the current goal or intention of the user.  Examples 
of a complete user goal include a travel itinerary, a request for information about 
a calendar, or a product the caller would like to purchase.  At each time step, we 
wish to form a distribution over the set of possible user goals, uS .  For that 
reason, we expect that the propositional content of a user’s goal (e.g., the places 
the user wants to travel to, or the name of the product a caller wants to buy) need 
to be included in the set uS .   

•  Second, the user’s action, ua , gives the most recent user’s actual action.  
Examples of user actions include specifying a place the user would like to travel 
to, providing a date to query the user’s calendar, and indicating that the caller 
would like to make a purchase.  Other actions include responding to yes/no 
questions or a “null” response indicating the caller made no response. 

•  Finally, the state of the dialog ds  indicates any relevant dialogue state 
information from the perspective of the user.  For example, ds  might indicate 
which slots have been grounded, ungrounded, or not raised.  ds  enables the 
POMDP to make decisions about the appropriateness of behaviours in a dialog – 
for example, it would be odd to confirm a piece of information which had not 
previously been mentioned. 

Note that we do not include a component for speech recognition confidence associated 
with a particular user goal.  The concept of confidence is naturally captured by the 
distribution of probability mass assigned to a particular user goal in the belief state.8   

The POMDP action mm Aa ∈  is the action the machine takes in the dialog.  For example, 
machine actions might include greeting the user, asking the user where they want to go 
“to”, or confirming that the user wants to leave from a specific place.  As above, we 
expect that this action will include propositional content. 

                                                 
8 In Section 6 we show a method for incorporating ASR confidence directly into the belief state. 
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The POMDP observation o is drawn from the same set as ua , i.e., uAo ∈ .  That is, the 
observations available to the POMDP are equal to the user actions the POMDP can 
represent in its state space.  Note that at each time step the POMDP receives a single 
observation, but maintains a distribution over all possible user actions. 

We decompose the POMDP transition function as follows: 

 ),,,|,,(),|( muduudum aassasspassp ′′′=′  (4) 

 ),,,,,|(),,,,|(),,,|( muduuudmuduuumuduu aasssaspaasssapaasssp ′′′′′′= . (5) 

We then assume conditional independence as follows.  The first term – which we call the 
user goal model – indicates how the user’s goal changes (or does not change) at each 
time step.  We assume the user’s goal at a time step depends only on the previous goal 
and the machine’s action: 

 ),|(),,,|( muumuduu asspaasssp ′=′  (6) 

The second term – which we call the user action model – indicates what actions the user 
is likely to take at each time step.  We assume the user’s action depends on their (current) 
goal and the preceding machine action: 

 ),|(),,,,|( muumuduuu asapaasssap ′′=′′ . (7) 

The third term – which we call the dialog model – indicates how the user and machine’s 
actions affect the state of the conversation.  We assume the current state of the dialog 
depends on the previous state of the dialog, the user’s action, and the machine’s action: 

 ),,|(),,,,,|( mdudmuduuud asaspaasssasp ′′=′′′ . (8) 

In sum, our transition function is given by: 

 ),,|(),|(),|(),|( mdudmuumuum asaspasapasspassp ′′′′′=′ . (9) 

The two user models could be estimated from a corpus of labelled interactions.  For 
example, we could estimate conditional distributions over user dialog acts given a 
machine dialog act and a user goal.  To appropriately cover all of the conditions, the 
corpus would need to include variability in the strategy employed by the machine – for 
example, using a Wizard-of-Oz framework with a simulated ASR channel (Stuttle et al., 
2004).  The dialog model could either be estimated from data, handcrafted, or replaced by 
a deterministic function representing a dialog controller’s information state update rules 
as in for example (Larsson and Traum, 2000). 

The observation function is given by: 

 ),,,|(),|( mudum aassopasop ′′′′=′′ . (10) 
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The observation function accounts for the corruption introduced by the speech 
recognition engine, so we assume the observation depends only on the action taken by the 
user:9 

 )|()|(),,,|( uumudu aopaopaassop =′′=′′′′ . (11) 

The observation function can be estimated from a corpus or derived analytically using a 
phonetic confusion matrix, language model, etc.  The observation can be discrete (i.e., a 
recognition hypothesis), or a mixture of discrete and continuous (i.e., a recognition 
hypothesis and a confidence score). 

The reward function is not specified explicitly in this proposal since it depends on the 
design objectives of the target system.  We note that the reward measure could contain 
incentives for dialog speed (by using a per-turn penalty) and successful task completion 
(through rewards conditioned on the user’s goal).  Weights between these could be 
learned through systems like PARADISE (Walker et al., 2000).  Also, capturing 
successful task completion is straightforward since the state space explicitly contains the 
user’s goal.   

The reward function may also penalize inappropriate actions.  We note that the reward 
function is a natural place to specify action appropriateness through rewards conditioned 
on the dialog state, ds .  For example, the reward can specify a penalty for confirming an 
item which has not been discussed yet (this is discussed further in section 3.2). 

 shows an influence diagram depiction of our proposal. 

Finally, given the definitions above, we update the belief state at each time step by: 

 ),,'|()(' baospsb m′=′    

 
),|'(

),|'(),,'|'(
baop

baspbasop
m

mm=    

 
),|'(

),|(),,|'(),'|'(

baop

basPsbaspasop

m

Ss
mmm ∑

∈=    

 
),|'(

)(),|'(),'|'(

baop

sbsaspasop

m

Ss
mm ∑

∈= . (12) 

The numerator consists of the observation function, transition matrix, and current belief 
state.  The denominator is independent of 's , and can be regarded as a normalization 
factor, hence: 

 ∑
∈

′′⋅=′′
Ss

mm sbsaspasopksb )(),|(),|'()( . (13) 

Substituting equation (9) and (11) into (13) and simplifying, we can write: 

                                                 
9 This implicitly assumes that the same recognition grammar is always used.  The model could be readily 
extended to enable a system “action" which activates a particular grammar 
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Figure 4: Influence diagram representation of proposed POMDP for Dialog Management.  Symbols 
are as defined in  and .  The dotted box indicates the composite state s is comprised of three 

components, su, sd, and au – see text for a complete definition of variables.  As above, note that as 
depends on the composite belief state b(s) – the distribution over all states – and not the true current 

(unobservable) state.  

3.2 Discussion  
This method differs from MDP approaches in three respects.   

First, in an effort to reduce the size of the state space, MDPs typically do not include 
propositional content in the state and action set provided to the dialog manager.  Since the 
POMDP is maintaining a well-formed distribution over user goals (and using this 
information to inform action selection), our proposal relies on including propositional 
content in the state space and action set. 

Second, in MDP schemes, the state of the dialog (i.e., grounding information) is typically 
included in the state variable to help measure the certainty associated with the 
hypothesized user goal.  In the POMDP framework, certainty in a particular user goal is 
naturally reflected by the distribution of probability mass in the belief state. 

Finally, in an MDP, inappropriate actions can be limited by specifying a set of “valid” 
actions for each state.  In a POMDP, the belief state includes most or all states, so it is not 
practical to exclude inappropriate machine actions on a per-state basis as in an MDP.  
“Appropriateness” is instead conveyed through the reward measure. 

Many machine learning approaches to dialog management have incorporated a simulated 
user, and used interaction-based (on-line) learning for policy improvement – for example, 
(Scheffler and Young, 2002) and (Pietquin, 2004).  In contrast, this method embeds an 
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explicit model of the user into the model, along with an explicit transition and reward 
function to enable the use of model-based (off-line) learning.  One advantage to this 
approach is that algorithms for model-based learning typically have well-defined bounds 
on convergence.  While interaction-based (on-line) learning algorithms can be shown to 
converge in the limit, convergence bounds are not easy to determine and in practice it can 
be difficult to know when to “stop” learning.10 

As stated, the proposed model assumes “flat” listings of state space components, 
observations, and actions.  However, most spoken dialog systems make use of 
hierarchical structures such as flight(to(London),from(Boston)).  A flat listing is clearly 
capable of expressing any finite list; however, because our proposal includes no method 
to exploit the redundancy and structure of more complex representation structures, it 
scales very poorly.  The flat listing approach implies that the size of the state space, 
action set, and observation set are exponential with respect to the number of concepts in 
the model and this is a further issue to be addressed in future work. 

4 Testbed spoken dialog system 
To test the ideas in our proposal, we created a testbed dialog management POMDP in the 
travel domain.  In the testbed problem, the user is trying to buy a ticket to travel from one 
city to another city.  The machine asks a series of questions, and then “submits” the ticket 
purchase request.  The machine may also choose to “fail”.  In the testbed problem, there 
are three cities, {a,b,c}.  

The machine has the following 16 actions available: 

o greet – greet the caller and ask “How can I help you?” 

o ask-from/ask-to – ask where the caller wants to go from/to 

o conf-to-x/conf-from-x – confirm that the caller wants to go 
to/from city x where },,{ cbax ∈ . 

o submit-x-y – place an order for a ticket from city x to city y, 
yxcbayx ≠∈ },,,{,  

o fail – give up the current dialogue 

As above, the state space is given by the tuple },,{ duu sas .  The user’s goal uu Ss ∈  
specifies the user’s desired itinerary.  There are a total of 6 user goals, given by:  

 yxcbayxyxsu ≠∈∈ },,,{,);,( . (15) 

The dialog state contains three components.  Two of these indicate whether each item is 
either not specified (n), unconfirmed (u), or confirmed (c).  We define “not specified” as 
meaning that a user has not referenced this piece of information, “unconfirmed” as 
meaning “referenced once” by the user, and “confirmed” as meaning “referenced more 
than once” by the user.  A third component, z,  specifies whether the current turn is the 
first turn (1) or not (0).  There are a total of 18 dialog states, given by:  

                                                 
10 On the other had, on-line learning allows systems to adapt during use.  This can be an important 
advantage for real systems and we intended to pursue this in further work.  
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 }0,1{},,,{,);,,( ∈∈∈ zcunyxzyxs ddddd  (16) 

The user’s action uu Aa ∈  is drawn from the following set of 18 actions: 

o x – The user expressed “city x” where },,{ cbax ∈  

o from-x – The user expressed “I want to leave from city x” 
where },,{ cbax ∈  

o to-x – The user expressed “I want to go to city x” where 
},,{ cbax ∈  

o from-x-to-y – The user expressed “I want to go from city x to 
city y” where yxcbayx ≠∈ },,,{,  

o yes, no – The user expressed yes or no 

o null – The user did not respond  

These state components yield a total of 1944 states.  Finally, we added one additional, 
absorbing state called end-state.  When (and only when) the machine takes the fail action 
or a submit-x-y action, control transitions to end-state. 

Observations are drawn from the set of 18 user actions; i.e., uAo ∈ . 

In the testbed problem the user has a fixed goal.  The initial (prior) probability of the 
user’s goal is distributed uniformly: 

 
u

u S
sp 1)( 0 = . (17) 

We define the user goal model as: 
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 =′

=′=′
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ssif
sspassp uu

uumuu 0
1

)|(),|( . (18) 

We define the user action model to include a variable set of responses:11 

•  The user responds to ask-to/from with x, to/from-x, or from-x-to-y. 

•  The user responds to greet with to-y, from-x, or from-x-to-y. 

•  The user responds to confirm-to/from-x with yes/no, x, or to/from-x.   

•  At any point the user might not respond (i.e., respond with null). 

We define the dialog model distribution to deterministically implement a notion of 
”grounding” from the user’s perspective – i.e., a field (either to or from) which has not 
been referenced by the user takes the value n; a field which has been referenced by the 
user exactly once takes the value u; and a field which has been referenced by the user 
more than once takes the value c. 

                                                 
11 Because of space limitations, this distribution isn’t shown here. 
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In this section we consider a discrete observation function – i.e., the observation function 
provides (only) a single discrete recognition hypothesis.  We define the probability of 
making a speech recognition error to be errp , and define the observation function as: 
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=−
=

u
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err

uerr

u aoif
A
p

aoifp
aop

1

1
)|(  (19) 

Below we will vary errp  to explore the effects of speech recognition errors. 

The reward measure includes the following components: 

•  If the machine uses the action greet when it is not the first turn of the dialog, the 
reward is -100. 

•  If the machine confirms a field before it has been referenced by the user, the 
reward is -3. 

•  If the machine selects the fail action, the reward is -5. 

•  If the machine selects a submit action and the values submitted match the user’s 
goal, the reward is +10.  Otherwise the reward is -10. 

•  The reward for any action taken in the absorbing end state is 0. 

•  The reward for any other action is -1. 

A discount of 95.0=γ was used for all experiments. 

4.1 MDP Baseline 
To evaluate our approach, we compare the POMDP method with an MDP-based dialog 
manager, patterned on systems in the literature (e.g., (Pietquin, 2004)).  The MDP 
baseline consists of three elements: Portions of the POMDP, the MDP state estimator, 
and the MDP itself.  We use portions of the POMDP as a simulation of the environment.  
The POMDP state is maintained, and an observation o is produced at each timestep.  The 
POMDP observation is provided as input to an MDP State Estimator.  Note that neither 
the belief state nor the (unobserved) POMDP state contributes to action selection in the 
MDP baseline. 

The MDP State Estimator maintains its own state, SESE Ss ∈ .  SEs  is factored into two 
components which give the observed user’s goal and the observed state of the dialog.12  
In addition, SES  includes a special end state, for a total of 39 states.  The MDP State 
Estimator is updated using a deterministic function: 

 ),,( MDPSESSE aosfs
SE

′=′  (20) 

                                                 
12 The number of state estimator states is reduced somewhat by eliminating unreachable state – for 
example, if no value has been observed for the to slot, then the to slot can only be not-known – it cannot be 
unconfirmed or confirmed. 
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SESf  encodes dialogue heuristics, such as how to interpret evidence which is inconsistent 
with what has been observed so far.  As is common in the literature, this function was 
handcrafted.  For example, if the MDP State Estimator receives inconsistent evidence for 
a particular field, the field is reset to “observed once”.  If the caller is asked to confirm a 
field and the observed response is “no”, then we set that field to unknown.   

The actual MDP state, MDPs , is a deterministic function of SEs : 

 )( SESMDP sfs
MDP

=  (21) 

The MDP state, MDPMDP Ss ∈  includes only the observed state of the dialog.  MDPS  also 
includes a special end state, for a total of 11 states. 

The MDP actions are given by MDPMDP Aa ∈ .  MDPA includes 7 actions: 

•  greet – greet the caller and ask “How can I help you?” 

•  ask-from/ask-to – ask where the caller wants to go from/to 

•  conf-to/conf-from – confirm the values maintained by the state estimator in the 
from or to field. 

•  submit – submits the values maintained by the state estimator in the from and to 
fields.  If these values are not present, the state estimator will guess.  

•  fail – give up the current dialogue 

Because the MDP consists of only the observed state of the dialog (and not the observed 
user goal), it cannot take actions drawn from mA .  Another deterministic function maps 

MDPa  to ma : 

 ),( SEMDPAm safa
MDP

=  (22) 

As with 
SESf , 

MDPAf  encodes dialog heuristics.  For example, if the MDP takes the action 
to submit but no value for the from slot has yet been observed, 

MDPAf  must make a 
decision about which value for the from slot to use.  This function was also handcrafted.  
An influence diagram showing the MDP baseline is given in . 

Because the MDP learns through experience with a simulated environment which 
maintains its own hidden state, we cannot easily estimate the transition function nor 
reward function of the MDP.  Thus we selected an on-line reinforcement learning 
technique, Watkins Q-learning, to train the MDP baseline.  A variety of parameters were 
explored, and the best-performing parameter set was selected as follows: 

•  Initial Q values were set to 0  

•  Exploration was performed with the epsilon-greedy method, and 2.0=ε  

•  The learning rate α  was set to 1/k, where k is the number of visits to the Q(s,a) 
being updated  



Jason D. Williams, Pascal Poupart, and Steve Young 

 22 

To evaluate the resulting MDP policy, 10,000 dialogs were simulated using the learned 
policy. 

For comparison, we also evaluated a simple POMDP optimization technique called the 
Q-MDP approximation which assumes that the uncertainty in the current state will 
disappear one time step in the future.  We first solve the underlying MDP using value 
iteration for its optimal action-value function, ),(* asQMDP , and then select actions 
according to: 

 ∑
∈

=
Ss

MDP
a

QMDP asQsbb ),()(maxarg)( **π  (23) 
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Figure 5: Influence diagram showing MDP baseline, which is modelled on systems from the 

literature.  The MDP State Estimator sSE maintains its own state, which includes the observed 
propositional content and confirmation status for each recognized slot.  sSE is updated using a hand-
crafted function which takes the observation and system action as inputs.  The MDP state sMDP is a 

function of sSE which factors out the semantic content, leaving only confirmation status.   

4.2 Results & discussion 
Values of errp  were explored ranging from 0.00 to 0.65 at intervals of 0.05. 

In early trials, it was found that the POMDP policy was quite sensitive to changes in the 
reward function.  For example, in one early trial, the reward function provided incentives 
for successful and efficient completion, but no rewards were specified which related to 
action appropriateness.  Surprisingly, the POMDP policy would confirm a field before 
asking for it.  Upon investigation, we found this behavior was optimal given the relatively 
higher accuracy of confirmation questions and the small domain, which was enabling the 
policy to use elimination to identify a field.  This finding is similar in nature to early trials 
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in (Pietquins, 2004).  The reward function was adjusted to the reward function presented 
above, which penalizes confirming a field before a user has provided a value for it.13 

 shows the expected return after each iteration (“back-up”) of the solution algorithm for 
30.0=errp  and various number of belief points.  We found that 500 belief points and 30 

iterations attained asymptotic performance for all values of errorp .  The progress of the 
value functions for these solutions is shown in .  
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Figure 6: Expected return vs. optimization iteration for perr = 0.30, no confidence score information, 

and various numbers of belief points. 

 shows expected return for the POMDP policy, and the average return for the MDP and 
Q-MDP solutions vs. errp .  The error bars show the 95% confidence interval for return 
assuming a normal distribution.  Note that return decreases consistently as errp  increases 
for all solution methods, but the POMDP policy attains the largest return of the solutions 
at all values of errp .  Further, the performance gain of the POMDP policy solution over 
the other solutions increases as errp  increases.  From this result we conclude that the 
POMDP method copes with higher speech recognition error rates better than the MDP or 
Q-MDP approaches.  

In practice, the error rate of a spoken dialog system varies considerably from user to user.  
Thus we were interested to see how a POMDP policy performs at a value of errp  for 
which it was not designed.   shows average return for three POMDP policies when 
executed using a different value for errp .  From this we see that the POMDP policies are 

                                                 
13 One consequence of this decision is that POMDP policies will sometimes ask for a field’s value several 
times rather than taking a confirmation action to build certainty in a user’s belief.  For an example, see . 
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not “brittle” – i.e., they do not fail catastrophically as the actual value of errp  deviates 
from that used in training.   
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Figure 7: Expected return vs. optimization iteration for perr = 0.05 ... 0.65.   Solutions computed using 

500 belief points and no confidence score information. 

Finally, shows an example conversation with two different machines.  Note how both 
examples are able to cope with a speech recognition error, and that the conversation at the 
higher value of errp  uses an additional conversational step to increase its certainty in the 
user’s goal.  
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Figure 8: Expected or Average return of POMDP policies with 500 belief points, MDP, and Q-MDP 

approximations vs. perr.  No confidence score information was present.  POMDP dataset shows 
(exact) expected return; others show average return over 10,000 simulated dialogs with error bars 

showing 95% confidence interval for exact expected return. 
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Figure 9: Performance of POMDP policies trained at one speech recognition error rate ("Trained for 
perr") and evaluated at another ("perr used at evaluation").  500 belief points used for all policies.  No 
confidence score information was present.  Averages are over 10,000 simulated dialogs; error bars 

show 95% confidence interval for exact expected return.  
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perr = 0.10  perr = 0.30 

Machine: How can I help you? 
 

User: I’d like to go to B 
(Misrecognized as I’d like to go from B) 
 

Machine: Where would you like to go to? 
 

User: To B 
 

Machine: And where are you leaving from? 
 

User: From A 
 

Machine: Ok, I’m printing a ticket from A to B. 
 

 Machine: How can I help you? 
 

User: I’d like to go to B 
(Misrecognized as I’d like to go from B) 
 

Machine: Where would you like to go to? 
 

User: To B 
 

Machine: And where are you leaving from? 
 

User: From A 
 

Machine: Where are you leaving from again? 
 

User: From A 
 

Machine: Ok, I’m printing a ticket from A to B. 

 
Table 1: Example conversations with two different POMDP policies.  Speech recognition is accurate 
except where noted.  No confidence score information is present.  Actual machine actions are at the 
abstract level; the verbiage shown here is illustrative and assumes basic generation rules have been 

applied.  Note the extra turn for the policy developed for the perr = 0.30 environment (i.e., the 
environment with lower speech recognition accuracy). 

5 Evaluating & improving a handcrafted policy  

5.1 Evaluating handcrafted policies 
There are several reasons why we might want to create a handcrafted POMDP policy for 
dialog management: for example, we may want to compare the average return for a 
handcrafted policy with an automated solution, or we might want to use a handcrafted 
policy to bootstrap a solution technique.  This section describes how a handcrafted policy 
can be implemented and evaluated in the POMDP environment. 

Intuitively, a policy specifies what action to take in a given situation.  In the previous 
section, we relied on the representation of a POMDP policy produced by our choice of 
solution method – i.e., a value function, represented as a set of N vectors each of 
dimensionality |S| in belief space: 

 SsNnsn ≤≤≤≤ 1,1),(υ  (24) 

Each vector represents the value, at all points in belief space, of executing some “policy 
tree” which starts with an action An ∈)(π̂  to indicate the action associated with the nth 
vector.  If we assume that the policy trees have an infinite horizon, then we can express 
the optimal policy at any timestep as: 

 
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Thus the value-function method provides both a partitioning of belief space into regions 
corresponding to actions as well as the expected return of taking that action.  Although an 
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optimal infinite-horizon POMDP policy may have an infinite number of such regions, we 
can usually find reasonable approximations with finite numbers of regions. 

A second way of representing a POMDP policy is as a “policy graph” – a finite state 
controller consisting of N nodes and some number of directed arcs.  Each controller node 
is assigned a POMDP action, and we will again write )(ˆ nπ  to indicate the action 
associated with the nth node.  Each arc is labelled with a POMDP observation, such that 
all controller nodes have exactly one outward arc for each observation.  ),( onl  denotes 
the successor node for node n and observation o. 

A policy graph is a general and common way of representing handcrafted dialog 
management policies.  More complex handcrafted policies – for example, those created 
with rules – can usually be compiled into a (possibly very large) policy graph. 

A policy graph does not make the expected return associated with each controller node 
explicit.  However, as pointed out in (Hansen, 1998), we can find the expected return 
associated with each controller node by solving this system of linear equations in υ : 

 ∑∑
∈′ ∈

′′′+=
Ss Oo

onln snsopnsspnsrs )())(ˆ,|())(ˆ,|())(ˆ,()( ),(υππγπυ  (26) 

Solving this set of linear equations yields a set of vectors – one vector for each controller 
node.  To find the expected value of starting the controller in node n and belief state b we 
compute: 

 ∑
=

S

s
n sbs

1
)()(υ  (27) 

To find the optimal node n to begin execution in given a belief state b we compute: 

 ∑
=∈

S

s
n

Nn
sbs

1
)()(maxarg υ  (28) 

Thus, by finding the value-function vectors associated with a controller, we can make 
direct comparisons between the expected return of a handcrafted controller and a vector-
based solution produced by many optimization techniques, including Perseus.  Also, we 
can use the vectors computed from a handcrafted controller as a “seed” value function for 
automated improvement.   

5.2 Example handcrafted policies 
Three handcrafted policies were created, called HC1, HC2, and HC3. 

All of the handcrafted policies first take the action greet. 

HC1 takes the ask-from and ask-to actions to fill the from and to fields, performing no 
confirmation.  If the user does not respond, or if it receives a nonsensical response, it re-
tries the same action.  Once it finds values for both fields, it takes the corresponding 
submit-x-y action.  A logical diagram showing HC1 is given in .14 

                                                 
14 A logical diagram is shown for clarity: the actual controller uses the real values a, b, and c, instead of the 
variables X and Y, resulting in a controller with 15 states.   
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greet

guess
X-Y

ask
from

ask
to

ask
from

else from X

to Y

X
from X

from X to Y,
X≠Y

from X to Y

X
from X

Y
to Y
from X to Y, X≠Y

from X to Y

else else else

 
Figure 10: “HC1” handcrafted controller.  When the controller receives inconsistent or nonsensical 

information, it takes the fail action.  

HC2 is identical to HC1 except that if it receives inconsistent or nonsensical information, 
it immediately takes the fail action.  A logical diagram showing HC2 is given in . 

HC3 employs a similar strategy to HC1 but extends HC1 by confirming each field as it is 
collected.  If the user responds with “no” to a confirmation, it re-asks the field.  If the 
user provides inconsistent information, it treats the new information as “correct” and 
confirms the new information.  If the user does not respond, or if the machine receives 
any nonsensical input, it re-tries the same action.  Once it has successfully filled and 
confirmed both fields, it takes the corresponding submit-x-y action.15 

Empirical assessment of the average return produced by the handcrafted policies showed 
agreement with the analytic solutions within statistical significance.   shows the expected 
return for the handcrafted policies and the POMDP policy.  The POMDP method 
outperforms all of the handcrafted policies for all values of errorp .  It is interesting to note 
that HC3, which confirms all inputs, performs least well for all values of errorp . 

5.3 Improving handcrafted policies 
As noted above, it is relatively straightforward to compute the value function for a policy 
represented as a finite state controller.  Recall this value function expresses, for a given 
belief state & controller node, the expected return of starting controller execution in that 
node.   

                                                 
15 The diagram for HC3 is not included as it is highly connected and difficult to show clearly. 



Using Factored Partially Observable Markov Decision Processes with Continuous  
Observations for Dialog Management  

 

 29

greet

guess
X-Y

ask
from

ask
to

ask
from

no response

from X

to Y

X
from X

from X to Y,
X≠Yfrom X to Y

X
from X

Y, to Y
from X to Y, X≠Y

from X to Y

else
else

else

fail

no
response

no
response

no
response

 
Figure 11: “HC2” handcrafted controller.  When the controller receives inconsistent or nonsensical 

information, it retries the same action. 

A method for improving a handcrafted policy represented as a finite state controller is as 
follows.  First, we compute the value function of the finite state controller as described 
above.  At the beginning of the dialog, we find the node with the highest expected return 
for b0 and execute its action.  Throughout the dialog, we perform belief state monitoring 
– i.e., we maintain the current belief state at each timestep.  Then, at each timestep, rather 
than follow the policy specified by the finite state controller, we re-evaluate which node 
has the highest expected return for the current b.  We then take the action specified by 
that node.  Note that, in this style of execution, node transitions may occur which are not 
arcs in the handcrafted policy.  Because the node-value function and belief state are 
exact, this style of execution is guaranteed to perform at least as well as the original 
handcrafted controller.   

To test this method, we executed 10,000 dialogs for each handcrafted policy at each value 
of perr.  Results for HC1, HC2, and HC3 are shown in , , and  respectively.  These plots 
show the difference between the proposed method and the expected value of executing 
the handcrafted policy directly to make the gain of the proposed method explicit.  For 
reference, these plots also include the difference between the handcrafted policies 
executed normally and the POMDP solution, which we take to be a practical upper bound 
for the testbed problem.  Error bars show the 95% confidence interval for the true 
expected return assuming normal distribution.  We note that in almost all cases, the 
proposed method results in a significant improvement.  In many cases, the proposed 
method is close to the POMDP solution – our assumed practical upper bound. 
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Figure 12: Expected return vs. perr for POMDP policies and the 3 handcrafted policies.  POMDP 

solution was created with 500 belief points and no confidence score information. 
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Figure 13: Gain in average/expected return for HC1 executed using belief state monitoring vs. perr.  
The POMDP policy, which we take to be our practical upper bound, is shown for reference.  Error 

bars show 95% confidence interval for true expected return over 10,000 dialogs. 
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Figure 14: Gain in average/expected return for HC2 executed using belief state monitoring vs. perr.  
The POMDP policy, which we take to be our practical upper bound, is shown for reference.  Error 

bars show 95% confidence interval for true expected return over 10,000 dialogs. 
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Figure 15: Gain in average/expected return for HC3 executed using belief state monitoring vs. perr.  
The POMDP policy, which we take to be our practical upper bound, is shown for reference.  Error 

bars show 95% confidence interval for true expected return over 10,000 dialogs. 
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6 Incorporating confidence score into the POMDP 
framework 

6.1 Background 
To this point we have not accounted for confidence scores in our model.  A confidence 
score c is a real-valued random variable which accompanies the (discrete) recognition 
result o.  The confidence score c is intended to provide a measure of the reliability of the 
recognition result o.   

When building spoken dialog systems, designers typically divide confidence scores into 
buckets. For example, at design time, a system designer specifies a confidence threshold, 
cThresh.  At run time, if an observed confidence score c is above cThresh then  the 
machine accepts the recognition result as accurate, and if the confidence score c is below 
cThresh the machine rejects it as inaccurate.  More buckets can be created so that a 
recognition results o can have, for example, high, medium, or low confidence.  Designers 
typically choose to employ more time-consuming but deliberate confirmation strategies 
for low-confidence recognition results and faster but less reliable confirmation strategies 
for high-confidence recognition results.  This approach has been used in most of the 
dialog management research employing MDPs.  However, in practice it is not clear how 
to set the threshold(s) cThresh, and changing the thresholds requires re-optimizing the 
MDP policy.  

Recently, researchers have suggested Decision Theoretic grounding models which 
incorporate confidence measures directly into distributions over user goals (Paek and 
Horvitz, 2003).  However, to our knowledge, no algorithm has been suggested or tested 
for incorporating both the recognition result and confidence score into the POMDP 
framework. 

6.2 Method 
We assume the framework described above for a POMDP-based dialog manager.  To this 
framework, we add a continuous element to the observation function, ℜ∈c , yielding a 
new observation function, )|,( uacop .   

The belief state update function in Equation (14) becomes: 

 ∑ ∑ ∑
∈ ∈ ∈

′′′′′′⋅
=′′′′

uu dd uuSs Ss Aa
udumdudmuumuuu

udu

assbasaspasspasapacopk
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),,(),,|(),|(),|()|','(
),,(

. (29) 

There will in general be insufficient data to estimate )|,( uacop  directly.  To form 
)|,( uacop , a confusion matrix )|( uaop  can be combined with two confidence score 

distributions – one for correct recognitions and one for incorrect recognitions: 
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This is the approach we take in the example problem, below.  More complex estimates of 
confidence score distribution which take into account the confusability between specific 
values of o are also possible.  For examples, see (Pietquin, 2004). 

To perform policy improvement on this POMDP we have two options.  First, we can 
perform policy improvement using a solution method which accounts for the continuous 
observations, such as the modified Perseus method described in Section 2.3.  We note 
that this method creates a policy which takes the expected additional information in the 
confidence score into account.  We call this the continuous-POMDP solution. 

Second, we note that there is benefit to using the confidence score information for belief 
state monitoring even if it was not used during policy optimization.  In other words, we 
would expect an improvement in average return by using confidence scores to improve 
our estimate of the current belief state at runtime (as in Equation (29)) even if the policy 
followed has been created with an observation function which ignores the confidence 
score; i.e., 

 ∫=
c

uu acopaop )|,()|( . (31) 

We call this the discrete-POMDP solution.    

Stated alternatively, the continuous-POMDP technique uses infinitely many confidence 
buckets during planning and belief monitoring.  In contrast, the discrete-POMDP 
technique uses no confidence information during planning, but infinitely many 
confidence buckets during belief monitoring.  Finally, MDP methods (in the literature, 
and our baseline, presented below) use a handful of confidence buckets for planning, but 
do not perform any belief monitoring. 

6.3 Evaluation 
To test the method, we extended the observation function of the testbed problem as 
follows: 
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We define c on the interval [0,1] and define the probability densities )(cpcorrect  and 
)(cpincorrect  as the exponential probability density functions normalized to the region 

[0,1]; i.e., : 
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where correcta  and incorrecta  are constants defined on ),( ∞−∞ .  We note that as xa  
approaches positive or negative infinity, )(cpx  becomes deterministic and conveys 
complete information; when 0=xa , )(cpx  is a uniform density and conveys no 
information.  Since we expect the confidence value for correct recognition hypotheses to 
tend to 1, and for incorrect recognition hypotheses to tend to 0, we would expect 0>xa . 

We compared our proposal with the MDP technique to evaluate it empirically.  As is 
customary with MDP-based approaches, we augmented the MDP approach described 
above to include M confidence buckets.  Ideally the confidence score bucket sizes would 
be selected so that they maximize average return.  However, it is not obvious how to 
perform this selection.  Instead, a variety of techniques for setting confidence score 
threshold were explored.  It was found that dividing the probability mass of the 
confidence score c evenly between buckets produced the largest average returns.  That is, 
we define 

 10 110 =<<<<= − MM cThreshcThreshcThreshcThresh L  (34) 

and then find the values of mcThresh such that: 
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where p(c) is the prior probability of a confidence score.  We find this prior for our 
testbed problem as follows.  We first find the distribution )|( uacp as: 

 ∑
∈

=
Ao

uu aocpacp )|,()|(  (36) 

 ).)(|()1)(|( erruincorrecterrucorrect pacppacp +−=  (37) 

In the MDP context, we assume the confidence score buckets are formed without access 
to a prior )( uap .  From this assumption, we find: 

 ))(()1)(()( errincorrecterrcorrect pcppcpcp +−=  (38) 

from which the values of mcThresh can be derived. 
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We also compared our proposal to the (discrete) Q-MDP approach, using the belief state 
update function given in equation (29).  We also compared our proposal to handcrafted 
solutions executed with belief state monitoring, as described in Section 5.3. 

6.4 Results & discussions 
 shows average returns for the continuous, discrete, and MDP methods for 

1=== aaa incorrectcorrect .16  For the MDP method, we use 2 confidence buckets, and 
approximately 125,000 dialog turns.  Note the POMDP methods outperform the MDP 
method, and the discrete-POMDP and continuous-POMDP solutions performed similarly. 
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Figure 16: Average return for continuous-POMDP, discrete-POMDP, and MDP-2 methods for a = 1. 
MDP-2 has 2 confidence buckets and was trained for 125,000 dialog turns.  Averages shown are over 

10,000 simulated dialogs with the resulting policies; error bars show 95% confidence interval for 
exact expected return. 

Figures 17, 18, and 19 show average returns for the POMDP and MDP methods vs. a for 
errp  = 0.3, 0.4, and 0.5, respectively.  In these figures, we again define 

aaa incorrectcorrect == .  For the MDP method, we use 2 confidence buckets.  The POMDP 
methods outperform the baseline MDP method consistently.  Note that increasing a 
increases average return for all methods, and that the greatest improvements are for errp  
= 0.5 – i.e., the information in the confidence score has more impact as speech 
recognition accuracy degrades.  Again, the discrete and continuous POMDP solutions 
performed similarly. 

                                                 
16 The Q-MDP method performed significantly worse than all other methods and is not shown. 
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Figure 17: Average return vs. a (informativeness of confidence score) at perr = 0.30 for continuous-

POMDP, discrete-POMDP, and MDP methods.  MDP-2 has 2 confidence buckets and was trained for 
10,000 dialogs.  Averages shown are over 10,000 simulated dialogs; error bars show 95% confidence 

interval for exact expected return 
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Figure 18: Average return vs. a (informativeness of confidence score) for perr = 0.40 for continuous-

POMDP, discrete-POMDP, and MDP methods.  MDP-2 has 2 confidence buckets and was trained for 
10,000 dialogs.  Averages shown are over 10,000 simulated dialogs; error bars show 95% confidence 

interval for exact expected return 
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Figure 19: Average return vs. a (informativeness of confidence score) for perr = 0.50 for continuous-

POMDP, discrete-POMDP, and MDP methods.  MDP-2 has 2 confidence buckets and was trained for 
10,000 dialogs.  Averages shown are over 10,000 simulated dialogs; error bars show 95% confidence 

interval for exact expected return 

Figures 20, 21, and 22 show average returns for the discrete-POMDP and handcraft 
methods vs. a for errp  = 0.3, 0.4, and 0.5, respectively.  a is defined as above.  Increasing 
a increases average return for the handcrafted controllers executed with belief state 
monitoring.  For highly informative confidence scores (a=5), the handcrafted policies 
executed with belief state monitoring perform similarly to the POMDP policy. 
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Figure 20: Average return vs. a (informativeness of confidence score) for perr = 0.30 for discrete-

POMDP and handcrafted policies.  Policies for handcrafted controllers were executed as described in 
the text.  Averages shown are over 10,000 simulated dialogs; error bars show 95% confidence 

interval for exact expected return. 
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Figure 21: Average return vs. a (informativeness of confidence score) for perr = 0.40 for discrete-

POMDP and handcrafted policies.  Policies for handcrafted controllers were executed as described in 
the text.  Averages shown are over 10,000 simulated dialogs; error bars show 95% confidence 

interval for exact expected return. 
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Figure 22: Average return vs. a (informativeness of confidence score) for perr = 0.50 for discrete-

POMDP and handcrafted policies.  Policies for handcrafted controllers were executed as described in 
the text.  Averages shown are over 10,000 simulated dialogs; error bars show 95% confidence 

interval for exact expected return. 

 

7 Conclusions & future work 
We have proposed a factored architecture for describing POMDPs applied to spoken 
dialog management, illustrated with a testbed spoken dialog system.  By performing 
policy improvement with Perseus, we have shown that automated solutions are both 
tractable for small problems, and outperform baseline MDP methods.  The factored 
architecture has two benefits.  First, it enables incorporation of an explicit dialog model, 
which allows a dialog designer to add rewards for “appropriate” dialog behaviour from 
the standpoint of the user.  Second, it facilitates estimating/specifying the system 
dynamics – i.e., the user models, recognition model, and dialog model – from dialog data.   

We have also shown how to convert a handcrafted policy represented as a finite-state 
controller into a value function, providing a principled way for handcrafted policies to be 
compared directly with policies produced with automated solutions.  Using the testbed 
problem, we have shown that POMDP policies produced with an optimization algorithm 
outperform three typical handcrafted solutions.  We have also shown how these value 
functions can be used to improve handcrafted policies. 

Finally, we have shown a method for incorporating confidence score directly into the 
belief state by using a continuous observation function.  We’ve shown that this method 
outperforms a baseline MDP-based confidence bucket approach, again using a testbed 
problem.  
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There are a several interesting extensions worthy of further research.  From the 
standpoint of system developers, policies represented as a partitioning of belief space are 
not easy to interpret: it would be interesting to produce a policy represented as a finite 
state controller – e.g., (Poupart and Boutilier, 2004).  In addition, N-best recognition lists 
could be incorporated into the observation.   

A crucial theoretical problem is how to scale the methods presented here to handle larger 
problems since the state, action, and observation sets grow exponentially with the number 
of concepts in the problem.  A method of exploiting redundancy (Boutilier and Poole, 
1995) or otherwise compressing the problem state space – using methods like those in 
(Poupart and Boutilier, 2002), (Poupart and Boutilier, 2004), or (Roy and Gordon, 2002) 
– is needed to apply the method to domains with 100s or 1000s of concepts.  The factored 
nature of the architecture may be of some help here. 

Despite these issues, we believe this work supports our claim that POMDPs are a 
theoretically elegant framework for dialog management.  We believe that POMDPs are 
ready for practical evaluation in limited, real systems, and plan research into 
practicability in future work. 
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