
Learning Rate Based Branching Heuristic for
SAT Solvers

Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki

University of Waterloo, Waterloo, Canada

Abstract. In this paper, we propose a framework for viewing solver
branching heuristics as optimization algorithms where the objective is
to maximize the learning rate, defined as the propensity for variables
to generate learnt clauses. By viewing online variable selection in SAT
solvers as an optimization problem, we can leverage a wide variety of
optimization algorithms, especially from machine learning, to design ef-
fective branching heuristics. In particular, we model the variable selection
optimization problem as an online multi-armed bandit, a special-case of
reinforcement learning, to learn branching variables such that the learn-
ing rate of the solver is maximized. We develop a branching heuristic that
we call learning rate branching or LRB, based on a well-known multi-
armed bandit algorithm called exponential recency weighted average and
implement it as part of MiniSat and CryptoMiniSat. We upgrade the
LRB technique with two additional novel ideas to improve the learning
rate by accounting for reason side rate and exploiting locality. The result-
ing LRB branching heuristic is shown to be faster than the VSIDS and
conflict history-based (CHB) branching heuristics on 1975 application
and hard combinatorial instances from 2009 to 2014 SAT Competitions.
We also show that CryptoMiniSat with LRB solves more instances than
the one with VSIDS. These experiments show that LRB improves on
state-of-the-art.

1 Introduction

Modern Boolean SAT solvers are a critical component of many innovative tech-
niques in security, software engineering, hardware verification, and AI such as
solver-based automated testing with symbolic execution [9], bounded model
checking [11] for software and hardware verification, and planning in AI [27]
respectively. Conflict-driven clause-learning (CDCL) SAT solvers [29, 23, 24, 4,
12, 6] in particular have made these techniques feasible as a consequence of
their surprising efficacy at solving large classes of real-world Boolean formulas.
The development of various heuristics, notably the Variable State Independent
Decaying Sum (VSIDS) [24] branching heuristic (and its variants) and conflict
analysis techniques [23], have dramatically pushed the limits of CDCL solver
performance. The VSIDS heuristic is used in the most competitive CDCL SAT
solvers such as Glucose [4], Lingeling [6], and CryptoMiniSat [29]. Since its in-
troduction in 2001, VSIDS has remained one of the most effective and domi-
nant branching heuristic despite intensive efforts by many researchers to replace

it [16, 7, 28, 15]. In early 2016, we provided the first branching heuristic that
is more effective than VSIDS called the conflict history-based (CHB) branching
heuristic [19]. The branching heuristic introduced in this paper, which we refer
to as learning rate branching (LRB), significantly outperforms CHB and VSIDS.

In this paper, we introduce a general principle for designing branching heuris-
tics wherein online variable selection in SAT solvers is viewed as an optimization
problem. The objective to be maximized is called the learning rate (LR), a nu-
merical characterization of a variable’s propensity to generate learnt clauses.
The goal of the branching heuristic, given this perspective, is to select branching
variables that will maximize the cumulative LR during the run of the solver. In-
tuitively, achieving a perfect LR of 1 implies the assigned variable is responsible
for every learnt clause generated during its lifetime on the assignment trail.

We put this principle into practice in this paper. Although there are many
algorithms for solving optimization problems, we show that multi-armed bandit
learning (MAB) [31], a special-case of reinforcement learning, is particularly ef-
fective in our context of selecting branching variables. In MAB, an agent selects
from a set of actions to receive a reward. The goal of the agent is to maxi-
mize the cumulative rewards received through the selection of actions. As we
will describe in more details later, we abstract the branching heuristic as the
agent, the available branching variables are abstracted as the actions, and LR is
defined to be the reward. Abstracting online variable selection as a MAB prob-
lem provides the bridge to apply MAB algorithms from the literature directly
as branching heuristics. In our experiments, we show that the MAB algorithm
called exponential recency weighted average (ERWA) [31] in our abstraction sur-
passes the VSIDS and CHB branching heuristics at solving the benchmarks from
the 4 most recent SAT Competitions in an apple-to-apple comparison. Addition-
ally, we provide two extensions to ERWA that increases its ability to maximize
LR and its performance as a branching heuristic. The final branching heuris-
tic, called learning rate branching (LRB), is shown to dramatically outperform
CryptoMiniSat [29] with VSIDS.

1.1 Contributions

Contribution I: We define a principle for designing branching heuristics, that
is, a branching heuristic should maximize the learning rate (LR). We show
that this principle yields highly competitive branching heuristics in practice.

Contribution II: We show how to abstract online variable selection in the
multi-armed bandit (MAB) framework. This abstraction provides an inter-
face for applying MAB algorithms directly as branching heuristics. Previ-
ously, we developed the conflict history-based (CHB) branching heuristic [19],
also inspired by MAB. The key difference between this paper and CHB is
that in the case of CHB the rewards are known a priori, and there is no
metric being optimized. Whereas in this work, the learning rate is being
maximized and is unknown a priori, which requires a bona fide machine
learning algorithm to optimize under uncertainty.

Contribution III: We use the MAB abstraction to develop a new branching
heuristic called learning rate branching (LRB). The heuristic is built on
a well-known MAB algorithm called exponential recency weighted average
(ERWA). Given our domain knowledge of SAT solving, we extend ERWA
to take advantage of reason side rate and locality [20] to further maximize
the learning rate objective. We show in comprehensive apple-to-apple ex-
periments that it outperforms the current state-of-the-art VSIDS [24] and
CHB [19] branching heuristics on 1975 instances from four recent SAT Com-
petition benchmarks from 2009 to 2014 on the application and hard combi-
natorial categories. Additionally, we show that a modified version of Cryp-
toMiniSat with LRB outperforms Glucose, and is very close to matching
Lingeling over the same set of 1975 instances.

2 Preliminaries

2.1 Simple Average and Exponential Moving Average

Given a time series of numbers 〈r1, r1, r2, ..., rn〉, the simple average is computed
as avg(〈r1, ..., rn〉) =

∑n
i=1

1
nri. Note that every ri is given the same coefficient

(also called weight) of 1
n .

In a time series however, recent data is more pertinent to the current situa-
tion than old data. For example, consider a time series of the price of a stock. The
price of the stock from yesterday is more correlated with today’s price than the
price of the stock from a year ago. The exponential moving average (EMA) [8] fol-
lows this intuition by giving the recent data higher weights than past data when
averaging. Incidentally, the same intuition is built into the multiplicative decay in
VSIDS [5, 20]. The EMA is computed as emaα(〈r1, ..., rn〉) =

∑n
i=1 α(1−α)n−iri

where 0 < α < 1 is called the step-size parameter. α controls the relative
weights between recent and past data. EMA can be computed incrementally
as emaα(〈r1, ..., rn〉) = (1 − α) · emaα(〈r1, ..., rn−1〉) + αrn, and we define the
base case emaα(〈〉) = 0.

2.2 Multi-Armed Bandit (MAB)

We will explain the MAB problem [31] through a classical analogy. Consider a
gambler in a casino with n slot machines, where the objective of the gambler
is to maximize payouts received from these machines. Each slot machine has
a probability distribution describing its payouts, associating a probability with
every possible value of payout. This distribution is hidden from the gambler.
At any given point in time, the gambler can play one of the n slot machines,
and hence has n actions to choose from. The gambler picks an action, plays
the chosen slot machine, and receives a reward in terms of monetary payout by
sampling that slot machine’s payout probability distribution. The MAB problem
is to decide which actions to take that will maximize the cumulative payouts.

If the probability distributions of the slot machines were revealed, then the
gambler would simply play the slot machine whose payout distribution has

the highest mean. This will maximize expected payouts for the gambler. Since
the probability distribution is hidden, a simple MAB algorithm called sample-
average [31] estimates the true mean of each distribution by averaging the sam-
ples of observed payouts. For example, suppose there are 2 slot machines. The
gambler plays the first and the second slot machine 4 times each, receiving the
4 payouts 〈1, 2, 3, 4〉 and 〈5, 4, 3, 2〉 respectively. Then the algorithm will esti-
mate the mean of the first and second slot machines’ payout distributions as
avg(〈1, 2, 3, 4〉) = 2.5 and avg(〈5, 4, 3, 2〉) = 3.5 respectively. Since the second
slot machine has a higher estimated mean, the choice is to play the second slot
machine. This choice is called greedy, that is, it chose the action it estimates to
be the best given extant observations. On the other hand, choosing a non-greedy
action is called exploration [31].

The sample-average algorithm is applicable if the hidden probability distri-
butions are fixed. If the distributions change over time, then the problem is
called nonstationary, and requires different algorithms. For example, suppose
a slot machine gives smaller and smaller payouts the more it has been played.
The older the observed payout, the bigger the difference between the current
probability distribution and the distribution from which the payout was sam-
pled. Hence, older observed payouts should have smaller weights. This gives rise
to the exponential recency weighted average [31] (ERWA) algorithm. Instead of
computing the simple average of the observed payouts, use EMA to give higher
weights to recent observations relative to distant observations. Continuing the
prior example, ERWA estimates the mean payout of the first and second slot
machines as emaα(〈1, 2, 3, 4〉) = 3.0625 and emaα(〈5, 4, 3, 2〉) = 2.5625 respec-
tively where α = 0.5. Therefore ERWA estimates the first slot machine to have
a higher mean, and hence the greedy action is to play the first slot machine.

2.3 Clause Learning

The defining feature of CDCL solvers is to analyze every conflict it encounters
to learn new clauses to block the same conflicts, and up to exponentially sim-
ilar conflicts, from re-occurring. The solver maintains an implication graph, a
directed acyclic graph where the vertices are assigned variables and edges record
the propagations between variables induced by Boolean constraint propagation.
A clause is falsified when all of its literals are assigned to false, and in this cir-
cumstance, the solver can no longer proceed with the current assignment. The
solver analyzes the implication graph and cuts the graph into two sides: the
conflict side and the reason side. The conflict side must contain all the variables
from the falsified clause and the reason side must contain all the decision vari-
ables. A learnt clause is generated on the variables from the reason side incident
to the cut by negating the current assignments to those variables. In practice,
the implication graph is typically cut at the first unique implication point [33].
Upon learning a clause, the solver backtracks to an earlier state where no clauses
are falsified and proceeds from there.

2.4 The VSIDS Branching Heuristic

VSIDS can be seen as a ranking function that maintains a floating point num-
ber for each Boolean variable in the input formula, often called activity. The
activities are modified in two interweaving operations called the bump and the
multiplicative decay. Bump increases the activity of a variable additively by 1
whenever it appears in either a newly learnt clause or the conflict side of the
implication graph. Decay periodically decreases the activity of every variable by
multiplying all activities by the decay factor δ where 0 < δ < 1. Decay typically
occurs after every conflict. VSIDS ranks variables in decreasing order of activ-
ity, and selects the unassigned variable with the highest activity to branch on
next. This variable is called the decision variable. A separate heuristic, typically
phase-saving [26], will select the polarity to assign the decision variable.

3 Contribution I: Branching Heuristic as Learning Rate
(LR) Optimization

The branching heuristic is responsible for assigning variables through decisions
that the SAT solver makes during a run. Although most of the assignments
will eventually revert due to backtracking and restarts, the solver guarantees
progress due to the production of learnt clauses. It is well-known that branching
heuristics play a significant role in the performance of SAT solvers. To frame
branching as an optimization problem, we need a metric to quantify the degree
of contribution from an assigned variable to the progress of the solver, to serve as
an objective to maximize. Since producing learnt clauses is a direct indication of
progress, we define our metric to be the variable’s propensity to produce learnt
clauses. We will now define this formally.

Clauses are learnt via conflict analysis on the implication graph that the
solver constructs during solving. A variable v participates in generating a learnt
clause l if either v appears in l or v is resolved during the conflict analysis that
produces l (i.e., appears in the conflict side of the implication graph induced
by the cut that generates l). In other words, v is required for the learning of l
from the encountered conflict. Note that only assigned variables can participate
in generating learnt clauses. We define I as the interval of time between the
assignment of v until v transitions back to being unassigned. Let P (v, I) be the
number learnt clauses in which v participates during interval I and let L(I) be
the number of learnt clauses generated in interval I. The learning rate (LR) of

variable v at interval I is defined as P (v,I)
L(I) . For example, suppose variable v is

assigned by the branching heuristic after 100 learnt clauses are produced. It par-
ticipates in producing the 101-st and 104-th learnt clause. Then v is unassigned
after the 105-th learnt clause is produced. In this case, P (v, I) = 2 and L(I) = 5
and hence the LR of variable v is 2

5 .
The exact LR of a variable is usually unknown during branching. In the

previous example, variable v was picked by the branching heuristic after 100
learnt clauses are produced, but the LR is not known until after the 105-th learnt

clause is produced. Therefore optimizing LR involves a degree of uncertainty,
which makes the problem well-suited for learning algorithms. In addition, the
LR of a variable changes over time due to modifications to the learnt clause
database, stored phases, and assignment trail. As such, estimating LR requires
nonstationary algorithms to deal with changes in the underlying environment.

4 Contribution II: Abstracting Online Variable Selection
as a Multi-Armed Bandit (MAB) Problem

Given n Boolean variables, we will abstract online variable selection as an n-
armed bandit optimization problem. A branching heuristic has n actions to
choose from, corresponding to branching on any of the n Boolean variables.
The expressions assigning a variable and playing an action will be used inter-
changeably. When a variable v is assigned, then v can begin to participate in
generating learnt clauses. When v becomes unassigned, the LR r is computed
and returned as the reward for playing the action v. The terms reward and LR
will be used interchangeably. The MAB algorithm uses the reward to update its
internal estimates of the action that will maximize the rewards.

The MAB algorithm is limited to picking actions corresponding to unassigned
variables, as the branching heuristic can only branch on unassigned variables.
This limitation forces some exploration, as the MAB algorithm cannot select the
same action again until the corresponding variable is unassigned due to back-
tracking or restarting. Although the branching heuristic is only assigning one
variable at a time, it indirectly assigns many other variables through propaga-
tion. We include the propagated variables, along with the branched variables, as
plays in the MAB framework. That is, branched and propagated variables will
all receive their own individual rewards corresponding to their LR, and the MAB
algorithm will use all these rewards to update its internal estimates. This also
forces some exploration since a variable ranked poorly by the MAB algorithm
can still be played through propagation.

5 Contribution III: Learning Rate Branching (LRB)
Heuristic

Given the MAB abstraction, we first use the well-known ERWA bandit algorithm
as a branching heuristic. We will upgrade ERWA with two novel extensions to
arrive at the final branching heuristic called the learning rate branching (LRB)
heuristic. We will justify these extensions experimentally through the lens of
MAB, that is, these extensions are better at maximizing the LR rewards. We
will demonstrate empirically the effectiveness of LRB at solving the benchmarks
from the 4 previous SAT Competitions.

5.1 Exponential Recency Weighted Average (ERWA)

We will explain how to apply ERWA as a branching heuristic through the MAB
abstraction. First we will provide a conceptual explanation, that is easier to

comprehend. Then we will provide a complementary explanation from the im-
plementation’s perspective, which is equivalent to the conceptual explanation,
but provides more details.

Conceptually, each variable v maintains its own time series tsv containing
the observed rewards for v. Whenever a variable v transitions from assigned to
unassigned, ERWA will calculate the LR r for v (see Section 3) and append the
reward r to the time series by updating tsv ← append(tsv, r). When the solver
requests the next branching variable, ERWA will select the variable v∗ where
v∗ = argmaxv∈U (emaα(tsv)) and U is the set of currently unassigned variables.

The actual implementation takes advantage of the incrementality of EMA
to avoid storing the time series ts, see Algorithm 1 for pseudocode of the im-
plementation. Alternative to the above description, each variable v maintains a
floating point number Qv representing emaα(tsv). When v receives reward r,
then the implementation updates Qv using the incrementality of EMA, that is,
Qv ← (1 − α) · Qv + α · r (see line 24 of Algorithm 1). When the solver re-
quests the next branching variable, the implementation will select the variable
v∗ where v∗ = argmaxv∈UQv and U is the set of currently unassigned variables
(see line 28 of Algorithm 1). Note that Qv can be stored in a priority queue
for all unassigned variables v, hence finding the maximum will take logarithmic
time in the worst-case. The implementation is equivalent to the prior conceptual
description, but significantly more efficient in both memory and time.

For our experiments, we initialize the step-size α = 0.4. We follow the con-
vention of typical ERWA to decrease the step-size over time [31]. After each
conflict, the step-size is decreased by 10−6 until it reaches 0.06 (see line 14 in
Algorithm 1), and remains at 0.06 for the remainder of the run. This step-size
management is equivalent to the one in CHB [19] and is similar to how the
Glucose solver manages the VSIDS decay factor by increasing it over time [4].

5.2 Extension: Reason Side Rate (RSR)

Recall that LR measures the participation rate of variables in generating learnt
clauses. That is, variables with high LR are the ones that frequently appear in
the generated learnt clause and/or the conflict side of the implication graph. If
a variable appears on the reason side near the learnt clause, then these vari-
ables just missed the mark. We show that accounting for these close proximity
variables, in conjunction with the ERWA heuristic, optimizes the LR further.

More precisely, if a variable v appears in a reason clause of a variable in a
learnt clause l, but does not occur in l, then we say that v reasons in generating
the learnt clause l. We define I as the interval of time between the assignment
of v until v transitions back to being unassigned. Let A(v, I) be the number of
learnt clauses which v reasons in generating in interval I and let L(I) be the
number of learnt clauses generated in interval I. The reason side rate (RSR) of

variable v at interval I is defined as A(v,I)
L(I) .

Recall that in ERWA, the estimates are updated incrementally as Qv ←
(1 − α) · Qv + α · r where r is the LR of v. This extension modifies the update

Algorithm 1 Pseudocode for ERWA as a branching heuristic using our MAB
abstraction for maximizing LR.
1: procedure Initialize . Called once at the start of the solver.
2: α← 0.4 . The step-size.
3: LearntCounter ← 0 . The number of learnt clauses generated by the solver.
4: for v ∈ V ars do . V ars is the set of Boolean variables in the input CNF.
5: Qv ← 0 . The EMA estimate of v.
6: Assignedv ← 0 . When v was last assigned.
7: Participatedv ← 0 . The number of learnt clauses v participated in

generating since Assignedv.

8:
9: procedure AfterConflictAnalysis(learntClauseV ars ⊆ V ars, conflictSide ⊆ V ars) .

Called after a learnt clause is generated from
conflict analysis.

10: LearntCounter ← LearntCounter + 1
11: for v ∈ conflictSide ∪ learntClauseV ars do
12: Participatedv ← Participatedv + 1

13: if α > 0.06 then
14: α← α− 10−6

15:
16: procedure OnAssign(v ∈ V ars) . Called when v is assigned by branching or prop-

agation.
17: Assignedv ← LearntCounter
18: Participatedv ← 0

19:
20: procedure OnUnassign(v ∈ V ars) . Called when v is unassigned by backtracking or

restart.
21: Interval← LearntCounter − Assignedv
22: if Interval > 0 then . Interval = 0 is possible due to restarts.
23: r ← Participatedv/Interval. . r is the LR.
24: Qv = (1− α) ·Qv + α · r . Update the EMA incrementally.

25:
26: function PickBranchLit . Called when the solver requests the next branch-

ing variable.
27: U ← {v ∈ V ars | isUnassigned(v)}
28: return argmaxv∈UQv . Use a priority queue for better performance.

to Qv ← (1− α) ·Qv + α · (r + A(v,I)
L(I)) where A(v,I)

L(I) is the RSR of v (see line 20

in Algorithm 2). Note that we did not change the definition of the reward. The
extension simply encourages the algorithm to select variables with high RSR
when deciding to branch. We hypothesize that variables observed to have high
RSR are likely to have high LR as well.

5.3 Extension: Locality

Recent research shows that VSIDS exhibits locality [20], defined with respect to
the community structure of the input CNF instance [20, 25, 1]. Intuitively, if the
solver is currently working within a community, it is best to continue focusing on
the same community rather than exploring another. We hypothesize that high
LR variables also exhibit locality, that is, the branching heuristic can achieve
higher LR by restricting exploration.

Inspired by the VSIDS decay, this extension multiplies the Qv of every unas-
signed variable v by 0.95 after each conflict (see line 5 in Algorithm 3). Again,
we did not change the definition of the reward. The extension simply discour-
ages the algorithm from exploring inactive variables. This extension is similar to

Algorithm 2 Pseudocode for ERWA as a branching heuristic with the RSR
extension. The pseudocode Algorithm1.method(...) is calling out to the code in
Algorithm 1. The procedure PickBranchLit is unchanged.
1: procedure Initialize
2: Algorithm1.Initialize()
3: for v ∈ V ars do . V ars is the set of Boolean variables in the input CNF.
4: Reasonedv ← 0 . The number of learnt clauses v reasoned in gen-

erating since Assignedv.

5:
6: procedure AfterConflictAnalysis(learntClauseV ars ⊆ V ars, conflictSide ⊆ V ars)
7: Algorithm1.AfterConflictAnalysis(learntClauseV ars, conflictSide)

8: for v ∈ (
⋃

u∈learntClauseV ars
reason(u)) \ learntClauseV ars do

9: Reasonedv ← Reasonedv + 1

10:
11: procedure OnAssign(v ∈ V ars)
12: Algorithm1.OnAssign()
13: Reasonedv ← 0

14:
15: procedure OnUnassign(v ∈ V ars)
16: Interval← LearntCounter − Assignedv
17: if Interval > 0 then . Interval = 0 is possible due to restarts.
18: r ← Participatedv/Interval. . r is the LR.
19: rsr ← Reasonedv/Interval. . rsr is the RSR.
20: Qv = (1− α) ·Qv + α · (r + rsr) . Update the EMA incrementally.

Algorithm 3 Pseudocode for ERWA as a branching heuristic with the locality
extension. AfterConflictAnalysis is the only procedure modified.
1: procedure AfterConflictAnalysis(learntClauseV ars ⊆ V ars, conflictSide ⊆ V ars)
2: Algorithm2.AfterConflictAnalysis(learntClauseV ars, conflictSide)
3: U ← {v ∈ V ars | isUnassigned(v)}
4: for v ∈ U do
5: Qv ← 0.95×Qv.

the decay reinforcement model [13, 32] where unplayed arms are penalized by a
multiplicative decay. The implementation is optimized to do the multiplications
in batch. For example, suppose variable v is unassigned for k conflicts. Rather
than executing k updates of Qv ← 0.95×Qv, the implementation simply updates
once using Qv ← 0.95k ×Qv.

5.4 Putting It All Together to obtain the Learning Rate Branching
(LRB) Heuristic

The learning rate branching (LRB) heuristic refers to ERWA in the MAB ab-
straction with the RSR and locality extensions. We show that LRB is better at
optimizing LR than the other branching heuristics considered, and subsequently
has the best overall performance of the bunch.

6 Experimental Results

In this section, we discuss the detailed and comprehensive experiments we per-
formed to evaluate LRB. First, we justify the extensions of LRB by demonstrat-
ing their performance vis-a-vis improvements in learning rate. Second, we show

that LRB outperforms the state-of-the-art VSIDS and CHB branching heuris-
tic. Third, we show that LRB achieves higher rewards/LR than VSIDS, CHB,
and LRB sans the extensions. Fourth, we show the effectiveness of LRB within
a state-of-the-art CDCL solver, namely, CryptoMiniSat [29]. To better gauge
the results of these experiments, we quote two leading SAT solver developers,
Professors Audemard and Simon [3]:

“We must also say, as a preliminary, that improving SAT solvers is often
a cruel world. To give an idea, improving a solver by solving at least
ten more instances (on a fixed set of benchmarks of a competition) is
generally showing a critical new feature. In general, the winner of a com-
petition is decided based on a couple of additional solved benchmarks.”

6.1 Setup

The experiments are performed by running CDCL solvers with various branch-
ing heuristics on StarExec [30], a platform designed for evaluating logic solvers.
The StarExec platform uses the Intel Xeon CPU E5-2609 at 2.40GHz with 10240
KB cache and 24 GB of main memory, running on Red Hat Enterprise Linux
Workstation release 6.3, and Linux kernel 2.6.32-431.1.2.el6.x86 64. The bench-
marks for the experiments consist of all the instances from the previous 4 SAT
Competitions (2014, 2013, 2011, and 2009), in both the application and hard
combinatorial categories. For each instance, the solver is given 5000 seconds of
CPU time and 7.5GB of RAM, abiding by the SAT Competition 2013 limits.

Our experiments test different branching heuristics on a base CDCL solver,
where the only modification is to the branching heuristic to give a fair apple-to-
apple comparison. Our base solver is MiniSat version 2.2.0 [12] (simp version)
with one modification to use the popular aggressive LBD-based clause deletion
proposed by the authors of the Glucose solver in 2009 [2]. Since MiniSat is a
relatively simple solver with very few features, it is ideal for our base solver
to better isolate the effects swapping branching heuristics in our experiments.
Additionally, MiniSat is the basis of many competitive solvers and aggressive
LBD-based clause deletion is almost universally implemented, hence we believe
the results of our experiments will generalize to other solver implementations.

6.2 Experiment: Efficacy of Extensions to ERWA

In this experiment, we demonstrate the effectiveness of the extensions we pro-
posed for LRB. We modified the base solver by replacing the VSIDS branching
heuristic with ERWA. We then created two additional solvers, one with the RSR
extension and another with both the RSR and locality extensions. We ran these
3 solvers over the entire benchmark and report the number of instances solved
by these solvers within the time limit in Table 1. ERWA solves a total of 1212
instances, ERWA with the RSR extension solves a total of 1251 instances, and
ERWA with the RSR and locality extensions (i.e., LRB) solves a total of 1279
instances. See Figure 1 for a cactus plot of the solving times.

Benchmark Status ERWA
ERWA
+ RSR

ERWA
+ RSR + Locality

(LRB)

2009 Application
SAT 85 84 85
UNSAT 122 120 121
BOTH 207 204 206

2009 Hard Combinatorial
SAT 98 99 101
UNSAT 65 68 69
BOTH 163 167 170

2011 Application
SAT 105 105 103
UNSAT 98 101 98
BOTH 203 206 201

2011 Hard Combinatorial
SAT 95 88 93
UNSAT 45 61 65
BOTH 140 149 158

2013 Application
SAT 125 133 132
UNSAT 89 95 95
BOTH 214 228 227

2013 Hard Combinatorial
SAT 113 110 116
UNSAT 97 108 110
BOTH 210 218 226

2014 Application
SAT 111 108 116
UNSAT 82 77 77
BOTH 193 185 193

2014 Hard Combinatorial
SAT 87 92 91
UNSAT 73 87 89
BOTH 160 179 180

TOTAL (excluding duplicates)
SAT 638 632 654
UNSAT 574 619 625
BOTH 1212 1251 1279

Table 1. Comparison of our extensions on the base CDCL solver (MiniSat 2.2 with
aggressive LBD-based clause deletion). The entries show the number of instances solved
for the given solver and benchmark, the higher the better. Green is best, red is worst.

6.3 Experiment: LRB vs VSIDS vs CHB

In this experiment, we compare LRB with VSIDS [24] and CHB [19]. Our base
solver is MiniSat 2.2 which already implements VSIDS. We then replaced VSIDS
in the base solver with LRB and CHB to derive 3 solvers in total, with the
only difference being the branching heuristic. We ran these 3 solvers on the
entire benchmark and present the results in Table 2. LRB solves a total of 1279
instances, VSIDS solves a total of 1179 instances, and CHB solves a total of 1235
instances. See Figure 1 for a cactus plot of the solving times.

6.4 Experiment: LRB and Learning Rate

In this experiment, we measure the efficacy of the 5 branching heuristics from
Table 1 and Table 2 at maximizing the LR. For each instance in the benchmark,
we solve the instance 5 times with the 5 branching heuristics implemented in
the base solver. For each branching heuristic, we track all the observed rewards
(i.e., LR) and record the mean observed reward at the end of the run, regardless
if the solver solves the instance or not. We then rank the 5 branching heuristics
by their mean observed reward for that instance. A branching heuristic gets a
rank of 1 (resp. 5) if it has the highest (resp. lowest) mean observed reward
for that instance. For each branching heuristic, we then average its ranks over

Benchmark Status LRB VSIDS CHB

2009 Application
SAT 85 83 89
UNSAT 121 125 119
BOTH 206 208 208

2009 Hard Combinatorial
SAT 101 100 103
UNSAT 69 66 67
BOTH 170 166 170

2011 Application
SAT 103 95 106
UNSAT 98 99 96
BOTH 201 194 202

2011 Hard Combinatorial
SAT 93 88 102
UNSAT 65 48 47
BOTH 158 136 149

2013 Application
SAT 132 127 137
UNSAT 95 86 79
BOTH 227 213 216

2013 Hard Combinatorial
SAT 116 115 122
UNSAT 110 73 96
BOTH 226 188 218

2014 Application
SAT 116 105 115
UNSAT 77 94 73
BOTH 193 199 188

2014 Hard Combinatorial
SAT 91 91 90
UNSAT 89 59 76
BOTH 180 150 166

TOTAL (excluding duplicates)
SAT 654 626 673
UNSAT 625 553 562
BOTH 1279 1179 1235

Table 2. Apple-to-apple comparison between branching heuristics (LRB, CHB, and
VSIDS) in a version of MiniSat 2.2 with aggressive LBD-based clause deletion. The
entries show the number of instances in the benchmark the given branching heuristic
solves, the higher the better. Green is best, red is worst. The LRB version (we dub as
MapleSAT), outperforms the others.

the entire benchmark and report these numbers in Table 3. The experiment
shows that LRB is the best heuristic in terms of maximizing the reward LR
(corresponding to a rank closest to 1) in almost every category. In addition, the
experiment shows that the RSR and locality extensions increase the observed
rewards relative to vanilla ERWA. Somewhat surprisingly, VSIDS and CHB on
average observe higher rewards (i.e., LR) than ERWA, despite the fact that
VSIDS and CHB are designed without LR as an explicit objective. This perhaps
partly explains the effectiveness of those two heuristics.

6.5 Experiment: LRB vs State-Of-The-Art CDCL

In this experiment, we test how LRB-enchanced CryptoMiniSat competes against
the state-of-the-art solvers CryptoMiniSat [29], Glucose [4], and Lingeling [6]
which all implement VSIDS. We modified CryptoMiniSat 4.5.3 [29] by replac-
ing VSIDS with LRB, leaving everything else unmodified. We ran unmodified
CryptoMiniSat, Glucose, and Lingeling, along with the LRB-enchanced Cryp-
toMiniSat on the benchmark and report the results in Table 4. LRB improved
CryptoMiniSat on 6 of the 8 benchmarks and solves 59 more instances overall.

Benchmark Status LRB ERWA ERWA + RSR VSIDS CHB

2009 Application
SAT 2.41 3.79 3.42 2.51 2.87
UNSAT 2.13 4.16 3.32 2.90 2.49
BOTH 2.25 4.01 3.36 2.74 2.65

2009 Hard Combinatorial
SAT 2.43 3.30 3.03 3.29 2.95
UNSAT 2.18 4.18 3.48 3.22 1.94
BOTH 2.33 3.66 3.21 3.26 2.53

2011 Application
SAT 2.25 3.61 3.02 2.77 3.35
UNSAT 2.14 3.82 3.22 3.49 2.33
BOTH 2.20 3.72 3.12 3.13 2.85

2011 Hard Combinatorial
SAT 2.57 3.47 2.98 3.46 2.53
UNSAT 2.57 3.72 3.32 3.54 1.85
BOTH 2.57 3.56 3.11 3.49 2.27

2013 Application
SAT 2.33 3.60 3.16 2.49 3.41
UNSAT 2.02 4.16 3.07 3.39 2.37
BOTH 2.19 3.85 3.12 2.89 2.95

2013 Hard Combinatorial
SAT 2.51 3.57 2.91 3.03 2.98
UNSAT 1.99 3.92 2.65 4.26 2.18
BOTH 2.24 3.75 2.78 3.65 2.58

2014 Application
SAT 2.27 3.68 3.21 2.50 3.35
UNSAT 2.24 4.34 3.20 2.82 2.40
BOTH 2.25 4.01 3.21 2.66 2.88

2014 Hard Combinatorial
SAT 2.43 3.51 3.03 2.78 3.26
UNSAT 1.81 4.38 2.69 3.82 2.30
BOTH 2.11 3.96 2.85 3.31 2.76

TOTAL (excluding duplicates)
SAT 2.45 3.53 3.10 2.72 3.20
UNSAT 2.12 4.08 3.10 3.41 2.30
BOTH 2.28 3.81 3.10 3.07 2.74

Table 3. The average ranking of observed rewards compared between different branch-
ing heuristics in MiniSat 2.2 with aggressive LBD-based clause deletion. The lower the
reported number, the better the heuristic is at maximizing the observed reward relative
to the others. Green is best, red is worst.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 200 400 600 800 1000 1200 1400

T
im

e
 (

s
)

of Solved Instances

VSIDS
ERWA

CHB
ERWA + RSR

LRB

Fig. 1. A cactus plot of the 5 branching heuristics in MiniSat 2.2 with aggressive
LBD-based clause deletion. The benchmark consists of the 4 most recent SAT Com-
petition benchmarks (2014, 2013, 2011, 2009) including both the application and hard
combinatorial categories, excluding duplicate instances. A point (x, y) on the plot is
interpretted as: y instances in the benchmark took less than x seconds to solve for the
branching heuristic. The further right and further down, the better.

Benchmark Status CMS with LRB CMS with VSIDS Glucose Lingeling

2009 Application
SAT 85 87 83 80
UNSAT 140 143 138 141
BOTH 225 230 221 221

2009 Hard Combinatorial
SAT 102 95 90 98
UNSAT 71 65 70 83
BOTH 173 160 160 181

2011 Application
SAT 106 97 94 94
UNSAT 122 129 127 134
BOTH 228 226 221 228

2011 Hard Combinatorial
SAT 86 86 80 88
UNSAT 57 49 44 66
BOTH 143 135 124 154

2013 Application
SAT 115 109 104 100
UNSAT 120 115 111 122
BOTH 235 224 215 222

2013 Hard Combinatorial
SAT 116 114 115 114
UNSAT 114 101 106 117
BOTH 230 215 221 231

2014 Application
SAT 107 102 99 101
UNSAT 118 127 120 141
BOTH 225 229 219 242

2014 Hard Combinatorial
SAT 89 85 79 89
UNSAT 122 100 93 119
BOTH 211 185 172 208

TOTAL (excluding duplicates)
SAT 619 598 575 589
UNSAT 738 700 685 782
BOTH 1357 1298 1260 1371

Table 4. Apple-to-apple comparison between four state-of-art solvers: CryptoMiniSat
(CMS) with LRB heuristic, CMS with VSIDS, Glucose, and Lingeling. The table shows
the number of instances solved per SAT Competition benchmark, categorized as SAT
or UNSAT instances. CMS with LRB (we dub as MapleCMS) outperforms CMS with
VSIDS on most benchmarks.

7 Related Work

The Chaff solver introduced the VSIDS branching heuristic in 2001 [24]. Al-
though many branching heuristics have been proposed [16, 7, 28, 15, 22, 17],
VSIDS and its variants remain as the dominant branching heuristic employed
in modern CDCL SAT solvers. Carvalho and Marques-Silva used rewards based
on learnt clause length and backjump size to improve VSIDS [10]. More pre-
cisely, the bump value of VSIDS is increased for short learnt clauses and/or long
backjumps. Their usage of rewards is unrelated to the definition of rewards in
the reinforcement learning and multi-armed bandits context. Lagoudakis and
Littman used reinforcement learning to dynamically switch between a fixed set
of 7 well-known SAT branching heuristics [18]. Their technique requires offline
training on a class of similar instances. Loth et al. used multi-armed bandits
for directing the growth of the search tree for Monte-Carlo Tree Search [21].
The rewards are computed based on the relative depth failure of the tree walk.
Fröhlich et al. used the UCB algorithm from multi-armed bandits to select the
candidate variables to define the neighborhood of a stochastic local search for
the theory of bitvectors [14]. The rewards they are optimizing is to minimize the
number of unsatisfied clauses. Liang et al. also applied ERWA as a branching
heuristic called CHB [19]. As stated earlier, CHB is neither an optimization nor
learning algorithm since the rewards are computed on past events.

8 Conclusions and Future Work

In this paper, we provide three main contributions, and each has potential for
further enhancements.

Contribution I: We define LR as a metric for the branching heuristic to op-
timize. LR captures the intuition that the branching heuristic should assign
variables which are likely to generate a high quantity of learnt clauses with
no regards to the “quality” of those clauses [2]. A new metric that cap-
tures quality should encourage better clause learning. Or perhaps branching
heuristics can be stated as a multi-objective optimization problem where a
good heuristic would balance the tradeoff between quality and quantity of
learnt clauses.
Additionally, we would like to stress that the starting point for this research
was a model of CDCL SAT solvers as an interplay between branching heuris-
tic and clause learning. The branching heuristic guides the search, and has
great impact on the clauses that will be learnt during the run of the solver.
In the reverse direction, clause learning provides feedback to guide branching
heuristics like VSIDS, CHB, and LRB. We plan to explore a mathematical
model where the branching heuristic is an inductive engine (machine learn-
ing), and the conflict analysis is a deductive feedback mechanism. Such a
model could enable us to prove complexity theoretic results that at long last
might explain why CDCL SAT solvers are so efficient for industrial instances.

Contribution II: We chose MAB as the optimization method in this paper,
but many other optimization techniques can be applied to optimize LR. The
most natural extension to our work here is to incorporate the internal state of
the solver and apply stateful reinforcement learning. The state, for example,
could be the current community the solver is focused on and exploiting this
information could improve the locality of the branching heuristic [20].

Contribution III: We based LRB on one MAB algorithm, ERWA, due to its
low computational overhead. The literature of multi-armed bandits is very
rich, and provides many alternative algorithms with a wide spectrum of
characteristics and assumptions. It is fruitful to explore the MAB literature
to determine the best algorithm for branching in CDCL SAT solvers.

Finally, as our experimental results suggest, the line of research we have just
started exploring, namely, branching heuristics as machine learning algorithms
(and branching as an optimization problem) has already shown considerable
improvement over previous state-of-the-art branching heuristics such as VSIDS
and CHB, and affords a rich design space of heuristics to explore in the future.

References

[1] Ansótegui, C., Giráldez-Cru, J., Levy, J.: Theory and Applications of Satisfiability
Testing – SAT 2012: 15th International Conference, Trento, Italy, June 17-20,
2012. Proceedings, chap. The Community Structure of SAT Formulas, pp. 410–
423. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

[2] Audemard, G., Simon, L.: Predicting Learnt Clauses Quality in Modern SAT
Solvers. In: Proceedings of the 21st International Jont Conference on Artifical In-
telligence. pp. 399–404. IJCAI’09, Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA (2009)

[3] Audemard, G., Simon, L.: Refining Restarts Strategies for SAT and UNSAT. In:
Proceedings of the 18th International Conference on Principles and Practice of
Constraint Programming. pp. 118–126. CP’12, Springer-Verlag, Berlin, Heidelberg
(2012)

[4] Audemard, G., Simon, L.: Glucose 2.3 in the SAT 2013 Competition. In: Proceed-
ings of SAT Competition 2013. pp. 42–43 (2013)

[5] Biere, A.: Theory and Applications of Satisfiability Testing – SAT 2008: 11th
International Conference, SAT 2008, Guangzhou, China, May 12-15, 2008. Pro-
ceedings, chap. Adaptive Restart Strategies for Conflict Driven SAT Solvers, pp.
28–33. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

[6] Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. FMV
Report Series Technical Report 10(1) (2010)

[7] Biere, A., Fröhlich, A.: Theory and Applications of Satisfiability Testing – SAT
2015: 18th International Conference, Austin, TX, USA, September 24-27, 2015,
Proceedings, chap. Evaluating CDCL Variable Scoring Schemes, pp. 405–422.
Springer International Publishing, Cham (2015)

[8] Brown, R.G.: Exponential Smoothing for Predicting Demand. In: Operations Re-
search. vol. 5, pp. 145–145 (1957)

[9] Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: Automat-
ically Generating Inputs of Death. In: Proceedings of the 13th ACM Conference
on Computer and Communications Security. pp. 322–335. CCS ’06, ACM, New
York, NY, USA (2006)

[10] Carvalho, E., Marques-Silva, J.P.: Using Rewarding Mechanisms for Improving
Branching Heuristics. In: Proceedings of the Seventh International Conference on
Theory and Applications of Satisfiability Testing (2004)

[11] Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded Model Checking Using Satis-
fiability Solving. Form. Methods Syst. Des. 19(1), 7–34 (2001)

[12] Eén, N., Sörensson, N.: Theory and Applications of Satisfiability Testing: 6th
International Conference, SAT 2003, Santa Margherita Ligure, Italy, May 5-8,
2003, Selected Revised Papers, chap. An Extensible SAT-solver, pp. 502–518.
Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

[13] Erev, I., Roth, A.E.: Predicting How People Play Games: Reinforcement Learn-
ing in Experimental Games with Unique, Mixed Strategy Equilibria. American
Economic Review 88(4), 848–881 (1998)

[14] Fröhlich, A., Biere, A., Wintersteiger, C., Hamadi, Y.: Stochastic Local Search
for Satisfiability Modulo Theories. In: Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence. pp. 1136–1143. AAAI’15, AAAI Press (2015)

[15] Gershman, R., Strichman, O.: Hardware and Software, Verification and Testing:
First International Haifa Verification Conference, Haifa, Israel, November 13-16,
2005, Revised Selected Papers, chap. HaifaSat: A New Robust SAT Solver, pp.
76–89. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

[16] Goldberg, E., Novikov, Y.: BerkMin: A Fast and Robust Sat-solver. Discrete Appl.
Math. 155(12), 1549–1561 (Jun 2007)

[17] Jeroslow, R.G., Wang, J.: Solving Propositional Satisfiability Problems. Annals
of Mathematics and Artificial Intelligence 1(1-4), 167–187 (Sep 1990)

[18] Lagoudakis, M.G., Littman, M.L.: Learning to Select Branching Rules in the
DPLL Procedure for Satisfiability. Electronic Notes in Discrete Mathematics 9,
344–359 (2001)

[19] Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Exponential Recency
Weighted Average Branching Heuristic for SAT Solvers. In: Proceedings of AAAI-
16 (2016)

[20] Liang, J.H., Ganesh, V., Zulkoski, E., Zaman, A., Czarnecki, K.: Understanding
VSIDS Branching Heuristics in Conflict-Driven Clause-Learning SAT Solvers. In:
Hardware and Software: Verification and Testing, pp. 225–241. Springer (2015)

[21] Loth, M., Sebag, M., Hamadi, Y., Schoenauer, M.: Principles and Practice of Con-
straint Programming: 19th International Conference, CP 2013, Uppsala, Sweden,
September 16-20, 2013. Proceedings, chap. Bandit-Based Search for Constraint
Programming, pp. 464–480. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

[22] Marques-Silva, J.P.: The Impact of Branching Heuristics in Propositional Satisfia-
bility Algorithms. In: Proceedings of the 9th Portuguese Conference on Artificial
Intelligence: Progress in Artificial Intelligence. pp. 62–74. EPIA ’99, Springer-
Verlag, London, UK, UK (1999)

[23] Marques-Silva, J.P., Sakallah, K.A.: GRASP-A New Search Algorithm for Sat-
isfiability. In: Proceedings of the 1996 IEEE/ACM International Conference on
Computer-aided Design. pp. 220–227. ICCAD ’96, IEEE Computer Society, Wash-
ington, DC, USA (1996)

[24] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an Efficient SAT Solver. In: Proceedings of the 38th Annual Design Au-
tomation Conference. pp. 530–535. DAC ’01, ACM, New York, NY, USA (2001)

[25] Newsham, Z., Ganesh, V., Fischmeister, S., Audemard, G., Simon, L.: Impact of
Community Structure on SAT Solver Performance. In: Theory and Applications
of Satisfiability Testing–SAT 2014, pp. 252–268. Springer (2014)

[26] Pipatsrisawat, K., Darwiche, A.: A Lightweight Component Caching Scheme for
Satisfiability Solvers. In: Proceedings of the 10th International Conference on
Theory and Applications of Satisfiability Testing. pp. 294–299. SAT’07, Springer-
Verlag, Berlin, Heidelberg (2007)

[27] Rintanen, J.: Planning and SAT. Handbook of Satisfiability 185, 483–504 (2009)
[28] Ryan, L.: Efficient Algorithms for Clause-Learning SAT Solvers. Master’s thesis,

Simon Fraser University (2004)
[29] Soos, M.: CryptoMiniSat v4. SAT Competition p. 23 (2014)
[30] Stump, A., Sutcliffe, G., Tinelli, C.: Automated Reasoning: 7th International Joint

Conference, IJCAR 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 19-22, 2014. Proceedings, chap. StarExec: A Cross-
Community Infrastructure for Logic Solving, pp. 367–373. Springer International
Publishing, Cham (2014)

[31] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, vol. 1. MIT
press Cambridge (1998)

[32] Yechiam, E., Busemeyer, J.R.: Comparison of basic assumptions embedded in
learning models for experience-based decision making. Psychonomic Bulletin &
Review 12(3), 387–402

[33] Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient Conflict
Driven Learning in a Boolean Satisfiability Solver. In: Proceedings of the 2001
IEEE/ACM International Conference on Computer-aided Design. pp. 279–285.
ICCAD ’01, IEEE Press, Piscataway, NJ, USA (2001)

