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introduction Learning to Segment Mouing Objects

We visualize our model’s object segmentations to allow
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are able to pick out all the important objects . S - . . T e s
RL agent is jointly optimized with object segmentation Flgure 2: Ablation study of MOREL vs. vanilla A2C

*  One of the most important reasons for this is that
humans have strong priors

- This allows the agent to continue learning to
segment objects as it encounters novel states .

= No Curriculum = No Curriculum
Using L1 Loss 400 Using L1 Loss
No Flow Regularization No Flow Regularization

2500

* Motion is a strong indicator for identifying important
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*  Our method can be composed with any deep RL

objects in games method, such as A2C and PPO i e :
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Practitioners can look at the segmented objects to Critic Figure 3: Ablation study of modifications to our object The masks are overlaid in green, where intensity indicates
lagn m | strengths and weakn : :
diagnose model strengths and weaknesses segmentation network model confidence.




