A PROOFS OF THEOREMS 1 AND 2

Theorem 1. The reduction from SSAT to POMDP guar-
antees that there exists a POMDP policy T for time steps
0to | X|/2—1 and optimal action at time step | X |/2 with
value function V™ = Pr(9) iff there exists a policy tree
¢ with satisfiability probability Pr(¢).

Proof. Consider a POMDP policy 7 (for time steps O to
|X|/2 — 1), which defines a policy tree ¢. Each branch
yields a final (unnormalized) belief with mass

l;;rl:le/z (prob) = by(prob) Pr(oy; x| 2|prob,7) (1)
Based on the properties of the reward function, the opti-

mal expected reward of each branch at the last time step
| X|/21s

R(0G, ,,,) =max) b5, .(s)R(s,a) 2)
_ | Pr(o1.x|/2|prob,m) if branch is satisfying
10 otherwise

(3)
Hence the value of a policy is
VT = Z R(bgnwvz) S

O1:1X|/2
01:|x /2 is satisfying

— Pr(¢) ©)

The above equation shows that the value of a policy is
equal to the probability of satisfying the Boolean formula
with the corresponding policy tree ¢. O

Pr(oy. x| 2|prob, )  (5)

Theorem 2. In the reduction of POMDP to SSAT, there
exists a satisfiable policy tree, ¢, with probability Pr(¢)
iff there exists a POMDP policy, w, with value function
V™ =Pr(¢).

Proof. Consider a base case policy tree of size 1. Let the
policy tree be ¢ = {x, = k} with clauses:

I\ ws # iV, = k(S| +i (7)

i€S

The probability of satisfiability of (7) is equivalent to

Pr(6) = Y Pr(as = i) Pr(a, = kS| +9)
= b(i)r(i k) ®)

by using the distributions for the randomized variables:
Pr(zs = i) = b() and Pr(z, = k|S| + 1) =

r(i, k), Vi, k. However, (8) corresponds exactly to the
policy that takes action a; = k and has a value of

VT =3 b()r (i, k).

For the general case, we give a proof by induction.
Assume we have a policy tree ¢y, policy 7y, and we
know Pr(¢p) = V™. Given ¢p11 and 7mj,41 show that
Pr(¢ni1) = Vet

Since we are given the policy tree, all the actions are
known. Therefore, if we simplify first by making the as-
signments in ¢p,1, then only the randomized variables
will remain in the quantifier prefix. Any subset of vari-
ables can now be re-ordered freely. Based on the number
of randomized variables we introduced for horizon & and
h + 1, encoding the probability of satisfiability is:

Pr(¢én41)
2 |O| |S| h+1
= X > X I Py = el =i, ==, 2,)
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h
H Pr(zéz, zLT|z§) = vy, zlg =i, zf) = z]) 9)

=1

To achieve Eq. 10, the distribution for x,, is just a uni-
form distribution that can be factored out as 27", How-
ever, each z), is controlling the length of the process, so it
naturally controls how many terms contribute to the total
sum if we re-arrange by horizon and then simplify. Note
that given values for x,, x,, T, the other variables are
forced by unit propagation to a specific value.

. h+1 O] |S| h . . .
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Similarly, for the distribution z,, the constant, |O|"~1,
can be factored out in front and its value is used in the
conditional distribution xg.

h+1 10| IS] h
RIS DU SIS SR § £ RS
h=1%1:""%f 1 51 HSp 1=1

h—1

1 1 L l P
H Pr(:cQ,:cT\xp:U,,,:cs:1,300:21) (11
=1

the next variable !, has uniform distribution for all [ > 1
and the initial belief when [ = 1. Therefore, we can
simplify the equation by pulling out the constant factors
again.

h+1 O] |S]
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According to the distribution x,,, rewards x,. will only be
given at the end of the process for each h.

ht1 o] |S| .
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If we replace the distributions below with their defini-
tions and replace constants with the proportional relation,
we obtain

h+41 |O] |S| h—1 N N
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where Pr(¢p) = r(s,a) + Y > Q% T, Pr(¢n-1)

Now consider the reverse. Given a policy, 741, with
value function VV™+1 there exists a satisfiable policy tree,
®n+1, with satisfiability probability Pr(¢x1) such that
V7htt = Pr(¢py1). First, Bellman’s equation fora h+1
horizon policy is:

VTt = S () <7‘(s, a) + ZZQ:/UT:;S,V”}L<bg’)> a=n(b)
s o g/

(16)

However, any h + 1 horizon policy can be written as a
linear combination of /& horizon policies. Since we know
Pr(¢p) = V,7 by the inductive step, we conclude, that
(15) and (16) are equal. Therefore, the probability of
satisfying a A + 1 depth policy tree corresponds to the
value function of a h + 1 step policy. O

B PROBLEM STATISTICS

We test the improvements to the watch literal rule on a
variety of problems from 3 different benchmark types as
shown in Table 1. The POMDP problems are from Cas-
sandra’s repository [?] and consist of two easy and two
hard problems that have quite a large number of literals
per clause and variable cardinality. The inference prob-
lems are from a prior probabilistic inference competition
[?] and tend to be highly structured and contain a large
number of variables and clauses.

Finally, the random benchmarks consist of a series of
variables with alternating quantifiers in 3-SAT and 10-
SAT forms that were generated by a procedure. Assume
we are given V' the number of variables, C' the number of
clauses, £ the number of literals in a clause, ¢ the number

of values for each variable and p the probability for each
variable to be existentially quantified (1 — p is the prob-
ability for each variable to be randomly quantified). We
can generate a problem by first sampling the quantifier
for each variable Q)(v;) and if randomly quantified, draw
its distribution from a uniform Dirichlet with dimension
t. For each clause ¢; where i € {0, ...,C — 1} a variable
is sampled uniformly from {1, ..., V'} and a value is sam-
pled uniformly from {0, ..., ¢ — 1} repeatedly to generate
k literals for each clause.

‘ Benchmark ‘ Problem ‘ #var | #clause | avg #value | avg #literal
fail-learn1 50 120 2.00 3.00

purel 50 120 2.00 3.00

RANDOM bigl 30 450 2.00 10.00
big2 15 60 4.00 10.00

tiger.95_H10 157 304 231 5.60

ejs7_-H10 121 212 2.16 4.58

POMDP query.sé_H2 657 | 27.868 42.68 160.40
aloha.10_H3 1,094 | 18,637 17.14 64.39
mastermind_04_08 6,319 | 14,670 2.00 2.90

INFERENCE fs-29 327,787 | 803,068 2.00 2.74

Table 1: Basic information for each benchmark problem.
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