
Online Bayesian Moment Matching based SAT Solver Heuristics

Haonan Duan * 1 2 Saeed Nejati * 1 George Trimponias 3 Pascal Poupart 1 2 Vijay Ganesh 1

Abstract
In this paper, we present a Bayesian Moment
Matching (BMM) based method aimed at solv-
ing the initialization problem in Boolean SAT
solvers. The initialization problem can be stated
as follows: given a SAT formula φ, compute
an initial order over the variables of φ and val-
ues/polarity for these variables such that the run-
time of SAT solvers on input φ is minimized.
At the start of a solver run, our BMM-based
methods compute a posterior probability distri-
bution for an assignment to the variables of the
input formula after analyzing its clauses, which
will then be used by the solver to initialize its
search. We perform extensive experiments to
evaluate the efficacy of our BMM-based heuristic
against 4 other initialization methods (random,
survey propagation, Jeroslow-Wang, and default)
in state-of-the-art solvers, MapleCOMSPS and
MapleLCMDistChronotBT over the SAT compe-
tition 2018 application benchmark, as well as the
best-known solvers in the cryptographic category,
namely, CryptoMiniSAT, Glucose, and Maple-
SAT. On the cryptographic benchmark, BMM-
based solvers out-perform all other initialization
methods. Further, the BMM-based MapleCOM-
SPS significantly out-perform the same solver
using all other initialization methods by 12 addi-
tional instances solved and better average runtime,
over the SAT 2018 competition benchmark.

1. Introduction
Over the last two decades, modern conflict-driven
clause-learning (CDCL) Boolean satisfiability (SAT)
solvers (Marques-Silva & Sakallah, 1999; Moskewicz et al.,
2001) have had a transformative impact on many disciplines

*Equal contribution 1University of Waterloo 2Vector In-
stitute 3Huawei Noah’s Ark Lab. Correspondence to: Pas-
cal Poupart <ppoupart@uwaterloo.ca>, Vijay Ganesh <vi-
jay.ganesh@uwaterloo.ca>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

such as verification (Bradley, 2011), testing (Cadar et al.,
2008), security (Avgerinos et al., 2011), and AI (Rintanen,
2009). The reason for this phenomenon is the dramatic
improvement in the ability of SAT solvers in solving large
real-world Boolean formulas with tens of millions of vari-
ables and clauses. While this performance is impressive, the
demand for ever-more efficient solvers continues to grow
unabated. CDCL solvers search the space of variable assign-
ments exhaustively by starting with an empty assignment
and repeatedly branching on variables to which truth values
are assigned. When a conflict is found, the search backtracks
by undoing one or several variable assignments. Addition-
ally, a conflict analysis procedure finds a clause that is added
to the formula to help the solver avoid the same conflict in
the future. The search ends when a satisfying assignment is
found or the space is proven to be unsatisfiable.

In the last 5 years, it has been shown that machine learn-
ing (ML) based heuristics for branching and restarts can
dramatically improve SAT solver performance, ushering a
new approach to solver design (Liang et al., 2016; 2017b;
2018). This impact can best be explained via the view that
solvers are fundamentally proof systems, and machine learn-
ing methods are powerful ways of initializing, sequencing
and selecting proof rules to optimally and adaptively solve
formulas. Inspired by this success, we propose a Bayesian
Moment Matching (BMM) based method to solve the ini-
tialization problem in SAT solvers.

The Initialization Problem in SAT Solvers. We define
the initialization problem as follows: given a SAT formula
φ, compute an initial order over the variables of φ and
values/polarity for them such that the runtime of CDCL
solvers on input φ is minimized. By initial order, we mean a
total order over variables chosen by the CDCL solver S (and
similarly, by initial value assignment we mean a mapping
from variables to truth values) at the beginning of its search,
i.e., before any variables have been branched upon by the
solver S. Solver developers have known for a long time
that the initial order and value assignment to the variables
of an input formula can have a significant impact on the
performance of CDCL SAT solvers.

BMM-based Method to Solve the Initialization Problem
in SAT Solvers. The BMM method proposed in this paper
is used as a pre-processor to a CDCL SAT solver. Our

Online Bayesian Moment Matching based SAT Solver Heuristics

method takes as input a SAT formula φ and outputs a total
order and assignment over the variables of φ. The method
assigns a Bernoulli random variable to each variable of the
input formula φ, associated with an unknown probability
p of the variable being set to true (and 1− p represents its
probability of being false). For every clause C in the input
formula φ, the belief about p is updated using Bayesian
inference and moment matching. After our BMM method
has scanned all the input clauses, it arrives at a posterior
distribution that suggests an assignment that ideally satisfies
most of the clauses (if not all of them).

The posterior distribution thus obtained is used to construct
an assignment A that is most likely to satisfy the formula
φ. One could treat such an assignment as a good guess
for a satisfiable assignment to the formula φ (assuming
it is satisfiable). Even if the formula is unsatisfiable, the
hypothesis of our work is that the assignment A can be
used as a good initial value (aka, polarity) selection for the
variables in φ, as the CDCL solver starts its search. Further,
the variables can be ranked in decreasing order based on
the probability associated with their truth value in A (more
certain the BMM is about a variable’s value, the higher it is
in the variable selection ranking). This ranking can be used
as an initial variable selection order 1 by the CDCL SAT
solver’s branching heuristic.

An additional important point about our approach is that
when the clause-learning method in the BMM-enhanced
CDCL solver deductively learns a unit or a binary clause, it
is used to update the posterior probability of the variables ap-
propriately. The motivation behind this corrective feedback
method from clause learning to the posterior probabilities
of variables is that these BMM-based polarities are used to
guide the solver’s polarity/value selection heuristic during
the run of the solver (not merely during the initialization),
and thus get a further boost in performance.

We perform extensive experiments to test the efficacy of our
BMM-based heuristics against state-of-the-art solvers. We
show that BMM-based initialization of variable order and
value selection in the context of CDCL SAT solvers can be
effective for real-world instances obtained from verification,
program analysis, software engineering, and cryptanalysis.

1.1. Contributions

1. BMM-based Initialization Method. We present the
design and implementation of a novel BMM-based
initialization method to address the “initialization prob-

1The term variable selection or branching method refers to
a procedure that computes a total order over the variables of an
input formula and chooses the highest-ranked variable to assign a
value to, during the run of the solver. The term value or polarity
selection method refers to computing a mapping from variables of
an input formula to truth values during the run of a solver.

lem” for value selection and variable order in CDCL
SAT solvers. The key idea is to use clauses in the input
formula as evidence to update a probability distribu-
tion of value assignment for each variable in the input
formula. Our method can incrementally update and
improve the posterior probability during the search by
taking into account unit and binary learnt clauses in a
corrective feedback loop. (Section 4)

2. Evaluation on Cryptographic Instances. We per-
form an apple-to-apple comparison of BMM-based
versions of CryptoMiniSAT, MapleSAT, and Glucose
against their respective configurations using 4 other
initialization methods on a set of hard cryptographic
benchmarks encoding round reduced SHA-1 inver-
sion attacks, with a timeout of 4 hours. We used
these solvers since they are among the best solvers
for hard cryptographic instances. More precisely, for
each solver, we compared our BMM-based method
against 4 other initialization methods (namely, default,
random, Jeroslow-Wang (Jeroslow & Wang, 1990),
and Survey-propagation (Braunstein et al., 2005)). Our
BMM-based method significantly outperforms all other
methods, where BMM-based MapleSAT inverts all
of the given targets and BMM-based CryptoMiniSAT
solves the instances 50% faster on average. (Sec. 6.1)

3. Evaluation on SAT 2018 Application Instances2.
We further compare the efficacy of BMM-based ver-
sions of MapleLCMDistChronoBT (winner of SAT
2018 competition) and MapleCOMSPS (Gold/Silver
medalist in SAT 2016/2017 competition), against the
corresponding respective versions with 4 other initial-
ization methods (listed above). We observe that our
BMM-based method outperforms all other versions
with 12 additional instances solved and an average
runtime speedup of 15.2%, compared to the next best
method, namely, Jeroslow-Wang. (Section 6.2)

4. BMM Consistency Proof in Naı̈ve Bayes Model.
While BMM has been successful in many set-
tings (Omar, 2016; Hsu & Poupart, 2016; Jaini &
Poupart, 2016; Rashwan et al., 2016), the consistency
of BMM is still an open problem. We prove the con-
sistency of BMM in the naı̈ve Bayes model by formu-
lating it as a stochastic approximation (SA) problem.
Even though BMM for SAT is unarguably more compli-
cated than for the naı̈ve Bayes model, they do share the
important property that the moment matching method
is applied to the same distribution family; furthermore,
they can both be formulated as a SA problem. There-
fore, a formal proof of the consistency of BMM on
the naı̈ve Bayes model based on SA theory gives us

2http://sat2018.forsyte.tuwien.ac.at/
benchmarks/

http://sat2018.forsyte.tuwien.ac.at/benchmarks/
http://sat2018.forsyte.tuwien.ac.at/benchmarks/

Online Bayesian Moment Matching based SAT Solver Heuristics

some motivation and confidence for applying BMM for
the SAT problem from a theoretical perspective (see
Section 2 and the supplemental material).

2. Bayesian Moment Matching
In this section, we give an overview of the Bayesian moment
matching algorithm with an application to the naı̈ve Bayes
model and provide a consistency proof of BMM in this fun-
damental setting. BMM for mixture models was proposed
to prevent the exponential growth of mixture components in
online Bayesian learning (Jaini & Poupart, 2016; Rashwan
et al., 2016). A distribution belonging to the same family as
the prior is used to approximate the posterior by matching
the sufficient moments, in order to reduce the complexity
of posterior distributions. BMM has been successful in the
context of topic modelling (Omar, 2016; Hsu & Poupart,
2016), hidden Markov models (Jaini et al., 2016) and sum
product networks (Rashwan et al., 2016).

Problem Setup. We use Z to represent a binary hidden
variable and I to represent a binary observable variable.
Furthermore, we assume that the conditional distribution
of I|Z is fully known. c1 and c2 are used to denote
P (I = 0|Z = 0) and P (I = 0|Z = 1) respectively.
Let θ represent the unknown probability of the hidden vari-
able, i.e., P (Z = 0), the quantity we wish to infer from
i.i.d. observations {I1, I2, . . . } in an online and Bayesian
fashion.

θ

P (Z = 0)

Z

hidden variable

I
observed variable

A beta distribution Beta(θ;α0, β0) is chosen as the ini-
tial prior over θ, i.e., P (θ) = Beta(θ;α0, β0) =

1
B(α0,β0)

θα0−1(1−θ)β0−1, whereB(α0, β0) represents the
beta function of α0 and β0 (Johnson et al., 1995). We choose
a beta distribution because its support is a probability sim-
plex and it is also conjugate with the likelihood (MacKay,
2002). The posterior after observing the first evidence I1 is:

P (θ|I1 = 0) ∝ P (θ)P (I1 = 0|θ)
∝ θα0−1(1− θ)β0−1[θc1 + (1− θ)c2]
∝ c1θα0(1− θ)β0−1 + c2θ

α0−1(1− θ)β0

P (θ|I1 = 1) ∝ (1− c1)θα0(1− θ)β0−1

+ (1− c2)θα0−1(1− θ)β0

The equations above suggest that the posterior is a mix-
ture of two beta distributions after the first point is ob-
served. Therefore, the number of mixture components
in the posterior distributions will grow exponentially by
a factor of two for each new observation, which makes

inference intractable. To solve this problem, BMM approxi-
mates the mixture posterior with a single Beta distribution
P̃ (θ1) = Beta(θ1;α1, β1) by matching the first and second
moments. Concretely, α1, β1 can be obtained by solving:

Eθ1∼Beta(θ1;α1,β1)[θ1] := Eθ∼P (θ|I1)[θ]

Eθ1∼Beta(θ1;α1,β1)[θ
2
1] := Eθ∼P (θ|I1)[θ

2],

where Eθ∼P (θ|I1)[f(θ)] =
∫
f(θ)P (θ|I1)dθ.

Consistency Analysis. The above process is repeated for
each new observation. The approximate Beta posterior from
the current step serves as the prior over θ for the next step.
Even though some information is lost when we use a single
beta distribution to approximate a mixture of betas, we prove
the consistency of BMM by formulating it as a stochastic
approximation (SA) problem.

If we apply BMM n consecutive times with observations
{I1, . . . , In}, our nth estimate θn for θ will be by induc-
tion distributed according to Beta(θn;αn, βn), for suit-
able αn, βn. Let µn = αn

αn+βn
denote the mean of θn,

τn = αn + βn the precision of θn, and In+1 the bi-
nary random variable for a new instance. By matching
the first two moments of the exact posterior P (θn|In+1)
at step n + 1 with the moments of a Beta distribution
Beta(θn+1;αn+1, βn+1), we get two update equations, one
for αn+1 and another for βn+1. Equivalently, we can write
the update equations in terms of µn+1 and τn+1 using
αn, βn, µn, τn (µn, τn are functions of αn, βn). For in-
stance, the update equation for µn+1 is:

µn+1 =µn +
1

τn + 1

[
(

c1αn
c1αn + c2βn

− µn)(1− In+1)

+ (
(1− c1)αn

(1− c1)αn + (1− c2)βn
− µn)In+1

]
.

(1)
We can similarly write the update equation for τn+1.

The following theorem asserts that our BMM scheme has
the property that the mean of the posterior distribution in
Eq. (1) eventually converges to the true θ w.p. 1.

Theorem 1. When performing BMM with the first and sec-
ond moment in the naı̈ve Bayes model, the update in Eq. (1)
for the first moment converges almost surely to the true
underlying θ: Pr(limn→∞ µn = θ) = 1.

The proof of the theorem is technical and included in the
supplemental material. Briefly, we show that Eq. (1) satis-
fies the four sufficient conditions for consistency of an SA
problem described in (Chen & Ryzhov, 2020).

3. BMM for SAT
We introduce a novel Bayesian perspective to solve the SAT
problem. In our Bayesian formulation, each variable in

Online Bayesian Moment Matching based SAT Solver Heuristics

θi = P (xi = T) ∼ Beta(αi, βi),
for 1 ≤ i ≤ n

P (Ci = T |x1, · · · , xn)

P (xi = T |Ci = T),
for 1 ≤ i ≤ n

Pick a clause Ci

Bayes’ theorem

Project onto
Beta

distributions
by matching

moments

Figure 1. A Beta prior is assigned to each variable in the beginning.
The posteriors are then calculated each time when encountering a
new clause. We project the posteriors back to Beta distributions
using BMM, which serves as priors for the next clause.

the SAT formula is a Bernoulli random variable with an
unknown probability being assigned to T (true) and each
clause is treated as evidence. Our objective is to learn the
unknown probability associated with each variable by BMM,
which we illustrate with a toy SAT instance:

C1 : x ∨ y ∨ ¬z
C2 : x ∨ y ∨ z
C3 : x ∨ ¬y ∨ z
C4 : ¬x ∨ ¬y ∨ ¬z

We use θx, θy, θz to denote P (x = T), P (y = T), P (z =
T) respectively. To estimate θx, θy, θz by Bayesian infer-
ence, we assume that each of them is initially distributed
according to a Beta prior and that they are mutually inde-
pendent. Concretely, the prior for the joint distribution is:

P (θx, θy, θz) =
∏

i=x,y,z

Beta(θi;αi, βi).

An instance is satisfiable if all of its clauses are satisfied.
To satisfy a clause at least one of the literals needs to be
satisfied, which can be done in many different ways if we
have many literals in a clause. However, there is only one
way to falsify the clause. Therefore, we define our like-
lihood function as the complement probability of falsify-
ing the observed clause. For example, to falsify clause
C1, we should have x = F, y = F, z = T , and thus:
P (C1|θx, θy, θz) = 1− (1− θx) · (1− θy) · θz . The poste-
rior after seeing the first clause C1 is:

P (θx, θy, θz|C1) ∝ P (θx, θy, θz)P (C1|θx, θy, θz)
∝ P (θx, θy, θz)[1− (1− θx)(1− θy)θz]
∝ Beta(θx;αx, βx) ·Beta(θy;αy, βy) ·Beta(θz;αz, βz)

− βx
αx + βx

βy
αy + βy

αz
αz + βz

Beta(θx;αx, βx + 1)

·Beta(θy;αy, βy + 1) ·Beta(θz;αz + 1, βz)

Since the likelihood 1 − (1 − θx)(1 − θy)θz can also be
expressed as the sum of joint probabilities, we can see that
the posterior is a mixture of products of Beta distributions.
The number of mixture components will grow exponentially
as more clauses are encountered. To solve this intractability
issue, we approximate the true mixture P (θx, θy, θz|C1) by
a single product of Beta distributions using BMM:

P̃ (θ̃x, θ̃y, θ̃z) =
∏

i=x,y,z

Beta(θ̃i; α̃i, β̃i)

The parameters α̃x, β̃x are then computed by matching the
first and second moments of the marginal distribution of θx:

Eθ̃x∼Beta(θ̃x;α̃x,β̃x)[θ̃x] := Eθx∼Pθx (θx|C1)[θx]

Eθ̃x∼Beta(θ̃x;α̃x,β̃x)[θ̃
2
x] := Eθx∼Pθx (θx|C1)[θ

2
x],

where Pθx(θx|C) =
∫ 1

0

∫ 1

0
P (θx, θy, θz|C)dθydθz . The

parameters α̃y, β̃y, α̃z, β̃z are computed similarly. Subse-
quently, P̃ (θ̃x, θ̃y, θ̃z) is used as the prior when C2 is ob-
served. During one epoch, the above update is repeated once
for each clause. Fig. 2 shows how P (θx), P (θy), P (θz)
change as the number of epochs increases for this example.

The BMM algorithm for a general SAT instance is discussed
in more detail in the supplemental material.

4. Bayesian Moment Matching as a SAT
Solver Component

The learned probabilities collectively represent an assign-
ment to the variables that maximizes the number of satisfied
clauses. If all of the clauses are satisfied, the assignment
represents a solution. There is no guarantee that the BMM
algorithm converges to a solution. Furthermore, BMM can-
not determine if an input formula is unsatisfiable (does not
have any solutions). Stand-alone BMM is an incomplete
solver. To make it a complete solver, we embed the BMM
as a component inside a complete solver (e.g. a CDCL SAT
solver). In this section, we discuss how we connect BMM as
a component to a CDCL SAT solver. In short, we run BMM
as a pre-processor component and initialize the search of
our CDCL solver.

To initialize the search procedure of a SAT solver, we tar-
getted the branching heuristic. Modern CDCL SAT solvers
commonly use look-back branching heuristics, which means
that they collect statistics about their variables during the
search, and maintain scores (a.k.a activities) for them so
that they can make educated guesses on which variable to
pick next in the future. For example, we know that CDCL
solvers (e.g., VSIDS or LRB branching heuristics) tend
to pick branches that are more likely to prove a subspace
unsatisfiable faster than methods that don’t maintain such
statistics (Liang et al., 2015). At each decision step, SAT

Online Bayesian Moment Matching based SAT Solver Heuristics

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

Epoch 0

θx
θy
θz

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

Epoch 3

θx
θy
θz

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

Epoch 10

θx
θy
θz

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

Epoch 20

θx
θy
θz

Figure 2. The probability density functions of θx, θy and θz for the example in section 3 using BMM update. As the number of
epochs increases, the densities of θy and θz are shifting towards 0 while θx is shifting towards 1. This suggests an assignment
x := T, y := F, z := F .

Input Formula

BMM

Explorer
Propagation + Decision

Corrective Feedback
Conflict analysis + Backjump

BMM Update

SAT

UNSAT

Initial
Polarities

Initial
Activities

Partial
Assignment

Conflict
Clause

Conflict
Clause

Figure 3. Overview of BMM as a component in a SAT Solver.

solvers ask two questions: which unassigned variable to pick
(Variable order) and what value to assign to that variable (Po-
larity/Value selection). It is well known that these heuristics
have a huge impact on the performance of a SAT solver. An
important question as described in the introduction is how to
initialize the variable values and the variable selection order
at the start of the search where there are no previously seen
data. This question is generally referred to as the initializa-
tion problem. We use BMM as a pre-processor that scans
the clauses and computes the preferred initialization values
before the search starts. We use 10 epochs for application
instances (each clause is seen ten times) and empirically
observed that it results in a good initial point while being
efficient.

BMM-based Initial Value Selection: As the learned prob-
abilities collectively represent an assignment to the variables

of the input formula that satisfies most of the clauses, it is
natural to hypothesize that they can be used as initial pre-
ferred values. We simply set the preferred value of a variable
to True if the first moment E(θx) > 0.5 and False otherwise.

BMM-based Initial Variable Selection: Successful
branching heuristics like VSIDS (Moskewicz et al., 2001)
and LRB (Liang et al., 2016) that are widely used in modern
SAT solvers, keep a score for each variable, called activ-
ity, which represents how much that variable was involved
in conflict analysis recently. The variable with the high-
est score will be picked as the decision variable. At the
start of the search, we do not have any information about
the variables and which one is preferred over the others.
Therefore it is very common to start from zero scores for
all variables and build the ranking of variables based on the
search statistics. However, having the learned probabilities,
we can prioritize the variables before the search starts. In
our experiments, we give higher priority to the variables
with less uncertainty about a polarity (high probability of
being either True or False). For each variable x, we define
the score(x) to be a number in the range [0.5, 1] as follows:

score(x) =

{
1− E(θx), E(θx) < 0.5

E(θx), E(θx) ≥ 0.5

This is the same as saying for a variable x
with the Beta(αx, βx) distribution: score(x) =
max(αx, βx)/(αx + βx). The score will be 1, if
BMM is certain that the variable x is False (E(θx) = 0), or
True (E(θx) = 1), in a satisfying assignment.

Updating Posterior During Search (BMM Update). Dur-
ing a CDCL search, the solver might reach a conflicting
state, where the partial assignment to the variables cannot
be extended to a full assignment. At that point, the solver
analyzes the root cause of this conflict and encodes this in-
formation as a clause (conflict clause). Conflict clauses are
implied by the original formula, so they can be added to the
original formula. The conflict clauses can thus be treated as

Online Bayesian Moment Matching based SAT Solver Heuristics

new evidence. In the case that we use BMM probabilities to
initialize polarities, the partial assignment that led to a con-
flict is derived from the BMM posterior distribution. This
means that the new evidence has the necessary information
to fix an inaccurate posterior. We update the posterior using
this corrective feedback. However, we do this only for unit
and binary clauses to keep the overhead low. We directly
update the polarity of variables in the conflict clause.

Figure 3 shows a high level block diagram of where BMM
fits in as a component in a CDCL SAT solver. The “Propa-
gation + Decision” block is responsible for expanding the
partial assignment by assigning values to unassigned vari-
ables and propagating this information to other variables.
This block receives initial values for the order of variables
and their preferred values from BMM. The “Conflict analy-
sis + Backjump” is responsible for correcting the mistakes
made by the explorer component. The BMM Update unit
gets a copy of the conflict clause returned by this component
and updates the probabilities. In other words, an approxi-
mate solution proposed by BMM is checked on the formula
(by propagation), and if it does not satisfy the formula, the
conflict analysis component gives corrective feedback about
the inaccuracy of the probabilities. The variable order com-
puted by our method is used only as an initial order for the
solver’s branching heuristic (VSIDS and LRB in the case
of MapleCOMSPS). When a conflict clause is learned, the
VSIDS or LRB scores will be updated for variables in that
clause, thus the branching heuristics are dynamic. These
scores (representing the order) are kept after each restart.
We do not change the restart policy of the baseline solvers.

5. Description of Other Initialization Methods
Default. Most CDCL solvers simply initialize the activity
scores of variables with zeroes and set the preferred polarity
of variables to false. In this work whenever we say default
or do not explicitly mention the initialization method, we
mean the all zero and all false initialization.

Random. To verify that our proposed initialization method
indeed improves the search and not randomly shuffles the
variables and values, we compare with random initialization
as a control experiment. In this method, polarities are ran-
domly picked with 0.5 probability between true and false,
and activity scores are set to a number between 0 and 1
picked uniformly at random.

Survey Propagation. Survey propagation is a message
passing algorithm that was designed to find solutions for
random k-SAT problems (Braunstein et al., 2005). They are
mostly believed to be the hardest to solve when their clause
to variable ratio is close to the experimental threshold of
SAT-UNSAT regions. Survey propagation works over the
factor graph representation of SAT instances. It generates

messages that surveys over clusters of ordinary messages,
and then uses these surveys to fix variables and simplify the
problem by decimation.

Jeroslow-Wang. Jeroslow and Wang proposed a static
branching heuristic (Jeroslow & Wang, 1990), which in
some modern solvers is used for computing initial scores
for literals. It assigns a score to each variable such that
the variables that appear in shorter clauses get a higher
score. The intuition is that these variables when assigned by
the solver, create unit clauses sooner than others and allow
unit propagation to imply many other literals. The score for
each variable is computed as score(x) =

∑
x∈C,C∈φ 2

−|C|,
where φ is the input formula and C is a clause in φ.

6. Experimental Results
In this section we present and discuss the experimental
evaluation of our BMM-based initialization method and
compare it against 4 other initialization methods described
in Section 5. We implemented the initialization methods
in all of the solvers in a modular way. In other words, we
kept all the implementation of solvers intact except for the
initialization methods, so we can have an apple-to-apple
comparison, between different versions of one solver.3

Cactus plots: The plots presented in this section are cactus
plots. Each data point (X,Y) shows that X instances are
solved under Y seconds. This means that solvers that are
further to the right are solving more instances and solvers
that are further to the bottom are solving instances faster.

For each combination of (solver, initialization method), we
experimented with 3 configurations: initializing 1) polarities
only, 2) activities only and 3) both of polarity and activity.
Due to lack of space, for each combination we only report
the best performing configuration. We observed that gen-
erally the third configuration performs the best, with the
exception of survey propagation, where initializing polarity
only performs better than the other two configurations.

6.1. Evaluation over Hard Cryptographic Instances

Experimental Setup. All jobs were run on Intel Xeon E5-
2667 CPUs at 3.20GHz and 8GB of RAM. We used cryp-
tographic instances encoding preimage of round reduced
SHA-1 hash function. We encoded 22 rounds of SHA-1
and used 50 randomly generated hash values to be inverted.
Time and memory limit for cryptographic instances was 4
hours and 8GB respectively.

Solver Descriptions. The solvers we used were MapleSAT
(Liang et al., 2016), Glucose-4 (Audemard & Simon, 2018)
and CryptoMiniSAT-5 (Soos, 2018). From the experiments

3The source code of our implementations is available at
https://github.com/saeednj/BMMSAT.

https://github.com/saeednj/BMMSAT

Online Bayesian Moment Matching based SAT Solver Heuristics

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
 (

s)

Number of solved instances

MapleSAT
MapleSAT-BMM

Glucose
Glucose-BMM

CryptoMiniSAT
CryptoMiniSAT-BMM

Figure 4. Performance comparison of MapleSAT, Glucose and
CryptoMiniSAT solvers with default, and BMM initialization meth-
ods on hard cryptographic benchmarks.

performed on SHA-1 instances in the literature (Nossum,
2012; Nejati et al., 2017a;b), we know that these solvers
are top performing solvers in this benchmark. We used 100
epochs for pre-processing and 1 epoch for updating BMM
posterior.

Results. Table 1 gives details on the number of solved in-
stances out the 50 hard cryptographic instances, where it
can be seen that BMM version of MapleSAT is the only
variant of MapleSAT that is able to solve all of the instances
with much lower average runtime compared to other initial-
ization methods. Also BMM version of CryptoMiniSAT
solves the instances around 50% faster than the default ver-
sion on average. Figure 4 shows how MapleSAT-BMM and
CryptoMiniSAT-BMM have a clear advantage over other
versions of these three solvers.

Table 1. Number of solved instances out of 50 hard cryptographic
instances and average runtime (in seconds) of MapleSAT, Glucose
and CryptoMiniSAT with different initialization methods.

Initialization Total Avg. time

M
ap

le
SA

T

Default 48 3645.08
Random 48 3180.42
Survey Propagation 40 3405.20
Jeroslow-Wang 47 3389.27
BMM 50 2238.85

G
lu

co
se

Default 33 4817.69
Random 32 5741.74
Survey Propagation 30 5386.74
Jeroslow-Wang 32 6334.71
BMM 38 4563.08

C
ry

pt
oM

in
iS

A
T Default 50 3475.06

Random 50 3223.48
Survey Propagation 41 3501.00
Jeroslow-Wang 49 5387.20
BMM 50 1706.63

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 50 100 150 200 250

Ti
m

e
 (

s)

Number of solved instances

Default
Jeroslow-Wang

Survey-Propagation
Random

BMM

Figure 5. Performance comparison of different version of Maple-
COMSPS on SAT competition 2018 benchmark.

6.2. Evaluation over SAT Competition 2018
Application Instances

Experimental Setup. All jobs were run on StarExec envi-
ronment with Intel(R) Xeon(R) CPU E5 at 2.40GHz (Stump
et al., 2014). We used the main track of the SAT competition
2018, which contains 400 instances coming from a variety
of real-world application domains, like verification, graph
problems, scheduling and combinatorics (Heule et al., 2019).
Time limit for solving each instance was 5000 seconds (the
same as SAT competitions) and memory limit was 8GB.

Solver Descriptions. The solvers that we used to incor-
porate BMM were MapleCOMSPS (gold/silver medalist
of SAT competition 2016/2017) (Liang et al., 2017a) and
MapleLCMDistChronoBT (winner of SAT competition
2018) (Ryvchin & Nadel, 2018). We used 10 epochs to
compute the posterior in the pre-processing phase and 1
epoch for each learned unary and binary clause. MapleL-
CMDistChronoBT, switches between Distance, VSIDS and
LRB branching heuristics. We initialized activity scores of
all of these heuristics. Similarly we initialized both VSIDS
and LRB in MapleCOMSPS.

Results. Table 2 shows the number of solved instances
out of 400 instances by the two solvers described above,
comparing BMM with other methods. Figure 5 depicts
that BMM-based initialization beats all other methods, by
solving more instances, and having lower average runtime
on the solved instances. The closest performing method is
the Jeroslow-Wang, which solves 4 more than default, but
still, BMM solves 8 more instances than Jeroslow-Wang.
In case of MapleLCMDistChronoBT, BMM-based initial-
ization does not improve the number instances, however, it
solves the instances 15% faster on average.

Online Bayesian Moment Matching based SAT Solver Heuristics

Table 2. Number of solved instances (out of 400) and aver-
age runtime (in seconds) of MapleCOMSPS and MapleL-
CMDistChronoBT and their variations on SAT competition 2018
benchmark. SAT column shows how many of the solved instances
were satisfiable.

Initialization Total SAT Avg. time

M
ap

le
C

O
M

SP
S Default 218 124 674.43

Random 214 121 678.09
Survey Propagation 157 100 862.30
Jeroslow-Wang 222 128 654.05
BMM 230 136 646.18

M
ap

le
L

C
M

D
is

t Default 240 138 769.85
Random 232 131 673.02
Survey Propagation 173 109 885.50
Jeroslow-Wang 235 134 655.98
BMM 240 139 652.80

6.3. Discussion of Experimental Results

SAT vs. UNSAT. The posterior distribution that BMM
learns, is supposed to form a solution to the input formula.
Therefore we expect to see better performance in satisfiable
instances rather than unsatisfiable instances, and in fact that
is what we have observed in our experiments. Table 2 shows
that the BMM-initialized MapleCOMSPS, solves 12 more
satisfiable instances compared to the vanilla MapleCOM-
SPS, and solving the same number of unsatisfiable instances.
All instances in our hard cryptographic benchmark are satis-
fiable (there exists a preimage to each hash target, and the
task is to find it), and we specifically wanted to study this
benchmark as an important class of satisfiable instances.

Impact of BMM Update. As described in Section 4, we
also update the posterior with the new evidence (conflict
clauses that are implied by the formula) that the solver gener-
ates. This update, had a positive impact on the performance,
although not a significant impact. On average the solving
times are reduced by 11.2% in application benchmark, but
no additional instances were solved. The results in the tables
and figures are with using BMM update.

Sub-category Analysis for SAT 2018 Application In-
stances. We analyzed categories of problems in the SAT
competition benchmark (Heule et al., 2019), to further study
which types of problems, BMM is more effective, and in
which types it is less effective. The categories that we ex-
tracted from this benchmark were: Combinatorics, Cryptog-
raphy, Graph theory, Verification, Number theory, Schedul-
ing and Hard 3-SAT. In most categories, the BMM-based
version of MapleCOMSPS performs on par with the default
version. However, it solves one more instance in the veri-
fication category and one less instance in hard 3-SAT and
scheduling problems, and a large leap of 16 more instances
in the cryptography category.

Computational Overhead. In each epoch, all clauses are
processed and for each clause, all of the literals in the clause

are linearly processed, which means that the overall com-
plexity is linearly proportional to the total number of literals
appearing in the formula. 10 epochs over the largest formula
in our benchmarks with 12 million clauses and 2 million vari-
ables, takes 80 seconds. On average BMM pre-processing
constitutes 6% of the total running time of MapleCOMSPS
on the SAT 2018 benchmark. This number is negligible in
hard cryptographic instances even with 100 epochs.

7. Related Work
Unfortunately the initialization problem has not been stud-
ied as extensively as other components of the SAT solvers.
Jeroslow-Wang (Jeroslow & Wang, 1990) proposed a scor-
ing for each literal based on the length of the clauses that
the literal appears in, where the literals that are appearing in
shorter clauses are preferred. Initially this was proposed as
a static branching heuristic, but this was later also used as a
way of giving an initial preference to the literals. However,
as the Boolean formula gets larger and more complicated,
it might not capture the information about the underlying
structure. In contrast, BMM updates the prior hypothesis
with the target of satisfying all of the clauses and does not
use a proxy for guessing a good measure. Despite being an
approximation, BMM takes us to a relatively useful starting
point. Most of the modern solvers, set the polarities and ac-
tivities either to a fixed value (all zero, all False or all True),
or a random value and let the search engine explore the
search space. Some solvers in their initial phase of explor-
ing, use a different branching heuristic (e.g. Distance (Xiao
et al., 2019)) to get to a fruitful state and then use the main
branching heuristics. However, all such solvers that use
hybrid branching methods, only get to that desired state by
collecting conflict clauses and do not re-use the intermedi-
ate activity scores. Kibria & Li (2006) proposed a genetic
programming approach to find initialization of activities that
minimizes runtime, where they had mixed results on a small
set of electronic design automation instances.

8. Conclusion
We present the design of a novel BMM-based algorithm
for the initialization problem of value selection (polarity)
and variable order (branching) heuristics in conflict-driven
clause-learning SAT solvers. We implemented our methods
alongside other initialization methods (random, survey prop-
agation, Jeroslow-Wang and default) in state-of-art solvers
such as MapleCOMSPS, MapleLCMDistChronoBT, Maple-
SAT, Glucose and CryptoMiniSAT, and showed significant
improvement over these already leading solvers. We eval-
uated our methods on the main track benchmark of SAT
competition 2018, consisting of real-world application in-
stances, as well as a set of hard cryptographic instances
(inversion attacks) obtained from a round-reduced version

Online Bayesian Moment Matching based SAT Solver Heuristics

of SHA-1 hash function. The BMM-enhanced version of
MapleCOMSPS with both value selection and value order
initialized, solves 12 more instances with lower average
runtime compared to the baseline version, and is also faster
than the random, survey propagation and Jeroslow-Wang
initializations. Furthermore, the BMM-enhanced version
of MapleSAT solves all of the hard cryptographic instances
encoding preimage attacks on SHA-1 in our benchmark,
and BMM-based CryptoMiniSAT solves them around 50%
faster on average than the default version. We also gave a
consistency proof of the Bayesian moment matching in the
naı̈ve Bayes model, which to the best of our knowledge is
the first theoretical analysis of BMM.

Acknowledgments
Resources used in preparing this research were provided
by Compute Canada, NSERC, the Province of Ontario, the
Government of Canada through CIFAR, and companies
sponsoring the Vector Institute4.

References
Audemard, G. and Simon, L. Glucose and syrup: Nine

years in the sat competitions. Proc. of SAT Competition,
pp. 24–25, 2018.

Avgerinos, T., Cha, S. K., Hao, B. L. T., and Brumley,
D. Aeg: Automatic exploit generation. In Network and
Distributed System Security Symposium, February 2011.

Bradley, A. R. Sat-based model checking without unrolling.
In International Workshop on Verification, Model Check-
ing, and Abstract Interpretation, pp. 70–87. Springer,
2011.

Braunstein, A., Mézard, M., and Zecchina, R. Survey propa-
gation: An algorithm for satisfiability. Random Structures
& Algorithms, 27(2):201–226, 2005.

Cadar, C., Ganesh, V., Pawlowski, P. M., Dill, D. L., and
Engler, D. R. EXE: Automatically Generating Inputs of
Death. ACM Transactions on Information and System
Security (TISSEC), 12(2):10, 2008.

Chen, Y. and Ryzhov, I. O. Technical note–consistency anal-
ysis of sequential learning under approximate bayesian
inference. Operations Research, 68(1):295–307, 2020.

Heule, M. J., Järvisalo, M., and Suda, M. Sat competition
2018. Journal on Satisfiability, Boolean Modeling and
Computation, 11(1):133–154, 2019.

Hsu, W.-S. and Poupart, P. Online bayesian moment match-
ing for topic modeling with unknown number of topics.

4www.vectorinstitute.ai/#partners

In Advances in Neural Information Processing Systems,
pp. 4536–4544. Curran Associates, Inc., 2016.

Jaini, P. and Poupart, P. Online and distributed learning of
gaussian mixture models by bayesian moment matching.
arXiv preprint arXiv:1609.05881, 2016.

Jaini, P., Chen, Z., Carbajal, P., Law, E., Middleton, L.,
Regan, K., Schaekermann, M., Trimponias, G., Tung,
J., and Poupart, P. Online bayesian moment matching
for topic modeling with unknown number of topics. In
International Conference on Learning Representations,
2016.

Jeroslow, R. G. and Wang, J. Solving propositional satisfi-
ability problems. Annals of mathematics and Artificial
Intelligence, 1(1-4):167–187, 1990.

Johnson, N., Kotz, S., and Balakrishnan, N. Continuous
univariate distributions, volume 2. Wiley & Sons, 2nd
edition, 1995.

Kibria, R. H. and Li, Y. Optimizing the initialization of
dynamic decision heuristics in dpll sat solvers using ge-
netic programming. In European Conference on Genetic
Programming, pp. 331–340. Springer, 2006.

Liang, J. H., Ganesh, V., Zulkoski, E., Zaman, A., and
Czarnecki, K. Understanding vsids branching heuristics
in conflict-driven clause-learning sat solvers. In Haifa
Verification Conference, pp. 225–241. Springer, 2015.

Liang, J. H., Ganesh, V., Poupart, P., and Czarnecki, K.
Learning rate based branching heuristic for sat solvers. In
International Conference on Theory and Applications of
Satisfiability Testing, pp. 123–140. Springer International
Publishing, 2016.

Liang, J. H., Oh, C., Ganesh, V., Czarnecki, K., and Poupart,
P. Maple-comsps lrb vsids and maplecomsps chb vsids.
Proc. of SAT Competition, pp. 20–21, 2017a.

Liang, J. H., VK, H. G., Poupart, P., Czarnecki, K., and
Ganesh, V. An empirical study of branching heuristics
through the lens of global learning rate. In International
Conference on Theory and Applications of Satisfiability
Testing, pp. 119–135. Springer, 2017b.

Liang, J. H., Oh, C., Mathew, M., Thomas, C., Li, C., and
Ganesh, V. Machine learning-based restart policy for
cdcl sat solvers. In International Conference on Theory
and Applications of Satisfiability Testing, pp. 94–110.
Springer, 2018.

MacKay, D. J. C. Information Theory, Inference & Learning
Algorithms. Cambridge University Press, 2002.

Online Bayesian Moment Matching based SAT Solver Heuristics

Marques-Silva, J. P. and Sakallah, K. A. GRASP: A Search
Algorithm for Propositional Satisfiability. Computers,
IEEE Transactions on, 48(5):506–521, 1999.

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L.,
and Malik, S. Chaff: Engineering an Efficient SAT Solver.
In Proceedings of the 38th annual Design Automation
Conference, pp. 530–535. ACM, 2001.

Nejati, S., Liang, J. H., Gebotys, C., Czarnecki, K., and
Ganesh, V. Adaptive restart and cegar-based solver for
inverting cryptographic hash functions. In Working Con-
ference on Verified Software: Theories, Tools, and Exper-
iments, pp. 120–131. Springer, 2017a.

Nejati, S., Newsham, Z., Scott, J., Liang, J. H., Gebotys,
C., Poupart, P., and Ganesh, V. A propagation rate based
splitting heuristic for divide-and-conquer solvers. In In-
ternational Conference on Theory and Applications of
Satisfiability Testing, pp. 251–260. Springer, 2017b.

Nossum, V. Sat-based preimage attacks on sha-1. Master’s
thesis, 2012.

Omar, F. Online Bayesian Learning in Probabilistic Graph-
ical Models using Moment Matching with Applications.
PhD thesis, University of Waterloo, 2016.

Rashwan, A., Zhao, H., and Poupart, P. Online and dis-
tributed bayesian moment matching for parameter learn-
ing in sum-product networks. In Artificial Intelligence
and Statistics, pp. 1469–1477, 2016.

Rintanen, J. Planning and SAT. Handbook of Satisfiability,
185:483–504, 2009.

Ryvchin, V. and Nadel, A. Maple lcm dist chronobt: Fea-
turing chronological backtracking. Proc. of SAT Compe-
tition, pp. 29–29, 2018.

Soos, M. The cryptominisat 5.5 set of solvers at the sat
competition 2018. Proc. of SAT Competition, pp. 17–18,
2018.

Stump, A., Sutcliffe, G., and Tinelli, C. Starexec: A cross-
community infrastructure for logic solving. In Interna-
tional joint conference on automated reasoning, pp. 367–
373. Springer, 2014.

Xiao, F., Li, C.-M., Luo, M., Manyà, F., Lü, Z., and Li, Y.
A branching heuristic for sat solvers based on complete
implication graphs. Science China Information Sciences,
62(7):72103, 2019.

