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ABSTRACT
The reinforcement learning literature typically assumes fixed state

transition functions for the sake of tractability. However, in many

real-world tasks, the state transition function changes over time,

and this change may be governed by exogenous variables outside

of the control loop. This can make policy learning difficult. In this

paper, we propose a new algorithm to address the aforementioned

challenge by embedding the state transition functions at different

timestamps into a Reproducing Kernel Hilbert Space; the exogenous

variable, as the cause of the state transition evolution, is estimated

by projecting the embeddings into the subspace that preserves

maximum variance. By augmenting the observable state vector

with the estimated exogenous variable, standard RL algorithms

such as Q-learning are able to learn faster and better. Experiments

with both synthetic and real data demonstrate the superiority of

our proposed algorithm over standard and advanced variants of

Q-learning algorithms in dynamic environments.
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1 INTRODUCTION
In Reinforcement Learning (RL), the environmental dynamics are

often assumed to be fixed (i.e., the transition function does not

evolve with time). When this assumption is violated, as it often is in

practice, learning becomes challenging; past transitions stop being

representative of current and future transitions, and RL methods

therefore need to relearn the policy. While an agent is relearning

its policy, performance is negatively affected.

In this paper, we develop a new RL algorithm for environments

where the evolution of the state transition is caused by a contin-

uous latent exogenous variable that varies with time, where the

evolution of the variable itself is not affected by the action. Our

algorithm (1) tracks in an online fashion and recovers the latent
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exogenous variable which causes changes to the observable transi-

tion function, and (2) augments the observable part of the process

with the inferred exogenous variable. The inferred variable acts as

an explicit signal and enables the RL algorithm to quickly adapt

to the evolution of the system dynamics, improving the learning

speed. Although the basic idea appears straight-forward, the chal-

lenge lies in tracking the variation of the system’s state transition

function, which is by nature a conditional distribution of high di-

mensional continuous variables and is difficult to estimate. In this

paper, we leverage recent advances in Reproducing Kernel Hilbert

space (RKHS) embeddings [11, 13, 29] to represent arbitrary condi-

tional distributions in a non-parametric way. The variation of the

state transition caused by the exogenous variable can be quanti-

fied by measuring the Hilbert-Schmidt norm of the difference of

the conditional mean embeddings of the transition distributions at

different time steps. We propose an approach that finds a proximal

exogenous variable by a nonlinear projection of the conditional

mean embeddings at different time steps into a manifold that pre-

serves the maximum variance of those embeddings as well as an

additive term that rewards higher autocorrelation of the latent vari-

able over time. This regularization term implicitly improves the

predictability of the process governing the exogenous variable.

We evaluate the effectiveness of our approach in three dynamic

domains, including a stochastic toy task, a traditional pendulum

control benchmark from the RL literature [3, 5, 30], and a network

resource allocation problem with real data from a network equip-

ment manufacturer. We show that our approach finds exogenous

variables that cause changes to the observable transition function,

and that help Q-learning find better policies while adapting to

changes faster.

2 RELATEDWORK
RL autonomously learns the policy for sequential decision-making

by interacting with environments. It has demonstrated many suc-

cesses over the years in training autonomous agents in complex,

real world problems [18, 20, 21, 31]. RL problems in dynamic envi-

ronments have been actively investigated. One stream of research

considers environments with multiple agents that are simultane-

ously learning and therefore introducing environment dynamics

evolution [1, 15, 18, 24]. These approaches adjust the learning rate

and the amount of experience replay to mitigate the impact of

time evolving state transitions. They do not identify the exogenous

variables that are the source of the evolution, nor do they resolve it.



Another line of research considers domains where the environ-

ment dynamics are caused by different modes or contexts with a

number of modes known a priori [7, 9] or learned on the fly [3, 27].

Partial models of the environment are learned for each mode and

new modes/contexts are created when the environment dynamics

are detected. However these approaches are restricted to problems

with a small number of discrete modes.

Time evolving dynamics of state transitions can also be found

in partially observable domains where the state transition of the

observable part of the process is time varying, but becomes fixed

when augmented with latent exogenous variables. A significant

amount of work focuses on model-free reinforcement learning tech-

niques that directly estimate a policy [2, 16, 22]. Since the state

transition of the observable part of the process changes over time,

the last observation is insufficient for selecting actions optimally.

These methods typically augment the last observation with a finite

discrete memory in which additional information from prior obser-

vations is stored to improve the decision process. Model-based ap-

proaches have also been explored to explicitly learn the latent state

representation and associated dynamics of the process [12, 25, 33].

These approaches often assume that the set of possible states is

known and fixed, but non-parametric approaches exist that grow

the number of hidden states [8, 23] or use suffix trees of arbitrary

depth as substitutes for states [32]. Closely related, predictive state

representations can also be learned from past observations to pre-

dict future observations [4, 17, 28]. Very recently, with the advent

of deep reinforcement learning, recurrent neural networks have

also been used to learn the hidden part of a process that is fed to a

deep Q-network to improve the accuracy of reinforcement learning

in partially observable domains [14].

While most previous work assumes discrete modes, discrete hid-

den states, a parametric form for the dynamics, or training samples

with true states available, we focus on processes with a continuous

latent exogenous variable and leverage RKHS embeddings for con-

ditional distributions to avoid any parametric assumptions on the

dynamics and the availability of true state information.

3 PROBLEM DEFINITION
We formally define the type of RL problem in environments with

exogeneity considered in this paper. The evolution of latent exoge-

nous and observable processes over time is depicted in Figure 1,

where

• vt ∈ V = Rd represents the latent exogenous variable at t ,
which controls the evolution of transition functions and is

changing with time t . Here, we assume that vt is a stationary
process, that is, its own transition function does not evolve

with time.

• ot ∈ O = Rdo is the observed vector at t . Without loss of

generality, we treat this vector as amixture of two underlying

processes including an endogenous component ηt , whose
evolution is not affected by vt but controlled by the policy

and a semi-endogenous one ζ t , which is affected by vt in
addition to the policy. The algorithm proposed in this paper

is to recover an underlying process χt = [ηt ,ζt ]T for which

there exists a separation matrix M−1
such that χt = M−1ot .

• at ∈ A = Rda is the action at t ;

· · · vt vt+1 vt+2 · · ·

· · · ζt ζt+1 ζt+2 · · ·

· · · ηt ηt+1 ηt+2 · · ·

· · · ot ot+1 ot+2 · · ·

· · · at at+1 at+2 · · ·

Figure 1: An illustration of MDPs in the dynamic environ-
ment with exogenous control variables, where the exoge-
nous control variables are not observable.

• pt (ot+1 |ot , at ) denotes the transition of the observations

from ot to ot+1 and it is time dependent (i.e., affected by

latent exogenous variables) due to latent variable vt ;
• p(vt+1 |vt ) is the transition of the latent variable vt , which
is assumed to be stationary.

In Figure 1, given that vt is not observable, ot+1 = f (ot , at , vt , ets )
= ft (ot , at , ets ), where ets is some external noise. Furthermore,

vt+1 = д(vt , etz ), where etz represents noise at time t .

Proposition 3.1. If the latent exogenous variable vt is accurately
estimated and concatenated with the observation vector, the time
varying state transition reduces to a fixed one.

The proof is relatively easy. If vt is accurately estimated and

concatenated with the observed vector, then the transition func-

tion becomes p(ot+1, vt+1 |ot , vt , at ). Since ot+1 and vt+1 are con-

ditionally independent given ot , vt , at , we obtain the following

factorization p(ot+1, vt+1 |ot , vt , at ) = p(vt+1 |vt )p(ot+1 |ot , vt , at )
where p(ot+1 |ot , vt , at ) is a fixed conditional distribution and the

state transition function of the overall process is time invariant.

We propose an approach based on kernel conditional mean em-

beddings to recover and predict the latent exogenous variable that

we concatenate with the observable process to speed up policy

adaptation. Throughout the paper, we follow some basic assump-

tions about the evolution of exogenous variables that are commonly

made in the literature [3, 7, 27]: (1) The transitions of latent exoge-

nous variables are stationary and Markovian; (2) Latent exogenous

variables cannot be directly observed; (3) Latent exogenous variable

transitions are independent of the control system’s responses.

4 THE STATE AUGMENTATION ALGORITHM
The key idea of our approach is to use a Reproducing Kernel Hilbert

space (RKHS) embedding to represent the state transition functions

at different time steps and find a nonlinear projection of those

conditional mean embeddings into a manifold that preserves the

maximum variance, which gives us a proximal estimation of the

exogenous variable. Then we augment the observable process with

the learned exogenous variable to speed up the RL process. We start

by illustrating how to use RKHS embeddings to represent transition

functions, namely conditional distributions of state transitions,

and also show that these conditional mean embeddings preserve



differences between the conditional distributions, which provide

the foundation of our paper. We then present a detailed derivation

of our approach, which consists of two phases: offline learning of

the latent process and online updating. The offline phase initializes

the nonlinear function, which characterizes the latent exogenous

process on the subspace that preserves the maximum variance and

explains the time evolution of the state transition function. In the

online updating phase, the nonlinear function is revised each time

a new sample (ot , at , ot+1) is collected, and we use it to estimate

the current value of the latent exogenous variable.

4.1 Characterizing Transition Functions in
RKHS: Why and How?

As we focus on the time evolving transition function (conditional

distributions), we need to capture the changes of the transition

function. We use an operator UY |X , which is an embedding of a

conditional distribution p(y|x) in RKHS. Suppose we have kernels

k(x, ·) and k(y, ·) for variables x and y, with the corresponding

RKHS HX and HY , respectively. The operator UY |X is defined as

UY |X := CYXC
−1

XX , where CYX and CXX are the cross-covariance

and covariance operators respectively [10]. Alternatively, k(x, ·) can
also be viewed as a feature map denoted by ϕ(x) where k(x, x′) =
⟨ϕ(x),ϕ(x′)⟩H . If L is the number of samples, the empirical estimate

ofUY |X is

ˆUY |X = ΓY (KX + ϵLI )−1ΦTX ,

where ϵ is a regularization parameter and ΓY ,ΦX , and KX are the

feature matrix on Y , feature matrix on X , and the kernel matrix on

X , respectively [29].

As the difference of the transition function at any different time

steps is used to capture the time variation of the process dynamics,

the difference of the corresponding embeddings needs to quantify

the difference of the original conditional distributions. We denote

the difference between the conditional distributions pm (y|x) and
pn (y|x) by D[pm (y|x)| |pn (y|x)], then we have,

Theorem 4.1. The divergence of two conditional distributions
D[pm (y|x)| |pn (y|x)] is preserved by the Hilbert-Schmidt norm of
the difference of two corresponding conditional mean embeddings
| |U(m)

Y |X − U(n)
Y |X | |2, i.e. D[pm (y|x)| |pn (y|x)] ∝ ||U(m)

Y |X − U(n)
Y |X | |2,

where

D[pm (y|x)| |pn (y|x)] :=

∫
y
(
∫
x
pm (y|x)τ (x)dx−pn (y|x)τ (x)dx)2dy

can be interpreted as the infinite dimensional Euclidean space dis-
tance between two conditional distributions with respect to a reference
distribution τ (x) = 1

|X | in X.

Proof. Webegin by stating the relation betweenD[pm (x)| |pn (x)]
and | |µ(m)

X − µ
(n)
X | |2, which is the relation between the difference of

two marginal distributions and their corresponding embeddings.

This will serve as a foundation for the analysis of the difference of

two conditional distributions. We first define

D[pm (x)| |pn (x)] :=

∫
x
(pm (x) − pn (x))2dx. (1)

Chen et al. [6] showed that for any two probability densities pm (x)
andpn (x), if µ(m)

X and µ
(n)
X are the corresponding RKHS embeddings,

D[pm (x)| |pn (x)] is proportional to | |µ(m)
X − µ

(n)
X | |2.

Similar to Equation (1), we define a divergence between two

conditional distributions as follows:

D[pm (y|x)| |pn (y|x)] =
∫
y
(
∫
x
pm (y|x)τ (x)dx

−
∫
x
pn (y|x)τ (x)dx)2dy.

Now, we have the marginal distribution

p̄m (y) =
∫
x
pm (y|x)τ (x)dx, (2)

where τ (x) is the reference distribution, τ (x) = 1

|X | , which is a

uniform distribution in the domain X. We can also get p̄n (y) =∫
x pn (y|x)

1

|x |dx. Then using µ̄
(m)
Y , which denotes the embedding

of p̄m (y), we have,

µ̄
(m)
Y =

∫
y
(
∫
x
pm (y|x)τ (x)dx)ϕ(y)dy.

By simple algebra,

µ̄
(m)
Y =

∫
x
µ
(m)
Y |xτ (x)dx = U(m)

Y |X µ̄τ ,

where µ̄τ is the mean embedding of the reference distribution. Then,

the difference of the two embeddings is

| |µ̄(m)
Y − µ̄

(n)
Y | |2 = tr [(U(m)

Y |X −U(n)
Y |X )µ̄τ µ̄

T
τ (U

(m)
Y |X −U(n)

Y |X )
T ]

≈ 1

N
tr (µ̄Tτ µ̄τ )| |U

(m)
Y |X −U(n)

Y |X | |2.

The last approximate equality follows free independence [34]. As

| |µ̄(m)
Y − µ̄

(n)
Y | |2 preserves the relative magnitude of

∫
y(p̄m (y) −

p̄n (y))2dy, this means that we can use | |U(m)
Y |X −U(n)

Y |X | |2 to measure

the difference between two conditional distributions pm (y|x) and
pn (y|x). □

In this section, we show that the conditional mean embeddings

preserve the distance of the conditional distributions, which is de-

fined as the infinite dimensional Euclidean distance between two

conditional distributions with respect to a reference distribution of

the conditioning variable. Thus in order to find the exogenous vari-

able that causes the time variation of the state transition function,

we can estimate it by projecting the conditional mean embeddings

into the manifold that preserves the maximum amount of variance.

4.2 Offline Estimation of the Exogenous
Variable

Without loss of generality, suppose the observation ot is a mixture

of a endogenous subspaceηt and the semi-endogenous subspace ζ t
as shown in Sec. 3, i.e. ot = M[ηt ,ζ t ]T . To accurately estimate the

latent exogenous variable vt that contributes to the time evolution

of the state transition pt (ot+1 |ot , at ), we need to find the subspace

ζ t that preserves maximum variance of its corresponding transition

function, i.e. ζ t =WT
d ot .We now show how to find the projection

that yields maximum variance, and initialize the estimation of the



latent variable as a nonlinear function of the conditional mean

embedding that characterizes the latent exogenous variables in the

offline learning phase.

Suppose the offline phase is from time 0 to ttr , we first sample N
instances (ot , at , ot+1)with equal space in the observable trajectory
and the nth instance is denoted by tn . At each tn , the conditional

mean embeddingU(n)
ζ t+1

|ζ t ,at
of the state transition function in the

subspace obtained by the projectionWd can be estimated by

ˆU(n)
ζ t+1

|ζ t ,at
= Γ(n)Λ1/2(Λ1/2K(n)

ζ t ,at
Λ1/2 + λtϵI )−1Λ1/2(Φ(n))T ,

(3)

where Λ is a diagonal matrix with λii = λL−i , and λ is a decay

factor and λ ∈ (0, 1). L is the number of observed samples before tn
which satisfies λL ≈ 0. Γ(n) and Φ(n)

are the feature matrices, i.e.

Φ(n) = [ϕ(ζ tn+1−L , atn+1−L), . . . ,ϕ(ζ tn , atn )]
and

Γ(n) = [ϕ(ζ tn+2−L), . . . ,ϕ(ζ tn+1
)].

We also have

Ω(n) = [ϕ(ζ tn+1−L), . . . ,ϕ(ζ tn )],
and

Θ(n) = [ϕ(atn+1−L), . . . ,ϕ(atn )].

Thus the Gram matrices from the feature matrices are K(n)
ζ t
=

Ω(n)T Ω(n)
, K(n)

at = Θ(n)TΘ(n)
and K(n)

ζ t ,at
= K(n)

ζ t
⊙ K(n)

at which

is the element-wise product. For the rest of the paper, we use U(n)

to represent the conditional mean embedding U(n)
ζ t+1

|ζ t ,at
of tn

in the offline learning phase, andUt to represent the conditional

mean embedding Uζ t+1
|ζ t ,at at any time t . ˆU(n)

and
ˆUt are the

corresponding empirical estimations respectively.

Finding Proximal Exogenous Variable with Maximum Variance.
To estimate the latent exogenous variable, we assume that vt can
be approximated by a proximal exogenous variable as a non-linear

function ofUt , i.e. f (Ut ). One can interprete f (Ut ) as a nonlinear
projection of the conditional mean embeddings to a manifold where

the difference amongst the conditional mean embeddings of all time

steps is maximized. A similar approach is also proposed by Zhang et
al. ([2015]) to deal with causal discovery tasks with non-stationarity.

To find the nonlinear function, we map the conditional mean

embedding to its own RKHS HU , where HU is a RKHS spanned

by ϕ(Ut ), i.e. Ut 7→ ϕ(Ut ), and ϕ(Ut ) is the centered feature

mapping of Ut . We assume that f ∈ HU such that

vt = f (Ut ) = αTϕ(Ut ), (4)

here α is a coefficient vector to be estimated. We note that α
lies in the span of ϕ(U(0)), · · · ,ϕ(U(N−1)) and thus we have α =∑N−1

i=0
α̃iϕ(U(i)) = ΦU α̃ , where ΦU =

[
ϕ(U(0)), . . . ,ϕ(U(N−1))

]
and α̃ is the vector of coordinates to be estimated. Thus, the vari-

ance of f (Ut ) can be calculated as

σ̂ 2

f =
1

N
αTΦU ΦTUα =

1

N
α̃TK2

U α̃ ,

s .t . ∥ f ∥2

HU
= α̃TKU α̃ = 1,

where [KU ]m,n = k( ˆU(m), ˆU(n)), k(·, ·) is a positive definite kernel
on the conditional mean embedding.

Regularization with Predictability. To guarantee that [vt , ot ]T is

Markovian, we need to ensure that the latent variable transition pro-

cess of vt is Markovian. Thus, we add a regularization term based

on maximizing the autocorrelation σ 2

+f of any two consecutive

instances tn , tn+1 in the offline learning trajectory:

σ 2

+f = E[v̂tn v̂tn+1
] ≈ 1

N

N−1∑
i=0

v̂ti v̂
s
ti , (5)

where v̂ti is the estimated proximal exogenous variable at time ti
and v̂sti is the estimated proximal exogenous variable at time ti + 1

correspondingly. Define

kU ( ˆU(i)) = [k( ˆU(0), ˆU(i)), . . . ,k( ˆU(N−1), ˆU(i)]T .
Then, by using the kernel trick and further expanding the above

Equation (5), we get

σ̂ 2

+f =
1

N

N−1∑
i=0

α̃T kU ( ˆU(i))(α̃T kU ( ˆU(i+1)))T

=
1

N
α̃T

KU K(+)
U +

(
K(+)
U

)T
KU

2

α̃ ,

where K(+)
U =

[
kU ( ˆU(1)), . . . ,kU ( ˆU(0))

]
. As E[v̂tn v̂tn+1

]will be es-
timated based on data from multiple pairs of consecutive instances,

a high autocorrelation implies that the process is “more predictable”.

By combining these two parts, we have the following constrained

optimization problem to learn the projectionWd and the vector of

coordinates α̃ for the non-linear function f ,

W∗
d , α̃

∗ = argmax σ̂ 2

f + γ σ̂
2

+f

s .t .α̃TKU α̃ = 1, andWT
dWd = Id .

(6)

To solve the above optimization problem, we use an alternating

optimization method. First, we fix Wd to be the value obtained

in the last iteration. The optimization of α̃ reduces to a simple

generalized eigen-decomposition problem. Second, we fix α̃ and

optimize Wd . The gradient of Wd is

∇Wd =
1

N

∂α̃TK2

U α̃

∂Wd︸          ︷︷          ︸
(a)

+λ
1

N

∂α̃T Pα̃
∂Wd︸       ︷︷       ︸
(b)

.
(7)

Here part (a) of Equation (7) can be derived as

(a) =
∑
i

∑
j
tr (
∂α̃TK2

U α̃

∂[KU ]i, j
)
∂[KU ]i, j
∂Wd

where

∂α̃T K2

U α̃
∂[KU ]i, j

and

∂[KU ]i, j
∂Wd

can be easily obtained by matrix

calculus.

∂α̃T K2

U α̃
∂KU i, j

= α̃T (KU S(i, j) + S(i, j)KU )α̃ where S(i, j) is a

matrix where [S(i, j)]p,q = 1, if p = i and q = j and [S(i, j)] = 0,

otherwise.

∂[KU ]i, j
∂Wd

can also be obtained by the chain rule of the

matrix derivative. Part (b) of Equation (7) can be solved using a

similar idea. Due to constraint WT
dWd = Id , the solution lies in

the Grassmannian manifold. We apply conjugate gradient descent



to solve the optimization problem. The alternating optimization is

repeated until convergence.

Algorithm 1 State-Augmentation Algorithm

1: function Offline Initialization of the Non-linear Function in

the Exogenous Subspace

2: Collect observation transition trajectories and select ran-

domly N instances denoted by tn .
3: Initialize projection Wd for extracting the exogenous sub-

space.

4: repeat
5: ζ t =Wdot .
6: Estimate kernel embeddings of conditional distribution

ˆU(n)
for each tn .

7: Based on Eq. (6): (1) Optimize α̃ using eigen-

decomposition; (2) UpdateWd using conjugate gradient

descent.

8: untilWd and α̃ converge.

9: end function
10: function Online Estimation of Latent Variables

11: Get a new sample (ot , at , ot+1)
Wd→ (ζ t , at ,ζ t+1

).
12: Update Πt and Pt as in Eq. (9) and (10), and

ˆUt = PtΠt .

13: Update α̃ t as in Eq. (11).

14: Estimate v̂t = α̃T
t Φ

T
U ϕ( ˆU(t )).

15: Get oauдt = [vt , ot ]T and feed oauдt in Q-learning.

16: end function

4.3 Online Update of the Exogenous Variable
In this section, we show how to estimate the latent variable vt in an

online fashion. The first difficulty lies in estimating the conditional

mean embeddingUt in an online fashion when each new data point

arrives. Now instead of relying on the implicit kernel mapping ϕ,
which leads the curse of dimensionality, we explicitly map the

data to a high dimensional feature space with Fourier Series. This

idea, which employs Bochner’s theorem on shift-invariant kernels,

provides more scalability and feasibility of online learning.

Assume we have a shift-invariant kernel, i.e. k(x, y) = k(x−y) ≜
k(δ ), if k(δ ) is properly scaled, Bochner’s theorem [26] guarantees

that its Fourier transform p(w) is a proper probability distribution,

i.e.,

k(x − y) =
∫
Rd

p(w) exp(−jwT (x − y))dw

= Ep [⟨(cos(wT x), sin(wT x)), (cos(wT y), sin(wT y))⟩].

This means that if we draw a random vectorw according to p(w)
and form two vectors ϕ(x) = (cos(wT x), sin(wT x)) and ϕ(y) =
(cos(wT y), sin(wT y)), then the expected value of ⟨ϕ(x),ϕ(y)⟩ is

k(x, y). Therefore, for x ∈ Rd
and a large k , if we choose the

transformation

ϕ(x) = 1

√
k
[cos(wT

1
x), sin(wT

1
x), . . . , cos(wT

k x), sin(wT
k x)]. (8)

withw1, . . . ,wk drawn according to p(w), linear inner products in
this transformed space will approximate k(·, ·). More details can be

found in [26]. Thus, as each new sample (ζ t , at ,ζ t+1
) arrives, we

can explicitly represent ϕ(ζ t , at ) and ϕ(ζ t+1
) using Equation (8).

Now, we show how to estimate Ut . According to the definition

of the conditional mean embedding UY |X := CYXC
−1

XX , we have

ĈYX =
1

t
∑t
i λ

t−iϕ(ζ i+1
)ϕ(ζ i , ai )T , i.e. ĈYX = 1

t ΓtΛtΦ
T
t , where

Γt = [ϕ(ζ
1
), . . . ,ϕ(ζ t+1

)], Φt = [ϕ(ζ
0
, a0), . . . ,ϕ(ζ t , at )] and Λt

is a diagonal matrix with λii = λt−i and λ ∈ (0, 1). We also have

ĈXX =
1

t ΦtΛtΦ
T
t . Therefore, at any time t ,

ˆUt = ΓtΛtΦ
T
t (ΦtΛtΦTt + λtϵI )−1.

Suppose we now have a new sample (ζ t+1
, at+1,ζ t+2

), we want to
estimate

ˆUt+1. Note that

Φt+1Λt+1Φ
T
t+1
= [Φt ,ϕ(ζ t+1

)]
[
λΛt 0

0 1

] [
ΦTt

ϕ(ζ t+1
, at+1)T

]
,

= λΦtΛtΦ
T
t + ϕ(ζ t+1

, at+1)ϕT (ζ t+1
, at+1).

Thus,

(Φt+1Λt+1Φ
T
t+1
+ λt+1ϵI )−1 =

λ−1(ΦtΛtΦTt + λtϵI + 1/λϕ(ζ t+1
, at+1)ϕT (ζ t+1

, at+1))−1.

Denoting Πt = (ΦtΛtΦTt + λtϵI )−1
and utilizing the Woodbury

identity [36], we obtain

Πt+1 = λ−1Πt −
λ−2Πtϕ(ζ t+1

, at+1)ϕT (ζ t+1
, at+1)Πt

1 + λ−1ϕT (ζ t+1
, at+1)Πtϕ(ζ t+1

, at+1)
. (9)

Similarly,

Γt+1Λt+1Φ
T
t+1
= [Γt ,ϕ(ζ t+2

)]
[
λΛt 0

0 1

] [
ΦTt

ϕ(ζ t+1
, at+1)T

]
,

= λΓtΛtΦ
T
t + ϕ(ζ t+2

)ϕT (ζ t+1
, at+1).

Denote by Pt = ΓtΛtΦt , we have

Pt+1 = λPt + ϕ(ζ t+2
)ϕT (ζ t+1

, at+1). (10)

ϕ(ζ t+1
, at ) and ϕ(ζ t+1

) can be calculated based on Equation (8).

The update of Πt+1 and Pt+1 is similar to the idea of recursive

least-squares algorithms, which avoid calculating the inverse Πt
in each update. In this case, we can compute the conditional mean

embedding online,

ˆUt+1 = Pt+1Πt+1.

In our experiments, P0 and Π0 are initialized by utilizing Γ(n) and
Φ(n)

from the last instance tN−1 in the offline learning phase.

Updating Nonlinear Projection. The latent variable is defined as

in Equation (4), vt = αTϕ(Ut ). α can be updated incrementally by

computing the top eigenvector of unknown covariance [19]

α t+1 =α t +
1

t + 1

(ϕ( ˆUt+1)(ϕT ( ˆUt+1) + γϕT ( ˆUt ))

+
αT
t ϕ( ˆUt+1)(ϕT ( ˆUt+1) + γϕT ( ˆUt ))α t

| |α t | |2
Id )α t .



As α = ΦU α̃ , where ΦU =
[
ϕ(U(0)), . . . ,ϕ(U(N−1))

]
, using the

kernel trick we get,

α̃ t+1 =α̃ t +
1

t + 1

K−1

U Kt+1(KTt+1
+ γKTt )α̃ t

− 1

t + 1

α̃T
t Kt+1(KTt+1

+ γKTt )α̃ t

α̃T
t KU α̃ t

α̃ t ,

(11)

whereKt+1 = ΦTU ϕ( ˆUt+1), which is a column vectorwhereKt+1,i =

k(U(i), ˆUt+1), and [KU ]m,n = k( ˆU(m), ˆU(n)). The detailed deriva-
tion of Equation (11) can also be found in Appendix A. By adding a

regularization term
γ
t+1

K−1

U KtKTt α̃ t − γ
t+1

α̃T
t KtKTt α̃ t

α̃T
t KU α̃ t

α̃ t based on

maximizing the autocorrelation of any two consecutive time steps,

we can guarantee the predictability in this online updating, where

γ is a regularization parameter. We obtain the latent variable by

v̂t+1 = ˜α t+1

TΦTU ϕ( ˆU(t+1)). This estimated latent variable is then

concatenated with the original observed vector to form a new state

vector: oauдt+1
= [vt+1, ot+1]T .

5 EXPERIMENTS
We demonstrate the effectiveness of our method with a stochastic

toy task, a traditional pendulum control benchmark from the RL

literature [3, 5, 30], and a network resource allocation problem with

real data. Our state-augmentation algorithm is directly combined

with Q-learning (henceforth “State-Aug” or SA). We compare our

approach with traditional Q-learning [35] (QL) and Q-learning aug-

mented with the true latent exogenous variable (which we refer

to loosely as “ground truth”, or TRUE). We also compare it with

two state-of-the-art approaches for reinforcement learning in dy-

namic environments based on extensions of Q-learning: Frequency

Adjusted Q-learning (FAQL) [18] and Repeated Update Q-learning

(RUQL) [1].
1
In addition, we compare our method with a nonpara-

metric approach for policy learning for POMDPs which utilizes

Hilbert Space Embeddings (HSE-POMDP or HSE) [23].
2

For all our experiments, we define the following parameters:C is

the parameter that controls the speed of environment changes; t ∈
[0, ttr ], is the offline learning trajectory; t ∈ [0, ..., tle ], is the online
Q-learning period. For simplicity, throughout all experiments, we

assume the dimension of the latent exogenous subspace d = 1.

We choose hyperparameters k = 50 (the dimensionality of ϕ from

Equation (8)) and decay factor λ = 0.99 for all our experiments

(our results are not sensitive to varying k and λ). Q-values are
parameterized by a Q-net (neural network) and the actions are

discretized in all experiments.

5.1 Toy Task
We first consider a toy model that demonstrates the intuition of our

state-augmentation algorithm. In this toy model, the observed vec-

tor is a mixture of the endogenous componentηt+1 = ηt +0.1at +ϵη ,
and the semi-endogenous component ζt+1 = | sin(t/C)|ζt +at + ϵζ
which is influenced by the exogenous variable | sin(t/C)|, where
ϵη , ϵζ are noisy parameters generated from N(0, 0.1), and C = 100.

The underlying state vector at time t is defined as χ t . However, the

1
We explore several different settings of the parameter β in FAQL and report the best

results.

2
The parameter d in HSE-POMDP is set to 1 throughout all the experiments.

observed vector ot = Mχ t is mixed according to matrix M. The

reward function is simply defined by r (ot , at ) = exp(−|ζt − 3.0|).
Since the state space is a mixture of both endogenous and exoge-

nous components, the estimation accuracy of the latent exogenous

variable is not satisfactory when we skip the projection step and

treat the whole observed vector as exogenous. This is because the

exogenous component(s) or subspace(s) is overwhelmed by the en-

dogenous counterparts (see Figure 3-(a)). Figure 3-(b) demonstrates

that our approach successfully recovers the latent variable (i.e., sin

function) by first finding the exogenous subspace, and then extract-

ing a latent variable based on the projection in that subspace. This

result corroborates our intuition that a projectionWd is essential

for good performance.

5.2 Pendulum Experiment
We compare the performance of different algorithms on a type of

pendulum tasks commonly used in the POMDP literature. We sim-

ulate a pendulum with length l = 1m and massm = 1kg distributed

evenly along its length. The dynamic of the pendulum is modeled

by
Üθ = (дlm sinθ + a − k Ûθ )/(ml2), where k = 0.1Ns is a friction

coefficient and д = 9.81 is the gravitational constant. The maximum

torque is 5Nm. The state of the system is the angle and angular ve-

locity of the pendulum (θ , Ûθ ), however the agent only observes the

angle. We also apply additive noise to the controls. The reward func-

tion in this experiment is r (s,a) = exp(−θ2/20 − Ûθ2/4000), where
θ is mapped to [−0.5π , 1.5π ) to constrain the range of motion.

HSE-POMDP requires a training phase in which the true states

are available, but we do not make this additional information avail-

able to the other approaches. The training phase of HSE-POMDP

is collected by applying actions uniformly at random from states

(θ , Ûθ ) where θ , Ûθ are drawn independently and uniformly at ran-

dom from their ranges. The offline learning phase of our approach

State-Aug begins at a random state, and applies actions uniformly

at random at each step until ttr . We vary the size of training/offline

learning phase ttr and examine the average reward of tle = 100

learning steps. The maximum of the average rewards is 1. Table 1

shows rewards averaged over 100 experiments. Note that ttr is the

number of training samples for HSE-POMDP, but to the length of

offline learning (which does not require true state) for State-Aug.

State-Aug is efficient and learns well with a small set of offline

examples, but continues to improve in performance as the length

of the offline learning phase increases. HSE-POMDP, on the other

hand, requires many more training examples (as well as needing

the ground truth in these examples), and its performance still does

not compare well with the other approaches. Since HSE requires

computing the inverse of a ttr ×ttr matrix each iteration, processing

time increases significantly, quickly becoming a major constraint,

as the number of training samples goes up.

5.3 Pendulum with Wind
In this experiment, we investigate the performance of the algo-

rithms on a more complicated pendulum task. We simulate a pen-

dulum exposed to horizontal wind, where the strength of the wind

changes with time according to a sin function, ν = sin(t/C),C =
100. Hence, the non-stationarity or exogeneity is caused by the

wind. In this experiment, both angle and angular velocity of the



Figure 2: Performance comparisons in the (1) pendulum with wind strength ν = sin(t/C),C = 100, (2) the pendulum with wind
strength ν = sin(t/C) sin(0.01t/C),C = 100 and (3) pilot power control.
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Figure 3: Inferred latent exogenous variable based on the en-
tire observed vector (a) and using the exogenous subspace
(b).

ttr SA TRUE QL FAQL RUQL HSE

200 0.800 0.83 0.801 0.802 0.80 0.53

500 0.803 0.83 0.801 0.802 0.80 0.62

1000 0.808 0.83 0.801 0.802 0.80 0.68

2000 0.811 0.83 0.801 0.802 0.80 0.69

Table 1: Performance comparisons in POMDP-pendulum ex-
periment.

pendulum can be observed by the agent. But the non-stationarity

caused by the wind cannot be observed. The reward function

r (s,a) = −10θ2 − 10
−1 Ûθ2 − 10

−3a2
, where θ is again mapped to

[−0.5π , 1.5π ). In this experiment, ttr = 1000, tle = 3000000 for all

methods except HSE-POMDP, and the results are averaged over 100

simulations. For expositional clarity, we report the average reward

every 20000 time steps.

The performance comparison of State-Aug, ground-truth, QL,

FAQL and RUQL is shown in Figure 2-(1). In this experiment, sophis-

ticated Q-learning methods like RUQL and FAQL do not achieve

better convergence time or higher reward due to the complexity

of the scenario. By augmenting the observable process with the

latent variable, we can see that the results of our framework (red

solid curve) are very close to the ground truth (blue dash curve).

For HSE-POMDP, ttr = 1000, due to the computational costs of

repeated inversion of a ttr × ttr matrix, it would be prohibitive to

allow tle = 3000000. Instead, we find the value of tle (20000) which
allows the algorithm to run in ten times the amount of time needed

by State-Aug. The results for HSE-POMDP are significantly worse

than all the other methods (the average reward of 20000 iterations

is around -50), so we do not show these results in Figure 2-(1).

We also investigate a case where the envelope of the wind also

changes, i.e. ν = sin(t/C) sin(0.01t/C),C = 100. Results are shown

in Figure 2-(2). For expositional clarity, we report the average re-

ward every 200000 time steps. State-Aug (red solid curve) still

achieves rewards very close to the ground truth (blue dash curve).

For HSE-POMDP, the average reward of 20000 iterations is approx-

imately -47.

5.4 Antenna Pilot Power Control in Wireless
Network

In the final experiment, we consider the optimization of the pilot

power of an antenna, an important problem for wireless service

providers. The core issue is that setting the pilot power too high or

too low eventually affects the total throughput of a cell. Maximizing

the throughput by fine tuning the pilot power is challenging due to

many factors including user mobility, time-evolving user demands,

as well as interference between neighboring cells. Consequently,

designing a policy to select the appropriate level of pilot power is by

no means an easy task especially in a time-evolving environment.

We apply our proposed framework to this application to find a policy

for the pilot power configuration. The experiment is conducted

using a simulator developed by a well-known network equipment

manufacturer for wireless communication. Due to confidentiality,

we are not able to disclose the details of the simulator. The state

vector that we use in the reinforcement learning algorithms consists



of (1) current pilot power in the cell; (2) the number of users in the

cell; (3) the current traffic load in the cell; and (4) the differences of

traffic loads between the cell and its neighboring cells. To clarify

the comparison for this task, which has very noisy rewards, we

show the cumulative rewards instead of instant rewards. Figure 2-

(3) demonstrates that State-Aug clearly outperforms the other three

methods. As true states are never available, we do not report on

HSE-POMDP in this experiment.

6 CONCLUSION AND DISCUSSION
In this paper, we proposed a state augmentation framework for

reinforcement learning in environments with exogeneity. The main

idea is to infer a latent exogenous vector by RKHS conditional

mean embeddings that characterize the evolution of the observable

process. Experimental results on both synthetic toy problems as

well as real world tasks demonstrate the effectiveness of our state

augmentation framework. In the future, this work could be extended

in several directions; important directions include determining the

dimensionality of the hidden exogenous subspace, and combining

the technique with other RL algorithms.
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A DETAILED DERIVATION OF EQ. (11)
v̂t+1 = α t+1ϕ( ˆUt+1).

α t+1 = α t +
1

t + 1

(ϕ( ˆUt+1)ϕ( ˆUt+1)T

−
αT
t ϕ( ˆUt+1)ϕ( ˆUt+1)Tα t

| |α t | |2
Id )α t ,

K−1

U ΦTU ΦU α̃ t+1 = K−1

U ΦTU ΦU α̃ t

+
1

t + 1

(K−1

U ΦTU ϕ( ˆUt+1)ϕ( ˆUt+1)T

−
K−1

U ΦTU α̃T
t Φ

T
U ϕ( ˆUt+1)ϕ( ˆUt+1)TΦU α̃ t

α̃T
t Φ

T
U ΦU α̃ t

Id )ΦU α̃ t .

If define ΦTU ϕ( ˆUt+1) = Kt+1, which is a column vector where

Kϕ,i = K(U (i), ˆUt+1), we have

Id α̃ t+1 = Id α̃ t +
K−1

U Kt+1KTt+1
α̃ t

t + 1

− 1

t + 1

α̃T
t Kt+1KTt+1

α̃ t

α̃T
t Kα̃ t

K−1

U ΦTU IdΦU α̃ t ,

α̃ t+1 = α̃ t +
K−1

U Kt+1KTt+1
α̃ t

t + 1

− 1

t + 1

α̃T
t Kt+1KTt+1

α̃ t

α̃T
t Kα̃ t

α̃ t .

By adding a regularization term, we have,

α̃ t+1 = α̃ t +
1

t + 1

K−1

U Kt+1

(
KTt+1

+ γKTt
)
α̃ t

− 1

t + 1

α̃T
t Kt+1

(
KTt+1

+ γKTt
)
α̃ t

α̃T
t KU α̃ t

α̃ t .

Thus,

v̂t+1 = α̃T
t+1

ΦTU ϕ( ˆUt+1) = α̃T
t+1

Kt+1.
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