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Abstract

Stochastic satisfiability (SSAT) and decision-
theoretic planning in finite horizon partially
observable Markov decision processes
(POMDPs) are both PSPACE-Complete. We
describe constructive reductions between
SSAT and flat POMDPs that open the door
to comparisons and future cross-fertilization
between the solution techniques of those
problems. We also propose a new SSAT
solver called Prime that incorporates recent
advances from the SAT and #SAT literature.
Using our reduction from POMDP to SSAT,
we demonstrate the competitiveness of Prime
on finite horizon POMDP problems.

1 INTRODUCTION

Partially observable Markov decision processes
(POMDPs) provide a flexible framework for planning
under uncertainty when action effects are uncertain
and the state of the environment is partially observ-
able. However, planning with finite-horizon flat
POMDPs is notoriously difficult since the problem is
PSPACE-Complete [24]. State of the art solvers for
flat POMDPs [14, 26, 34] can tackle problems on the
order of 104 states (although other statistics such as
the covering number have been advocated as better
indicators of difficulty [15]). Factored POMDPs can
represent succinctly much larger planning problems
since the state space is implicitly defined as the cross
product of the domains of many state variables, but
factored POMDPs are EXP-hard [19] and therefore even
harder to solve.

In a separate line of work, tremendous progress has been
made in solving Boolean satisfiability (SAT) problems
despite the fact that SAT is NP-Complete. State of the

art solvers can now solve SAT problems on the order of
105 variables and 107 clauses reasonably quickly [10]. If
we treat each joint assignment of the binary variables as
a state, this means that modern solvers effectively search
in a space on the order of 2(105) states. This remarkable
success has lead many researchers to investigate reduc-
tions of planning to satisfiability [11, 12, 28, 27], which
have been quite successful for deterministic planning.

A stochastic extension of satisfiability called stochas-
tic satisfiability (SSAT) has also been considered to
model planning problems with uncertain action effects
and partially observable states [18, 22]. In fact, SSAT
is PSPACE-Complete [25], which means that SSAT and
flat POMDPs can express the same space of planning
problems. State of the art solvers such as Zander [22],
DC-SSAT [21] and APPSAT [20] can tackle SSAT prob-
lems on the order of 103 variables and clauses, which
means that they search a space on the order of 2(103)

states. Nevertheless, solvers and benchmarks for SSAT
and POMDPs remain largely separate and to this day
there has not been any cross-fertilization.

We make four contributions:

1. a constructive reduction from SSAT to POMDP,

2. a constructive reduction from POMDP to SSAT,

3. a new SSAT solver called Prime that incorporates
watch literals, component decomposition and sym-
metry detection from the SAT and #SAT literature,

4. an empirical comparison of Prime with exact finite
horizon POMDP solvers.

The reductions in our encoding demonstrate that

1. clauses in satisfiability correspond to states in flat
POMDPs and

2. variables in satisfiability determine the planning
horizon in flat POMDPs.



It is possible to design a reduction that maps states in
satisfiability to states in POMDPs. However this reduc-
tion yields factored POMDPs with exponentially many
states that are EXP-hard. Using our reduction from flat
POMDP to SSAT, we present the first empirical compar-
ison (to our knowledge) between exact solvers for SSAT
and finite horizon POMDPs.

2 BACKGROUND

We briefly review POMDPs and Boolean satisfiabil-
ity. Boolean satisfiability solvers have improved tremen-
dously in the last 50 years, which encouraged their use in
numerous application domains including planning [11],
scheduling [9] and hardware verification [32].

2.1 SAT

The Boolean satisfiability problem or SAT is to deter-
mine if it is possible to find a joint variable assignment
to a Boolean formula F that evaluates to true. With-
out loss of generality, it is sufficient to consider formulas
composed of AND, OR, NOT operators such as

F = (x3∨x4∨¬x5)∧(¬x1∨¬x2∨x4)∧(x1∨¬x2∨x5) (1)

SAT is the first known NP-complete problem [7]. With-
out loss of generality, we consider SAT problems consist-
ing of formulas in conjunctive normal form (CNF), i.e.,
a conjunction of clauses where a clause is a conjunction
of literals (see Eq. 1 for an example).

2.2 Stochastic Satisfiability (SSAT)

Stochastic satisfiability was first proposed by [25] as a
generalization of Boolean satisfiability where each vari-
able xi has an existential ∃ or a randomize

R

quantifier.

∃x1

R

x2∃x3...

R

xnF (x1, x2, ..., xn) (2)

A policy tree is a tree that assigns values to existentially
quantified variables and branches on randomized vari-
ables according to the quantification order. In SSAT,
the goal is to find a policy tree, φ, that maximizes the
probability that a Boolean formula F (x1, x2, ..., xn) is
true. This probability depends on the distribution of the
randomized variables. We consider discrete variables xi
that can take more than two values. The SSAT problem
in Eq. 2 corresponds to the optimization problem

max
x1

∑
x2

Pr(x2) max
x3

...
∑
xn

Pr(xn)δ(F (x1, x2, ..., xn))

(3)
where δ(true) = 1 and δ(false) = 0.

2.3 Partially Observable Markov Decision
Processes (POMDPs)

Partially Observable Markov Decision Processes
(POMDPs) provide a principled framework for plan-
ning under uncertainty. Formally, a (flat) POMDP is
specified by a tuple P = (S,A,O, T,Ω, R, b0, h),
where S is a set of states, A is a set of actions, O is
a set of observations, T (s, a, s′) = Pr(s′|s, a) is the
transition distribution, Ω(o, a, s′) = Pr(o|s′, a) is the
observation distribution, R(s, a) is the reward function,
b0(s) = Pr(s0) is the initial belief and h is the planning
horizon. We will assume a finite horizon h and we will
consider non-stationary dynamics by allowing different
transition, observation and reward functions at different
time steps.

A POMDP solution is also a policy tree, π, that assigns
an action at each timestep and branches on the value of
each possible observation in a way that the expected sum
of rewards is maximized. We can also represent a pol-
icy as a mapping from beliefs (distributions over states
based on the past history of actions and observations) to
actions. A belief b can be updated after executing action
a and receiving observation o according to Bayes’ theo-
rem: bao(s′) ∝

∑
s Pr(s

′|s, a)Pr(o|s′, a)b(s).

3 RELATED WORK

The satisfiability of Quantified Boolean Formula (QBF)
provides another generalization of SAT (with existen-
tial and universal quantifiers) that is PSPACE-Complete.
In the propositional planning literature, [4, 31, 3] de-
scribe reductions between satisfiability problems (in-
cluding QBF) and various planning problems (includ-
ing conformant, conditional and contingent planning).
Since this work does not deal with numerical values in
the form of probabilities and utilities, we focus on re-
ductions between stochastic SAT and decision theoretic
planning in the form of flat POMDPs. [16, 17] summa-
rize the complexity of various formalisms for flat and
propositional probabilistic planning. Note that proposi-
tional planning can be seen as a special case of factored
POMDPs and therefore reductions from various forms
of (non-stochastic) satisfiability to propositional plan-
ning can be used to directly obtain factored POMDPs.
However, factored POMDPs are EXP-hard (i.e., harder
than PSPACE) and these reductions yield POMDPs with
exponentially many states w.r.t. the original encoding.
In contrast, we describe reductions to flat POMDPs (in
PSPACE) with linearly many states.

In the POMDP literature, several approaches have been
proposed to optimize POMDP policies by probabilistic
inference [29, 30]. However, there is no known technique



for converting POMDPs to inference problems in prob-
abilistic graphical models without doing an approxima-
tion or incurring an exponential blow up in the represen-
tation since probabilistic inference problems are in lower
complexity classes than PSPACE (i.e., NP for MPE in-
ference, #P for plain inference and NP#P for marginal-
MAP inference). For instance, [33] explain how to re-
duce the complexity of POMDP planning from PSPACE
to lower complexity classes by restricting the policy
search to various classes of bounded finite state con-
trollers while understanding that these restrictions may
prevent an optimal policy from being found.

The solvers Zander and C-MAXPLAN were introduced
by [22] to solve contingent planning under uncertainty.
Contingent plans are those which depend on observable
variables during execution. Unlike C-MAXPLAN, Zan-
der encodes probabilistic plans in Stochastic SAT. In fact,
Zander was the first true stochastic SAT solver to incor-
porate techniques from satisfiability such as a variable
ordering heuristic, unit propagation, pure literal elimina-
tion, and thresholding.

4 ENCODING PROBLEMS INTO SSAT

In the following subsections we show constructive reduc-
tions for encoding POMDPs into SSAT and vice-versa.

4.1 SSAT⇒ POMDP

In our reduction from SSAT to POMDP, at each time
step, the action corresponds to assigning a value to the
next existentially quantified variable and the observation
corresponds to assigning a value to the next randomized
variable. This is because the maximization over actions
can be used to encode an existential quantifier and the
expectation with respect to observations can be used to
encode a randomize quantifier.

We can reduce a SSAT problem with alternating quanti-
fiers to a POMDP as follows:

• State space S = {sat, prob, c1, c2, ..., c|C|}: A
state labeled by ci indicates that clause ci has not
been satisfied yet. The state labeled by sat can be
interpreted as the entire formula is satisfied. In ad-
dition, the probability of being in state prob is pro-
portional to the probability of the current path for
randomized variable assignments.

• Initial belief b0: The initial belief is set to a uniform
distribution, i.e., b0(s) = 1/|S| ∀s.

• Action space A = {true, false}: Each action is
an assignment of true or false to the lowest unas-
signed existentially quantified variable.

• Transition function Pr(st+1|st, at): The transition
function is deterministic. When in state st = ci, the
process will transition to the sat state if the current
action satisfies clause ci. Otherwise, the process re-
mains in the current state.

Pr(st+1|st, at) (4)

=


1 if st = ci, at satisfies ci and st+1 = sat
1 if st = ci, at ¬satisfy ci and st+1 = ci
1 if st = st+1 = sat
1 if st = st+1 = prob
0 otherwise

• Reward function R(st, at): We design a reward
function that effectively yields a reward of 1 when
the belief at the last time step corresponds to a sat-
isfiable joint assignment and 0 otherwise. A belief
that corresponds to a satisfiable assignment has all
its mass in the sat and prob states. By giving a re-
ward of |S| to state prob, we cancel the initial prob-
ability b0(prob) = 1/|S| and the belief effectively
earns a reward of 1. A belief that corresponds to a
non-satisfiable joint assignment has part of its mass
in some state ci (unsatisfied clause). By assigning
a reward of −|S| to each ci we penalize the belief
by effectively canceling the reward of |S| in state
prob. Since the mass in prob is less than the mass
in all the ci’s combined, the overall reward is nega-
tive. However, since an optimal policy will choose
the action with the highest reward and the reward is
0 when at = false, the effective reward will be 0.

R(st, at) =

 |S| if t = |X|
2

, st=prob, at = true

−|S| if t = |X|
2

, st = ci, at = true
0 otherwise

• Observation space O = {true, false}: Each ob-
servation is an assignment of true or false to the
lowest unassigned randomized variable.

• Observation distribution Pr(ot+1|at, st+1): The
observation distribution ensures that b(ci) becomes
0 when clause ci is satisfied by the truth value
assigned to the observation of the current univer-
sally quantified variable. Otherwise, b(ci) remains
greater than 0 when clause ci has not been satis-
fied yet. We achieve this effect by defining a de-
terministic observation distribution for the ci states
and a stochastic observation distribution for the sat
and prob states. The stochastic distribution over
the observations for the sat and prob states ensures
that both truth values are considered for random-
ized variables. We denote by λt the probability that
xt = true. The prob state will effectively keep
track of the probability of the observation sequence.



States b0 ba1 b̂ao1 b̂a2 b̂ao2 b̂a3
prob 1/5 1/5 1/6 1/6 1/7 1/7
sat 1/5 2/5 1/5 1/5 1/10 1/10

c1 = x3 ∨ x4 ∨ ¬x5 1/5 1/5 1/5 1/5 0 0
c2 = ¬x1 ∨ ¬x2 ∨ x4 1/5 0 0 0 0 0
c3 = x1 ∨ ¬x2 ∨ x5 1/5 1/5 0 0 0 0

Table 1: intermediate (unnormalized) beliefs in SSAT example
after processing a0 = (x1 := false), o1 = (x2 := false),
a1 = (x3 := false), o2 = (x4 := true) and a3 = (x5 :=
true) where Pr(o1 = (x2 := true)) = 1/6 and Pr(o2 =
(x4 := true)) = 6/7.

Pr(ot+1|at, st+1) (5)

=


0 if st+1 = ci and (xot+1:=ot+1) satisfies ci
1 if st+1 = ci and (xot+1:=ot+1) ¬satisfy ci
1
2

st+1 = sat
λt if st+1 = prob and ot+1 = true
1−λt if st+1 = prob and ot+1 = false

• Horizon h = |X|/2 + 1: Two variables (one exis-
tential and one randomized) are processed per time
step. An additional time step is created at the end
for the final reward. Hence there are |X|/2+1 time
steps (from time step 0 to time step |X|/2).

Consider again the Boolean formula in Eq. 1. Sup-
pose that we quantify the 5 variables as follows:
∃x1,

R

x2,∃x3,

R

x4,∃x5 where Pr(x2 = true) = λ2 =
1/6 and Pr(x4 = true) = λ4 = 6/7. Table 1 reports
the intermediate (unnormalized) beliefs that are obtained
when we process the sequence of actions and observa-
tions a0 = (x1 := false), o1 = (x2 := false), a1 =
(x3 := false), o2 = (x4 := true), a2 = (x5 := true).

Theorem 1. The reduction from SSAT to POMDP guar-
antees that there exists a POMDP policy π for time steps
0 to |X|/2−1 and optimal action at time step |X|/2 with
value function V π = Pr(φ) iff there exists a policy tree
φ with satisfiability probability Pr(φ).

See Appendix A for the proof.

4.2 POMDP⇒ SSAT

Since SAT is NP-Complete while POMDPs are
PSPACE-Complete, it is unknown whether it is possible
to reduce POMDPs to SAT without an exponential blow
up. Hence, encoding POMDPs as SAT is not viewed
as tractable. In contrast, since POMDPs and QBF are
both PSPACE-Complete it is possible in theory to re-
duce POMDPs to QBF in polynomial time and space.
However, in practice, one needs to convert real values
(i.e., probabilities and rewards) into binary encodings

and real arithmetic into binary operations. This is ob-
viously possible since current computers perform real
arithmetic up to some precision via binary operations.
Abio and Stuckey [1] recently showed how to convert in-
teger linear constraints into binary constraints, however it
remains impractical to express explicitly real arithmetic
as binary operations in the context of a reduction from
POMDP to QBF. Hence we restrict our discussion to a
reduction of POMDPs to SSAT since the probabilities
in SSAT can be used to encode the probabilities and re-
wards of POMDPs.

The domain of the reward function is IR. However, re-
wards can be scaled and translated without changing the
optimal policy. We define a new reward function

r(s, a) =
R(s, a)−mina′,s′ R(s′, a′)∑
a,s[R(s, a)−mina′,s′ R(s′, a′)]

(6)

that can be interpreted as a distribution that sums to 1
and with values in [0, 1] for all s and a. We will also work
with a generalization of SSAT that is not limited to binary
variables, but allows multi-valued discrete variables.

The general idea is to represent the POMDP parameters
(probabilities and rewards) as probabilities of random-
ized variables and the POMDP actions as existential vari-
ables in SSAT.

As a starting point, consider a simple POMDP with
only one time step (i.e., h = 1). In this simple setting,
the optimal policy is obtained by computing the expected
reward for each action and by selecting the best action:

a∗ = arg max
a∈A

∑
s∈S

b0(s)r(s, a) (7)

In the corresponding SSAT encoding, we introduce a
variable xa for the action such that xa ∈ {0, ..., |A|−1}.
Next, define a Boolean formula1 that encodes Eq. 7∧

k∈A

∧
i∈S

(xa ≡ k ∧ xs ≡ i)→ xr ≡ k|S|+ i (8)

with quantified variables ∃xa followed by

R

xs andR

xr in order, where xs ∈ {0, ..., |S| − 1} and xr ∈
{0, 1, ..., |A||S| − 1}. Here x ≡ k denotes true when
x = k and false otherwise. The distributions for the
randomized variables are:

Pr(xs ≡ i) = b(i) (9)
Pr(xr ≡ k|S|+ i) = r(i, k),∀i, k (10)

The first term in Eq. 8 guarantees that whenever an ac-
tion, k, is taken, all clauses containing the term xa 6≡ j

1While this formula is not in conjunctive normal form
(CNF) to ease the exposition, it can easily be converted in CNF.



for j 6= k are removed since they have been satisfied and
the term xa 6≡ k is removed from the active clauses.

The remaining terms are used to perform the summation
of randomized variables. The same reasoning is used to
set xs ≡ i. After selecting a state s from the initial belief,
only one clause will be active (yet to be satisfied), a unit
clause that implies the value of the reward variable based
on a state-action combination.

Therefore, with only one literal remaining in one clause,
xr ≡ k|S| + i, our goal is to make the probability of
satisfying this clause equal to the reward of taking action
k in state i. The optimal action in the original POMDP
is recovered in SSAT as an assignment to xa ≡ k that
maximizes the probability of satisfying all the clauses.

Consider general POMDPs with horizon h > 1. We
can define the optimal value function as follows:

Vh(b) = max
a∈A

∑
s

b(s)[r(s, a) +
∑
o

∑
s′

Ωa
s′oT

a
ss′Vh−1(bao)]

(11)

where an optimal policy maximizes the value function
over a horizon h. Based on Eq. 11, we can reduce a
POMDP problem with horizon h to SSAT in two steps:
i) policy selection and ii) policy evaluation.

Introduce an alternating sequence of variables,

∃x1
a,

R

x1
p,

R

x1
o,∃x2

a,

R

x2
p,

R

x2
o, · · · ,

R

xh−1
o ,∃xha ,

R

xhp ,

for policy selection. The ∃xta variable corresponds to the
action taken at time-step t in the original POMDP. The
variable xtp is an auxiliary variable with domain {T, F}
and uniform distribution that indicates whether the pro-
cess stops (F) and a reward is earned, or the process con-
tinues to the next time step (T). Each

R

xto has domain
{0, ..., |O| − 1} and uniform distribution Pr(xto ≡ z) =

1
|O| . The observation distribution Pr(o|s′, a) will be en-
coded later during the policy evaluation step. The uni-
form distribution for each xto will change the scale of all
probabilities by a factor of 1/|O| at each time step and
therefore we can recover the probability of satisfiability
by multiplying by |O|h−1.

Next, policy evaluation computes the value of a policy
by introducing the variables:

R

xts,

R

xtr ∀t such that 1 ≤ t ≤ h (12)

R

xtΩ,

R

xtT ∀t such that 1 ≤ t ≤ h− 1 (13)

Those randomized variables can appear in any order as
long as they are after the variables for policy selection.
We will explain the semantics of those variables after in-
troducing the Boolean formulas they appear in:

∧
1≤t≤h−1

x
t
p ≡ 0→

(
x
t
o ≡ 0 ∧ x

t+1
s ≡ 0

)
(14)

∧
1≤t≤h−1

x
t
p ≡ 0→ x

t+1
p ≡ 0 (15)

x
h
p ≡ 0 (16)∧

k∈A

∧
i∈S

(x
1
p ≡ 0 ∧ x

1
a ≡ k ∧ x

1
s ≡ i)→ x

1
r ≡ k|S| + i (17)

∧
2≤t≤h

∧
k∈A

∧
i∈S

(x
t−1
p ≡1 ∧ x

t
p≡0 ∧ x

t
a≡k ∧ x

t
s≡i)→ x

t
r≡k|S| + i

(18)∧
1≤t≤h−1

∧
k∈A

∧
i∈S

∧
j∈S

(x
t
p≡1 ∧ x

t
a≡k ∧ x

t
s≡i ∧ x

t+1
s ≡j)→ x

t+1
Tk,i
≡j

(19)∧
1≤t≤h−1

∧
k∈A

∧
j∈S

∧
z∈O

(x
t
p≡1 ∧ x

t
a≡k ∧ x

t+1
s ≡j ∧ x

t
o≡z)→ x

t
Ωk,j

≡z

(20)

The formula in Eq. 15 ensures that once the process has
stopped, it doesn’t continue in the future and Eq. 14 guar-
antees that if the process stopped early, the observation
and state auxiliary variables will all be assigned some
arbitrary value as a normalization constant. xts and xto
are used because they function as indicator variables and
hence their distribution is uninformative. Since the hori-
zon is finite, the formula in Eq. 16 ensures that the pro-
cess is necessarily stopped at the horizon h.

The variable xts encodes the state at time step t and has
uniform distribution Pr(xts ≡ i) = 1

|S| ∀i ∈ S. The
variable xtr has domain {0, 1, ..., |S||A| − 1} and has a
distribution proportional to the rewards

Pr(xtr ≡ k|S|+ i) = r(i, k), ∀k ∈ A, i ∈ S (21)

that encodes the reward to be received for a particular
action, k, and state, i, pair as a probabilistic value. The
formula in Eq. 17 ensures that the process receives a re-
ward at the first time step when x1

p ≡ F , while Eq. 18
yields a reward at subsequent time steps when xt−1

p ≡ T
changes to xtp ≡ F .

The variable xt+1
Tk,i

has domain S and encodes the transi-
tion distribution after executing action k in state i

Pr(xt+1
Tk,i
≡ j) = Pr(st+1 = j|st = i, at = k) (22)

The formula in Eq. 19 encodes this transition. Similarly,
the variable xt+1

Ωk,j
has domain O and encodes the obser-

vation distribution after executing action k and arriving
in state j

Pr(xtΩk,j
≡ z) = Pr(ot+1 = z|st+1 = j, at = k) (23)

The formula in Eq. 20 encodes this distribution. The fol-
lowing theorem confirms the equivalence of the SSAT
problem obtained from a POMDP by the reduction.
Theorem 2. In the reduction of POMDP to SSAT, there
exists a satisfiable policy tree, φ, with probability Pr(φ)
iff there exists a POMDP policy, π, with value function
V π = Pr(φ).



See Appendix A for the proof.

4.3 Discussion

In the reduction of SSAT to POMDP, we showed that the
number of clauses |C| determines the number of POMDP
states and the number of variables |X| determines the
planning horizon. This is surprising since the usual belief
is that satisfiability solvers operate in a state space of size
2|X|, which is usually much larger than the size of the
state spaces of flat POMDPs that are commonly tackled.
In contrast, our reduction shows that O(|C|) states are
sufficient in the resulting POMDP. It is possible to con-
sider different reductions that will map each joint assign-
ment in satisfiability to a POMDP state. However, these
reductions yield an exponential blow up in the number
of states and therefore are clearly intractable. Alterna-
tively, one can also construct reductions from satisfia-
bility to factored POMDPs by associating Boolean vari-
ables to POMDP state variables. While these reductions
do not yield an exponential blow up, they map satisfia-
bility problems to an artificially more complex class of
problems since factored POMDPs are EXP-hard.

In the reverse reduction of POMDP to SSAT, the number
of variables and clauses is polynomial in the parameters
of the original POMDP. The number of variables in the
equivalent SSAT problem is 3 variables initially (action,
current state, and reward) and 5 + |A||S| + |A||O| per
time step for the remaining h − 1 time steps. This gives
a complexity of:

|X| = O
(
h|A|

(
|S|+ |O|

))
(24)

The number of clauses initially is |A||S| and 1+|A||S|+
|A||S|2 + |A||S||O| per time step for the remaining h−1
time steps. This gives a complexity of:

|C| = O
(
h|A||S|

(
|S|+ |O|

))
(25)

5 SSAT SOLVER

We describe our Stochastic SAT solver, SSAT-Prime,
with many successful techniques incorporated from the
SAT and #SAT literature including watch literals, com-
ponent decomposition, and symmetry.

5.1 Solver Overview

SSAT Prime is structurally similar to the
Davis–Putnam–Logemann–Loveland (DPLL) algo-
rithm where given a formula F, first decompose the
problem into a set of components, fi, that are each
solved separately as shown in Algorithm (1). The

solution for each component is cached and reused if a
similar component is detected (using symmetry) in the
future. See code at https://github.com/rsalmon/prime.

Algorithm 1 Solve a SSAT problem by decomposition.
1: procedure SOLVE-PROBLEM(F)
2: φ← 1
3: for fi ∈ component-decomposition(F ) do
4: if clauses(fi) == 0 then
5: go-to-next-component
6: ci ← symmetry-encoding(fi)
7: if ¬cache-contains(ci) then
8: p← solve-component(fi)
9: cache-save(ci, p)

10: φ← φ · cache-value(ci)
11: if φ ≡ 0 then
12: return 0
13: return φ

To solve a sub-problem in Alg. 2, pick an unassigned
variable from the lowest quantifier block and for each
value, simplify the formula by unit propagation using the
specified watch literal scheme. If a conflict is found, this
partial assignment is no longer expanded. Otherwise,
recursively solve the new problem. Finally, update the
probability φ of satisfiability using a max for existential
quantifiers and a sum for randomize quantifiers.

Algorithm 2 Compute solution for a single component.
1: procedure SOLVE-COMPONENT(f)
2: φ← 0
3: x← choose-variable(f )
4: for xi ∈ values(x) do
5: p̂i, f

′ ← constraint-propagate(f, x = xi)
6: if ¬conflict(f ′) then
7: pi ← solve-problem(f ′)
8: if Q(x) ≡ ∃ then
9: φ← max(φ, p̂i · pi)

10: else if Q(x) ≡ R

then
11: φ← φ+ p̂i · pi
12: return φ

5.2 Improved Watch Literal Scheme

In satisfiability problems, the unit rule says that if a
clause, c, has only two unassigned literals such that
c = (x1 ≡ v0 ∨ x2 6≡ v3), then any assignment that
falsifies a literal, say x2 ≡ v3, will leave c = (x1 ≡ v0).
A clause with only one unassigned literal is a unit clause.
It is valid to assign x1 = v0 and to satisfy c since in the
CNF representation all clauses must be satisfied to attain
satisfiability. If the formula is unsatisfiable, then we will
eventually reach a conflict.

More importantly, if any part of the assignment falsifies
a unit clause, the current partial assignment has led to a
conflict and all future assignments that use the current

https://github.com/rsalmon/prime


partial assignment are unsatisfiable. All unit rule assign-
ments are propagated to other clauses until no more de-
ductions can be made. In addition, for SSAT, when the
variable being assigned is randomly quantified, we need
to scale the probability of satisfiability by the probability
of the variable taking that particular value.

The watch literal scheme is an efficient way to determine
assignments from the unit rule [23]. We would like to
minimize the number of clauses we check when assign-
ing a variable and unassigning in backtracking. As ex-
plained above, it is only the last two unassigned literals
that play a role in determining when a unit clause occurs.
The idea is for each clause to always be tracking 2 unas-
signed literals such that when a new assignment, x = v,
is made, we only visit clauses that are watching literals
consistent with x 6= v.

A disadvantage of the watch literal scheme is that we
may end up checking all literals in a clause when search-
ing for a replacement watch literals even though the
clause is already satisfied. This seems very wasteful and
this could be a source of extended solution time for prob-
lems with a large number of literals per clause.

The idea for our improvement is a constant time statistic
that can determine if a clause is satisfied. We can do
this by using a stack, satisfy, to hold the current list of
satisfied clauses in order and a field, clause.satisfied, for
each clause that indexes the position in the stack that the
particular clause is satisfied. Whenever a clause, c, is
known to be satisfied, we can perform the updates:

clauses[c].satisfied = stack-size(satisfy) (26)
stack-push(satisfy, c) (27)

In Algorithm 3, we define is-satisfied that determines if
a clause is satisfied in constant time. For a clause to be
satisfied, it must satisfy two conditions: (1) the index of
the stack corresponding to the clause must point to itself
and (2) the clause’s index into the stack must be at most
the stack size.

Algorithm 3 Check if clause is satisfied in constant time.
1: procedure IS-SATISFIED(satisfy, c)
2: s = clauses[c].satisfied
3: return stack-index(satisfy, s) ≡ c ∧ s <stack-

size(satisfy)

To show the rule is consistent and complete, first, if
the clause at position c is satisfied, then it is added to
the satisfy stack previously and its position in the stack
will be at least less than or equal to the current size.
clause.satisfied will point to that location in the stack
which will contain c. Otherwise, if the clause at position
c is not satisfied then clause.satisfied does not point to

a valid position in the stack or the value at that position
is different from c since there was never a reason to as-
sign it to c. During backtracking, all that is required is to
update the size of the stack in constant time.

5.3 Component Decomposition and Symmetry

Component decomposition was introduced by [2] in the
context of #SAT for model counting. Given a graph
G, the idea is to look at the constraint graph and find
maximal connected subgraphs, called components. The
constraint graph is derived by representing each variable
x ∈ X as a vertex and each pair of vertices x, y has an
edge if they appear in an active clause together.

Consider a constraint graph, G, using variables X
with a complete set of components G1, G2, ..., G|G|
over variable subsets X1, X2, ..., X|G| that share no el-
ements. The probability of satisfiability is Pr(X) =∏|G|
i Pr(Xi), which means that the complexity is not

determined by G, but the largest subgraph Gi. The idea
should work well on problems that are highly decompos-
able and are made up of highly reusable subproblems.
With component decomposition our worst case complex-
ity for searching through all solutions is reduced from
2O(n) to 2O(w) for a binary variable problem with n vari-
ables and a tree width of w [13, 8].

Symmetry in SSAT problems is represented by a subset
of variables, Xπ ⊆ X , that forms a solution with sat-
isfying probability Pr(Xπ), but there exist further solu-
tions that are permutations of the variables Yπ ∈ σ(Xπ)
such that Pr(Yπ) ≡ Pr(Xπ) for all Yπ . Symmetries are
an issue because they artificially increase the size of the
search space with extra solutions that are effectively the
same, but need to be enumerated independently.

Usually, breaking symmetries requires additional con-
straints to enforce only one assignment from each equiv-
alence class. This can be done by sorting the solutions
according to some ordering. However, in SSAT, we are
still required to enumerate all the solutions to calculate
the probability of satisfiability accurately so instead we
focus on symmetric components as subproblems. Previ-
ous work in SAT has been on static symmetry breaking
where the procedure is only applied as a preprocessing
step in the solver. We focus on dynamic or conditional
symmetries that occur during the execution of the solver.

In [13] they used graph canonization on CSPs to find a
canonical labeling of a graph that is invariant to symme-
tries in the variables, values or some mixture. This re-
duces symmetry detection to graph isomorphism where
we are tasked with determining if two finite graphs are
isomorphic. Graph isomorphism is known to be in NP,
but it is unknown whether it is also NP-complete.



Given a subproblem, S = (X,C), that is constrained by
clauses C using variables X , we can define a coloured
graph, G=(V, E), such that we have

1. a vertex for each clause with colour 0
2. a vertex for each variable with colour corresponding

to quantifier level
3. a vertex for each existential literal with a shared

unique colour
4. a vertex for each randomized literal where each lit-

eral share the same colour iff they share the same
probability and the colours are unique

5. a directed edge connecting each clause vertex to all
the literal vertices it contains

6. a directed edge connecting each variable vertex to
its associated literal vertices

After the graph is set up, call a graph library to perform
canonization. In the relabeling, vertices that share a sim-
ilar structure are exchangeable and a natural ordering is
found. Note that only vertices of the same type can be
exchanged since vertices can only be swapped iff they
share the same colour and degree. This guarantees that
a clause and a variable vertex are never swapped. The
relabeling of the graph vertices is used for future identi-
fication of the component and storage in the cache.

In addition, we propose Component Projection, which is
a simplification of graph canonization that only does the
mapping to a coloured graph without graph relabeling.
The most expensive part of the encoding, the canoniza-
tion, is avoided and most subproblems would still be a
match since the act of relabeling vertices from 1 to |X|
provides most of the expressive power. That is, perfect
graph canonization is not that helpful for most problems
since the restriction on quantifier ordering limits the or-
der of variables in a subproblem.

6 EXPERIMENTS

In this section, we show some experiments that validate
key features of the SSAT-Prime solver. All experiments
were conducted on an Intel i5 at 3.5GHz with 4GB of
available RAM. In each scenario, the solvers had 1, 000
seconds to solve each problem before timing out. All
POMDP benchmarks were converted to SSAT with the
reduction technique described in Section 4.1.

6.1 Unit Rule

Our proposed improvement to the watch literal rule is by
keeping a lazy structure that allows us to determine in
constant time if a clause is satisfied. In Table 2, we show
the results of both unit rule algorithms on a variety of

Benchmark Problem Unit-Rule UR-Improved Speedup Satisfied

RANDOM

fail-learn1 2.79 2.73 1.02 64.68%
pure1 2.91 2.85 1.02 64.92%
big1 72.03 63.88 1.13 99.24%
big2 8.36 6.69 1.25 85.38%

POMDP

tiger.95 H10 4.79 4.67 1.03 88.55%
ejs7 H10 64.35 63.56 1.01 81.08%
query.s4 H2 113.56 21.18 5.36 99.99%
aloha.10 H3 13.41 6.66 2.01 99.94%

INFERENCE mastermind 04 08 27.80 27.69 1.00 64.88%
fs-29.uai 12.33 12.06 1.02 87.90%

Table 2: Improvement in time (sec) to the watch literal rule.
The suffix HN in the name of each POMDP problem indicates
the planning horizon (i.e., H10 indicates a horizon of 10 steps).

problems. The properties, statistics and origin of those
problems are described in Table 1 in Appendix B.UR-
Improved is the new algorithm and Unit-Rule is the orig-
inal implementation. Our approach yielded an improve-
ment in time (seconds) across all benchmarks. More-
over, improvements in running time (of 1.13x to 5.36x
are achieved for the problems with longer clauses such
as big1, big2, query and aloha).

The last column indicates the percentage of all clauses
visited by the unit rule that were already satisfied and
hence a waste of effort to search. The problems that
showed the most improvement also had most of the vis-
ited clauses already satisfied over 99% of the time. This
makes sense since longer clauses are more likely to be
satisfied by at least one of the many literals when search-
ing for a replacement watch literal.

6.2 Symmetry

We compare the effects of using symmetry. First, con-
sider Component Basic (CB) where a component is
recorded as a set of unassigned literals for each clause.
Next, we explore using Component Canonical (CC) that
encodes each component into a coloured graph and finds
a canonical relabeling of the variables that is invariant to
any permutation of variables or clauses. Finally, Com-
ponent Project (CP) encodes a component into a graph,
but relabels the variables sequentially. The results are in
Table 3 where duration is in seconds, #C indicates the
number of components generated and the last column in-
dicates the percentage of reused components. The bench-
marks are the same as for the previous experiment.

Unfortunately, CC’s performance was the worst in a ma-
jority of the benchmarks (9 out of 10). However, in 7
cases, CP performed the best with up to a 10x speed im-
provement. In general, we found the results hold across
most problems from the POMDP benchmarks. Note that
there is an important improvement over CB only when
the number of components is significantly reduced. This
means that the extra time on the other problems is pure
overhead and maybe there is room for improvement here.



Problem Symmetry Duration #C Reuse %

fail-learn1
CB 2.70 457,209 56.89%
CC 9.16 471,469 56.99%
CP 2.72 442,921 56.74%

pure1
CB 2.72 471,269 55.34%
CC 9.72 480,377 55.27%
CP 2.85 473,939 55.37%

big1
CB 64.34 13,249,524 61.80%
CC 171.44 13,801,715 62.21%
CP 63.78 13,549,226 62.14%

big2
CB 6.96 955,347 26.14%
CC 18.77 955,567 26.42%
CP 6.68 947,171 27.61%

tiger.95 H10
CB X 133,713,296 84.13%
CC 20.86 1,111,885 89.38%
CP 4.69 1,111,885 89.38%

ejs7 H10
CB 56.99 7,748,117 81.95%
CC 220.12 7,748,117 81.95%
CP 63.87 7,747,733 81.95%

query.s4 H2
CB 24.47 2,264,792 99.98%
CC 35.70 2,264,792 99.98%
CP 21.04 2,264,792 99.98%

aloha.10 H3
CB 68.01 514,004 97.24%
CC 18.69 57,828 97.32%
CP 6.67 57,828 97.32%

mastermind 04 08
CB 29.98 69,252 38.35%
CC 155.05 69,252 38.35%
CP 27.67 69,220 38.43%

fs-29
CB 13.54 254,205 99.42%
CC 258.56 254,205 99.47%
CP 12.01 254,201 99.47%

Table 3: Results for improvement in symmetry by Canonical
and Projection relabeling.

Therefore, the cost of CC was too high, especially on the
RANDOM and INFERENCE benchmarks.

6.3 POMDP Encoding

In this section, we compare exact POMDP and SSAT
solvers on finite horizon POMDPs converted to SSAT.
For the reverse direction, from SSAT to POMDP, the
POMDP solvers had numerical issues and were not able
to solve the problems reliably. The set of 13 POMDP
problems were selected from Cassandra’s repository [6]
such that they had more than 10 states. Our goal is to
show that it is feasible to solve POMDP problems by en-
coding them into equivalent SSAT problems and finding
optimal policies with SSAT solvers.

Our Prime solver is compared against two exact finite
horizon POMDP solvers, Walraven [34] and Incremen-
tal Prune [5], and an exact SSAT solver ZANDER [22].
The results can be seen in Table 4 where the number of
actions, states, and observations for each problem are
listed. The H columns indicate the horizon reached
within the 1000-second cutoff and the columns T indi-
cate the time (seconds) needed for the horizon reported.
An X indicates that the solver was not able to find an
optimal policy for any horizon greater than 0. For each
problem, the best score is bolded and the tally of best

Walraven PRIME PRUNE ZANDER
problem |A| |S| |O| H T H T H T H T
4x3.95 4 11 6 10 266.60 5 19.73 10 161.79 0 X
4x5x2.95 4 39 4 20 127.58 4 128.76 0 X 0 X
aloha.10 9 30 3 3 2.06 4 198.73 3 0.73 0 X
aloha.30 29 90 3 2 21.88 2 77.06 0 X 0 X
hallway 5 92 17 3 41.93 2 7.11 3 61.41 0 X
hallway2 5 92 17 2 0.08 2 22.60 2 0.01 0 X
learning.c2 8 12 3 2 0.53 4 102.86 2 0.19 0 X
learning.c3 12 24 3 2 7.19 3 43.22 2 29.23 0 X
learning.c4 16 48 3 2 115.15 2 6.54 1 0.00 0 X
milos-aaai97 6 20 8 2 1.33 4 140.35 2 0.38 0 X
query.s3 3 27 3 3 7.05 4 133.64 3 14.61 0 X
query.s4 4 81 3 2 0.39 3 753.47 2 0.10 0 X
tiger-grid 5 36 17 2 82.15 3 281.13 2 205.44 0 X

Table 4: Benchmark of POMDP problems encoded to SSAT
problems by PRIME versus using native POMDP solvers Wal-
raven and Prune.

scores for each solver was Walraven (3), Prime (8), Prune
(2) and Zander (0). Overall, Prime was the better solver
by finding an optimal policy for a longer horizon or
within less time.

Zander was quite poor and this can be explained by the
fact that features such as variable ordering do not help on
POMDP problems since you are restricted by the natural
quantifier ordering and pure literals can only be used on
existential variables that correspond to actions in the en-
coding. Walraven and Prune performed similarly. They
both incrementally add α-vectors to a solution set and
prune dominated vectors. These methods perform well
on problems where the optimal value function can be
compactly represented by a small number of α-vectors.
In contrast, Prime searches the set of policy trees directly
in the encoded problem and its efficiency depends on the
presence of symmetric subproblems that can be reused.

7 CONCLUSION

In summary, we showed how to encode SSAT problems
as flat POMDPs and vice-versa without any exponential
blow up. These constructive reductions permit for the
first time an empirical comparison of exact SSAT and
POMDP solvers on common benchmarks. We also pro-
posed a new SSAT solver called Prime that incorporates
watch literals, component decomposition and symme-
try detection from the SAT and #SAT literature. SSAT-
Prime is competitive in comparison to native POMDP
solvers on POMDP benchmarks.

In the future, we would like to design a solver that lever-
ages techniques from both SSAT and POMDP solvers.
Exact POMDP solvers often focus on pruning α-vectors
in order to obtain compact representations of optimal
value functions. In contrast, SSAT solvers focus on prun-
ing and decomposing policy trees to reduce the search
time to compute an optimal policy. Since these tech-
niques are orthogonal, it should be possible to combine
them into a new technique with improved efficiency.
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