

Using Factored Partially Observable Markov
Decision Processes with Continuous

Observations for Dialog Management

J. D. Williams, P. Poupart, S. Young
24 March 2005

University of Cambridge, Dept. of Engineering
Technical Report: CUED/F-INFENG/TR.520

Jason D. Williams, Pascal Poupart, and Steve Young

 2

Using Factored Partially Observable Markov Decision Processes with Continuous
Observations for Dialog Management

 3

Table of Contents

ABSTRACT .. 5
1 INTRODUCTION... 5
2 BACKGROUND ... 8

2.1 SPOKEN DIALOG SYSTEMS.. 8
2.2 PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES .. 10
2.3 OPTIMIZATION ... 12

3 A FACTORED POMDP ARCHITECTURE FOR SPOKEN DIALOG SYSTEMS.................. 14
3.1 METHOD .. 14
3.2 DISCUSSION ... 17

4 TESTBED SPOKEN DIALOG SYSTEM .. 18
4.1 MDP BASELINE ... 20
4.2 RESULTS & DISCUSSION ... 22

5 EVALUATING & IMPROVING A HANDCRAFTED POLICY.. 26
5.1 EVALUATING HANDCRAFTED POLICIES .. 26
5.2 EXAMPLE HANDCRAFTED POLICIES .. 27
5.3 IMPROVING HANDCRAFTED POLICIES ... 28

6 INCORPORATING CONFIDENCE SCORE INTO THE POMDP FRAMEWORK............... 32
6.1 BACKGROUND.. 32
6.2 METHOD .. 32
6.3 EVALUATION.. 33
6.4 RESULTS & DISCUSSIONS ... 35

7 CONCLUSIONS & FUTURE WORK.. 39

Jason D. Williams, Pascal Poupart, and Steve Young

 4

Using Factored Partially Observable Markov
Decision Processes with Continuous
Observations for Dialog Management

 Jason D. Williams Pascal Poupart Steve Young
 Cambridge University University of Waterloo Cambridge University
 Engineering Department School of Computer Science Engineering Department
 Cambridge, UK Ontario, Canada Cambridge, UK
 jdw30@cam.ac.uk ppoupart@cs.uwaterloo.ca sjy@eng.cam.ac.uk

Abstract
Within a spoken dialog system, the dialog model is
responsible for tracking the current state of the
conversation, and the dialog manager is responsible for
action selection and planning. This work shows how a
dialog model can be represented as a factored Partially
Observable Markov Decision Process (POMDP), and how
automated techniques can be used to produce a dialog
manager. It then shows how direct comparisons can be
made between automated and handcrafted dialog managers,
and also how handcrafted dialog managers in this context
can be easily improved. Finally, the work describes how a
speech recognition confidence score can be incorporated
into the model. To test our proposals, an example problem
is presented, and a variant of Point-Based Value Iteration is
used for policy improvement. Empirical comparisons show
that the POMDP-based model outperforms fully-observable
Markov Decision Processes and hand-crafted dialog
managers.

1 Introduction
Spoken Dialog Systems help users achieve some goal through spoken language. Within a
Spoken Dialog System, a Dialog Manager (DM) interprets evidence from the
conversation and decides what system action to take to reliably and efficiently satisfy a
user’s goal. Actions might include asking a question, confirming a user’s goal, querying
a database, or stating information.

The dialog management task is complex for several reasons. First, the system observes
the user’s actions via automated speech recognition and language parsing: imperfect
technologies which corrupt the evidence available to the system. Second, each user
action (even if it could be observed accurately) provides incomplete information about a
user’s goal, so the system must assemble evidence over time to infer a user’s goal.
Because the user might change their goal at any point, inconsistent evidence could either
be due to a channel (speech recognition) error or due to a changed user goal. Thus,

Jason D. Williams, Pascal Poupart, and Steve Young

 6

deciding how to interpret conflicting evidence is a challenge. Finally, the system must
make trade-offs between the “cost” of gathering additional information (increasing its
certainty of the user’s goal, but prolonging the conversation) and “cost” of committing to
an incorrect user goal. That is, the system must perform planning to decide what
sequence of actions to take to best to achieve the user’s goal despite having imperfect
information about that goal.

For all of these reasons, the dialog management problem can be regarded as planning
under uncertainty. Researchers have previously applied both (fully-observable) Markov
Decision Processes (MDPs) and Partially Observable Markov Decision Processes
(POMDPs) to the dialog management problem.

The application of MDPs to the dialog management problem is first explored in (Levin
and Pieraccini, 1997). (Levin et al., 1998) and (Levin et al., 2000) provide a formal
treatment of how an MDP may be applied to the dialogue management task. (Walker et
al., 1998) and (Singh et al, 2002) show application to practical systems.

Building an MDP model typically requires extensive training data, which is expensive to
collect. To address this issue, researchers have explored training with user models
(Scheffler and Young, 2002), methods for generalizing actions to new situations
(Denecke et al., 2004)). , and “bootstrapping” a solution using supervised learning
(Williams and Young, 2003). More thorough investigations of state space and reward
functions have also been undertaken (Pietquin, 2004).

Fully-Observable Markov Decision Processes take a principled approach to planning in
which a dialog strategy can be automatically determined from a designer’s specification
of desired outcomes, or from users’ feedback. Further, the quality of the “plan” can be
automatically improved over time with reinforcement learning techniques that interact
with the environment.

However, because MDPs assume the current state of the environment (i.e., the dialog) is
known exactly, they do not naturally or precisely model “noisy” evidence. Thus one
might hypothesize that MDP-based techniques would under-perform POMDP-based
techniques in the Dialog Management domain. (Roy et al., 2000) tests this hypothesis by
evaluating an MDP and a POMDP version of the same spoken dialog system.1 Two
evaluations are conducted – one using a user model, and another with a small handful of
usability subjects. In each case, the POMDP version of the spoken dialog system gains
more reward per unit time than the MDP version. Further, the authors show a trend that
as speech recognition errors increase, the margin by which the POMDP outperforms the
MDP increases.

While (Roy et al., 2000) show promise for the POMDP technique, many issues are left
unaddressed. First, the state space of 13 states is handcrafted, and there is a tight
coupling between the user’s goal, the user’s action, and the state of the conversation. It
is not clear how to separate these components in a principled way, and thus it is not clear
how to apply the ideas in this work to other dialog systems. Second, the dynamics of the
problem are handcrafted, and it is not clear how the transition or observation function

1 The POMDP version is solved as an “Augmented MDP” which summarizes the multi-dimensional belief
state as the single most likely state and the (real-valued) entropy of the belief state.

Using Factored Partially Observable Markov Decision Processes with Continuous
Observations for Dialog Management

 7

should be estimated. Finally, the reward function used in (Roy et al., 2000) contains
rewards for only “right-answer”, “wrong-answer” and “neither,” yet a more nuanced
reward function, taking into account “appropriate” dialog behavior – seems appealing.
However, a more nuanced reward measure would require that the state space includes a
“dialog state” – i.e., information such as whether a piece of information has been
requested already, has been confirmed, etc. The state space in (Roy et al., 2000) does not
include an explicit dialog state.

(Zhang et al., 2001) extends the work in (Roy et al., 2000) in several ways. First, the
authors add five “hidden” system states to account for various types of dialog trouble,
such as different sources of speech recognition errors, or the lack of a response from the
user. These “hidden” system states are combined with states representing the user’s goal
to form a factored state space. Second, the authors use 2-stage temporal Bayesian
Networks to combine observations from a variety of sources (e.g., parse score, acoustic
confidence score, etc.) Finally, the authors compare a range of solution techniques,
including MDP, the so-called Q-MDP approximation, and grid-based approximation,
which they find is most successful when evaluated using a model.

In comparison to (Roy et al., 2000), (Zhang et al., 2001) demonstrated the utility of
adding “hidden” system states to model dialog trouble, and the ability of grid-based
solution techniques to perform policy improvement on a small POMDP which captures
basic elements of the dialog management problem. However, several issues are still left
unaddressed. First, the “user model” (i.e., how the user is likely to respond in a given
situation) and the “speech recognition model” (i.e., what kinds of errors the speech
recognizer is likely to make) are conflated into the POMDP observation function. The
authors indicate that the system dynamics are “handcrafted, depending a lot on the
experience of the developer.” It is not clear how to form the POMDP observation
function, nor estimate its parameters in practice. Second, although the reward function
has costs for various “repair” actions such as asking the user to repeat, confirming, or
troubleshooting, these actions are given fixed penalties. The reward measures are not
used to guide “appropriate” behavior for the current dialog state: in fact, a persistent
dialog state is not included in the state space.

This paper makes several contributions in the area of Dialog Management through novel
insight into the Dialog Management problem combined with recent work in the POMDP
community. This paper introduces:

• A factored architecture for describing POMDPs applied to spoken dialog
management. Unlike past POMDP-based (or MDP-based) dialog management work,
our factored representation adds a component for the state of the dialog from the
standpoint of the user, enabling reward measures for the “appropriateness” of system
actions. It also creates separate distributions for the user model and the speech
recognition model, which reduces the number of components which need to be
calculated, and allows groups of parameters to be estimated separately.2 These

2 In the literature, factored models have also been explored as a technique to address large state spaces. In
this work we don’t make use of the factored architecture when performing optimization. Here we propose
the factored architecture as a technique to more easily incorporate real data into the model. We plan to
explore using the factored architecture to assist with policy optimization in future work.

Jason D. Williams, Pascal Poupart, and Steve Young

 8

components are also quite general and easy to adapt for dialog managers applied to
various tasks.

• A method to convert a hand-crafted policy into a POMDP policy and makes direct
comparisons with automated solutions. Hand-crafted policies are often used as a
baseline for dialog managers created with automated technique, yet past work has not
shown a method for performing this comparison. We also show a simple method to
improve the performance of a hand-crafted policy by incorporating elements of basic
POMDP solution techniques. This is particularly interesting given that domain
experts can often specify simple hand-crafted dialog managers, which can then be
automatically refined.

• A principled method to integrate a speech recognition “confidence score” into this
architecture. A “confidence score” is a metric of reliability provided by the speech
recognizer. Past work has relied on discretizing the confidence score; however, it is
not clear how this discretization should be performed. In this paper we show how a
continuous confidence score can be naturally incorporated into the belief state update.

We show proof-of-concept in terms of both tractability and effectiveness for each of
these concepts through a testbed DM problem. With our factored model, we demonstrate
how to represent a more expressive dialogue model than previously applied to POMDPs,
and show how recent algorithms developed in the POMDP community applied to this
problem produce dialog managers which outperform both MDP and handcrafted
baselines.

The paper is organized as follows. Section 2 presents background on spoken dialog
systems, POMDPs, and relevant solution techniques. Section 3 presents the factored
architecture. Section 4 shows an example testbed system using this architecture, and
compares it to a baseline MDP system. Section 5 describes a method to compare these
results with a hand-crafted controller, and how a handcrafted controller can be easily
improved by applying insights from the POMDP literature. Section 6 describes a method
for integrating confidence score into the architecture and shows results. Section 7
concludes.

2 Background

2.1 Spoken dialog systems
In this work, we define a spoken dialog system to be a machine which helps a user to
achieve some goal through spoken language. A typical spoken dialog system consists of
the components shown in .

The user enters the conversation with the intention of fulfilling a goal, us . To achieve
this, the user takes a communicative action, ua , where ua might be represented by slot-
value pairs, dialog acts, speech acts, or a number of other formalisms. The user’s action

ua is encoded into a sequence of words which is rendered as a speech signal, uâ , and
provided to the machine as input. uâ is then processed by a speech recognition and
language understanding component, which produces an observation o in an attempt to

Using Factored Partially Observable Markov Decision Processes with Continuous
Observations for Dialog Management

 9

reconstruct ua . The recognition process is error-prone, and in general we cannot regard o
as faithfully representing ua . The speech recognition and language understanding
component may also provide additional information such as a confidence score c which
attempts to provide a clue about the reliability of o. Alternative hypotheses for ua might
also be provided, perhaps with their own confidence scores.

us

ua
uâ

co,

s

ma

mâ

Speech
Recognition &

Language
Understanding

Dialog
Model

Dialog
Manager

Language &
Speech

Generation

Figure 1: Overview of a typical spoken dialog system. See text for description.

o and c (if c is available) are then passed to the dialog model component. The dialog
model component attempts to track the state of the dialog, s, based in part on o. s might
include components for the values of the slots which must be provided by the user,
whether each slot has been confirmed, the confidence recorded for each slot, etc.

Based on s, the dialog manager decides what machine action, ma , to take next.3 This
action may serve to communicate with the user through a question or statement or be a
“processing” action such as consulting a database.4

The machine action ma is also required to capture and update the current state of the
dialog and is also provided to the dialog model. ma , o and the current dialog state s form
the complete input to the dialog model, which produces the next dialog state s′ as its
output.

3 There may be more information in the dialog state s than is required by the dialog manager. For example,
it may be important to track the value a user has provided for a slot (such as from=London), but that value
might not be important for action selection (for example, ask(to), or confirm(from)). For this reason,
spoken dialog systems sometimes include a state estimator, which maps the complete state s to an
estimated state, which forms the input to the dialog manager.
4 For clarity of exposition, “processing” actions are not shown in the diagram.

Jason D. Williams, Pascal Poupart, and Steve Young

 10

Communicative system actions ma are passed to the language and speech generation
components, which render ma as speech mâ to the user. The language and speech
generation component typically first generates a word string, and then converts this word
string into the speech signal mâ using pre-recorded utterances or text-to-speech
technology.

Creation of the dialog management (DM) component has historically been approached as
a design problem, and many frameworks have been proposed to enable human experts to
efficiently craft a dialog manager. Typical design decisions address the uncertainty
introduced by the error-prone speech and language understanding components – e.g.,
when to confirm, re-ask, or accept a slot. Dialog managers are also responsible for
making progress toward satisfying the user’s goal; thus, they must often make trade-offs
between accuracy and efficiency.

Designing successful dialog managers by hand is difficult in part because the state space
of s is often very large, and selecting actions appropriate for each state is a tedious
process. Further, the effects of the uncertainty introduced by the recognition and
understanding component is not always well understood, and user behavior patterns can
be difficult to predict at design time, requiring time-consuming development iterations.

To address these issues, researchers have begun applying decision-theoretic techniques,
the focus of this paper, to the dialog modelling and dialog management problems.

2.2 Partially Observable Markov Decision Processes
To define a Partially-Observable Markov Decision Processes (POMDP) it is easiest to
start with a Markov Decision Process (MDP). An MDP is defined by a tuple {S, Am, T,
R} where S is a set of states, Am is a set of actions that an agent may take, T defines a
transition probability),|(massp ′ (sometimes called the transition matrix), and R defines
the expected (immediate, real-valued) reward),(masr .5 At each time-step, the machine
is in a particular state s . The machine selects an action ma , receives a reward r , and
transitions to a state 's , where 's depends only on s and ma . The goal of the agent is to
maximise the cumulative, infinite-horizon, discounted reward R (sometimes called the
return) over an infinite horizon:

 ∑
∞

=

=
0

),(
t

tmt
t asrR λ (1)

where λ is a geometric discount factor, 10 ≤≤ λ .

A policy, mAs ∈)(π , is a mapping from states to actions; an optimal policy, mAs ∈)(*π ,
is one which maximises cumulative reward over time. It can be shown that an MDP

5 The reward function may also be a function of the next state s’. Also, some definitions of an MDP
include a discount factor λ , and the initial state, s0. In the literature, the system action is often written as
an un-subscripted a. In this work, we will model both system and user actions, and here have chosen to
write the system action explicitly as am for clarity.

Using Factored Partially Observable Markov Decision Processes with Continuous
Observations for Dialog Management

 11

evaluated over an infinite horizon in which {S, Am, T, R, λ } are fixed has a deterministic
policy)(* sπ which is independent of time step t. An influence diagram depiction of an
MDP is shown in .

s

am

r

s'

am'

r'

Timestep n Timestep n+1

Figure 2: Influence diagram representation of an MDP. s and a are discrete. Unfilled circles indicate
random, observed variables; diamonds indicate real-valued utilities and squares show decision nodes.

Arrows indicate direction of influence.

POMDPs extend Markov Decision Processes by removing the requirement that the
current state is known precisely. Instead, the machine makes observations which give
incomplete information about the true current state, and the machine maintains a
distribution over MDP states which is referred to as a belief state.

Formally, a POMDP is defined as a tuple {S, A, T, R, O, Z}, where {S, A, T, R} define an
MDP, O is a set of observations, and Z defines an observation function given by

),|(masop ′′ .6

At a given time step, we no longer know the precise state s – rather, we maintain the
belief state, b. We write tb to indicate the distribution over all states at time t, and)(sbt to
indicate the probability of being in a particular state s at time t.

The immediate reward is computed as the expected reward over belief states,),(tmt abρ :

 ∑
∈

=
Ss

tmttmt asrsbab),()(),(ρ , (2)

and the return is again the discounted sum of immediate rewards at each time step:

6 This can be read as “The probability of making an observation given that action a was taken and the
underlying MDP transitioned to state s’.” Also, some definitions of a POMDP include the discount factor,
λ , and the initial belief state, b0.

Jason D. Williams, Pascal Poupart, and Steve Young

 12

 ∑ ∑ ∑
∞

=

∞

= ∈

==
0 0

),()(),(
t t

tm
Ss

t
t

tmt
t asrsbabR λρλ . (3)

At each time step, the next belief state)(sb ′′ can be computed exactly as shown in
Equation (12).

We note here that the set of observations may be discrete & finite, discrete & infinite,
continuously-valued, or a mixture of these types. In this work we will make use of
several observation types. An influence diagram depiction of a POMDP is shown in .

o

s

am

r

o'

s'

am'

r'

Timestep n Timestep n+1

Figure 3: Influence diagram representation of a POMDP. Symbols are the same as used in ; shaded
circles indicate unobserved random variables. o can be discrete & finite, discrete & infinite,

continuously valued, or a mixture of these types. Note that as depends on the belief state b(s) – the
distribution over all states – and not the true current (unobservable) state.

2.3 Optimization
Although POMDPs and MDPs consist of a defined tuple, in practice we may or may not
know the values of the functions T, R, and for POMDPs, Z. If these values are known,
we can apply analytic methods to improve a policy. If these values are not known and
not easily estimated, we can observe actual interactions with a real or simulated
environment to improve a policy with reinforcement learning.

Policy improvement with a simulated environment is particularly appealing when the
environment can be readily modelled but not easily mapped to the MDP parameters – for
example, when the environment maintains some internal, hidden state. For example
(Scheffler and Young, 2002) and (Pietquin, 2004) optimized policies for MDP-based
dialog managers using interactions with a simulated user and speech recognizer. The
user model in each case has a consistent goal (i.e., an internal state) which is not directly
observable by the MDP.

Using Factored Partially Observable Markov Decision Processes with Continuous
Observations for Dialog Management

 13

One of the strengths of POMDPs is that they can represent a hidden internal state directly
– i.e., a POMDP can contain a probabilistic user model and maintain a distribution over
true user goals. Hence, in this work, we will assume that a probabilistic user model &
speech recognition model can be constructed and embedded into a POMDP, directly
yielding values for T and Z. Thus, this work focuses on POMDP policy improvement
using analytic methods rather than through interaction.

Policy improvement for POMDPs is notoriously difficult. First, because belief space is
real-valued, an optimal infinite-horizon policy may consist of an arbitrary partitioning of
S-dimensional space.7 Moreover, the size of the policy space grows exponentially with
the size of the observation set and doubly exponentially with the distance (in timesteps)
from the horizon. Searching for an (exact) optimal policy using value iteration is also
plagued by the so-called “curse of dimensionality” – the dimensionality of the belief
space grows exponentially with the number of state variables (Kaelbling et al., 1998).

Nevertheless, real-world problems tend to exhibit a significant amount of structure that
can be exploited to speed up computation. State abstraction (Boutilier and Poole, 1996)
and compression techniques (Poupart and Boutilier, 2002), (Poupart and Boutilier, 2004),
(Roy and Gordon, 2002) can be used to mitigate the curse of dimensionality. Similarly,
point-based value iteration (Pineau et al., 2003), (Spaan and Vlassis, 2004) and bounded
policy iteration algorithms (Poupart and Boutilier, 2003), (Poupart and Boutilier, 2004)
can be used to mitigate the complexity of policy spaces.

In this work, we use a randomized value iteration algorithm called Perseus (Spaan and
Vlassis, 2004). Perseus heuristically selects a small set of representative belief points,
and iteratively applies value updates to those points. Whereas an iteration (also called a
“back-up”) of policy improvement performed on real-valued belief space runs in
exponential time, an iteration of policy improvement on a finite set of points runs in
quadratic time. In Perseus, belief point selection can be done in a number of ways. We
select belief points by sampling trajectories through belief space. That is, we record
visited belief points in random trajectories obtained by choosing actions at random. The
recorded belief points form a subset of the reachable belief states

Point-based value iteration algorithms (including Perseus) have been shown to
outperform grid-based methods on a variety of problems (Pineau et al., 2003), (Spaan and
Vlassis, 2004). Whereas grid-based methods maintain only a value at each belief point,
Perseus maintains both a value and a gradient at each belief point. This property enables
Perseus to generalize to unexplored belief points better than grid-based approximations.

In this work we also extend Perseus to perform policy improvement on problems with
observations composed of discrete and continuous components. In Perseus, point-based
backups are done by considering all observations. As described in (Hoey and Poupart,
2005), we handle continuous observations by sampling a subset of them. As the number
of sampled observations increases, the quality of the solution improves.

7 Technically an |S|-dimensional simplex.

Jason D. Williams, Pascal Poupart, and Steve Young

 14

3 A factored POMDP architecture for Spoken Dialog
Systems

3.1 Method
Our proposal is to formulate the Dialog Manager of a Spoken Dialog System as a
POMDP as follows.

First, we break the POMDP state variable Ss ∈ into three components: (1) the user’s
goal, uu Ss ∈ ; (2) the user’s action, uu Aa ∈ ; and (3) the state of the dialog, dd Ss ∈ .
The POMDP state s is given by the tuple },,{ duu sas . We note that, from the machine’s
perspective, all of these components are unobservable.

The state variables are described as follows:

• First, the user’s goal, us , gives the current goal or intention of the user. Examples
of a complete user goal include a travel itinerary, a request for information about
a calendar, or a product the caller would like to purchase. At each time step, we
wish to form a distribution over the set of possible user goals, uS . For that
reason, we expect that the propositional content of a user’s goal (e.g., the places
the user wants to travel to, or the name of the product a caller wants to buy) need
to be included in the set uS .

• Second, the user’s action, ua , gives the most recent user’s actual action.
Examples of user actions include specifying a place the user would like to travel
to, providing a date to query the user’s calendar, and indicating that the caller
would like to make a purchase. Other actions include responding to yes/no
questions or a “null” response indicating the caller made no response.

• Finally, the state of the dialog ds indicates any relevant dialogue state
information from the perspective of the user. For example, ds might indicate
which slots have been grounded, ungrounded, or not raised. ds enables the
POMDP to make decisions about the appropriateness of behaviours in a dialog –
for example, it would be odd to confirm a piece of information which had not
previously been mentioned.

Note that we do not include a component for speech recognition confidence associated
with a particular user goal. The concept of confidence is naturally captured by the
distribution of probability mass assigned to a particular user goal in the belief state.8

The POMDP action mm Aa ∈ is the action the machine takes in the dialog. For example,
machine actions might include greeting the user, asking the user where they want to go
“to”, or confirming that the user wants to leave from a specific place. As above, we
expect that this action will include propositional content.

8 In Section 6 we show a method for incorporating ASR confidence directly into the belief state.

Using Factored Partially Observable Markov Decision Processes with Continuous
Observations for Dialog Management

 15

The POMDP observation o is drawn from the same set as ua , i.e., uAo ∈ . That is, the
observations available to the POMDP are equal to the user actions the POMDP can
represent in its state space. Note that at each time step the POMDP receives a single
observation, but maintains a distribution over all possible user actions.

We decompose the POMDP transition function as follows:

),,,|,,(),|(muduudum aassasspassp ′′′=′ (4)

),,,,,|(),,,,|(),,,|(muduuudmuduuumuduu aasssaspaasssapaasssp ′′′′′′= . (5)

We then assume conditional independence as follows. The first term – which we call the
user goal model – indicates how the user’s goal changes (or does not change) at each
time step. We assume the user’s goal at a time step depends only on the previous goal
and the machine’s action:

),|(),,,|(muumuduu asspaasssp ′=′ (6)

The second term – which we call the user action model – indicates what actions the user
is likely to take at each time step. We assume the user’s action depends on their (current)
goal and the preceding machine action:

),|(),,,,|(muumuduuu asapaasssap ′′=′′ . (7)

The third term – which we call the dialog model – indicates how the user and machine’s
actions affect the state of the conversation. We assume the current state of the dialog
depends on the previous state of the dialog, the user’s action, and the machine’s action:

),,|(),,,,,|(mdudmuduuud asaspaasssasp ′′=′′′ . (8)

In sum, our transition function is given by:

),,|(),|(),|(),|(mdudmuumuum asaspasapasspassp ′′′′′=′ . (9)

The two user models could be estimated from a corpus of labelled interactions. For
example, we could estimate conditional distributions over user dialog acts given a
machine dialog act and a user goal. To appropriately cover all of the conditions, the
corpus would need to include variability in the strategy employed by the machine – for
example, using a Wizard-of-Oz framework with a simulated ASR channel (Stuttle et al.,
2004). The dialog model could either be estimated from data, handcrafted, or replaced by
a deterministic function representing a dialog controller’s information state update rules
as in for example (Larsson and Traum, 2000).

The observation function is given by:

),,,|(),|(mudum aassopasop ′′′′=′′ . (10)

Jason D. Williams, Pascal Poupart, and Steve Young

 16

The observation function accounts for the corruption introduced by the speech
recognition engine, so we assume the observation depends only on the action taken by the
user:9

)|()|(),,,|(uumudu aopaopaassop =′′=′′′′ . (11)

The observation function can be estimated from a corpus or derived analytically using a
phonetic confusion matrix, language model, etc. The observation can be discrete (i.e., a
recognition hypothesis), or a mixture of discrete and continuous (i.e., a recognition
hypothesis and a confidence score).

The reward function is not specified explicitly in this proposal since it depends on the
design objectives of the target system. We note that the reward measure could contain
incentives for dialog speed (by using a per-turn penalty) and successful task completion
(through rewards conditioned on the user’s goal). Weights between these could be
learned through systems like PARADISE (Walker et al., 2000). Also, capturing
successful task completion is straightforward since the state space explicitly contains the
user’s goal.

The reward function may also penalize inappropriate actions. We note that the reward
function is a natural place to specify action appropriateness through rewards conditioned
on the dialog state, ds . For example, the reward can specify a penalty for confirming an
item which has not been discussed yet (this is discussed further in section 3.2).

 shows an influence diagram depiction of our proposal.

Finally, given the definitions above, we update the belief state at each time step by:

),,'|()(' baospsb m′=′

),|'(

),|'(),,'|'(
baop

baspbasop
m

mm=

),|'(

),|(),,|'(),'|'(

baop

basPsbaspasop

m

Ss
mmm ∑

∈=

),|'(

)(),|'(),'|'(

baop

sbsaspasop

m

Ss
mm ∑

∈= . (12)

The numerator consists of the observation function, transition matrix, and current belief
state. The denominator is independent of 's , and can be regarded as a normalization
factor, hence:

 ∑
∈

′′⋅=′′
Ss

mm sbsaspasopksb)(),|(),|'()(. (13)

Substituting equation (9) and (11) into (13) and simplifying, we can write:

9 This implicitly assumes that the same recognition grammar is always used. The model could be readily
extended to enable a system “action" which activates a particular grammar

Using Factored Partially Observable Markov Decision Processes with Continuous
Observations for Dialog Management

 17

 ∑ ∑ ∑
∈ ∈ ∈

′′′′′′⋅
=′′′′

uu dd uuSs Ss Aa
udumdudmuumuuu

udu

assbasaspasspasapaopk
assb

),,(),,|(),|(),|()|'(
),,(

 (14)

o

au

sd

su

am

r

o'

au'

sd'

su'

am'

r'

Timestep n Timestep n+1

Figure 4: Influence diagram representation of proposed POMDP for Dialog Management. Symbols
are as defined in and . The dotted box indicates the composite state s is comprised of three

components, su, sd, and au – see text for a complete definition of variables. As above, note that as
depends on the composite belief state b(s) – the distribution over all states – and not the true current

(unobservable) state.

3.2 Discussion
This method differs from MDP approaches in three respects.

First, in an effort to reduce the size of the state space, MDPs typically do not include
propositional content in the state and action set provided to the dialog manager. Since the
POMDP is maintaining a well-formed distribution over user goals (and using this
information to inform action selection), our proposal relies on including propositional
content in the state space and action set.

Second, in MDP schemes, the state of the dialog (i.e., grounding information) is typically
included in the state variable to help measure the certainty associated with the
hypothesized user goal. In the POMDP framework, certainty in a particular user goal is
naturally reflected by the distribution of probability mass in the belief state.

Finally, in an MDP, inappropriate actions can be limited by specifying a set of “valid”
actions for each state. In a POMDP, the belief state includes most or all states, so it is not
practical to exclude inappropriate machine actions on a per-state basis as in an MDP.
“Appropriateness” is instead conveyed through the reward measure.

Many machine learning approaches to dialog management have incorporated a simulated
user, and used interaction-based (on-line) learning for policy improvement – for example,
(Scheffler and Young, 2002) and (Pietquin, 2004). In contrast, this method embeds an

Jason D. Williams, Pascal Poupart, and Steve Young

 18

explicit model of the user into the model, along with an explicit transition and reward
function to enable the use of model-based (off-line) learning. One advantage to this
approach is that algorithms for model-based learning typically have well-defined bounds
on convergence. While interaction-based (on-line) learning algorithms can be shown to
converge in the limit, convergence bounds are not easy to determine and in practice it can
be difficult to know when to “stop” learning.10

As stated, the proposed model assumes “flat” listings of state space components,
observations, and actions. However, most spoken dialog systems make use of
hierarchical structures such as flight(to(London),from(Boston)). A flat listing is clearly
capable of expressing any finite list; however, because our proposal includes no method
to exploit the redundancy and structure of more complex representation structures, it
scales very poorly. The flat listing approach implies that the size of the state space,
action set, and observation set are exponential with respect to the number of concepts in
the model and this is a further issue to be addressed in future work.

4 Testbed spoken dialog system
To test the ideas in our proposal, we created a testbed dialog management POMDP in the
travel domain. In the testbed problem, the user is trying to buy a ticket to travel from one
city to another city. The machine asks a series of questions, and then “submits” the ticket
purchase request. The machine may also choose to “fail”. In the testbed problem, there
are three cities, {a,b,c}.

The machine has the following 16 actions available:

o greet – greet the caller and ask “How can I help you?”

o ask-from/ask-to – ask where the caller wants to go from/to

o conf-to-x/conf-from-x – confirm that the caller wants to go
to/from city x where },,{ cbax ∈ .

o submit-x-y – place an order for a ticket from city x to city y,
yxcbayx ≠∈ },,,{,

o fail – give up the current dialogue

As above, the state space is given by the tuple },,{ duu sas . The user’s goal uu Ss ∈
specifies the user’s desired itinerary. There are a total of 6 user goals, given by:

 yxcbayxyxsu ≠∈∈ },,,{,);,(. (15)

The dialog state contains three components. Two of these indicate whether each item is
either not specified (n), unconfirmed (u), or confirmed (c). We define “not specified” as
meaning that a user has not referenced this piece of information, “unconfirmed” as
meaning “referenced once” by the user, and “confirmed” as meaning “referenced more
than once” by the user. A third component, z, specifies whether the current turn is the
first turn (1) or not (0). There are a total of 18 dialog states, given by:

10 On the other had, on-line learning allows systems to adapt during use. This can be an important
advantage for real systems and we intended to pursue this in further work.

Using Factored Partially Observable Markov Decision Processes with Continuous
Observations for Dialog Management

 19

 }0,1{},,,{,);,,(∈∈∈ zcunyxzyxs ddddd (16)

The user’s action uu Aa ∈ is drawn from the following set of 18 actions:

o x – The user expressed “city x” where },,{ cbax ∈

o from-x – The user expressed “I want to leave from city x”
where },,{ cbax ∈

o to-x – The user expressed “I want to go to city x” where
},,{ cbax ∈

o from-x-to-y – The user expressed “I want to go from city x to
city y” where yxcbayx ≠∈ },,,{,

o yes, no – The user expressed yes or no

o null – The user did not respond

These state components yield a total of 1944 states. Finally, we added one additional,
absorbing state called end-state. When (and only when) the machine takes the fail action
or a submit-x-y action, control transitions to end-state.

Observations are drawn from the set of 18 user actions; i.e., uAo ∈ .

In the testbed problem the user has a fixed goal. The initial (prior) probability of the
user’s goal is distributed uniformly:

u

u S
sp 1)(0 = . (17)

We define the user goal model as:



 =′

=′=′
otherwise

ssif
sspassp uu

uumuu 0
1

)|(),|(. (18)

We define the user action model to include a variable set of responses:11

• The user responds to ask-to/from with x, to/from-x, or from-x-to-y.

• The user responds to greet with to-y, from-x, or from-x-to-y.

• The user responds to confirm-to/from-x with yes/no, x, or to/from-x.

• At any point the user might not respond (i.e., respond with null).

We define the dialog model distribution to deterministically implement a notion of
”grounding” from the user’s perspective – i.e., a field (either to or from) which has not
been referenced by the user takes the value n; a field which has been referenced by the
user exactly once takes the value u; and a field which has been referenced by the user
more than once takes the value c.

11 Because of space limitations, this distribution isn’t shown here.

Jason D. Williams, Pascal Poupart, and Steve Young

 20

In this section we consider a discrete observation function – i.e., the observation function
provides (only) a single discrete recognition hypothesis. We define the probability of
making a speech recognition error to be errp , and define the observation function as:







≠
−

=−
=

u
u

err

uerr

u aoif
A
p

aoifp
aop

1

1
)|((19)

Below we will vary errp to explore the effects of speech recognition errors.

The reward measure includes the following components:

• If the machine uses the action greet when it is not the first turn of the dialog, the
reward is -100.

• If the machine confirms a field before it has been referenced by the user, the
reward is -3.

• If the machine selects the fail action, the reward is -5.

• If the machine selects a submit action and the values submitted match the user’s
goal, the reward is +10. Otherwise the reward is -10.

• The reward for any action taken in the absorbing end state is 0.

• The reward for any other action is -1.

A discount of 95.0=γ was used for all experiments.

4.1 MDP Baseline
To evaluate our approach, we compare the POMDP method with an MDP-based dialog
manager, patterned on systems in the literature (e.g., (Pietquin, 2004)). The MDP
baseline consists of three elements: Portions of the POMDP, the MDP state estimator,
and the MDP itself. We use portions of the POMDP as a simulation of the environment.
The POMDP state is maintained, and an observation o is produced at each timestep. The
POMDP observation is provided as input to an MDP State Estimator. Note that neither
the belief state nor the (unobserved) POMDP state contributes to action selection in the
MDP baseline.

The MDP State Estimator maintains its own state, SESE Ss ∈ . SEs is factored into two
components which give the observed user’s goal and the observed state of the dialog.12
In addition, SES includes a special end state, for a total of 39 states. The MDP State
Estimator is updated using a deterministic function:

),,(MDPSESSE aosfs
SE

′=′ (20)

12 The number of state estimator states is reduced somewhat by eliminating unreachable state – for
example, if no value has been observed for the to slot, then the to slot can only be not-known – it cannot be
unconfirmed or confirmed.

Using Factored Partially Observable Markov Decision Processes with Continuous
Observations for Dialog Management

 21

SESf encodes dialogue heuristics, such as how to interpret evidence which is inconsistent
with what has been observed so far. As is common in the literature, this function was
handcrafted. For example, if the MDP State Estimator receives inconsistent evidence for
a particular field, the field is reset to “observed once”. If the caller is asked to confirm a
field and the observed response is “no”, then we set that field to unknown.

The actual MDP state, MDPs , is a deterministic function of SEs :

)(SESMDP sfs
MDP

= (21)

The MDP state, MDPMDP Ss ∈ includes only the observed state of the dialog. MDPS also
includes a special end state, for a total of 11 states.

The MDP actions are given by MDPMDP Aa ∈ . MDPA includes 7 actions:

• greet – greet the caller and ask “How can I help you?”

• ask-from/ask-to – ask where the caller wants to go from/to

• conf-to/conf-from – confirm the values maintained by the state estimator in the
from or to field.

• submit – submits the values maintained by the state estimator in the from and to
fields. If these values are not present, the state estimator will guess.

• fail – give up the current dialogue

Because the MDP consists of only the observed state of the dialog (and not the observed
user goal), it cannot take actions drawn from mA . Another deterministic function maps

MDPa to ma :

),(SEMDPAm safa
MDP

= (22)

As with
SESf ,

MDPAf encodes dialog heuristics. For example, if the MDP takes the action
to submit but no value for the from slot has yet been observed,

MDPAf must make a
decision about which value for the from slot to use. This function was also handcrafted.
An influence diagram showing the MDP baseline is given in .

Because the MDP learns through experience with a simulated environment which
maintains its own hidden state, we cannot easily estimate the transition function nor
reward function of the MDP. Thus we selected an on-line reinforcement learning
technique, Watkins Q-learning, to train the MDP baseline. A variety of parameters were
explored, and the best-performing parameter set was selected as follows:

• Initial Q values were set to 0

• Exploration was performed with the epsilon-greedy method, and 2.0=ε

• The learning rate α was set to 1/k, where k is the number of visits to the Q(s,a)
being updated

Jason D. Williams, Pascal Poupart, and Steve Young

 22

To evaluate the resulting MDP policy, 10,000 dialogs were simulated using the learned
policy.

For comparison, we also evaluated a simple POMDP optimization technique called the
Q-MDP approximation which assumes that the uncertainty in the current state will
disappear one time step in the future. We first solve the underlying MDP using value
iteration for its optimal action-value function,),(* asQMDP , and then select actions
according to:

 ∑
∈

=
Ss

MDP
a

QMDP asQsbb),()(maxarg)(**π (23)

sSE s'SE

o

au

sd

su r

aMDPsMDP s'MDP a'MDP

o'

au'

sd'

su' r'

a'mam

Figure 5: Influence diagram showing MDP baseline, which is modelled on systems from the

literature. The MDP State Estimator sSE maintains its own state, which includes the observed
propositional content and confirmation status for each recognized slot. sSE is updated using a hand-
crafted function which takes the observation and system action as inputs. The MDP state sMDP is a

function of sSE which factors out the semantic content, leaving only confirmation status.

4.2 Results & discussion
Values of errp were explored ranging from 0.00 to 0.65 at intervals of 0.05.

In early trials, it was found that the POMDP policy was quite sensitive to changes in the
reward function. For example, in one early trial, the reward function provided incentives
for successful and efficient completion, but no rewards were specified which related to
action appropriateness. Surprisingly, the POMDP policy would confirm a field before
asking for it. Upon investigation, we found this behavior was optimal given the relatively
higher accuracy of confirmation questions and the small domain, which was enabling the
policy to use elimination to identify a field. This finding is similar in nature to early trials

Using Factored Partially Observable Markov Decision Processes with Continuous
Observations for Dialog Management

 23

in (Pietquins, 2004). The reward function was adjusted to the reward function presented
above, which penalizes confirming a field before a user has provided a value for it.13

 shows the expected return after each iteration (“back-up”) of the solution algorithm for
30.0=errp and various number of belief points. We found that 500 belief points and 30

iterations attained asymptotic performance for all values of errorp . The progress of the
value functions for these solutions is shown in .

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Iteration

Ex
pe

ct
ed

 re
tu

rn 500
200
100
50
20
10

Figure 6: Expected return vs. optimization iteration for perr = 0.30, no confidence score information,

and various numbers of belief points.

 shows expected return for the POMDP policy, and the average return for the MDP and
Q-MDP solutions vs. errp . The error bars show the 95% confidence interval for return
assuming a normal distribution. Note that return decreases consistently as errp increases
for all solution methods, but the POMDP policy attains the largest return of the solutions
at all values of errp . Further, the performance gain of the POMDP policy solution over
the other solutions increases as errp increases. From this result we conclude that the
POMDP method copes with higher speech recognition error rates better than the MDP or
Q-MDP approaches.

In practice, the error rate of a spoken dialog system varies considerably from user to user.
Thus we were interested to see how a POMDP policy performs at a value of errp for
which it was not designed. shows average return for three POMDP policies when
executed using a different value for errp . From this we see that the POMDP policies are

13 One consequence of this decision is that POMDP policies will sometimes ask for a field’s value several
times rather than taking a confirmation action to build certainty in a user’s belief. For an example, see .

Jason D. Williams, Pascal Poupart, and Steve Young

 24

not “brittle” – i.e., they do not fail catastrophically as the actual value of errp deviates
from that used in training.

-4

-2

0

2

4

6

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Iteration

Ex
pe

ct
ed

 a
ve

ra
ge

 re
tu

rn

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
.065

Figure 7: Expected return vs. optimization iteration for perr = 0.05 ... 0.65. Solutions computed using

500 belief points and no confidence score information.

Finally, shows an example conversation with two different machines. Note how both
examples are able to cope with a speech recognition error, and that the conversation at the
higher value of errp uses an additional conversational step to increase its certainty in the
user’s goal.

Using Factored Partially Observable Markov Decision Processes with Continuous
Observations for Dialog Management

 25

-25

-20

-15

-10

-5

0

5

10

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

perr

Ex
pe

ct
ed

 o
r a

ve
ra

ge
 re

tu
rn

POMDP
MDP
Q-MDP

Figure 8: Expected or Average return of POMDP policies with 500 belief points, MDP, and Q-MDP

approximations vs. perr. No confidence score information was present. POMDP dataset shows
(exact) expected return; others show average return over 10,000 simulated dialogs with error bars

showing 95% confidence interval for exact expected return.

-4

-2

0

2

4

6

8

10

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

perr used at evaluation

A
ve

ra
ge

 re
tu

rn

Trained for perr = 0.15
Trained for perr = 0.35
Trained for perr = 0.55

Figure 9: Performance of POMDP policies trained at one speech recognition error rate ("Trained for
perr") and evaluated at another ("perr used at evaluation"). 500 belief points used for all policies. No
confidence score information was present. Averages are over 10,000 simulated dialogs; error bars

show 95% confidence interval for exact expected return.

Jason D. Williams, Pascal Poupart, and Steve Young

 26

perr = 0.10 perr = 0.30

Machine: How can I help you?

User: I’d like to go to B
(Misrecognized as I’d like to go from B)

Machine: Where would you like to go to?

User: To B

Machine: And where are you leaving from?

User: From A

Machine: Ok, I’m printing a ticket from A to B.

 Machine: How can I help you?

User: I’d like to go to B
(Misrecognized as I’d like to go from B)

Machine: Where would you like to go to?

User: To B

Machine: And where are you leaving from?

User: From A

Machine: Where are you leaving from again?

User: From A

Machine: Ok, I’m printing a ticket from A to B.

Table 1: Example conversations with two different POMDP policies. Speech recognition is accurate
except where noted. No confidence score information is present. Actual machine actions are at the
abstract level; the verbiage shown here is illustrative and assumes basic generation rules have been

applied. Note the extra turn for the policy developed for the perr = 0.30 environment (i.e., the
environment with lower speech recognition accuracy).

5 Evaluating & improving a handcrafted policy

5.1 Evaluating handcrafted policies
There are several reasons why we might want to create a handcrafted POMDP policy for
dialog management: for example, we may want to compare the average return for a
handcrafted policy with an automated solution, or we might want to use a handcrafted
policy to bootstrap a solution technique. This section describes how a handcrafted policy
can be implemented and evaluated in the POMDP environment.

Intuitively, a policy specifies what action to take in a given situation. In the previous
section, we relied on the representation of a POMDP policy produced by our choice of
solution method – i.e., a value function, represented as a set of N vectors each of
dimensionality |S| in belief space:

 SsNnsn ≤≤≤≤ 1,1),(υ (24)

Each vector represents the value, at all points in belief space, of executing some “policy
tree” which starts with an action An ∈)(π̂ to indicate the action associated with the nth
vector. If we assume that the policy trees have an infinite horizon, then we can express
the optimal policy at any timestep as:

 









= ∑

=

S

s
n

n
sbsb

1
)()(maxargˆ)(υππ (25)

Thus the value-function method provides both a partitioning of belief space into regions
corresponding to actions as well as the expected return of taking that action. Although an

Using Factored Partially Observable Markov Decision Processes with Continuous
Observations for Dialog Management

 27

optimal infinite-horizon POMDP policy may have an infinite number of such regions, we
can usually find reasonable approximations with finite numbers of regions.

A second way of representing a POMDP policy is as a “policy graph” – a finite state
controller consisting of N nodes and some number of directed arcs. Each controller node
is assigned a POMDP action, and we will again write)(ˆ nπ to indicate the action
associated with the nth node. Each arc is labelled with a POMDP observation, such that
all controller nodes have exactly one outward arc for each observation.),(onl denotes
the successor node for node n and observation o.

A policy graph is a general and common way of representing handcrafted dialog
management policies. More complex handcrafted policies – for example, those created
with rules – can usually be compiled into a (possibly very large) policy graph.

A policy graph does not make the expected return associated with each controller node
explicit. However, as pointed out in (Hansen, 1998), we can find the expected return
associated with each controller node by solving this system of linear equations in υ :

 ∑∑
∈′ ∈

′′′+=
Ss Oo

onln snsopnsspnsrs)())(ˆ,|())(ˆ,|())(ˆ,()(),(υππγπυ (26)

Solving this set of linear equations yields a set of vectors – one vector for each controller
node. To find the expected value of starting the controller in node n and belief state b we
compute:

 ∑
=

S

s
n sbs

1
)()(υ (27)

To find the optimal node n to begin execution in given a belief state b we compute:

 ∑
=∈

S

s
n

Nn
sbs

1
)()(maxarg υ (28)

Thus, by finding the value-function vectors associated with a controller, we can make
direct comparisons between the expected return of a handcrafted controller and a vector-
based solution produced by many optimization techniques, including Perseus. Also, we
can use the vectors computed from a handcrafted controller as a “seed” value function for
automated improvement.

5.2 Example handcrafted policies
Three handcrafted policies were created, called HC1, HC2, and HC3.

All of the handcrafted policies first take the action greet.

HC1 takes the ask-from and ask-to actions to fill the from and to fields, performing no
confirmation. If the user does not respond, or if it receives a nonsensical response, it re-
tries the same action. Once it finds values for both fields, it takes the corresponding
submit-x-y action. A logical diagram showing HC1 is given in .14

14 A logical diagram is shown for clarity: the actual controller uses the real values a, b, and c, instead of the
variables X and Y, resulting in a controller with 15 states.

Jason D. Williams, Pascal Poupart, and Steve Young

 28

greet

guess
X-Y

ask
from

ask
to

ask
from

else from X

to Y

X
from X

from X to Y,
X≠Y

from X to Y

X
from X

Y
to Y
from X to Y, X≠Y

from X to Y

else else else

Figure 10: “HC1” handcrafted controller. When the controller receives inconsistent or nonsensical

information, it takes the fail action.

HC2 is identical to HC1 except that if it receives inconsistent or nonsensical information,
it immediately takes the fail action. A logical diagram showing HC2 is given in .

HC3 employs a similar strategy to HC1 but extends HC1 by confirming each field as it is
collected. If the user responds with “no” to a confirmation, it re-asks the field. If the
user provides inconsistent information, it treats the new information as “correct” and
confirms the new information. If the user does not respond, or if the machine receives
any nonsensical input, it re-tries the same action. Once it has successfully filled and
confirmed both fields, it takes the corresponding submit-x-y action.15

Empirical assessment of the average return produced by the handcrafted policies showed
agreement with the analytic solutions within statistical significance. shows the expected
return for the handcrafted policies and the POMDP policy. The POMDP method
outperforms all of the handcrafted policies for all values of errorp . It is interesting to note
that HC3, which confirms all inputs, performs least well for all values of errorp .

5.3 Improving handcrafted policies
As noted above, it is relatively straightforward to compute the value function for a policy
represented as a finite state controller. Recall this value function expresses, for a given
belief state & controller node, the expected return of starting controller execution in that
node.

15 The diagram for HC3 is not included as it is highly connected and difficult to show clearly.

Using Factored Partially Observable Markov Decision Processes with Continuous
Observations for Dialog Management

 29

greet

guess
X-Y

ask
from

ask
to

ask
from

no response

from X

to Y

X
from X

from X to Y,
X≠Yfrom X to Y

X
from X

Y, to Y
from X to Y, X≠Y

from X to Y

else
else

else

fail

no
response

no
response

no
response

Figure 11: “HC2” handcrafted controller. When the controller receives inconsistent or nonsensical

information, it retries the same action.

A method for improving a handcrafted policy represented as a finite state controller is as
follows. First, we compute the value function of the finite state controller as described
above. At the beginning of the dialog, we find the node with the highest expected return
for b0 and execute its action. Throughout the dialog, we perform belief state monitoring
– i.e., we maintain the current belief state at each timestep. Then, at each timestep, rather
than follow the policy specified by the finite state controller, we re-evaluate which node
has the highest expected return for the current b. We then take the action specified by
that node. Note that, in this style of execution, node transitions may occur which are not
arcs in the handcrafted policy. Because the node-value function and belief state are
exact, this style of execution is guaranteed to perform at least as well as the original
handcrafted controller.

To test this method, we executed 10,000 dialogs for each handcrafted policy at each value
of perr. Results for HC1, HC2, and HC3 are shown in , , and respectively. These plots
show the difference between the proposed method and the expected value of executing
the handcrafted policy directly to make the gain of the proposed method explicit. For
reference, these plots also include the difference between the handcrafted policies
executed normally and the POMDP solution, which we take to be a practical upper bound
for the testbed problem. Error bars show the 95% confidence interval for the true
expected return assuming normal distribution. We note that in almost all cases, the
proposed method results in a significant improvement. In many cases, the proposed
method is close to the POMDP solution – our assumed practical upper bound.

Jason D. Williams, Pascal Poupart, and Steve Young

 30

-8

-6

-4

-2

0

2

4

6

8

10

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

perr

E
xp

ec
te

d
re

tu
rn

POMDP
HC1
HC2
HC3

Figure 12: Expected return vs. perr for POMDP policies and the 3 handcrafted policies. POMDP

solution was created with 500 belief points and no confidence score information.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

perr

A
ve

ra
ge

 o
r e

xp
ec

te
d

re
tu

rn

POMDP-HC1
HC1vf-HC1

Figure 13: Gain in average/expected return for HC1 executed using belief state monitoring vs. perr.
The POMDP policy, which we take to be our practical upper bound, is shown for reference. Error

bars show 95% confidence interval for true expected return over 10,000 dialogs.

Using Factored Partially Observable Markov Decision Processes with Continuous
Observations for Dialog Management

 31

-0.5

0

0.5

1

1.5

2

2.5

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

perr

A
ve

ra
ge

 o
r e

xp
ec

te
d

re
tu

rn

POMDP - HC2
HC2vf - HC2

Figure 14: Gain in average/expected return for HC2 executed using belief state monitoring vs. perr.
The POMDP policy, which we take to be our practical upper bound, is shown for reference. Error

bars show 95% confidence interval for true expected return over 10,000 dialogs.

-1

0

1

2

3

4

5

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

perr

A
ve

ra
ge

 o
r e

xp
ec

te
d

re
tu

rn

POMDP - HC3
HC3vf - HC3

Figure 15: Gain in average/expected return for HC3 executed using belief state monitoring vs. perr.
The POMDP policy, which we take to be our practical upper bound, is shown for reference. Error

bars show 95% confidence interval for true expected return over 10,000 dialogs.

Jason D. Williams, Pascal Poupart, and Steve Young

 32

6 Incorporating confidence score into the POMDP
framework

6.1 Background
To this point we have not accounted for confidence scores in our model. A confidence
score c is a real-valued random variable which accompanies the (discrete) recognition
result o. The confidence score c is intended to provide a measure of the reliability of the
recognition result o.

When building spoken dialog systems, designers typically divide confidence scores into
buckets. For example, at design time, a system designer specifies a confidence threshold,
cThresh. At run time, if an observed confidence score c is above cThresh then the
machine accepts the recognition result as accurate, and if the confidence score c is below
cThresh the machine rejects it as inaccurate. More buckets can be created so that a
recognition results o can have, for example, high, medium, or low confidence. Designers
typically choose to employ more time-consuming but deliberate confirmation strategies
for low-confidence recognition results and faster but less reliable confirmation strategies
for high-confidence recognition results. This approach has been used in most of the
dialog management research employing MDPs. However, in practice it is not clear how
to set the threshold(s) cThresh, and changing the thresholds requires re-optimizing the
MDP policy.

Recently, researchers have suggested Decision Theoretic grounding models which
incorporate confidence measures directly into distributions over user goals (Paek and
Horvitz, 2003). However, to our knowledge, no algorithm has been suggested or tested
for incorporating both the recognition result and confidence score into the POMDP
framework.

6.2 Method
We assume the framework described above for a POMDP-based dialog manager. To this
framework, we add a continuous element to the observation function, ℜ∈c , yielding a
new observation function,)|,(uacop .

The belief state update function in Equation (14) becomes:

 ∑ ∑ ∑
∈ ∈ ∈

′′′′′′⋅
=′′′′

uu dd uuSs Ss Aa
udumdudmuumuuu

udu

assbasaspasspasapacopk
assb

),,(),,|(),|(),|()|','(
),,(

. (29)

There will in general be insufficient data to estimate)|,(uacop directly. To form
)|,(uacop , a confusion matrix)|(uaop can be combined with two confidence score

distributions – one for correct recognitions and one for incorrect recognitions:





≠⋅
=⋅

=
uuincorrect

uucorrect
u aoifaopcp

aoifaopcp
acop

)|()(
)|()(

)|,((30)

Using Factored Partially Observable Markov Decision Processes with Continuous
Observations for Dialog Management

 33

This is the approach we take in the example problem, below. More complex estimates of
confidence score distribution which take into account the confusability between specific
values of o are also possible. For examples, see (Pietquin, 2004).

To perform policy improvement on this POMDP we have two options. First, we can
perform policy improvement using a solution method which accounts for the continuous
observations, such as the modified Perseus method described in Section 2.3. We note
that this method creates a policy which takes the expected additional information in the
confidence score into account. We call this the continuous-POMDP solution.

Second, we note that there is benefit to using the confidence score information for belief
state monitoring even if it was not used during policy optimization. In other words, we
would expect an improvement in average return by using confidence scores to improve
our estimate of the current belief state at runtime (as in Equation (29)) even if the policy
followed has been created with an observation function which ignores the confidence
score; i.e.,

 ∫=
c

uu acopaop)|,()|(. (31)

We call this the discrete-POMDP solution.

Stated alternatively, the continuous-POMDP technique uses infinitely many confidence
buckets during planning and belief monitoring. In contrast, the discrete-POMDP
technique uses no confidence information during planning, but infinitely many
confidence buckets during belief monitoring. Finally, MDP methods (in the literature,
and our baseline, presented below) use a handful of confidence buckets for planning, but
do not perform any belief monitoring.

6.3 Evaluation
To test the method, we extended the observation function of the testbed problem as
follows:







≠
−

⋅

=−⋅
=

u
u

err
incorrect

uerrcorrect

u aoif
A
pcp

aoifpcp
acop

1
)(

)1()(
)|,((32)

We define c on the interval [0,1] and define the probability densities)(cpcorrect and
)(cpincorrect as the exponential probability density functions normalized to the region

[0,1]; i.e., :

Jason D. Williams, Pascal Poupart, and Steve Young

 34










=

≠
−=










=

≠
−=

−

⋅

0,1

0,
1)(

0,1

0,
1)(

)1(

incorrect

incorrecta

ac
incorrect

incorrect

correct

correcta

ac
correct

correct

a

a
e

ea

cp

a

a
e

ea

cp

incorrect

incorrect

correct

correct

 (33)

where correcta and incorrecta are constants defined on),(∞−∞ . We note that as xa
approaches positive or negative infinity,)(cpx becomes deterministic and conveys
complete information; when 0=xa ,)(cpx is a uniform density and conveys no
information. Since we expect the confidence value for correct recognition hypotheses to
tend to 1, and for incorrect recognition hypotheses to tend to 0, we would expect 0>xa .

We compared our proposal with the MDP technique to evaluate it empirically. As is
customary with MDP-based approaches, we augmented the MDP approach described
above to include M confidence buckets. Ideally the confidence score bucket sizes would
be selected so that they maximize average return. However, it is not obvious how to
perform this selection. Instead, a variety of techniques for setting confidence score
threshold were explored. It was found that dividing the probability mass of the
confidence score c evenly between buckets produced the largest average returns. That is,
we define

 10 110 =<<<<= − MM cThreshcThreshcThreshcThresh L (34)

and then find the values of mcThresh such that:

 ∫∫
+

−

−∈=
1

1

1,...,2,1,)()(
m

m

m

m

cThresh

cThresh

cThresh

cThresh

Mmdccpdccp (35)

where p(c) is the prior probability of a confidence score. We find this prior for our
testbed problem as follows. We first find the distribution)|(uacp as:

 ∑
∈

=
Ao

uu aocpacp)|,()|((36)

).)(|()1)(|(erruincorrecterrucorrect pacppacp +−= (37)

In the MDP context, we assume the confidence score buckets are formed without access
to a prior)(uap . From this assumption, we find:

))(()1)(()(errincorrecterrcorrect pcppcpcp +−= (38)

from which the values of mcThresh can be derived.

Using Factored Partially Observable Markov Decision Processes with Continuous
Observations for Dialog Management

 35

We also compared our proposal to the (discrete) Q-MDP approach, using the belief state
update function given in equation (29). We also compared our proposal to handcrafted
solutions executed with belief state monitoring, as described in Section 5.3.

6.4 Results & discussions
 shows average returns for the continuous, discrete, and MDP methods for

1=== aaa incorrectcorrect .16 For the MDP method, we use 2 confidence buckets, and
approximately 125,000 dialog turns. Note the POMDP methods outperform the MDP
method, and the discrete-POMDP and continuous-POMDP solutions performed similarly.

-6

-4

-2

0

2

4

6

8

10

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

perr

A
ve

ra
ge

 re
tu

rn

disc-POMDP
MDP-2
cont-POMDP

Figure 16: Average return for continuous-POMDP, discrete-POMDP, and MDP-2 methods for a = 1.
MDP-2 has 2 confidence buckets and was trained for 125,000 dialog turns. Averages shown are over

10,000 simulated dialogs with the resulting policies; error bars show 95% confidence interval for
exact expected return.

Figures 17, 18, and 19 show average returns for the POMDP and MDP methods vs. a for
errp = 0.3, 0.4, and 0.5, respectively. In these figures, we again define

aaa incorrectcorrect == . For the MDP method, we use 2 confidence buckets. The POMDP
methods outperform the baseline MDP method consistently. Note that increasing a
increases average return for all methods, and that the greatest improvements are for errp
= 0.5 – i.e., the information in the confidence score has more impact as speech
recognition accuracy degrades. Again, the discrete and continuous POMDP solutions
performed similarly.

16 The Q-MDP method performed significantly worse than all other methods and is not shown.

Jason D. Williams, Pascal Poupart, and Steve Young

 36

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 1 2 5

Value of a (informativeness of confidence score)

A
ve

ra
ge

 re
tu

rn

cont-POMDP
MDP-2
disc-POMDP

Figure 17: Average return vs. a (informativeness of confidence score) at perr = 0.30 for continuous-

POMDP, discrete-POMDP, and MDP methods. MDP-2 has 2 confidence buckets and was trained for
10,000 dialogs. Averages shown are over 10,000 simulated dialogs; error bars show 95% confidence

interval for exact expected return

-1

0

1

2

3

4

5

0 1 2 5

Value of a (informativeness of confidence score)

A
ve

ra
ge

 re
tu

rn

disc-POMDP
cont-POMDP
MDP-2

Figure 18: Average return vs. a (informativeness of confidence score) for perr = 0.40 for continuous-

POMDP, discrete-POMDP, and MDP methods. MDP-2 has 2 confidence buckets and was trained for
10,000 dialogs. Averages shown are over 10,000 simulated dialogs; error bars show 95% confidence

interval for exact expected return

Using Factored Partially Observable Markov Decision Processes with Continuous
Observations for Dialog Management

 37

-4

-3

-2

-1

0

1

2

3

4

0 1 2 5

Value of a (informativeness of confidence score)

A
ve

ra
ge

 re
tu

rn

disc-POMDP
cont-POMDP
MDP-2

Figure 19: Average return vs. a (informativeness of confidence score) for perr = 0.50 for continuous-

POMDP, discrete-POMDP, and MDP methods. MDP-2 has 2 confidence buckets and was trained for
10,000 dialogs. Averages shown are over 10,000 simulated dialogs; error bars show 95% confidence

interval for exact expected return

Figures 20, 21, and 22 show average returns for the discrete-POMDP and handcraft
methods vs. a for errp = 0.3, 0.4, and 0.5, respectively. a is defined as above. Increasing
a increases average return for the handcrafted controllers executed with belief state
monitoring. For highly informative confidence scores (a=5), the handcrafted policies
executed with belief state monitoring perform similarly to the POMDP policy.

Jason D. Williams, Pascal Poupart, and Steve Young

 38

0

1

2

3

4

5

6

0 1 2 5

Value of a (informativeness of confidence score)

A
ve

ra
ge

 re
tu

rn

disc-POMDP
HC2
HC1
HC3

Figure 20: Average return vs. a (informativeness of confidence score) for perr = 0.30 for discrete-

POMDP and handcrafted policies. Policies for handcrafted controllers were executed as described in
the text. Averages shown are over 10,000 simulated dialogs; error bars show 95% confidence

interval for exact expected return.

-2

-1

0

1

2

3

4

5

0 1 2 5

Value of a (informativeness of confidence score)

A
ve

ra
ge

 re
tu

rn

disc-POMDP
HC2
HC1
HC3

Figure 21: Average return vs. a (informativeness of confidence score) for perr = 0.40 for discrete-

POMDP and handcrafted policies. Policies for handcrafted controllers were executed as described in
the text. Averages shown are over 10,000 simulated dialogs; error bars show 95% confidence

interval for exact expected return.

Using Factored Partially Observable Markov Decision Processes with Continuous
Observations for Dialog Management

 39

-4

-3

-2

-1

0

1

2

3

4

0 1 2 5

Value of a (informativeness of confidence score)

A
ve

ra
ge

 re
tu

rn

disc-POMDP
HC2
HC1
HC3

Figure 22: Average return vs. a (informativeness of confidence score) for perr = 0.50 for discrete-

POMDP and handcrafted policies. Policies for handcrafted controllers were executed as described in
the text. Averages shown are over 10,000 simulated dialogs; error bars show 95% confidence

interval for exact expected return.

7 Conclusions & future work
We have proposed a factored architecture for describing POMDPs applied to spoken
dialog management, illustrated with a testbed spoken dialog system. By performing
policy improvement with Perseus, we have shown that automated solutions are both
tractable for small problems, and outperform baseline MDP methods. The factored
architecture has two benefits. First, it enables incorporation of an explicit dialog model,
which allows a dialog designer to add rewards for “appropriate” dialog behaviour from
the standpoint of the user. Second, it facilitates estimating/specifying the system
dynamics – i.e., the user models, recognition model, and dialog model – from dialog data.

We have also shown how to convert a handcrafted policy represented as a finite-state
controller into a value function, providing a principled way for handcrafted policies to be
compared directly with policies produced with automated solutions. Using the testbed
problem, we have shown that POMDP policies produced with an optimization algorithm
outperform three typical handcrafted solutions. We have also shown how these value
functions can be used to improve handcrafted policies.

Finally, we have shown a method for incorporating confidence score directly into the
belief state by using a continuous observation function. We’ve shown that this method
outperforms a baseline MDP-based confidence bucket approach, again using a testbed
problem.

Jason D. Williams, Pascal Poupart, and Steve Young

 40

There are a several interesting extensions worthy of further research. From the
standpoint of system developers, policies represented as a partitioning of belief space are
not easy to interpret: it would be interesting to produce a policy represented as a finite
state controller – e.g., (Poupart and Boutilier, 2004). In addition, N-best recognition lists
could be incorporated into the observation.

A crucial theoretical problem is how to scale the methods presented here to handle larger
problems since the state, action, and observation sets grow exponentially with the number
of concepts in the problem. A method of exploiting redundancy (Boutilier and Poole,
1995) or otherwise compressing the problem state space – using methods like those in
(Poupart and Boutilier, 2002), (Poupart and Boutilier, 2004), or (Roy and Gordon, 2002)
– is needed to apply the method to domains with 100s or 1000s of concepts. The factored
nature of the architecture may be of some help here.

Despite these issues, we believe this work supports our claim that POMDPs are a
theoretically elegant framework for dialog management. We believe that POMDPs are
ready for practical evaluation in limited, real systems, and plan research into
practicability in future work.

Using Factored Partially Observable Markov Decision Processes with Continuous
Observations for Dialog Management

 41

7 References

Boutilier, Craig and David Poole. (1996) Computing Optimal Policies for Partially Observable Decision
Processes using Compact Representations, Proceedings of the Thirteenth National Conference on
Artificial Intelligence (AAAI-96), Portland, OR, pp.1168--1175. ...12, 30

Denecke, Matthias, Kohji Dohsaka, and Mikio Nakano, (2004). Learning Dialogue Policies using State
Aggregation in Reinforcement Learning. Proceedings of International Conference on Spoken Language
Processing (ICSLP), Jeju Korea. ... 6

Hansen, Eric A. (1998). Solving POMDPs by searching in policy space. In Uncertainty in Artificial
Intelligence, Madison, Wisconsin.. 23

Hoey, Jesse and Pascal Poupart (2005). Solving POMDPs with continuous or large observation spaces, To
appear in Proceedings of the Joint International Conference on Artificial Intelligence (IJCAI),
Edinburgh, Scotland. ... 13

Kaelbling, Leslie Pack Michael L. Littman and Anthony R. Cassandra. (1998). Planning and Acting in
Partially Observable Stochastic Domains. Artificial Intelligence, Vol. 101. .. 12

Larsson, Staffan and David Traum. (2000). Information state and dialogue management in the trindi
dialogue move engine toolkit. Natural Language Engineering, 5(3–4):323–340. 15

Levin, Ester, Roberto Pieraccini, and Wieland Eckert. (1998). Using Markov Decision Processes For
Learning Dialogue Strategies. International Conference on Acoustics, Speech and Signal Processing,
Seattle, USA. ... 6

Levin, Ester, Roberto Pieraccini, and Wieland Eckert. (2000). A Stochastic Model of Human-Machine
Interaction for Learning Dialogue Strategies. IEEE Transactions on Speech and Audio Processing,
Volume 8, No. 1, 11-23. .. 6

Levin, Esther. and Roberto Pieraccini. (1997). A Stochasitc Model of Computer-Human Interaction For
Leaning Dialogue Strategies. Eurospeech, Rhodes, Greece. .. 6

Paek, Tim and Eric Horvitz (2003). On the Utility of Decision-Theoretic Hidden Subdialog. In
Proceedings of International Speech Communication Association (ISCA) Workshop on Error Handling
in Spoken Dialogue Systems, Chateaux d'Oex, Switzerland.. 27

Pietquin, Olivier. (2004) A Framework for Unsupervised Learning of Dialogue Strategies. Ph D thesis,
Faculty of Engineering, Mons, Belgium...7, 12, 17, 20, 22, 27

Pineau, Joelle, Geoff Gordon, and Sebastian Thrun. (2003). Point-based value iteration: An anytime
algorithm for POMDPs. In International Joint Conference on Artificial Intelligence (IJCAI). 13

Poupart, Pascal and Craig Boutilier. (2002). Value-directed Compression of POMDPs, Advances in Neural
Information Processing Systems 15 (NIPS), Vancouver, Canada...13, 30

Poupart, Pascal and Craig Boutilier. (2003) Bounded Finite State Controllers, Advances in Neural
Information Processing Systems 16 (NIPS), Vancouver, Canada.. 13

Poupart, Pascal. and Craig Boutilier. (2004). VDCBPI: an Approximate Scalable Algorithm for Large
Scale POMDPs. To appear in Advances in Neural Information Processing Systems 17 (NIPS),
Vancouver, Canada, 2004...13, 30

Roy, Nicholas, Geoffrey Gordon. (2002). Exponential Family PCA for Belief Compression in POMDPs,
Advances in Neural Information Processing Systems 15 (NIPS), Vancouver, Canada.13, 31

Roy, Nicholas, Joelle Pineau and Sebastian Thrun. (2000). Spoken Dialogue Management Using
Probabilistic Reasoning. Annual meeting of the the Association for Computational Linguistics (ACL-
2000).. 7, 8

Scheffler, Konrad. and Steve Young. (2002). Automatic learning of dialogue strategy using dialogue
simulation and reinforcement learning. Human Language Technology Conference (HLT-2002), San
Diego, USA. ...6, 12, 17

Jason D. Williams, Pascal Poupart, and Steve Young

 42

Singh, Satinder, Diane Litman, Michael Kearns and Marilyn Walker. (2002). Optimizing Dialogue
Management with Reinforcement Leaning: Experiments with the NJFun System. Journal of Artificial
Intelligence, Vol. 16, 105-133. .. 6

Spaan, Matthijs T. J. and Nikos Vlassis. Perseus: randomized point-based value iteration for POMDPs.
Technical Report IAS-UVA-04-02, Informatics Institute, University of Amsterdam, 2004................... 13

Stuttle, Matthew, Jason D. Williams, and Steve Young. (2004). A Framework for Wizard-of-Oz
Experiments with a Simulated ASR-Channel. International Conferences on Spoken Language
Processing (ICSLP-2004), Jeju, South Korea.. 15

Walker, Marilyn A., Candace Kamm, and Diane Litman. (2000). Towards Developing General Models of
Usability with PARADISE. Natural Language Engineering, Vol. 6, No. 3. ... 16

Walker, Marilyn A., Jeanne C. Fromer, and Shrikanth Narayanan. (1998). Learning Optimal Dialogue
Strategies: A Case Study of a Spoken Dialogue Agent for Email. Annual meeting of the Association for
Computation Linguistics and Conference on Computational Linguists (ACL/COLING-98). 6

Williams, Jason D. and Steve Young. (2003). Using Wizard-of-Oz simulations to bootstrap
Reinforcement-Learning-based dialog management systems. Proceedings of the 4th SIGDIAL
Workshop on Discourse and Dialogue, Sapporo, Japan.. 6

Zhang, B., Q. Cai, J. Mao, E. Chang, and B. Guo. (2001). Spoken Dialogue Management as Planning and
Acting under Uncertainty. Proceedings of Eurospeech, Aalborg, Denmark. 7, 8

