
Online Relative Entropy Policy Search
using Reproducing Kernel Hilbert Space Embeddings

Zhitang Chen Pascal Poupart Yanhui Geng
Noah’s Ark Lab, Huawei University of Waterloo, Canada Noah’s Ark Lab, Huawei

Abstract

Kernel methods have been successfully applied
to reinforcement learning problems to address
some challenges such as high dimensional and
continuous states, value function approximation
and state transition probability modeling. In
this paper, we develop an online policy search
algorithm based on a recent state-of-the-art al-
gorithm REPS-RKHS that uses conditional ker-
nel embeddings. Our online algorithm inherits
the advantages of REPS-RKHS, including the
ability to learn non-parametric control policies
for infinite horizon continuous MDPs with high-
dimensional sensory representations. Different
from the original REPS-RKHS algorithm which
is based on batch learning, the proposed online
algorithm updates the model in an online fashion
and thus is able to capture and respond to rapid
changes in the system dynamics. In addition,
the online update operation takes constant time
(i.e., independent of the sample size n), which is
much more efficient computationally and allows
the policy to be continuously revised. Experi-
ments on different domains are conducted and re-
sults show that our online algorithm outperforms
the original algorithm.

1 Introduction

Reinforcement learning algorithms have been successfully
applied to solve many real problems where the state-action
space S × A is finite and discrete, or continuous and
low-dimensional . However, high dimensional continuous
state-action spaces pose a challenge for the estimation of
the transition function in model-based approaches and the
value function or Q-function in model free techniques.

Appearing in Proceedings of the 19th International Conference
on Artificial Intelligence and Statistics (AISTATS) 2016, Cadiz,
Spain. JMLR: W&CP volume 51. Copyright 2016 by the authors.

Reproducing Kernel Hilbert Space (RKHS) embeddings,
as a recent advance (Gretton et al., 2012; Song et al., 2009,
2013) in kernel methods, ease the estimation of value func-
tions and transition functions possible in high dimensional
spaces. Some recent works (Grünewälder et al., 2012;
Nishiyama et al., 2012) applied the RKHS embedding
method to value functions and update the policy greedily
with respect to the learnt value function. The advantage
of using kernel methods to approximate the value function
is that we do not need to define the feature mapping. The
value can be easily calculated by kernel tricks (Smola and
Schölkopf, 1998). However, as reported in (Van Hoof et al.,
2015), these methods update the policy greedily by choos-
ing actions that maximize the value function, which turn
out to be unstable during the learning process.

To improve stability, Peters et al. (2010) proposed Rel-
ative Entropy Policy Search, which bounds the search
for a new policy at each iteration to a neighbourhood
of the previous policy. By kernelizing the REPS algo-
rithm, Van Hoof et al. (2015) proposed REPS-RKHS,
which inherits the advantage of REPS in terms of sta-
bility while employing RKHS embeddings to better ap-
proximate the value function with respect to the transition
function. The combination of REPS and RKHS yields a
more stable, effective learning progress for non-parametric
reinforcement learning (Van Hoof et al., 2015). In addi-
tion, REPS-RKHS avoids using the hand-crafted features
and thus is more general and flexible.

However, shortcomings of REPS-RKHS are also very ob-
vious. One of the biggest challenges is the computational
complexity of REPS-RKHS. The computational complex-
ity of training a model is O(n3), where n is the number
of samples in the batch. In order to learn a good pol-
icy, in most cases, we need a large number of samples,
which leads to long training times for REPS-RKHS. The
algorithm periodically updates the policy when a certain
amount of data becomes available from the control trajec-
tory, which means that before the policy converges to the
optimal one, the algorithm must train multiple times. An-
other challenge is about the model parameters and the ker-
nel hyperparameter optimization, which could be very im-
portant, but very difficult especially for the kernel hyperpa-

Online REPS-RKHS

rameters. A bad hyperparameter optimization can lead to
little policy improvement and even worse policies.

In this paper, we develop an online version of REPS-
RKHS, which not only inherits the advantages of REPS-
RKHS (e.g., nonparametric policy), but also updates the
policy in an online fashion based on the most recent
sample (s,a, s′, R). The basic idea of our approach is
to use the Reduced Rank Approximation to approximate
the model based on REPS-RKHS. Based on the reduced
rank model, we can easily develop an online learning al-
gorithm that uses the most recent sample to update the
model. Compared to the original REPS-RKHS algorithm,
our proposed algorithm can detect and respond to the
rapidly changing dynamics of the system or the environ-
ment since the most recent samples can be used to up-
date the model; while the original REPS-RKHS algorithm
has to wait until sufficiently many samples are available to
learn the new model in a batch way. Consequently, our
proposed online algorithm is far more computationally ef-
ficient withO(m2) computational complexity compared to
REPS-RKHS, which has a computational complexity of
O(n3), where m ≪ n. In order to verify the effective-
ness of our proposed online algorithm, we conduct a series
of experiments on different domains. Experimental results
show that our proposed online algorithm converges to the
optimal policy faster than the original REPS-RKHS algo-
rithm. Furthermore, our algorithm is much more efficient
than REPS-RKHS in terms of computation time.

The rest of the paper is structured as follows. We review
some background about Relative Entropy Policy Search
(REPS) and Reproducing Kernel Hilbert Space (RKHS) in
Section 2. In Section 3, we introduce the Reduced Rank
Approximation method to approximate the original REPS-
RKHS algorithm. Then we explain how to incorporate
the information from the most recent sample to update the
model and the policy in an online fashion. In Section 4, we
report some experiments with different domains including
a toy Markov Decision Process (MDP), the mountain car
problem as well as the under-powered pendulum control
problem. In Section 5, we draw conclusions based on our
algorithmic contributions and experimental results.

2 Preliminaries: REPS and RKHS
embeddings

In this section, we review the REPS-RKHS algo-
rithm (Van Hoof et al., 2015). We first review the Rela-
tive Entropy Policy Search framework (Peters et al., 2010)
where a policy maximizing the expected reward with con-
straints to avoid deviating too much from the previous one
is derived. Next, the REPS-RKHS method is described.
It uses kernel embeddings to calculate the expected value
function with respect to the transition function. The advan-
tages and the disadvantages of REPS-RKHS are discussed

at the end of this section.

2.1 Relative Entropy Policy Search

We use the following notation, which is common in the
reinforcement learning literature.

• s ∈ S = Rds : the state variable of a Markov Decision
Process (MDP) in a ds dimensional state space,

• a ∈ A = Rda : the action variable of a MDP in a da
dimensional action space,

• π(a|s): a stochastic policy encoding a distribution
over actions a for each state s,

• µπ(s): the stationary state distribution (assuming it
exists) under policy π,

• Ra
s : the reward received after executing action a when

the system is in state s,

• Pa
ss′ : the probability of transitioning from state s to

state s′ after executing action a.

The REPS framework gradually improves a policy by re-
peatedly solving the following constrained optimization
problem:

max
π,µπ

J(π) = max
π,µπ

∫∫
S×A

π(a|s)µπ(s)Ra
sdads,

s.t.
∫∫

S×A
π(s|a)µπ(s)dsda = 1,∫∫

S×A
Pa
ss′π(a|s)µπ(s)dads = µπ(s

′),

KL(π(a|s)µπ(s)||q(s,a)) ≤ ϵ,

(1)

The solution to this optimization problem is the best pol-
icy (measured by expected value) within a neighbourhood
of the current policy in order to avoid unstable learning.
The neighbourhood is defined by bounding the Kullback-
Leibler divergence between p(s,a) = π(a|s)µπ(s) and
q(s,a), where q(s,a) is the joint state-action distribution
under the previous policy.

Since we cannot explore the whole state-action space
S × A, we have to approximate the expected re-
ward by the mean of the rewards in the samples
{(s1,a1, s′1, R1), · · · , (sn,an, s′n, Rn)}. It is shown
in (Peters et al., 2010) that the optimal solution can be
computed by multiplying the joint state-action distribution
q(s,a) of the previous policy by the exponential of the
Bellman error:

π(a|s)µπ(s) ∝ q(s,a) exp

(
δ(s,a, V)

η

)
where δ(s,a, V) = Ra

s + Es′ [V (s′)|s,a]− V (s)

(2)

Zhitang Chen, Pascal Poupart, Yanhui Geng

Here V (s) and η denote Lagrangian multipliers, and δ de-
notes the Bellman error. The Lagrange multipliers are ob-
tained by minimizing the following dual optimization prob-
lem:

V ∗, η∗ = argmin
V,η

g(η, V)

s.t. g(η, V) = ηϵ+ η log

(
n∑

i=1

1

n
exp

(
δ(si,ai, V)

η

))
where (si,ai) ∼ q(s,a)

(3)

It is very challenging to calculate the Bellman error δ since
it depends on V and the transition probabilities Pa

ss′ . Note
also that V is a function of s for which an analytical form
is very difficult to obtain when solving optimization prob-
lem (3). Furthermore, Pa

ss′ is usually unknown and very
challenging to estimate from samples especially for high
dimensional state-action spaces S × A. Hence, the es-
timation of the expected value Es∼p(s′|s,a)[V (s′|s,a)] is
also challenging since high dimensional integration is in-
volved, even when Pa

ss′ is known. Realizing these difficul-
ties, Van Hoof et al. (2015) proposed to use Reproducing
Kernel Hilbert Space (RKHS) embeddings to avoid para-
metric assumptions while allowing the accuracy to improve
gracefully with the amount of data.

2.2 Relative Entropy Policy Search by Reproducing
Kernel Hilbert Space Embeddings

Note that in the REPS framework, we need to estimate
δ(s,a, V) which requires us to estimate V and Pa

ss′ from
data, which is very challenging. Van Hoof et al. (2015) pro-
posed to estimate these quantities in a Reproducing Kernel
Hilbert Space (RKHS) by using kernel embeddings.

First, assume that H is a Hilbert space that is rich enough
to include V . We can then represent V by a linear combi-
nation of a set of basis functions inH:

V (·) =
∑
s̃i∈S̃

αik(s̃i, ·) (4)

To calculate Es′ [V (s′)|s,a], REPS-RKHS embeds the
conditional Pa

ss′ in the RKHSH:

Pa
ss′ 7→ µS′|s,a = Es′ [ϕ(s

′)|s,a], (5)

where ϕ(s′) = k(s′, ·) is the feature vector of s′. The ad-
vantage of using (conditional) kernel embeddings is that
the expected value of any function with respect to a (con-
ditional) probability density can be quickly calculated by
the dot product between the embedded vector representing
that function and the (conditional) kernel embedding (Song
et al., 2009). Consequently, we obtain:

Es′ [V (s′)|s,a] =
⟨
V (·),µS′|s,a

⟩
H

Empirical estimations of µ̂S′|s,a and Ês′ [V (s′)|s,a] can be
found as follows:

µ̂S′|s,a =
n∑

i=1

βi(s,a)ϕ(s
′
i) (6)

where β(si,ai) = (Ksa + λI)−1ksa(si,ai).

Es′ [V (s′)|s,a]− V (s) = αT K̃sβ(s,a)−αTks(s) (7)

In this case, the value function V can be estimated by

V ∗ = α∗Tks(·),

α∗, η∗ = argmin
α,η

ηϵ+ η log

(
n∑

i=1

1

n
exp(

δ(si,ai,α)

η
)

)
,

δ(s,a,α) = Rα
s +αT

(
K̃sβ(s,a)− ks(s)

)
,

(8)

where [Ksa]ij = ks(si, sj)ka(ai,aj), [ksa((s),a)]i =

ks(si, s)ka(ai,a),
[
K̃s

]
ij

= ks(s̃i, s
′
j) and [ks(s)]i =

ks(s̃i, s). The parameters obtained by solving the opti-
mization problem in (8) can be inserted in (2) to obtain the
optimal sample based policy π(a|s). However, since the
state-action space is continuous, the sample-based policy
needs to be generalized to the nearby data points. Van Hoof
et al. (2015) used cost sensitive Gaussian Processes (Kober
et al., 2011) to obtain the generalized policy π̃(a|s) for
those state-action pairs that did not appear in the past tra-
jectory as follows:

π̃(a|s) = N (µ(s), σ2(s)), µ(s) = ks(s)
T (Ks + λD)−1A,

σ2(s) = k + λ− ks(s)
T (Ks + λD)−1ks(s),

(9)

where k = k(s, s), ks(s) = ϕ(s)TΦ, Ks = ΦTΦ,
A = [a1, · · · ,an]T , D is a diagonal matrix with Dii =
(wi/maxi wi)

−1 where wi = exp(δ(si,ai)/η
∗), and λ is

a regularization parameter. The REPS-RKHS algorithm is
summarized in Algorithm 1.

3 Online REPS-RKHS

The original REPS-RKHS algorithm has been shown
to outperform several other state-of-the-art algorithms
such as sample based model, feature based REPS
(Daniel et al., 2013; Peters et al., 2010), approximate
value iteration (Grünewälder et al., 2012) and non-
parametric approximate linear programming (Pazis and
Parr, 2011). However, one of the drawbacks of the
original algorithm is that we need to learn the model
in a batch way, i.e., we control the system under the
previous policy πn and collect the resulting trajectory
{(s0,a0, s′0, R0), (s1,a1, s

′
1, R1), · · · , (sn,an, s′n, Rn)}.

Online REPS-RKHS

Algorithm 1 REPS with RKHS embeddings (Van Hoof
et al., 2015))

1: for i = 1, · · · ,MaxIteration do
2: generate roll-outs according to π̃i−1

3: minimize kernel-based dual:

η∗,α∗ ← argming(η,α) (10)

4: calculate kernel embedding strengths:

βj ← (Ksa + λI)−1ksa(sj ,aj) (11)

5: calculate kernel-based Bellman errors:

δj ← Rj +α∗T
(
K̃sβj − ks(sj)

)
(12)

6: calculate the sample weights:

wj ← exp(δj/η
∗) (13)

7: fit a generalizing non-parametric policy:

π̃i(a|s) = N (µ(s;w), σ2(s;w)) (14)

8: end for

Based on the samples collected, we learn the model and
obtain the new policy πn+1. The above procedure is re-
peated until the policy converges. However, we prefer the
policy to be updated online, i.e. whenever there is a new
sample (si,ai, s

′
i, Ri), we would like to use it to update

the policy. We develop the following online learning
algorithm. First, we use a Reduced Rank Approximation
to reduce the computational complexity of the original
algorithm from O(n3) to O(m2n), where m ≪ n. Based
on the Reduced Rank Approximation, we further develop
an online version of REPS-RKHS that uses the most recent
sample (s,a, s′, R) to update the model such that the
algorithm will converge to the optimal policy faster than
the original one.

3.1 Reduced Rank Approximation

First of all, we focus on approximating the matrix Ksa.
We propose to use the Reduced Rank Approximation
(Rasmussen, 2006). Suppose we have a set of samples S =
{(s0,a0, s′0, R0), (s1,a1, s

′
1, R1), · · · , (sn,an, s′n, Rn)}.

We divide S into S̃ and S̄ such that S̃
∪
S̄ = S

and S̃
∩

S̄ = ∅. Accordingly, we divide A into Ã
and Ā, where Ã

∪
Ā = A and Ã

∩
Ā = ∅. Denote

Knn
sa = k(S, S)k(A,A), Kmm

sa = k(S̃, S̃)k(Ã, Ã) and
Knm

sa = k(S, S̃)k(A, Ã). We have

Knn
sa =

 Kmm
sa K

m(n−m)
sa

K
(n−m)m
sa K

(n−m)(n−m)
sa

 (15)

We use the Reduced Rank Approximation method to ap-
proximate Ksa by the following equation:

K̂nn
sa ≈ Knm

sa (Kmm
sa)−1Kmn

sa (16)

3.2 Online Update

The original REPS-RKHS algorithm updates the policy by
batch learning, i.e. the agent is controlled under one policy
π(k−1)T for a period of T steps during which it collects a
batch of data Sk = {(si,ai, s′i, Ri)|(k − 1)T ≤ i < kT}.
Then, it uses Sk to learn a new policy πkT . There are
two important drawbacks with batch learning. First, the
algorithm has to wait until a sufficient amount of data has
been collected and thus the algorithm might not be able to
capture the dynamics of the system (environment) rapidly
enough, especially in some non-stationary environment.
Second, as the original algorithm belongs to kernel meth-
ods, the computational complexity is O(n3), which is high
and thus the original algorithm might not be applicable to
tasks that require realtime operations.

In this section, we develop the Online REPS-RKHS algo-
rithm based on the reduced rank REPS-RKHS model. The
most significant advantage of the online algorithm over the
original one is that our algorithm can update the model on-
line. To be more specific, suppose we learn the model Mn

based on n samples and we have the policy πn(a|s). The
agent is controlled under policy πn and then we have the
new tuple sn,an, s

′
n, Rn. By incorporating the new infor-

mation, we update the policy from πn to πn+1 accordingly.

Suppose there are n samples, we learn the following model:

βn
j ← (K̂nn

sa + λI)−1ksa(sj ,aj)

δnj ← Rn
j +α∗T (K̃n

sβ
n
j − ks(sj))

wn
j ← exp(δnj /η

∗), ∀j ∈ [0, n]

(17)

When the (n+ 1)th sample arrives, we need to calculate

βn+1
n+1 , δ

n+1
n+1 , w

n+1
n+1,

which are the new information we need to update the cur-
rent model and policy. One way to obtain those statistics is
to augment the original training data with the new sample
and learn the model based on the augmented data. How-
ever, this approach is extremely computational demanding
and requires a large amount of memory when n becomes
large. To tackle this problem, we use the reduced rank ap-
proximation, for which the computational complexity and
the storage complexity only depends on m, where m ≪ n
is the cardinality of the subset of regressors. The approxi-
mation process sarts with an LU decomposition:

Kmm
sa = LLT and (Kmm

sa)−1 = L−TL−1 (18)

Let Qn = Knm
sa L−T . We approximate the matrix (Knn

sa +

Zhitang Chen, Pascal Poupart, Yanhui Geng

λIn)
−1, which is a key part to compute β (see Algo-

rithm 1), as follows:

(K̂nn
sa + λIn)

−1

≈ λ−1In − λ−1Qn(λIm +QT
nQn)

−1QT
n

Let Πn = (QT
nQn + λIm)−1. We obtain

(K̂sa + λIn)
−1 = λ−1In − λ−1QnΠnQ

T
n .

Denote by

kn+1
sa =


k((s̃1, ã1), (sn+1,an+1))

...
k((s̃m, ãm), (sn+1,an+1))

 (19)

k̃n+1
s =


k(s̃1, s

′
n+1)

...
k(s̃m, s′n+1)

 kn+1
s =


k(s̃1, sn+1)

...
k(s̃m, sn+1)

 (20)

the new information from the new sample
(sn+1,an+1, s

′
n+1, Rn+1) when the (n + 1)th sam-

ple arrives. We use the new information to update the
model as follows:

Πn+1 = (λIm +QT
n+1Qn+1)

−1

= (λIm +QT
nQn + L−1kn+1

sa (kn+1
sa)TL−T)−1

(21)

where

Qn+1 =

[
Knm

sa

(kn+1
sa)T

]
L−T =

[
Qn

(kn+1
sa)TL−T

]

According to the Woodbury identity, we have

Πn+1 = Πn −
ΠnL

−1kn+1
sa (kn+1

sa)TL−TΠn

1 + (kn+1
sa)TL−TΠnL−1(kn+1

sa)
(22)

Let qn+1 = L−1kn+1
sa and substitute qn+1 in the aove

equation to obtain:

Πn+1 = Πn −
Πnqn+1q

T
n+1Πn

1 + qT
n+1Πnqn+1

(23)

We can see that the key matrix to compute βn+1 can be
approximated by

(K̂n+1
sa + λIn+1)

−1 ≈ λ−1In+1 − λ−1Qn+1Πn+1Q
T
n+1

= λ−1

[
In

1

]
− λ−1

[
Qn

qT
n+1

]
Πn+1

[
QT

n qn+1

]
Note that

βn+1
n+1 = (Kn+1

sa + λIn+1)
−1kn+1

sa (sn+1,an+1) (24)

To compute kn+1
sa (sn+1,an+1), we need to store all previ-

ous samples, which is unrealistic if the system keeps evolv-
ing. To tackle this problem, we use the following approxi-
mation:

kn+1
sa (sn+1,an+1) ≈ Knm

sa (Kmm
sa)−1kn+1

sa

= Qnqn+1.
(25)

After some algebraic manipulations, we arrive at

βn+1
n+1 = λ−1Qn(

λ+qT
n+1qn+1

1+qT
n+1Πnqn+1

Πn −Πn+1)qn+1

λ−1 1−qT
n+1qn+1

1+qT
n+1Πqn+1

+
(qT

n+1Πnqn+1)
2

1+qTΠnqn+1

 (26)

and

δn+1
n+1 = Rn+1 +α∗T (K̃n+1

s βn+1
n+1 − ks(sn+1)), (27)

where K̃n+1
s =

[
K̃n

s , k̃
n+1
s

]
. Let Hn = K̃n

sQn, which

always has dimensions m×m. After computing βn+1
n+1 and

δn+1
n+1 , we can easily obtain:

wn+1
n+1 = exp(δn+1

n+1/η
∗), (28)

which is the regularizer for the new information from the
new sample when we integrate it to update our model.

3.3 Approximating the non-parametric policy
generation

The original model proposed by (Van Hoof et al., 2015)
cannot integrate the new information easily. In order to
make the model online, we develop the following Gaussian
Process based on the subset of regressors method (Ras-
mussen, 2006) to derive the generalized non-parametric
policy:

π̃(a|s) = N (µn(s), σ
2
n(s)),

µn(s) = ks(s)
T (Kmn

s DnK
nm
s + λKmm

s)−1Kmn
s An,

σ2(s) = λks(s)
T (Kmn

s DnK
nm
s + λKs

mm)−1ks(s)

(29)

where ks(s) = [k(s̃1, s), · · · , k(s̃m, s)], Kmn
s =

Knm
s

T = k(S̃, S), Kmm
s = k(S̃, S̃), [Dn]ii = wi/C =

exp(δi/η
∗)/C and C is a normalization constant. We have

Dn+1 =

[
Dn 0

0 exp(δn+1
n+1/η

∗)

]
(30)

where δn+1
n+1 = Rn+1 +α∗T (K̃n+1

s βn+1
n+1 − ks(sn+1))

Denote by Ξn = (Ks
mnDnKs

nm + λKs
mm)−1, Yn =

Ks
mnAn, and Mn = ΞnYn where Mn is our model

Online REPS-RKHS

learnt from n samples. When the new sample is available,
we update the model according to the following formulas:

Ξn+1 = Ξn −
exp(δn+1

n+1)/η
∗

C
Ξnks

n+1(ks
n+1)TΞn

1+exp(δn+1
n+1/η

∗)/C(ks
n+1)TΞnks

n+1

(31)
Yn+1 = Ks

m,n+1An+1 = Yn + ks
n+1aTn+1 (32)

The new model is updated by

Mn+1 = Ξn+1Yn+1 (33)

Note that although we keep adding rows or columns which
are corresponding to the new sample, the actual dimension-
ality of our model remains unchanged, which is m. Al-
gorithm 2 summarizes the online REPS-RKHS algorithm
proposed in this paper.

Algorithm 2 Online REPS with RKHS embeddings
1: Initially, use Random Policy to control the agent and

collect n samples. Use Algorithm 1 to learn

η∗,α∗,βn
j , δ

n
j , w

n
j , ∀j ∈ [0, n] (34)

and calculate Kn,m
sa , Km,m

sa , Πn, Hn, Dn, Ξn,Yn,
Mn and πn.

2: Let k = n
3: while termination condition is not true do
4: Use πk to control the agent.
5: Collect the new tuple (sk+1,ak+1, s

′
k+1, Rk+1).

6: Update Πk+1, Ξk+1, Yk+1 and Mk+1

by Eqs (23) ∼ (33).
7: Update policy πk+1.
8: k ← k + 1.
9: end while

Note that the resulting Online-RKHS-REPS behaves sim-
ilarly to Recursive Least Square which has been shown in
(Johnstone et al., 1982) to converge exponentially fast pro-
vided that the measurement vector sequence is persistently
exciting and an exponential forgetting factor is used. Inter-
ested readers can refer to (Johnstone et al., 1982) for more
details.

4 Experiments

In order to demonstrate the effectiveness of our proposed
online method, we conduct experiments on three different
MDPs; a synthetic toy task following (Lever and Stafford,
2015), Mountain Car (Sutton and Barto, 1998) and Under-
powered Pendulum (Van Hoof et al., 2015). We compare
the performance of the online algorithm with the original
REPS-RKHS algorithm in terms of the average reward and
the computational time. In the following experiments, we
use the Matern class kernels (Rasmussen, 2006) for the
state and action variables, where a Matern class kernel with
v = 1.5 is defined as kv=3/2(r) = (1 +

√
3r
l) exp(−

√
3r
l).

4.1 Toy MDPs

The toy benchmark is a Markov chain on interval S ∈
[−4, 4] where A ∈ [−1, 1] and r(s, a) = e−|s−3|. The
dynamics can be described by s′ = s + a + ϵ where ϵ is
Gaussian noise with standard deviation σ = 0.001.

We reset the agent to s = 0 if it leaves the interval.
We compare Online REPS-RKHS with the original Batch
REPS-RKHS. For each algorithm, we use a random pol-
icy as the initial policy for 9 roll-outs where each roll-out
has 40 steps. For REPS-RKHS-Online, we use the trajec-
tory consisting of 360 samples to build the reduced rank
approximated model. The model is updated whenever a
new (s, a, s′, r) is available. For REPS-RKHS-Batch, we
update the model every 3 roll-outs. We calculate the aver-
age reward for each roll-out and the results are shown in
Figure 1.

Figure 1: Toy MDP Problem

Based on Figure 1, we can see that REPS-RKHS-Online
finds a better policy than REPS-RKHS-Batch in terms of
the average reward. in the early roll-outs, REPS-RKHS-
Batch finds a good policy; however, in the later roll-outs
REPS-RKHS-Batch fails to stick to the good policy and the
later policies become worse than the early policies. A pos-
sible explanation is that REPS-RKHS-Batch updates the
policy by batch learning based on recent samples gener-
ated by recent policies where the state-action space is not
explored as much as the initial random policy and con-
sequently, the new policy might not perform as well as
the first policy learnt from samples generated by the ini-
tial random policy. Another possible cause could be that
when the REPS-RKHS-Batch algorithm updates the policy,
hyper-parameter optimization is performed, but converges
to some bad values. In contrast, for REPS-RKHS-Online,
the policy is learnt from samples generated from the ini-
tial random policy and then is updated by new samples. In
this case, the first batch of samples explore the state-action

Zhitang Chen, Pascal Poupart, Yanhui Geng

space extensively and thus the REPS-RKHS-Online suffers
less from local optima.

In order to show that REPS-RKHS-Online is computation-
ally more efficient than the REPS-RKHS-Batch algorithm,
we also report the running time of both algorithms for 100
roll-outs, where each roll-out has 20 steps. For REPS-
RKHS-Online, we use m = n and m = n/2 samples to
form the subset of regressors S̃. For REPS-RKHS-Batch,
we update the policy every 10 roll-outs. The running times
are given in Figure 2.

Figure 2: Comparison of running time

Based on Fig. 2, we can see that the running time of REPS-
RKHS-Online is much less than that of REPS-RKHS-
Batch, even when m = n because REPS-RKHS-Online
does not need to train the model every 10 roll-outs where
the hyper-parameter optimization is very time consuming.
When m ≪ n, the speed up is much more significant, and
thus the REPS-RKHS-Online is more scalable and appro-
priate for solving real problems that are time sensitive.

4.2 Mountain Car

The second benchmark is the Mountain Car problem (Lever
and Stafford, 2015; Sutton and Barto, 1998). A car located
at the bottom of a valley is to be controlled by the agent
and the objective is to drive passed the target position of a
hill. However, the car is underpowered and it cannot reach
the target position by directly climbing up the hill. It has
to climb the opposite hill in order to use gravity to boost
its acceleration as it goes down and then up towards the
goal. States s = (x, v) are defined by position and veloc-
ity, S = (−1.2, 0.7) × (−0.07, 0.07), A = [−1, 1] and
r(s, a) = e−8(x−0.6)2 and s0 = (−0.5, 0). The dynamics
are x′ = x+ v + ϵ1, v

′ = v + 0.001a− 0.0025 cos(3x) +
ϵ2/10, where ϵ1, ϵ2 are Gaussian random variables with
standard deviation 0.02. We compare Online REPS-RKHS
with the original Batch REPS-RKHS. For each algorithm,

we use a random policy as the initial policy for 9 roll-outs,
and each roll-out consists of 40 steps. For REPS-RKHS-
Online, we use a trajectory consisting of 360 samples to
build the reduced rank approximated model. The model
is updated whenever a new (s, a, s′, r) is available. For
REPS-RKHS-Batch, we update the model every 3 itera-
tions. We calculate the average reward for each roll-out
and the results are shown in Figure 3.

Figure 3: Mountain Car Problem

Based on Figure 3, we can see that both REPS-RKHS-
Online and REPS-RKHS-Batch can find the optimal policy
and drive the mountain-car to the target position. From the
curves of average rewards, we can see that the mountain-
car controlled by REPS-RKHS-Online moves towards the
target position faster than the mountain car controlled by
REPS-RKHS-Batch. The experimental results demonstrate
that with online learning, the policy adapts quickly as
the online algorithm uses every new sample to update the
model.

4.3 Low-Dimensional Swing-Up Experiment

In this experiment, we simulate a pendulum with length l =
1m and mass m = 1kg distributed evenly along its length.
We apply a torque a at the pivot. The dynamic of the pen-
dulum is modeled by θ̈ = (glm sin θ + a − kθ̇)/(ml2),
where k = 0.05Ns is a friction coefficient and g = 9.81
is the gravitational constant. The control frequency is
20Hz. The maximum torque is 20Nm. We also ap-
ply additive noise to the controls. The reward function is
r(s, a) = −10θ2 − 0.1θ̇2 − 10−3a2, where θ is mapped to
[−0.5π, 1.5π) to prefer swing-up counter-clockwise. We
compare Online REPS-RKHS algorithm with the original
Batch REPS-RKHS. For each algorithm, we use a random
policy as the initial policy for 18 roll-outs, and each roll-
out consists of 40 steps. For REPS-RKHS-Online, we use
a trajectory consisting of 720 samples to build the reduced
rank approximated model. The model is updated whenever

Online REPS-RKHS

a new (s, a, s′, r) is available. For REPS-RKHS-Batch, we
update the model every 3 roll-outs.

The algorithms are given the angle θ and the angular ve-
locity θ̇ directly, which define the state vector s = [θ, θ̇]T .
We calculate the average reward for each roll-out and the
results are shown in Figure 4.

Figure 4: Low Dimensional Swing-Up

Based on Figure 4, we can see that a given small sam-
ple size (720), REPS-RKHS-Online performs better than
REPS-RKHS-Batch since REPS-RKHS-Online controls
the pendulum to the upstanding position within 100 roll-
outs. REPS-RKHS-Batch improves the policy, but fails
to find an optimal one within 100 roll-outs. Usually, a
much larger sample size should be provided to REPS-
RKHS-Batch to help it learn a good policy. REPS-RKHS-
Online generally requires less samples and less iterations
than REPS-RKHS-Batch to converge to an optimal solu-
tion.

4.4 High-Dimensional Swing-up Experiment

Following Van Hoof et al. (2015), we also conduct the
swing-up experiment with high dimensional input. An un-
derpowered pendulum is controlled, but only the raw image
of the current position of the pendulum is given to the algo-
rithm instead of the direct input of the angle and the angular
velocity. The experimental setting is the same as the low di-
mensional swing-up experiment except for the input. The
experimental results are shown in Figure 5.

Based on Figure 5, we can see that although it converges to
the optimal policy slower than with the direct input of an-
gle and angular velocity, REPS-RKHS-Online successfully
controls the pendulum to the upstanding position based on
the raw pixel input of an image capturing the instantaneous
position of the pendulum, which illustrates the power of
kernel embeddings to handle high dimensional input.

Figure 5: High Dimensional Swing-Up

5 Conclusion

In this paper, we proposed an Online Relative Entropy Pol-
icy Search using Reproducing Kernel Hilbert Space Em-
beddings based on the state-of-the-art REPS-RKHS algo-
rithm. The online algorithm incorporates the most recent
information, i.e., the state-action-state-reward tuple to up-
date the model such that the algorithm is able to capture
and respond to the rapidly changing dynamics of the sys-
tem (environment). Furthermore, the online REPS-RKHS
algorithm updates the model in an online fashion instead
of batch learning and thus the computational complexity
is reduced significantly, making the online algorithm much
more suitable for many real world problems that require
real time processing such as network control. Based on
the experimental results, we find that the online algorithm
performs better than the original batch learning algorithm
in terms of converging to good policies faster. The com-
putation time is also much less than the original batch al-
gorithm. The theoretical contribution and the empiricall
results show that our proposed online REPS-RKHS algo-
rithm is a very promising method to address some real
problems with high dimensional input and unknown transi-
tion functions.

However, our proposed algorithm has some limitations.
First, it depends on the optimization of the model param-
eters and the hyper-parameters of the kernels. Second, the
algorithm requires the selection of a subset of regressors for
value function approximation and reduced rank approxima-
tion, which is fixed after the selection. Developing online
algorithms which can replace the subset of regressors such
that the model becomes more adaptive to the environment
remains open and challenging. In future work, we will con-
tinue to investigate these issues.

Zhitang Chen, Pascal Poupart, Yanhui Geng

References
Christian Daniel, Gerhard Neumann, Oliver Kroemer, and

Jan Peters. Learning sequential motor tasks. In Robotics
and Automation (ICRA), 2013 IEEE International Con-
ference on, pages 2626–2632. IEEE, 2013.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch,
Bernhard Schölkopf, and Alexander Smola. A kernel
two-sample test. The Journal of Machine Learning Re-
search, 13(1):723–773, 2012.

Steffen Grünewälder, Guy Lever, Luca Baldassarre, Massi
Pontil, and Arthur Gretton. Modelling transition dynam-
ics in mdps with rkhs embeddings. In Proceedings of
the 29th International Conference on Machine Learning,
ICML 2012, volume 1, pages 535–542, 2012.

Richard M Johnstone, C Johnson, Robert R Bitmead, and
BDO Anderso. Exponential convergence of recursive
least squares with exponential forgetting factor. In Deci-
sion and Control, 1982 21st IEEE Conference on, pages
994–997. IEEE, 1982.

Jens Kober, Erhan Oztop, and Jan Peters. Reinforcement
learning to adjust robot movements to new situations.
In IJCAI Proceedings-International Joint Conference on
Artificial Intelligence, volume 22, page 2650, 2011.

Guy Lever and Ronnie Stafford. Modelling policies in
mdps in reproducing kernel hilbert space. In Proceed-
ings of the Eighteenth International Conference on Arti-
ficial Intelligence and Statistics, pages 590–598, 2015.

Y Nishiyama, A Boularias, A Gretton, and K Fukumizu.
Hilbert space embeddings of pomdps. In Conference on
Uncertainty in Artificial Intelligence (UAI 2012), 2012.

Jason Pazis and Ronald Parr. Non-parametric approximate
linear programming for mdps. In AAAI, 2011.

Jan Peters, Katharina Mülling, and Yasemin Altun. Rela-
tive entropy policy search. In AAAI, 2010.

Carl Edward Rasmussen. Gaussian processes for machine
learning. 2006.

Alex J Smola and Bernhard Schölkopf. Learning with ker-
nels. Citeseer, 1998.

Le Song, Jonathan Huang, Alex Smola, and Kenji Fuku-
mizu. Hilbert space embeddings of conditional distri-
butions with applications to dynamical systems. In Pro-
ceedings of the 26th Annual International Conference on
Machine Learning, pages 961–968. ACM, 2009.

Le Song, Kenji Fukumizu, and Arthur Gretton. Kernel
embeddings of conditional distributions: A unified ker-
nel framework for nonparametric inference in graphical
models. Signal Processing Magazine, IEEE, 30(4):98–
111, 2013.

Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction, volume 1. MIT press Cam-
bridge, 1998.

Herke Van Hoof, Jan Peters, and Gerhard Neumann.
Learning of non-parametric control policies with high-
dimensional state features. In Proceedings of the Eigh-
teenth International Conference on Artificial Intelli-
gence and Statistics, pages 995–1003, 2015.

