Exponential Recency Weighted Average Branching Heuristic for SAT Solvers

Jia Hui Liang and Vijay Ganesh and Pascal Poupart and Krzysztof Czarnecki
jliang @ gsd.uwaterloo.ca, vijay.ganesh@uwaterloo.ca
ppoupart@uwaterloo.ca, kczarnec @ gsd.uwaterloo.ca

University of Waterloo, Canada

Abstract

Modern conflict-driven clause-learning SAT solvers routinely
solve large real-world instances with millions of clauses and
variables in them. Their success crucially depends on ef-
fective branching heuristics. In this paper, we propose a
new branching heuristic inspired by the exponential recency
weighted average algorithm used to solve the bandit prob-
lem. The branching heuristic, we call CHB, learns online
which variables to branch on by leveraging the feedback re-
ceived from conflict analysis. We evaluated CHB on 1200 in-
stances from the SAT Competition 2013 and 2014 instances,
and showed that CHB solves significantly more instances
than VSIDS, currently the most effective branching heuris-
tic in widespread use. More precisely, we implemented CHB
as part of the MiniSat and Glucose solvers, and performed
an apple-to-apple comparison with their VSIDS-based vari-
ants. CHB-based MiniSat (resp. CHB-based Glucose) solved
approximately 16.1% (resp. 5.6%) more instances than their
VSIDS-based variants. Additionally, CHB-based solvers are
much more efficient at constructing first preimage attacks
on step-reduced SHA-1 and MD5 cryptographic hash func-
tions, than their VSIDS-based counterparts. To the best of
our knowledge, CHB is the first branching heuristic to solve
significantly more instances than VSIDS on a large, diverse
benchmark of real-world instances.

Introduction

Over the past two decades, conflict-driven clause-learning
(CDCL) SAT solvers (Marques-Silva and Sakallah 1999;
Moskewicz et al. 2001; Audemard and Simon 2009a;
Sorensson and Een 2005; Biere 2010), designed to solve the
Boolean satisfiability problem, have played a crucial role in
the development of many innovative techniques in Al, soft-
ware engineering, and security. Examples include solver-
based automated testing with symbolic execution (Cadar et
al. 2008), bounded model checking (Biere et al. 2003) for
software and hardware verification, and planning in AI (Rin-
tanen 2009). These solvers are surprisingly efficient in solv-
ing large classes of real-world instances which may con-
tain tens of millions of variables and clauses in them, even
though the Boolean satisfiability problem is known to be
NP-complete and believed to be intractable in general. A key

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

element in the success of CDCL SAT solvers is the branch-
ing heuristic, such as Variable State Independent Decaying
Sum (VSIDS) (Moskewicz et al. 2001), that dynamically se-
lect variables and assign them truth values (the process also
known as branching) as the solver searches for a solution to
the input Boolean formula.

While many branching heuristics have been invented, two
significant issues have hampered their study in the past.
First, despite the considerable effort expended in designing
branching heuristics such as DLIS (Marques-Silva 1999),
BerkMin (Goldberg and Novikov 2007), and Jeroslav-
Wang (Jeroslow and Wang 1990), the VSIDS branching
heuristic and its variants remain as the most effective ones
in widespread use today. The success of VSIDS has dramat-
ically raised the bar that any new heuristic has to overcome.
Second, until very recently, little was understood as to why
the VSIDS branching heuristic and its variants are so ef-
fective. Some recent papers provide insights into the inner
working of VSIDS (Liang et al. 2015; Ansétegui, Girdldez-
Cru, and Levy 2012; Biere and Frohlich 2015), and some of
those insights (Liang et al. 2015) are the basis and inspira-
tion for the work presented in this paper.

In this paper, we present a new branching heuristic, we
call conflict history-based branching heuristic (CHB), based
on the exponential recency weighted average (ERWA) al-
gorithm used in nonstationary multi-armed bandit problems
(i.e., single state reinforcement learning problems) to esti-
mate the average reward of different actions (Sutton and
Barto 1998). Inspired by the bandit framework and rein-
forcement learning, we learn to choose good variables to
branch based on past experience. Our goal is to leverage
the theory and practice of a rich sub-field of reinforcement
learning to explain and design an effective branching heuris-
tic for solving real-world problems.

The branching heuristic proposed in this paper, CHB, is
completely online and learns which variable to branch on
dynamically as the input instance is being solved. By online
we mean that the heuristic learns only during the solving
process, and there is no offline learning.

We evaluated the efficacy of CHB on the SAT Com-
petition 2013 (Balint et al. 2013) and 2014 (Belov et al.
2014) benchmarks from the application and hand-crafted
categories, and show that CHB solves significantly more
instances than VSIDS. The SAT Competition is a fiercely

competitive annual international competition, where dozens
of the best SAT solvers in the world compete with each other
on a set of benchmarks. These benchmarks, the gold stan-
dard of SAT solver research, are perhaps the most compre-
hensive, diverse, large, difficult-to-solve, and well-curated
set of instances obtained from industrial applications such
as software and hardware verification, Al, security, program
analysis, and cryptography.

We implemented CHB as part of the MiniSat and Glu-
cose solvers, and performed an apple-to-apple comparison
with their VSIDS-based variants. CHB-based MiniSat (resp.
CHB-based Glucose) solved approximately 16.1% (resp.
5.6%) more instances than the stock VSIDS-based solver.
Additionally, CHB-based solvers are much more efficient
than VSIDS-based ones in constructing first preimage at-
tacks on step-reduced versions of SHA-1 and MDS5 cryp-
tographic hash functions. Both Glucose and MiniSat are
among the best solvers in widespread use today. The Glu-
cose solver in particular has won several recent SAT compe-
titions in multiple categories (Audemard and Simon 2009a).

To better appreciate the advance brought about by the
CHB branching heuristic, we quote two of the leading SAT
solver developers Professors Audemard and Simon (Aude-
mard and Simon 2012):

“We must also say, as a preliminary, that improving
SAT solvers is often a cruel world. To give an idea, im-
proving a solver by solving at least ten more instances
(on a fixed set of benchmarks of a competition) is gen-
erally showing a critical new feature. In general, the
winner of a competition is decided based on a couple
of additional solved benchmarks.”

Contributions

In this paper, we make the following contributions to the
efficacy and understanding of branching heuristics in CDCL
SAT solving:

e We contribute a new branching heuristic called CHB, in-
spired by the bandit framework in reinforcement learning,
that when combined appropriately with conflict analy-
sis solves significantly more instances than VSIDS-based
solvers. VSIDS (Moskewicz et al. 2001) has been the
state-of-the-art branching heuristic for the last 15 years.
As far as we know, this is the first branching heuristic ca-
pable of solving more instances than VSIDS on a large
and diverse real-world benchmark.

e We show that CHB-based CDCL solvers construct first
preimage attacks on step-reduced versions of SHA-1 and
MDS5 cryptographic hash functions more efficiently than
the VSIDS-based solvers (Mironov and Zhang 2006).

Background

In this section, we describe CDCL SAT solvers, the state-
of-the-art branching heuristic called VSIDS (Moskewicz et
al. 2001), and an algorithm for solving the nonstationary
multi-armed bandit problem called ERWA (Sutton and Barto
1998) which is the basis of the branching algorithm CHB
proposed in this paper.

Conflict-driven Clause-learning SAT Solvers

Conflict-driven clause-learning (CDCL) SAT solvers are the
dominant solvers in practice today. They take as input for-
mulas in Boolean logic, and decide whether they are satis-
fiable. The input formulas are specified in conjunctive nor-
mal form (CNF). CDCL SAT solvers perform backtracking
search, where at each step, the branching heuristic picks
an unassigned variable and assigns it a value of true or
false (Moskewicz et al. 2001), a process called branch-
ing. The assignment given to a variable during branching
is propagated via a method called Boolean constraint prop-
agation (Moskewicz et al. 2001). Propagation is the process
by which the solver simplifies the input formula, leveraging
the assignment given to the branched variable and its logical
consequences. If propagation leads to a falsified clause, the
current assignment is not a satisfying assignment for the in-
put formula. This state of the solver is referred to as being in
conflict. The solver recovers from a conflict by backtracking,
undoing some of the offending decisions, and trying some
other assignments.

Crucial to the success of CDCL solvers is the process of
clause learning (Marques-Silva and Sakallah 1999), that is
triggered when the solver enters a conflict state. At a high-
level, the solver computes a root cause of why the conflict
occurred, i.e., a subset of currently assigned variables, such
that any extensions of which is always an unsatisfying as-
signment to the input formula. Once this root cause has
been identified, the solver remembers it in the form of a
learnt clause in order to avoid the mistakes (and exponen-
tially many similar mistakes) that led to a conflict.

The algorithm responsible for picking which variable to
branch on is called the branching heuristic. Typically, a sep-
arate heuristic is used to pick which value, true or false,
to assign to the variable. The order in which the branch-
ing heuristic picks variables has an enormous impact on the
solving time. Besides clause learning, the branching heuris-
tic is one of the most important features in modern CDCL
SAT solvers (Katebi, Sakallah, and Marques-Silva 2011).
The current state-of-the-art branching heuristic is called
Variable State Independent Decaying Sum (VSIDS), pro-
posed in 2001 by the authors of the Chaff solver (Moskewicz
et al. 2001). A decade and a half after it was initially pro-
posed, VSIDS and its variants continue to be the dominant
branching heuristics among competitive SAT solvers such
as Glucose (Audemard and Simon 2009a), Lingeling (Biere
2010), and CryptoMiniSat (Soos 2010).

The VSIDS Branching Heuristic

All branching heuristics can be characterized as ranking
functions that maintain a map from variables in an input
formula to floating point numbers. Abstractly speaking, the
branching heuristic maintains this map in decreasing order
of values assigned to the variables. The VSIDS branching
heuristic maintains a floating point number, often called ac-
tivity, for each Boolean variable. Whenever a learnt clause
is added to the clause database by the CDCL SAT solver,
the activities of all the variables present in the learnt clause
are dynamically incremented by 1, also called the bump.

The activities of all variables are periodically multiplied by
a floating point constant between 0 and 1, also called the
decay. Modern variations of VSIDS typically bump all vari-
ables present in the clauses used by conflict analysis, not
just the learnt clause variables, and decay after every con-
flict (Sorensson and Een 2005). VSIDS picks the unassigned
variable with the highest activity to branch on.

Exponential Recency Weighted Average (ERWA)

Exponential recency weighted average (ERWA) is a simple
technique to estimate a moving average incrementally by
giving more weight to the more recent outcomes. Consider
a stream of outcomes x1, 2, 3, ..., Tn. We can compute an
exponentially decaying weighted average of the outcomes
with Equation 1.

T, = Z w;z; where w; = a(1 —)" ™" e
i=1

Here o € [0, 1] is a factor that determines the rate at which
the weights decay. To reduce the computational overhead,
the moving average can be computed incrementally by up-
dating with Equation 2 after each outcome.

Tnt1 = (]- - a)i'n + OTn41)

ERWA has been used in the context of bandit prob-
lems (i.e., single state reinforcement learning problems) to
estimate the expected reward of different actions in non-
stationary environments (Sutton and Barto 1998). In bandit
problems, there is a set of arms (or actions) and the agent
must select which arm to play at each time step in order to
maximize its long term expected reward. Since it does not
know the distribution of rewards for each arm, it faces an im-
portant exploration/exploitation tradeoff. It needs to explore
by trying each arm in order to estimate the expected reward
of each arm and it needs to exploit by selecting arms with
high expected reward. ERWA is a simple technique to esti-
mate the empirical average of each arm. In the context of the
branching heuristic we propose in this paper, we use ERWA
to estimate the moving average of the “score” of each vari-
able in the input formulas, in an online and dynamic fashion,
during the entire run of the solver. Inspired by the bandit
framework, we treat each variable as an arm and estimate a
score for each variable that reflects the frequency and per-
sistence of the variable in generating conflicts in the past.

The CHB Branching Heuristic

In this section, we describe our branching heuristic CHB in
the context of a CDCL solver. Algorithm 1 shows the pseu-
docode of a simple CDCL solver with CHB as the branch-
ing heuristic, and we will refer to the line numbers of this
algorithm where relevant. CHB maintains a floating point
number for each Boolean variable called the () score, ini-
tialized to O at the start of the search. Whenever a variable
v is branched on, propagated, or asserted, the () score is up-
dated using Equation 3 (line 18) where « is the step-size and
r, 1S the reward value.

Q] = (1 —a)Q[v] + ary 3)

As is typical with exponential recency weighted average,
the step-size decreases over time (Sutton and Barto 1998).
The step-size is initialized to « = 0.4 at the start of the
search and decreases by 1076 every conflict to a minimum of
0.06, and stays there for the run of the solver (line 26). Note
that the Glucose solver implements a similar idea, where the
decay factor used by VSIDS decreases over time (Audemard
and Simon 2013).

ry 1s the reward value, just as in the bandit problem. A
low (resp. high) reward value decreases (resp. increases) the
likelihood of picking v to branch on. The reward value is
based on how recently variable v appeared in conflict anal-
ysis. Let numCon flicts be an integer variable that keeps
track of how many conflicts have occured so far (line 21) and
lastCon flict be a mapping from each variable to an integer.
Initally, lastConflict[v] = 0 for each variable v. When-
ever a variable x is present in the clauses used by conflict
analysis, lastConflict is updated by lastCon flict[x] =
numCon flicts (line 34). The reward value used by CHB is
defined in Equation 4 (line 17).

_ multiplier @
v numCon flicts — lastCon flict[v] + 1

Here, multiplier is either 1.0 or 0.9. If branching, prop-
agating, or asserting the variable that triggered the up-
date of () encounters a conflict after propagation, then
multiplier = 1.0 (line 12). Otherwise, multiplier = 0.9
(line 14).

The intuition of the reward value is similar to the intu-
ition of VSIDS, that is to favor variables that appear re-
cently in conflict analysis (Audemard and Simon 2009b).
Additionally, the multiplier gives extra reward for produc-
ing a conflict. Based on our experience, this reward func-
tion gives good performance for CHB in practice. Empiri-
cally we have some unpublished evidence that, all else be-
ing equal, branching heuristics that have higher rate of con-
flict clause generation per unit time are more effective than
ones that have lower rate. Leveraging this observation, we
designed the reward function to maximize the rate of learnt
clause generation per unit time.

During branching, CHB selects the greediest play pos-
sible by branching on the unassigned variable v with the
highest) score (line 42). The algorithm always exploits
and this does not appear to be an issue in practice since
the problem itself forces exploration in two ways. First, if
the algorithm greedily branches on variable v, then it cannot
branch on v again until the solver undoes v through back-
tracking/restarting since v is now assigned and the algorithm
is only allowed to branch on unassigned variables. Hence
the algorithm is forced to branch on other variables. Second,
the propagated variables also have their () scores updated.
Hence variables with low @ scores that will not be picked
for branching can still have their () scores updated.

Differences Between CHB and VSIDS

There are several major differences between the CHB and
VSIDS branching heuristics. First, VSIDS only updates the
activities on each conflict, whereas CHB updates the ()

Algorithm 1 a simple CDCL solver with CHB as the
branching heuristic.

I <04
2: numConflicts < 0
3: plays «+ 0
4: for v € Vars do
5: lastCon flict[v] < 0
6: Q[v] « 0
7: end for
8: loop
9: Boolean constraint propagation
10: plays « plays U {variables propagated just now }
11: if a clause is in conflict then
12: multiplier < 1.0
13: else
14: multiplier < 0.9
15: end if
16: for v € plays do
17: reward < numConflz’g:itlzjzgonflict[v]+1
18: Qv] + (1 — @) x Q[v] + a X reward
19: end for
20: if a clause is in conflict then
21: numCon flicts < numCon flicts + 1
22: if decisionLevel == 0 then
23: return UNSAT
24: end if
25: if « > 0.06 then
26: a+—a—10"°
27: end if
28: conflict analysis and learn a new clause
29: ¢ < {variables in conflict analysis}
30: u <— the first UIP of the learnt clause
31: non-chron. backtrack based on conflict analysis
32: assert variable u based on new learnt clause
33: for v € cdo
34: lastCon flict[v] < numConflicts
35: end for
36: plays <+ {u}
37: else
38: if no more unassigned variables then
39: return SAT
40: end if
41: unassigned <+ {unassigned variables}
42: v aTgmavaunassignedQ[v}
43: assign v* to true or false based on polarity
heuristic such as phase saving
44: plays < {v*}
45: end if
46: end loop

scores whenever a variable is branched on, propagated, or
asserted. Additionally, VSIDS decays the activities of all
variables whereas CHB again only decays the () scores of
branched, propagated, and asserted variables. The reward
values (or bump values) in CHB are variable, whereas these
values are constant in VSIDS. Also, the reward value in
CHB is based on the conflict history whereas the bump value
in VSIDS is determined by just the current conflict. Lastly,
CHB is based on a known algorithm from reinforcement
learning, thus giving us a basis for modeling and understand-
ing branching heuristics.

Evaluation

This section describes our experimental evaluation of the
practical performance of CHB versus VSIDS.

Choice of SAT Solvers

CHB was evaluated on 2 notable CDCL SAT solvers: Min-
iSat version 2.2.0 (Sorensson and Een 2005) and Glucose
version 4.0 (Audemard and Simon 2009a). MiniSat is a
popular CDCL SAT solver, which many other competitive
solvers use as their basis. Additionally, it contains very few
features, thus isolating the effects of the change in branch-
ing heuristics in our experiments. We used the core version
of MiniSat which does not perform simplifications other
than removing satisfied clauses. Glucose is a state-of-the-art
CDCL SAT solver, and a winner of numerous SAT compe-
titions. The two solvers in our evaluation gave us a com-
prehensive perspective of the effects of the CHB branching
heuristic: on the one hand, we evaluated the effects of CHB
on a very simple CDCL solver to isolate its effects, and on
the other hand, a modern competitive solver to understand
how CHB competes with state-of-the-art. Note that MiniSat
and Glucose implement variations of VSIDS as their branch-
ing heuristics.

Methodology

For each solver-instance pair, we ran the solver on the SAT
instance twice. The first run was with the default unmod-
ified solver (which uses VSIDS as its branching heuris-
tic) and the second run was with a modified version of the
solver using CHB instead of VSIDS. The evaluation com-
pares which solver, unmodified with VSIDS or modified
with CHB, solved more instances. Each run was executed
on StarExec (Stump, Sutcliffe, and Tinelli 2014), a platform
designed for evaluating logic solvers. The StarExec platform
uses the Intel Xeon CPU E5-2609 at 2.40GHz with 10240
KB cache and 24 GB of main memory, running on Red Hat
Enterprise Linux Workstation release 6.3, and Linux kernel
2.6.32-431.1.2.e16.x86_64.

The modified solvers changed only the branching heuris-
tic by replacing VSIDS with CHB. We left everything else
in the solvers untouched, and the solvers’ parameters are left
to their defaults. We made no attempt to tune the solvers’ pa-
rameters to work well with CHB. Additionally, the modified
solvers reused the existing data structures such as the ex-
isting priority queue data structures for finding the variable
ranked highest by VSIDS/CHB.

Unmodified MiniSat
MiniSat with CHB
SAT 115 131 (+13.9%)
2013App UNSAT 59 59 (0.0%)
BOTH 174 190 (+9.2%)
SAT 106 106 (0.0%)
2013Crafted | UNSAT 62 92 (+48.4%)
BOTH 168 198 (+17.9%)
SAT 89 113 (+27.0%)
2014App UNSAT 56 49 (-12.5%)
BOTH 145 162 (+11.7%)
SAT 73 84 (+15.1%)
2014Crafted | UNSAT 44 67 (+52.3%)
BOTH 117 151 (+29.1%)
SAT 383 434 (+13.3%)
TOTAL UNSAT 221 267 (+20.8%)
BOTH 604 701 (+16.1%)

Table 1: The table presents the number of solved instances
by unmodified MiniSat (with VSIDS) versus MiniSat with
CHB on SAT 2013 and 2014 handcrafted and application
benchmarks. Additionally, the difference between the two
solvers is given as a percentage. For example, MiniSat with
CHB solves 16.1% more instances than unmodified MiniSat
over the entire benchmark.

Results: SAT Competition 2013 and 2014

First, CHB was evaluated on all 1200 instances from the
application and hand-crafted categories of the SAT Compe-
tition 2013 and 2014 benchmarks. The instances from the
hand-crafted category are designed to be challenging for
SAT solvers. Each run of a solver was given 5000 seconds
and 7.5 GB of memory to solve an instance, as per the rules
of SAT Competition 2013. Tables 1 and 2 show how CHB
solved more instances on this large benchmark than VSIDS.

The results show a big increase in the number of solved
satisfiable instances in MiniSat and Glucose. MiniSat is a
very popular solver, however it has not won any recent SAT
competitions unlike Glucose. Yet MiniSat with the one addi-
tion of CHB solved 436 satisfiable instances over the entire
benchmark, considerably more than the 394 solved satisfi-
able instances by unmodified Glucose (with VSIDS). CHB
solves more satisfiable instances than VSIDS for both cate-
gories and both years. CHB also dramatically increases the
number of solved unsatisfiable instances by 29 for MiniSat.
Glucose with CHB solved 16 more unsatisfiable instances.

Figure 1 shows the cactus plot of the running times, a
standard diagram in SAT literature for comparing the per-
formance of solvers. Lines further down and to the right on
the plot are better. The plot shows a significant improvement
of CHB over VSIDS on the SAT Competition instances.

To put this into context, the solver Minsat_blbd (Chen
2014) won first place in the SAT Competition 2014 by solv-
ing the most satisfiable instances in the application track
and Lingeling (Biere 2010) won that track for 2013. On the
StarExec platform, Minsat_blbd solved 106 satisfiable in-
stances in the 2014 application track, whereas MiniSat with

Unmodified Glucose
Glucose with CHB

SAT 103 115 (+11.7 %)
2013App UNSAT 103 115 (+11.7%)
BOTH 206 230 (+11.7%)

SAT 113 119 (+5.3%)

2013Crafted | UNSAT 104 106 (+1.9%)
BOTH 217 225 (+3.7%)

SAT 99 103 (+4.0%)

2014App UNSAT 116 106 (-8.6%)

BOTH 215 209 (-2.8%)

SAT 79 86 (+8.9%)
2014Crafted | UNSAT 89 101 (+13.5%)
BOTH 168 187 (+11.3%)

SAT 394 423 (+7.4%)

TOTAL UNSAT 412 428 (+3.9%)
BOTH 806 851 (+5.6%)

Table 2: The table presents the number of solved instances
by unmodified Glucose (with VSIDS) versus Glucose with
CHB on SAT 2013 and 2014 handcrafted and application
benchmarks. Additionally, the difference between the two
solvers is given as a percentage. For example, Glucose with
CHB solves 5.6% more instances than unmodified Glucose
over the entire benchmark.

5000 T T
Minisat —S—
4500 |- Minisat with CHB —5—

Glucose —A—
| Glucose with CHB

4000

3500

3000

2500 -

Time (s)

2000

1500

1000

500

0 =
0 100 200 300 400 500 600 700 800 900

of Solved Instances

Figure 1: Cactus plot of the running times on the SAT Com-
petition 2013 and 2014 benchmarks. A point (z,y) means
that there are x instances where each one can be solved
within y seconds with the given solver. A line further to the
right means the solver solved more instances. A line further
down means it solved instances faster.

90000 T T
Minisat —G—
Minisat with CHB —5— ?
[Glucose —A— /
Glucose with CHB —— @
70000 - |

80000

60000

50000

Time (s)

40000

30000

20000

10000

0GEE€
0 5 10 15 20 25 30 35

of Solved Instances

Figure 2: Cactus plot of the running times on the step-
reduced SHA-1 and MDS5 first preimage attacks. Refer to
Figure 1 for an explanation on how to interpret cactus plots.

CHB solved 113 instances as noted in Table 1. Likewise for
the 2013 application track, Lingeling solved 122 satisfiable
instances, whereas MiniSat with CHB solved 131 instances.

Results: SAT-based Cryptanalysis

We also evaluated the CHB branching heuristic over 10 in-
stances each of 21/22/23-step-reduced (resp. 27/28/29-step-
reduced) encodings of a first preimage attack on SHA-1
(resp. MD5) for a total of 60 instances. SHA-1 and MD5
are cryptographic hash functions and are considered preim-
age resistant. That is, given an output of the hash function,
it is believed to be computationally infeasible to compute
an input that produces that output. In this benchmark, only
a subset of the hash function steps are encoded, as the first
preimage attack on the whole function is still intractable.
Each instance fixed the Boolean variables corresponding to
the hash function’s output to a random value. The satisfying
assignment of the Boolean variables, corresponding to the
hash function’s input, is a message that hashes to the speci-
fied output. Hence, the satisfiying assignment produced by a
SAT solver is a successful first preimage attack on the step-
reduced hash function.

Each run of a solver was given 24 hours and 10 GB of
memory to solve each instance. Figure 2 shows the running
times of CHB versus VSIDS in solving the step-reduced
SHA-1 and MD5 cryptographic functions. MiniSat with
CHB solved 3 more instances of 23-step-reduced SHA-1,
and 1 more instance of 28-step-reduced MD5 than unmod-
ified MiniSat (with VSIDS). Glucose with CHB solved 3
more instances of 21-step-reduced SHA-1 and 2 more in-
stances of 22-step-reduced SHA-1 than unmodified Glucose
(with VSIDS).

In conclusion, CHB-enhanced CDCL solvers signifi-
cantly outperformed VSIDS-based ones on a large, real-
world benchmark.

Related Work

Marques-Silva and Sakallah invented the CDCL tech-
nique (Marques-Silva and Sakallah 1999), the dominant ap-
proach for solving practical SAT problems efficiently. The
VSIDS branching heuristic, the dominant branching heuris-
tic employed in modern CDCL SAT solvers, was originally
proposed by the authors of the Chaff solver (Moskewicz et
al. 2001). Lagoudakis and Littman took 7 well-known SAT
branching heuristics (MAXO, MOMS, MAMS, Jeroslaw-
Wang, UP, GUP, SUP) and used reinforcement learning to
switch between the heuristics dynamically during the run of
the solver (Lagoudakis and Littman 2001). Their technique
requires offline training on a class of similar instances. The
algorithm proposed in this paper differs in that it learns to
select good variables rather than learning to select a good
branching heuristic from a fixed-set. Additionally, CHB re-
quires no offline training.

Future Work

The connection between branching heuristics and reinforce-
ment learning opens many new opportunities for future im-
provements to branching heuristics and SAT solving in gen-
eral. We detail some of our future work below that builds
on the foundation laid by this paper. Modern CDCL SAT
solvers maintain lots of state features such as the partial as-
signment, trail, learnt clause database, saved phases, etc. The
technique proposed in this paper is based on the multi-armed
bandit setting, and it can be extended to a full Markov deci-
sion process by conditioning the choice of variables on some
of the solvers’ state features. More research is needed to find
a stateful model that works well in practice by balancing the
trade-off between the gain in information due to states and
the cost of increased model complexity.

We modeled our branching heuristic on ERWA, a tech-
nique used to solve the bandit problem. However, perhaps
a more powerful model will capture both the branching
heuristic and clause learning. It is evident that the branching
heuristic and clause learning drive each other, so a model
capturing both aspects can lead to algorithms that not only
choose better branching variables, but also learn higher qual-
ity clauses. It is clear that such a model is outside the ban-
dit framework, due to the additional feedback from clause
learning to the branching heuristic in the form of learnt
clauses. More work is needed to construct new models that
include more aspects of CDCL such as clause learning.

Conclusion

We introduced a new branching heuristic CHB inspired by
the multi-armed bandit problem, a special case of reinforce-
ment learning. We evaluated the heuristic on two popu-
lar SAT solvers, MiniSat and Glucose, and demonstrated
that CHB solves more instances than VSIDS on a large
and diverse benchmark containing 1200 instances from re-
cent SAT competitions and 60 instances of first preimage
attacks on cryptographic hash functions. The results show
that CHB is more effective in CDCL SAT solvers at solv-
ing instances than the longstanding state-of-the-art VSIDS
branching heuristic.

References

Ansétegui, C.; Girdldez-Cru, J.; and Levy, J. 2012. The
community structure of SAT formulas. In Theory and Ap-
plications of Satisfiability Testing—SAT 2012. Springer. 410—
423.

Audemard, G., and Simon, L. 2009a. Glucose: a solver that
predicts learnt clauses quality. SAT Competition 7-8.

Audemard, G., and Simon, L. 2009b. Predicting learnt
clauses quality in modern SAT solvers. In IJCAI, volume 9,
399-404.

Audemard, G., and Simon, L. 2012. Refining restarts strate-
gies for SAT and UNSAT. In Principles and Practice of
Constraint Programming, 118-126. Springer.

Audemard, G., and Simon, L. 2013. Glucose 2.3 in the sat
2013 competition. In Proceedings of SAT Competition 2013,
42-43.

Balint, A.; Belov, A.; Heule, M. J. H.; and Jarvisalo, M.
2013. Solver and benchmark descriptions. In Proceedings
of SAT Competition 2013, volume B-2013-1. University of
Helsinki.

Belov, A.; Diepold, D.; Heule, M. J. H.; and Jdrvisalo, M.
2014. Solver and benchmark descriptions. In Proceedings
of SAT Competition 2014, volume B-2014-2. University of
Helsinki.

Biere, A., and Frohlich, A. 2015. Evaluating CDCL variable
scoring schemes. In Theory and Applications of Satisfiabil-
ity Testing—SAT 2015. Springer. 405-422.

Biere, A.; Cimatti, A.; Clarke, E. M.; Strichman, O.; and
Zhu, Y. 2003. Bounded model checking. Advances in com-
puters 58:117-148.

Biere, A. 2010. Lingeling, plingeling, picosat and precosat
at SAT race 2010. FMV Report Series Technical Report
10(1).

Cadar, C.; Ganesh, V.; Pawlowski, P. M.; Dill, D. L.; and
Engler, D. R. 2008. EXE: automatically generating inputs
of death. ACM Transactions on Information and System Se-
curity (TISSEC) 12(2):10.

Chen, J. 2014. Minisat_blbd. In Proceedings of SAT Compe-
tition 2014, volume B-2014-2, 45. University of Helsinki.

Goldberg, E., and Novikov, Y. 2007. BerkMin: A fast
and robust SAT-solver. Discrete Applied Mathematics
155(12):1549-1561.

Jeroslow, R. G., and Wang, J. 1990. Solving propositional
satisfiability problems. Annals of mathematics and Artificial
Intelligence 1(1-4):167-187.

Katebi, H.; Sakallah, K. A.; and Marques-Silva, J. P. 2011.
Empirical study of the anatomy of modern SAT solvers. In
Theory and Applications of Satisfiability Testing-SAT 2011.
Springer. 343-356.

Lagoudakis, M. G., and Littman, M. L. 2001. Learning to
select branching rules in the DPLL procedure for satisfiabil-
ity. Electronic Notes in Discrete Mathematics 9:344-359.
Liang, J. H.; Ganesh, V.; Zulkoski, E.; Zaman, A.; and Czar-
necki, K. 2015. Understanding VSIDS branching heuristics

in conflict-driven clause-learning SAT solvers. In Hardware
and Software: Verification and Testing. Springer. 225-241.
Marques-Silva, J. P, and Sakallah, K. 1999. GRASP: A
search algorithm for propositional satisfiability. Computers,
IEEE Transactions on 48(5):506-521.

Marques-Silva, J. P. 1999. The impact of branching heuris-
tics in propositional satisfiability algorithms. In Progress in
Artificial Intelligence. Springer. 62—74.

Mironov, 1., and Zhang, L. 2006. Applications of SAT
solvers to cryptanalysis of hash functions. In Theory and Ap-
plications of Satisfiability Testing-SAT 2006. Springer. 102—
115.

Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an efficient SAT solver.
In Proceedings of the 38th annual Design Automation Con-
ference, 530-535. ACM.

Rintanen, J. 2009. Planning and SAT. Handbook of Satisfi-
ability 185:483-504.

Soos, M. 2010. Cryptominisat 2.5.0. SAT Race.
Sorensson, N., and Een, N. 2005. MiniSat v1.13-a SAT
solver with conflict-clause minimization. SAT 2005:53.

Stump, A.; Sutcliffe, G.; and Tinelli, C. 2014. StarExec: a
cross-community infrastructure for logic solving. In Auto-
mated Reasoning. Springer. 367-373.

Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing: An introduction, volume 1. MIT press Cambridge.

