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ABSTRACT

Inverse reinforcement learning (IRL) methods assume that the expert data is gen-
erated by an agent optimizing some reward function. However, in many settings,
the agent may optimize a reward function subject to some constraints, where the
constraints induce behaviors that may be otherwise difficult to express with just a
reward function. We consider the setting where the reward function is given, and
the constraints are unknown, and propose a method that is able to recover these
constraints satisfactorily from the expert data. While previous work has focused on
recovering hard constraints, our method can recover cumulative soft constraints
that the agent satisfies on average per episode. In IRL fashion, our method solves
this problem by adjusting the constraint function iteratively through a constrained
optimization procedure, until the agent behavior matches the expert behavior. We
demonstrate our approach on synthetic environments, robotics environments and
real world highway driving scenarios.

1 INTRODUCTION

Inverse reinforcement learning (IRL) (Ng et al., 2000; Russell, 1998) refers to the problem of
learning a reward function given observed optimal or near optimal behavior. However, in many
setups, expert actions may result from a policy that inherently optimizes a reward function subject to
certain constraints. While IRL methods are able to learn a reward function that explains the expert
demonstrations well, many tasks also require knowing constraints. Constraints can often provide a
more interpretable representation of behavior than just the reward function (Chou et al., 2018). In
fact, constraints can represent safety requirements more strictly than reward functions, and therefore
are especially useful in safety-critical applications (Chou et al., 2021; Scobee & Sastry, 2019).

Inverse constraint learning (ICL) may therefore be defined as the process of extracting the constraint
function(s) associated with the given optimal (or near optimal) expert data, where we assume that the
reward function is available. Notably, some prior work (Chou et al., 2018; 2020; 2021; Scobee &
Sastry, 2019; Malik et al., 2021) has tackled this problem by learning hard constraints (i.e., functions
that indicate which state action-pairs are allowed).

We propose a novel method for ICL (for simplicity, our method is also called ICL) that learns
cumulative soft constraints from expert demonstrations while assuming that the reward function is
known. The difference between hard constraints and soft constraints can be illustrated as follows.
Suppose in an environment, we need to obey the constraint “do not use more than 3 units of energy”.
As a hard constraint, we typically wish to ensure that this constraint is always satisfied for any
individual trajectory. The difference between this “hard” constraint and proposed “soft” constraints
is that soft constraints are not necessarily satisfied in every trajectory, but rather only satisfied in
expectation. This is equivalent to the specification “on average across all trajectories, do not use more
than 3 units of energy”. In the case of soft constraints, there may be certain trajectories when the
constraint is violated, but in expectation, it is satisfied.
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To formulate our method, we adopt the framework of constrained Markov decision processes (CMDP)
(Altman, 1999), where an agent seeks to maximize expected cumulative rewards subject to constraints
on the expected cumulative value of constraint functions. While previous work in constrained RL
focuses on finding an optimal policy that respects known constraints, we seek to learn the constraints
based on expert demonstrations. We adopt an approach similar to IRL, but the goal is to learn the
constraint functions instead of the reward function.

Contributions. Our contributions can be summarized as follows: (a) We propose a novel formulation
and method for ICL. Our approach works with any state-action spaces (including continuous state-
action spaces) and can learn arbitrary constraint functions represented by flexible neural networks.
To the best of our knowledge, our method is the first to learn cumulative soft constraints (such
constraints can take into account noise in sensor measurements and possible violations in expert
demonstrations) bounded in expectation as in constrained MDPs. (b) We demonstrate our approach
by learning constraint functions in various synthetic environments, robotics environments and real
world highway driving scenarios.

The paper is structured as follows. Section 2 provides some background about IRL and ICL. Section 3
summarizes previous work about constraint learning. Section 4 describes our new technique to learn
cumulative soft constraints from expert demonstrations. Section 5 demonstrates the approach for
synthetic environments and discusses the results (more results are provided in Appendix B). Finally,
Section 6 concludes by discussing limitations and future work.

2 BACKGROUND

Markov Decision Process (MDP). An MDP is defined as a tuple (S,A, p, µ, r, γ), where S is the
state space, A is the action space, p(·|s, a) are the transition probabilities over the next states given
the current state s and current action a, r : S × A → R is the reward function, µ : S → [0, 1] is
the initial state distribution and γ is the discount factor. The behavior of an agent in this MDP can
be represented by a stochastic policy π : S × A → [0, 1], which is a mapping from a state to a
probability distribution over actions. A constrained MDP augments the MDP structure to contain a
constraint function c : S ×A → R and an episodic constraint threshold β.

Reinforcement learning and Constrained RL. The objective of any standard RL procedure (control)
is to obtain a policy that maximizes the (infinite horizon) expected long term discounted reward
(Sutton & Barto, 2018):

π∗ = argmax
π

Es0∼µ(·),at∼π(·|st),st+1∼p(·|st,at)

[ ∞∑
t=0

γtr(st, at)

]
=: Jπ

µ (r) (1)

Similarly, in constrained RL, additionally the expectation of cumulative constraint functions ci must
not exceed associated thresholds βi:

π∗ = argmax
π

Jπ
µ (r) such that Jπ

µ (ci) ≤ βi∀i (2)

For simplicity, in this work we consider constrained RL with only one constraint function.

Inverse reinforcement learning (IRL) and inverse constraint learning (ICL). IRL performs
the inverse operation of reinforcement learning, that is, given access to a dataset D = {τj}Nj=1 =

{{(st, at)}
Mj

t=1}Nj=1 sampled using an optimal or near optimal policy π∗, the goal is to obtain a reward
function r that best explains the dataset. By “best explanation”, we mean that if we perform the RL
procedure using r, then the obtained policy captures the behavior demonstrated in D as closely as
possible. In the same way, given access to a dataset D (just like in IRL), which is sampled using
an optimal or near optimal policy π∗ (respecting some constraints ci and maximizing some known
reward r), the goal of ICL is to obtain the constraint functions ci that best explain the dataset, that
is, if we perform the constrained RL procedure using r, ci∀i, then the obtained policy captures the
behaviour demonstrated in D.

Setup. Similar to prior work (Chou et al., 2020), we learn only the constraints, but not the reward
function. Essentially, it is difficult to say whether a demonstrated behaviour is obeying a constraint, or
maximizing a reward, or doing both. So, for simplicity, we assume the (nominal) reward is given, and
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we just need to learn a (single) constraint function. Without loss of generality, we fix the threshold β
to a predetermined value and learn only a constraint function c.1

3 RELATED WORK

Several works in the inverse RL literature consider the framework of constrained MDPs (Kalweit
et al., 2020; Fischer et al., 2021; Ding & Xue, 2022). However, those works focus on learning the
reward function while assuming that the constraints are known. In contrast, we focus on learning
constraints while assuming that the reward function is known.

Initial work in constraint learning focused on learning instantaneous constraints with respect to
states and actions. When states and actions are discrete, constraint sets can be learned to distinguish
feasible state-action pairs from infeasible ones (Chou et al., 2018; Scobee & Sastry, 2019; McPherson
et al., 2021; Park et al., 2020). In continuous domains, various types of constraint functions are
learned to infer the boundaries of infeasible state-action pairs. This includes geometric state-space
constraints (Armesto et al., 2017; Pérez-D’Arpino & Shah, 2017), task space equality constraints (Lin
et al., 2015; 2017), convex constraints (Menner et al., 2021) and parametric non-convex constraint
functions (Chou et al., 2020; Malik et al., 2021). Several other works learn local trajectory-based
constraints with respect to a single trajectory (Calinon & Billard, 2008; Pais et al., 2013; Li &
Berenson, 2016; Mehr et al., 2016; Ye & Alterovitz, 2017).

The vast majority of previous work considers hard constraints, which is fine in deterministic domains.
However, in stochastic domains, the probability of violating a constraint can rarely be reduced to
zero, making hard constraints inadequate. To that effect, Glazier et al. (2021) learn probabilistic
constraints that hold with high probability in expert demonstrations. This approach extends the
framework of maximum entropy inverse reinforcement learning to learn a constraint value that is
treated as a negative reward added to the given reward function. Since the probability of a trajectory
is proportional to the exponential of the rewards, this has the effect of reducing the probability
of trajectories with high constraint values. Several other works also extend the inverse entropy
RL framework to learn constraints that reduce some transition probabilities to 0 when a constraint
is violated, but this amounts to hard constraints again (Scobee & Sastry, 2019; Park et al., 2020;
McPherson et al., 2021; Malik et al., 2021). In another line of work, Bayesian approaches (Chou et al.,
2021; Papadimitriou et al., 2021) have also been proposed to learn a distribution over constraints
due to the unidentifiability and uncertainty of the true underlying constraints. With the exception
of (Papadimitriou et al., 2021), existing techniques that learn probabilistic constraints are restricted
to discrete states and actions. Furthermore, the probabilistic constraints that are learned do not
correspond to the soft constraints of constrained MDPs. Hence, we fill this gap by proposing a first
technique that learns soft cumulative constraint functions bounded in expectations (as in constrained
MDPs) for stochastic domains with any state-action spaces.

4 APPROACH

4.1 INVERSE CONSTRAINT LEARNING: TWO PHASES

We propose an approach to do ICL, that is, given a reward r and demonstrations D, this strategy
obtains a constraint function c such that when r, c are used in the constrained RL procedure (any
algorithm that optimizes Equation (2)), the obtained policy π∗ explains the behavior in D. Our
approach is based on the template of IRL, where we typically alternate between a policy optimization
phase and a reward adjustment phase (Arora & Doshi, 2021). We first describe a theoretical procedure
that captures the essence of our approach and then later adapt it into a practical algorithm. The
theoretical approach starts with an empty set of policies (i.e., Π = ∅) and then grows this set of

1Mathematically equivalent constraints can be obtained by multiplying the constraint function and the
threshold by the same value. Therefore there is no loss in fixing β to learn a canonical constraint within the set
of equivalent constraints, assuming that the learned constraint function can take arbitrary values.
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policies by alternating between two optimization procedures until convergence:

POLICY OPTIMIZATION: π∗ := argmax
π

Jπ
µ (r) such that Jπ

µ (c) ≤ β and Π← Π ∪ {π∗} (3)

CONSTRAINT ADJUSTMENT: c∗ := argmax
c

min
π∈Π

Jπ
µ (c) such that JπE

µ (c) ≤ β (4)

The optimization procedure in Equation (3) performs forward constrained RL (see Section 2 -
Background and Equation (2) for the definition of constrained RL and the notation Jπ

µ ) to find an
optimal policy π∗ given a reward function r and a constraint function c. This optimal policy is then
added to the set of policies Π. This is followed by the optimization procedure in Equation (4), which
adjusts the constraint function c to increase the constraint values of the policies in Π while keeping
the constraint value of the expert policy πE bounded by β. This is achieved by maximizing the
accumulated constraint value for the most feasible (lowest total constraint value) policy in Π. This
selectively increases the constraint function until the most feasible optimal policies become infeasible.
At each iteration of those two optimization procedures a new policy is found but its constraint value
will be increased past β unless it corresponds to the expert policy (which is enforced by the constraint
in Equation (4)). By doing so, this approach will converge to the expert policy (or an equivalent
policy when multiple policies can generate the same trajectories) as shown in Theorem 1. Intuitively,
this happens because all policies and trajectories except the expert’s are made infeasible in the long
run.
Theorem 1. Assuming there is a unique policy πE that achieves JπE

µ (r), the alternation of optimiza-
tion procedures in Equation (3) and Equation (4) converges to a set of policies Π such that the last
policy π∗ added to Π is equivalent to the expert policy πE in the sense that π∗ and πE generate the
same trajectories. (For proof, see Appendix A)

In practice, there are several challenges in implementing the optimization procedures proposed in
Equation (3) and Equation (4). First, we do not have the expert policy πE , but rather trajectories
generated based on the expert policy. Also, the set Π of policies can grow to become very large
before convergence is achieved. Furthermore, convergence may not occur or may occur prematurely
due to numerical issues and whether the policy space contains the expert policy. The optimization
procedures include constraints and one of them requires min-max optimization. Therefore, we
approximate the theoretical approach in Equation (3) and Equation (4) into the practical approach
described in Algorithm 1.

As a first step, we replace the optimization procedure in Equation (4) by a simpler optimization de-
scribed in Equation (5). More precisely, we replace the max-min optimization (which is a continuous-
discrete optimization problem) of the constraint values of the policies in Π by a maximization of the
constraint value of the mixture πmix of policies in Π. In this case, the mixture πmix is a collection of
optimal policies where each policy has a weight, which is used in the computation of Jπmix

µ (c) in
Equation (5). The details of this computation are stated in Algorithm 3. Overall, changing the objec-
tive avoids a challenging max-min optimization, but we lose the theoretical guarantee of convergence
to a policy equivalent to the expert policy. However, we find in our experiments that the algorithm
still converges empirically.

c∗ := argmax Jπmix
µ (c) such that JπE

µ (c) ≤ β (5)

Maximizing the constraint values of a mixture of policies Π usually tends to increase the constraint
values for all policies in Π most of the time, and when a policy’s constraint value is not increased
beyond β it will usually be a policy close to the expert policy.

4.2 SOLVING THE CONSTRAINED OPTIMIZATIONS THROUGH THE PENALTY METHOD

The constrained optimization problems Equation (3), Equation (4), Equation (5), described in the
preceding subsection belong to the following general class of optimization problems (here, f, g are
potentially non-linear and non-convex):

min
y

f(y) such that g(y) ≤ 0 (6)

While many existing constrained RL algorithms formulate constrained optimization from a Lagrangian
perspective (Borkar, 2005; Bhatnagar & Lakshmanan, 2012; Tessler et al., 2018; Bohez et al., 2019)
as a min-max problem that can be handled by gradient ascent-descent type algorithms, Lagrangian
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formulations are still challenging in terms of empirical convergence, notably suffering from oscillatory
behaviour (demonstrated for Equation (5) in Appendix B.4).

Therefore, we use a less commonly used optimization framework, namely, the penalty method
(Bertsekas, 2014; Donti et al., 2020) which converts a constrained problem into an unconstrained
problem with a non differentiable RELU term. Roughly, the approach starts by instantiating y = y0,
and then two (sub) procedures are repeated for a few steps each until convergence: (a) first a feasible
solution is found by repeatedly modifying y in the direction of −∇g(y) until g(y) ≤ 0 (note that this
is equivalent to −∇ReLU(g(y)), also called feasibility projection, then (b) a soft loss is optimized
that simultaneously minimizes f(y) while trying to keep y within the feasible region. This soft loss
is as follows: (here, λ is a hyperparameter):

min
y

Lsoft(y) := f(y) + λRELU(g(y)) (7)

As an alternative to Lagrangian based approaches, the penalty method has the advantage of simpler
algorithmic implementation. Further, as we will demonstrate later in our experiments, it also performs
well empirically.

Note that the choice of λ is crucial here. In fact, we plan to use the penalty method to optimize both
Equation (3) and Equation (5), using different λ for each case. A small λ means that in the soft
loss optimization subprocedure (Equation (7)), the gradient update of ReLU(g(y)) is miniscule in
comparison to the gradient update of f(y), because of which y may not stay within the feasible region
during the soft loss optimization. In this case, the feasibility projection subprocedure is important to
ensure the overall requirement of feasibility is met (even if exact feasibility cannot be guaranteed).
Conversely, a large λ means that minimizing the soft loss is likely to ensure feasibility, and the
feasibility projection subprocedure may therefore be omitted. This forms the basis for our proposed
optimization procedures (see Algorithms 2 and 3 for the exact steps of these procedures). Namely,
we perform forward constrained RL (Equation (3)) using λ = 0 with the feasibility projection
subprocedure, and constraint adjustment (Equation (4) / Equation (5)) using a moderate/high λ and
without the feasibility projection subprocedure.

It should be noted that out of the two procedures represented by Equation (3) and Equation (5), the
constrained RL procedure can still be replaced by any equivalent algorithm that solves Equation (3)
efficiently. Even in that case, the primary optimization objectives remain the same as expressed in
Equation (3), Equation (4) and Equation (5). However, our preferred method for solving Equation (5)
is using a penalty formulation as described.

4.3 IMPROVING CONSTRAINT ADJUSTMENT

Figure 1: Given expert (green) and agent (red) behaviour for an arbitrary Gridworld environment
(first figure), the proposed algorithm decreases the constraint value for the expert behaviour (second
figure) and increases the constraint value for the agent behaviour (third figure). Constraint learning
is slower if there is overlap between the two behaviours since there exist some states for which the
algorithm tries to simultaneously increase and decrease the constraint value. Note that dark gray
represents a higher constraint value, light gray a medium constraint value and white represents a
lower constraint value.
We can further improve the constraint adjustment subprocedure by noticing that an overlap in expert
and agent data used in computing the terms JπE

µ (c) and Jπmix
µ (c) respectively in Equation (5)

hampers convergence in learning constraints. We can see this in the following way. We know
that constraint adjustment (Equation (4), Equation (5)) is finding the decision boundary between
expert and agent trajectories (see Figure 1 for an illustration). Consider the soft loss objective for
Equation (5):

min
c

Lsoft(c) := −J
πmix
µ (c) + λRELU(JπE

µ (c)− β)

5



Published as a conference paper at ICLR 2023

Here, the expert data is used to compute JπE
µ (c), and the agent data is used to compute Jπmix

µ (c).
Depending on whether JπE

µ (c) − β ≤ 0 or not, the ReLU term vanishes in Lsoft(c). There are
two cases. (I) If JπE

µ (c)− β ≤ 0, then c is already feasible, that is, for this value of c, the average
constraint value across expert trajectories is less than or equal to β. If there are expert (or expert-like)
trajectories in agent data (used to compute −Jπmix

µ (c)), then we will then end up increasing the
constraint value across these expert trajectories (on average), which is not desirable since it will lead
to c becoming more infeasible. This will lead to requiring more iterations to converge in learning
the constraint function c. (II) If JπE

µ (c) − β > 0, then there is a nonzero ReLU term in Lsoft(c).
If there are some expert or expert-like trajectories in agent data (and subsequently in −Jπmix

µ (c)),
and we take the gradient of Lsoft(c), we will get two contrasting gradient terms trying to increase
and decrease the constraint value across the same expert (or expert-like) trajectories. The gradient
update associated with the ReLU term is required since we want c to become feasible, but having
expert (or expert-like) trajectories in −Jπmix

µ (c) diminishes the effect of the ReLU term and then
more iterations are needed for convergence of constraint function c.

To improve empirical convergence, we propose two reweightings: (a) we reweight the policies in
πmix (line 6 in Algorithm 3) so that policies dissimilar to the expert policy are favoured more in
the calculation of −Jπmix

µ (c), and (b) we reweight the individual trajectories in the expectation
−Jπmix

µ (c) (line 8 in Algorithm 3) to ensure that there is less or negligible weight associated with the
expert or expert-like trajectories. We can perform both these reweightings using a density estimator
(specifically, RealNVP flow (Dinh et al., 2016)). The idea is to learn the density of expert or expert-
like state-action pairs and compute the negative log-probability (NLP) of any given trajectory’s
state-action pairs at test time to determine if it is expert or expert-like, or not. Practically, this is
estimated by computing the mean and std. deviation of the NLP of expert state-action pairs, and then
at test time, checking if the NLP of the given state-action pairs is within one std. deviation of the
mean or not. Please refer to lines 1-3 in Algorithm 3 for the exact pseudocode.

Our complete algorithm is provided in Algorithm 1. As mentioned in Section 4.1, the algorithm
repeatedly optimizes the objectives defined in Equation (3) and Equation (5) on lines 6 and 7. The
procedures for these optimizations are provided in Algorithms 2 and 3, which use the penalty method
as described in Section 4.2. Further, Algorithm 3 describes constraint adjustment using a normalizing
flow as described in this subsection. Inputs and outputs to each algorithm have also been specified.

Algorithm 1 INVERSE-CONSTRAINT-LEARNING

hyper-parameters: number of ICL iterations n, tolerance ϵ
input: expert dataset D = {τ}τ∈D := {{(st, at)}1≤t≤|τ |}τ∈D

1: initialize normalizing flow f
2: optimize likelihood of f on expert state action data: maxf SUM(s,a)∈τ,τ∈D(log pf (s, a))
3: initialize constraint function c (parameterized by ϕ)
4: for 1 ≤ i ≤ n do
5: initialize policy πi (parameterized by θi)
6: perform πi := CONSTRAINED-RL(πi, c)
7: perform c := CONSTRAINT-ADJUSTMENT(π1:i, c,D, f)
8: break if NORMALIZED-ACCRUAL-DISSIMILARITY(D,Dπi) ≤ ϵ

▷ See Section 5 for normalized accrual dissimilarity metric
9: end for

output: learned constraint function c (neural network with sigmoid output),
learned most recent policy πi

5 EXPERIMENTS

Environments. We conduct several experiments on the following environments: (a) Gridworld
(A, B), which are 7x7 gridworld environments, (b) CartPole (MR or Move Right, Mid) which are
variants of the CartPole environment from OpenAI Gym (Brockman et al., 2016), (c) Highway driving
environment based on the HighD dataset (Krajewski et al., 2018), (d) Mujoco robotics environments
(Ant-Constrained, HalfCheetah-Constrained), and (e) Highway lane change environment based on
the ExiD dataset (Moers et al., 2022). Due to space requirements, we provide further details on all
these environments (figures and explanation) in Appendix C.1.
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Algorithm 2 CONSTRAINED-RL

hyper-parameters: learning rates η1, η2, constraint threshold β, constrained RL epochs m
input: policy πi parameterized by θi, constraint function c

1: for 1 ≤ j ≤ m do
2: correct πi to be feasible: (iterate) θi ← θi − η1∇θi

RELU(Jπi
µ (c)− β)

3: optimize expected discounted reward: θi ← θi − η2∇θi
PPO-LOSS(πi)

▷ Proximal Policy Optimization (Schulman et al., 2017)
4: end for

output: learned policy πi

Algorithm 3 CONSTRAINT-ADJUSTMENT

hyper-parameters: learning rate η3, penalty wt. λ, constraint threshold β,
constraint adjustment epochs e

input: policies π1:i, constraint function c, trained normalizing flow f ,
expert dataset D = {τ}τ∈D := {{(st, at)}1≤t≤|τ |}τ∈D

given: cγ(τ) := SUM1≤t≤|τ |(γ
t−1c(st, at)),

SAMPLEτ (Π, p) which generates |D| trajectories τ = {(st, at)}1≤t≤|τ |, where for each
τ , we choose π ∈ Π with prob. p(π), then, s1 ∼ µ(·), at ∼ π(·|st), st+1 ∼ p(·|st, at)

1: µE := MEAN(s,a)∈τ,τ∈D(− log pf (s, a))
2: σE := STD-DEV(s,a)∈τ,τ∈D(− log pf (s, a))
3: w(τ) := MEAN(s,a)∈τ (1(− log pf (s, a) > µE + σE)) ▷ trajectory dissimilarity w.r.t. expert
4: construct policy dataset Dπi = SAMPLEτ (Π = {πi}, p = {1})
5: w̃i := MEANτ∈Dπi

w(τ) ▷ unnormalized policy weights
6: construct agent dataset DA = SAMPLEτ (Π = π1:i, p(πi) ∝ w̃i) ▷ policy reweighting
7: for 1 ≤ j ≤ e do ▷ constraint function adjustment
8: compute Jπmix

µ (c) := SUMτ∈DA

w(τ)cγ(τ)

SUMτ∈DA
w(τ)

▷ trajectory reweighting

9: compute JπE
µ (c) := MEANτ∈D(c

γ(τ))
10: compute soft loss Lsoft(c) := −J

πmix
µ (c) + λRELU(JπE

µ (c)− β)
11: optimize constraint function c: ϕ← ϕ− η3∇ϕLsoft(c)
12: end for

output: constraint function c

Baselines and metrics. We use two baselines to compare against our method: (a) GAIL-Constraint,
which is based on Generative adversarial imitation learning method (Ho & Ermon, 2016), and (b)
Inverse constrained reinforcement learning (ICRL) (Malik et al., 2021), which is a recent method that
can learn arbitrary neural network constraints. In the absence of any other neural network constraint
learning technique, only those two relevant baselines are compared to empirically. We provide
further details in Appendix C.2. Next, we define two metrics for our experiments: (a) Constraint
Mean Squared Error (CMSE), which is the mean squared error between the true constraint and
the recovered constraint, and (b) Normalized Accrual Dissimilarity (NAD), which is a dissimilarity
measure computed between the expert and agent accruals (state-action visitations of policy/dataset).
Further details can be found in Appendix C.3.

Finally, we use a constraint neural network with a sigmoid output, so that we can also interpret the
outputs as safeness values (this is able to capture the true constraints arbitrarily closely, as justified in
Appendix C.10). Our results are reported in Tables 1, 2, 5 and 6. The average recovered constraint
functions and accruals are provided in Appendix D. For the highway datasets, our results are reported
in Figures 2 and 11. The hyperparameter configuration (e.g., choice of λ), training strategy and
training time statistics are elaborated in Appendix C.

5.1 RESULTS FOR SYNTHETIC EXPERIMENTS

Results and discussion for the other environments can be found in Appendix B.6, B.7 and B.8.
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Table 1: Constraint Mean Squared Error (Mean ± Std. Deviation across 5 seeds)

Algorithm↓, Environment→ Gridworld (A) Gridworld (B) CartPole (MR) CartPole (Mid)
GAIL-Constraint 0.31 ± 0.01 0.25 ± 0.01 0.12 ± 0.03 0.25 ± 0.02

ICRL 0.11 ± 0.02 0.21 ± 0.04 0.21 ± 0.16 0.27 ± 0.03
ICL (ours) 0.08 ± 0.01 0.04 ± 0.01 0.02 ± 0.00 0.08 ± 0.05

Table 2: Normalized Accrual Dissimilarity (Mean ± Std. Deviation across 5 seeds)

Algorithm↓, Environment→ Gridworld (A) Gridworld (B) CartPole (MR) CartPole (Mid)
GAIL-Constraint 1.76 ± 0.25 1.29 ± 0.07 1.80 ± 0.24 7.23 ± 3.88

ICRL 1.73 ± 0.47 2.15 ± 0.92 12.32 ± 0.48 13.21 ± 1.81
ICL (ours) 0.36 ± 0.10 1.26 ± 0.62 1.63 ± 0.89 3.04 ± 1.93

GAIL-Constraint ICRL ICL (β = 0.1) (ours)

Figure 2: Constraint functions (averaged across 5 seeds) recovered for the HighD highway driving
environment. X-axis is the agent (ego car) velocity v (ms−1), Y-axis is the gap from the ego car
to the vehicle (center-to-center distance) in front g (m). Red points are (discretized) binary expert
accruals, i.e. the states that the agent has been in. Both the baselines, GAIL-Constraint and ICRL
assign a high (white) constraint value to more expert states compared to our method, ICL, which
overlaps less with the expert states. Ideally, it is expected that the constraint value should be less for
expert states, since they are acceptable states. Further discussion is provided in Appendix B.7.

Accuracy and sharpness of learned constraints. While our (practical) method is not guaranteed
to produce the true constraint function (constraint unidentifiability is a known problem (Chou et al.,
2020)), empirically, we find that our method is still able to learn constraint functions that strongly
resemble the true constraint function, as can be seen by our low CMSE scores (Table 1). Other
methods, e.g., GAIL-Constraint can find the correct constraint function for all environments except
CartPole (Mid), however, the recovered constraint is more diffused throughout the state action space
(see Appendix D for training plots). In contrast, our recovered constraint is pretty sharp, even without
a regularizer.

Ability to learn complex constraints. From the training plots, we find that the ICRL method is able
to find the correct constraint function only for CartPole (MR) and to a less acceptable degree for
Gridworld (A). This is surprising as ICRL should be able to theoretically learn any arbitrary constraint
function (note that we used the settings in (Malik et al., 2021) except for common hyperparameters),
and expect it to perform better than GAIL-Constraint. Our justification for this is two-fold. One, the
authors of ICRL have only demonstrated their approach with simple single-proposition constraints,
and for more complex settings, ICRL may not be able to perform as well. Second, ICRL may
require more careful hyperparameter tuning for each constraint function setting, even with the same
environment, depending on the constraint. On the other hand, our method is able to learn these
relatively complex constraints satisfactorily with relatively fewer hyperparameters.

Similarity of learned policy to expert policy. We find a strong resemblance between the accruals
recovered by our method and the expert, as can be seen by our low NAD scores (Table 2). In these
scores, there is some variability (e.g., in Cartpole (MR) and Gridworld (B) environments) which is
expected, since the policies are stochastic. For baselines, GAIL-Constraint accruals are similar to the
expert accruals except for CartPole (Mid) environment, where it is also unable to learn the correct
constraint function. Overall, this indicates that GAIL is able to correctly imitate the constrained
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expert across most environments, as one would expect. On the other hand, ICRL accruals are even
worse than GAIL, indicating that it is unable to satisfactorily imitate the constrained expert, even
on the environments for which it is able to generate a somewhat satisfactory constraint function.
Training plots are provided in Appendix D.

5.2 ABLATIONS AND QUESTIONS

Use of penalty method vs. Lagrangian. As mentioned in Section 4.2, Lagrangian formulations are
quite popular in the literature, however, they are inherently min-max problems that admit gradient
ascent-descent solutions which are prone to oscillatory behavior, as we observe in Appendix B.4.
Thus, we prefer the simpler framework of penalty method optimization which works well empirically.

Stochastic dynamics. Our algorithm can also be applied to stochastic environments, which we
demonstrate in Appendix B.3 with slippery Gridworld environments. Stochasticity would lead to
noisier demonstrations, and we find that a little noise in the demonstrations helps in the quality of the
recovered constraint, but too much noise can hamper the constraint learning.

Quality of learned policy w.r.t. imitation learning. We reiterate that our objective is to learn
constraints, while the goal of imitation learning techniques (e.g., behavior cloning) is to directly learn
a policy that mimics the expert without inferring any reward or constraint function. Even then, once
the constraints have been learned, they can be used with the given reward to learn a constrained policy.
Depending on factors like quality of expert data etc., ICL can learn a better or worse policy compared
to an imitation learning method. We do not have definitive evidence to conclude that either is true.

Entropy regularized approaches and overfitting. Maximum entropy techniques (e.g., (Scobee &
Sastry, 2019; Malik et al., 2021)) have been previously proposed in the literature. Entropy maximiza-
tion can indeed help in reducing overfitting, but they require a completely different mathematical
setup. Our method doesn’t belong to this family of approaches, but we hope to incorporate these
strategies in the future to reap the mentioned benefits. We still note that empirically, our approach
doesn’t seem to suffer from any overfitting issues.

Use of normalizing flow and reweighting. We justify our choice of using a normalizing flow to
reweigh policies and trajectories (Algorithm 3) in Appendix B.2. We find that ICL with reweighting
performs better than ICL without reweighting, although the improvement is minor.

6 CONCLUSION, LIMITATIONS AND FUTURE WORK

This paper introduces a new technique to learn (soft) constraints from expert demonstrations. While
several techniques have been proposed to learn constraints in stochastic domains, they adapt the
maximum entropy inverse RL framework to constraint learning (Scobee & Sastry, 2019; Park et al.,
2020; McPherson et al., 2021; Glazier et al., 2021; Malik et al., 2021). We propose the first approach
that can recover soft cumulative constraints common in constrained MDPs.

Limitations. First, the proposed technique assumes that the reward function is known and can
only learn a single constraint function. The challenge with simultaneously learning the reward
function as well as multiple constraints is that there can be many equivalent configurations of reward
and constraint functions that can generate the same trajectories (unidentifiability (Ng et al., 2000)).
Second, it is possible that expert demonstrations are sub-optimal. In that case, we hypothesize that
our method would learn alternative constraints such that the provided demonstrations become optimal
for these constraints. Finally, our approach requires several outer iterations of forward CRL and
constraint adjustment, and as a result, it should in principle require more training time than the
existing baselines.

Future work. First, for learning rewards and/or multiple constraints, we need a way to specify
preference for specific combinations of reward and constraint functions. Second, it may be more
desirable to express constraints not through expectations, but through probabilistic notions, e.g., a
cumulative soft constraint which holds (i.e., is ≤ β) with probability ≥ p. Finally, we hope to extend
our work to handle demonstrations from multiple experts and incorporate entropy regularization into
our framework for its benefits.

9
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APPENDIX

A PROOF OF THEOREM 1

We give a proof by contradiction under 3 assumptions. The 3 assumptions are:

(i) The reward function is non-negative.

(ii) The space of policies is finite.

(iii) There is a unique policy πE that achieves JπE

µ (r). In other words no other policy achieves
the same expected cumulative reward as πE .

Note that the first assumption is not restrictive since we can always shift a reward function by adding
a sufficiently positive constant to the reward of all state-action pairs such that the new reward function
is always non-negative. This new reward function is equivalent to the original one since it does not
change the value ordering of policies.

We argue that the second assumption is reasonable in practice. Even if we consider what appears
to be a continuous policy space because the parameterization of the policy space is continuous, in
practice, parameters have a finite precision and therefore the space of policies is necessarily finite
(albeit possibly very large).

Based on assumption (ii), it should be clear that the alternation of the optimization procedures in
Equation (3) and Equation (4) will converge to a fixed point. Since there are finitely many policies,
and we add a new policy to Π at each iteration (until we reach the fixed point), in the worst case, the
alternation will terminate once all policies have been added to Π.

When the algorithm converges to a fixed point, let π∗ be the optimal policy found by policy opti-
mization in Equation (3) and c∗ be the optimal constraint function found by constraint adjustment in
Equation (4). According to Equation (3), we know that Jπ∗

µ (c∗) ≤ β. Similarly, we show that the
objective in Equation (4) is less than or equal to β:

max
c

min
π∈Π

Jπ
µ (c) subject to JπE

µ (c) ≤ β (8)

= min
π∈Π

Jπ
µ (c

∗) since c∗ is the optimal solution of equation 4 (9)

≤ β since π∗ ∈ Π and Jπ∗

µ (c∗) ≤ β (10)

Next, if we assume that π∗ is not equivalent to πE , then we can show that the objective in Equation (4)
is greater than β.

max
c

min
π∈Π

Jπ
µ (c) such that JπE

µ (c) ≤ β (11)

≥ min
π∈Π

Jπ
µ (ĉ) where we choose ĉ(s, a) =

r(s, a)β

JπE

µ (r)

(12)

= min
π∈Π

Jπ
µ (r)β/J

πE

µ (r) by substituting ĉ by its definition

(13)

> JπE

µ (r)β/JπE

µ (r) = β since Jπ
µ (r) ≥ JπE

µ (r) ∀π ∈ Π according to equation 3

and Jπ
µ (r) ̸= JπE

µ (r) by assumption (iii)
(14)

The key step in the above derivation is Equation (12), where we choose a specific constraint function ĉ.
Intuitively, this constraint function is selected to be parallel to the reward function while making sure
that JπE

µ (c) ≤ β. We know that all policies in Π achieve higher expected cumulative rewards than πE .
This follows from the fact that the optimization procedure in Equation (3) finds an optimal policy π∗

at each iteration and this optimal policy is not equivalent to πE based on our earlier assumption. So
the policies in Π must earn higher expected cumulative rewards than πE . So if we select a constraint
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function parallel to the reward function then the policies in Π will have constraint values greater
than the constraint value of πE and therefore they should be ruled out in the constrained policy
optimization Equation (3).

Since the inequalities 8-10 contradict the inequalities 11-14, we conclude that π∗ must be equivalent
to πE . ■

B ADDITIONAL DISCUSSION

B.1 CONSTRAINED PPO

For the forward constrained RL procedure used in synthetic and HighD environments, we use a
modification of the PPO algorithm (Schulman et al., 2017) that approximately ensures constraint
feasibility. This modification is based on the penalty method mentioned in Section 4.2. This modified
PPO works in two steps. First, we update the policy parameters to ensure constraint feasibility. Then,
we update the policy parameters to optimize the PPO objective. If the policy π is parameterized by θ,
then these two steps are:

FEASIBILITY PROJECTION: θ ← θ − η1∇θRELU(Jπ
µ (c)− β)

PPO UPDATE: θ ← θ − η2∇θPPO-LOSS(π)

The gradient for the feasibility projection step can be computed just like policy gradient:

Gt0(c) :=

∞∑
t=t0

γt−t0c(st, at) (15)

∇θJ
π
µ (c) = Es0∼µ,at∼π(·|st),st+1∼p(·|st,at)

[ ∞∑
t=0

Gt(c)∇θ log π(at|st)
]

(16)

∇θRELU(Jπ
µ (c)− β) = I(Jπ

µ (c) > β)∇θJ
π
µ (c) (17)

The PPO-LOSS(π) term is computed over a minibatch as follows (note that A(st, at) is an advantage
estimate). This is the same as the original paper (Schulman et al., 2017), except for an entropy term.

rt :=
π(at|st;θ)

π(at|st;θold)
(18)

PPO-LOSS(π) := −Et

[
min(rt, clip(rt, 1− ϵPPO, 1 + ϵPPO))A(st, at)

]
− λentH(π) (19)

This gradient can be computed through automatic differentiation.

Overall, we do not have a RELU term in the PPO update, since its gradient would interfere with the
PPO update and cause difficulty in learning. Instead, the feasibility projection step tries to ensure
feasibility of the solution before every PPO update. While this doesn’t guarantee that feasibility will
hold during and after the PPO update, we see empirically that feasibility approximately holds.

The feasibility projection step is comparable to a projection step, since it projects the solution into
the feasibility region, although not necessarily the closest feasible point.

Our results are reported in Figures 3, 4.

B.2 ABLATION: EFFECT OF POLICY MIXTURE AND REWEIGHTING

To assess the effect of having a policy mixture and reweighting, we conduct experiments with two
more variants of ICL on all the synthetic environments:

• ICL wihout a mixture policy or reweighting (use the policy learned in constrained RL step
instead of πmix to do constraint adjustment step)

• ICL with a mixture policy but with no reweighting (use uniform weights)

Our results are reported in Figure 5. We find that ICL without a mixture policy or reweighting is
unable to perform as well as other methods with Gridworld (A) environment. Empirically, it is
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Gridworld (A)
(β = 0.99)

Gridworld (B)
(β = 0.99)

CartPole (MR)
(β = 50)

CartPole (Mid)
(β = 30)

Figure 3: Avg reward per PPO epoch for the expert (1 seed). As seen, the modified PPO is able to
learn a good policy that achieves a high reward.

Gridworld (A)
(β = 0.99)

Gridworld (B)
(β = 0.99)

CartPole (MR)
(β = 50)

CartPole (Mid)
(β = 30)

Figure 4: Avg constraint violations per PPO epoch for the expert (1 seed). As seen, the modified PPO
is able to learn a good policy that reduces the constraint violations as the training progresses.

prone to divergence and cyclic behavior. This divergent behavior can be observed in the Gridworld
(A) case. ICL with a mixture policy but with no reweighting is unable to converge as fast as ICL
with mixture policy and reweighting in the Gridworld (B) and CartPole (Mid) environments. For
the CartPole (MR) environment, all the methods converge fairly quickly and have almost the same
performance. We also note that there is significant variance in the result for ICL on the CartPole
(Mid) environment. Despite this, overall, ICL with a mixture policy and reweighting performs better
than the other variants (or close to the best). Thus, we report this variant (with mixture policy and
reweighting) in Table 1 and Table 2.

Gridworld (A)
(β = 0.99)

Gridworld (B)
(β = 0.99)

CartPole (MR)
(β = 50)

CartPole (Mid)
(β = 30)

Figure 5: CMSE (Y-axis) vs ICL Iteration i (X-axis). In each iteration, we do one complete procedure
of constrained RL and one complete procedure of constraint function adjustment.

B.3 ENVIRONMENT STOCHASTICITY

To assess the effect of environment stochasticity on the performance of our algorithm, we conduct
experiments with a stochastic variant of Gridworld (A) environment. More specifically, we apply the
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Table 3: Constraint Mean Squared Error

Algorithm↓, Environment→ pslip = 0.1 pslip = 0.3 pslip = 0.5
ICL 0.02 ± 0.00 0.03 ± 0.01 0.08 ± 0.00

Table 4: Normalized Accrual Dissimilarity

Algorithm↓, Environment→ pslip = 0.1 pslip = 0.3 pslip = 0.5
ICL 0.45 ± 0.10 1.13 ± 0.37 1.29 ± 0.20

Reported metrics (Mean± Std. Deviation across 5 seeds) for the experiments on stochastic Gridworld
(A) environments.

ICL algorithm (Algorithm 1) to the Gridworld (A) environment, with varying values of the transition
probability. A transition probability of 1 implies deterministic transition to the next state. A transition
probability of 1− pslip implies a stochastic transition, such that the agent can enter the intended next
state with this probability, and go to any other random direction with overall probability pslip. Our
results are reported in Tables 3 and 4, and in Figure 6.

ICL
(pslip = 0)

ICL
(pslip = 0.1)

ICL
(pslip = 0.3)

ICL
(pslip = 0.5)

Figure 6: Average constraint function value (averaged across 5 training seeds) for stochastic Gridworld
(A) environment, demonstrating the effect of changing pslip.

Empirically, we observe that the increase in environment stochasticity leads to a decrease in the
performance of the constrained RL algorithm. Additionally, with a higher stochasticity, there is more
noise in the demonstrations. When we increase the stochasticity slightly (going from a deterministic
environment to pslip = 0.1), we find that the recovered constraint function has lower error (see Figure
6). This happens because with a little stochasticity, there is more exploration in terms of states visited,
which leads to a more accurate constraint function since the algorithm tries to avoid more states.
However, with more stochasticity (pslip = 0.5), the demonstrations themselves become more noisy,
and hence the algorithm recovers a worse constraint function than in the case with little stochasticity
(see Table 3). Finally, we also find that accruals of the learned policy also have more error w.r.t.
provided demonstrations as the stochasticity increases (see Table 4).

B.4 COMPARISON W.R.T. A LAGRANGIAN IMPLEMENTATION OF EQUATION (5)

Equation (5) can also be represented using a min-max optimization:

min
λ≥0

max
c

Jπmix
µ (c)− λ(JπE

µ (c)− β) (20)

It is possible to perform this optimization instead of the penalty based strategy proposed in this paper.
In terms of implementation, this would amount to an alternating gradient ascent descent procedure,
where we first ascent on c, followed by descent on λ, and we repeat these steps until convergence.
However, as is the case with min-max optimizations, this is prone to training instability and oscillatory
behavior. We demonstrate this with the Gridworld (A) environment. In particular, we can see this
oscillatory behavior in the plot for the Lagrange multiplier λ (Figure 7, second subfigure). We also
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plot the expert satisfaction % for the Lagrangian and non Lagrangian implementation (ICL) (see
third and fourth subfigure in Figure 7). The expert satisfaction % is computed as the percentage of
expert demonstrations satisfying the constraint using the current constraint function, during training.
As the plots show, the Lagrangian implementation is prone to oscillatory behavior. Initially it does
achieve a high satisfaction, but over time, the satisfaction degrades. This does not happen in the ICL
implementation. This is our primary rationale for using a penalty based method for Equation (5).

In terms of the recovered constraint function, we find that the Lagrangian implementation is still able
to achieve a noisy yet reasonable constraint function (see the first subfigure in Figure 7). Therefore,
the Lagrangian approach is indeed correct in principle and can be used to recover a constraint function.
However, in terms of other training metrics, the Lagrangian approach does not perform well. Our
proposed method is able to mitigate this.

Avg. constraint value (5
seeds) on Gridworld

(A)

Lagrange multiplier λ
for Lagrangian
implementation

Expert satisfaction over
time for Lagrangian

implementation

Expert satisfaction over
time for ICL

Figure 7: The first figure shows the avg. constraint function (averaged across 5 seeds) for the
Lagrangian implementation. The second figure shows the value of the Lagrange multiplier during
training for 1 seed (X-axis denotes the adjustment iteration). The last two figures show the value of
the expert satisfaction (%) for the Lagrangian implementation and the regular implementation (ICL).

B.5 EFFECT OF CONSTRAINT THRESHOLD β

We also assess the effect of β with the Gridworld (A, B) environments. We do not assess the effect of
β on the CartPole (MR, Mid) environments since our claim can be easily verified by just observing
the learned costs for the Gridworld (A, B) environments. Our claim is as follows. With a higher β,
the learned constraint function should have a higher CMSE and more state-action pairs with higher
constraint values. This is because since β is higher, the agent is allowed to visit more high constraint
value state-action pairs, as the constraint threshold is more relaxed. To verify this claim, we run
experiments on the Gridworld (A, B) environments. Specifically, in addition to β = 0.99 (which
corresponds to the results in Tables 1 and 2), we also run experiments with β = 2.99, 5.99. Our
results are reported in Figures 8, 9. From the figures, it is apparent that our claim is correct.

True constraint
function

ICL
(β = 0.99)

ICL
(β = 2.99)

ICL
(β = 5.99)

Figure 8: Average constraint function value (averaged across 5 training seeds) for Gridworld (A)
environment, demonstrating the effect of changing β.
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True constraint
function

ICL
(β = 0.99)

ICL
(β = 2.99)

ICL
(β = 5.99)

Figure 9: Average constraint function value (averaged across 5 training seeds) for Gridworld (B)
environment, demonstrating the effect of changing β.

B.6 MUJOCO EXPERIMENTS

We perform robotics experiments using the Mujoco (Todorov et al., 2012) environment setups
described in the ICRL paper (Malik et al., 2021) (Ant and HalfCheetah environments). While there
are four Mujoco environments in the ICRL paper, two of them use implicit constraints (Point and
Ant-Broken environments). As we are learning constraint functions, we consider the two setups which
use explicit constraints. To reduce training time, we use ICL with (highly optimized) PPO-Lagrange
(Ray et al., 2019) instead of ICL with PPO-Penalty (Appendix B.1). In principle, any procedure
that can efficiently optimize Equation (3) can be used for the policy optimization part of ICL, as
mentioned in Section 4.2. The Mujoco environment setups are described in Appendix C.1 and the
hyperparameter configuration for PPO-Lagrange is described in Table 11. Our results are reported in
Tables 5 and 6.

Table 5: Constraint Mean Squared Error (Mean ± std. deviation across 5 seeds)

Algorithm↓, Environment→ Ant-Constrained HalfCheetah-Constrained
GAIL-Constraint 0.17 ± 0.04 0.20 ± 0.03

ICRL 0.41 ± 0.00 0.35 ± 0.17
ICL (ours) 0.07 ± 0.00 0.05 ± 0.00

Table 6: Normalized Accrual Dissimilarity (Mean ± std. deviation across 5 seeds)

Algorithm↓, Environment→ Ant-Constrained HalfCheetah-Constrained
GAIL-Constraint 8.02 ± 2.84 14.38 ± 2.36

ICRL 9.50 ± 2.84 7.50 ± 4.97
ICL (ours) 6.84 ± 1.29 10.16 ± 7.49

We observe that ICL is able to find the constraint more accurately compared to GAIL-Constraint
and ICRL, as can be seen from the low CMSE scores in Table 5 (recovered constraint function plots
in Figures 24 and 26). With respect to the accruals, our method achieves the lowest NAD score for
Ant-Constrained environment (accrual plot in Figure 25). However, the NAD score achieved by ICL
is not the lowest for HalfCheetah-Constrained environment, and instead, ICRL achieves a lower score
(Table 6). In fact, ICRL succeeds at matching the accruals (low NAD score) for this environment
better than ICL, although it finds a hard constraint.

This can be explained by visually inspecting the accruals for ICL and ICRL for the HalfCheetah-
Constrained environment (Figure 27). More precisely, while both these accruals are shifted slightly
to the right, which is appropriate for an agent trying to move right, ICRL has lower accrual mass for
z ≤ 0 and a larger accrual mass for z ≥ 2, which indicates that it is able to find a better constrained
optimal policy for this specific environment, compared to ICL (also see Figure 10). However, we do
have a better constraint function (lower CMSE), and thus a constrained RL procedure that could find
the optimal constrained policy in this specific setting could alleviate this issue.
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ICRL episodic reward ICRL average cost ICL episodic reward ICL average cost

Figure 10: Training plots for 2M timesteps for ICRL and ICL.

For the Ant-Constrained environment, ICRL completely fails to recover a reasonable constraint
(Figure 24). This is probably due to the challenging nature of the constraint. GAIL-Constraint
performs moderately for these environments, while our method can find the (nearly) correct constraint.

B.7 RESULTS FOR REAL WORLD EXPERIMENT (HIGHD)

We report the results for the HighD driving environment in Figure 2. Overall, all the methods are
able to find a constraint function that shows that as the agent’s velocity increases, the center-to-center
distance that must be maintained between the cars also must increase. The time gap that must
be maintained can be calculated by dividing the requisite center-to-center distance by the agent’s
velocity. For all the methods, this time gap is approximately between 3-4.5 seconds. More precisely,
at v = 20ms−1 = 72kmh−1, the gap is roughly between 60-80 m (equivalently, 3-4 seconds) for
all methods, while close to v = 40ms−1 = 144kmh−1, the gap is between 125-150 m (equivalently
≈3-4 seconds) for our method, and 160-180 m (equivalently 4-4.5 seconds) for GAIL-Constraint
and ICRL. Note that our method is the only one which doesn’t assign high constraint value to large
center-to-center gaps (no white areas in the black regions in Figure 2). The possible justification for
this is that the other methods are unable to explicitly ensure that expert trajectories are assigned low
constraint value, while our method is able to do so through the constraint adjustment step. Moreover,
our method has fewer accrual points (red) in the white (high constraint value) region compared to the
baselines.

B.8 RESULTS FOR REAL WORLD EXPERIMENT (EXID)

GAIL-Constraint ICRL ICL (β = 5) (ours)

Figure 11: Constraint functions (averaged across 5 seeds) recovered for the ExiD highway lane
change environment. White indicates a constraint value of 1, while black represents a constraint
value of 0. X-axis is the agent (ego car) lateral velocity action v (ms−1), Y-axis is the signed distance
d (m) to the center line of the target lane. Red points are (discretized) binary expert accruals, i.e.
the states/actions that the agent has been in. Both baselines, GAIL-Constraint and ICRL are unable
to find a satisfactory constraint function for this task. On the other hand, our method, ICL, finds a
reasonable constraint function.
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We also conduct experiments with the ExiD environment (environment setup is described in Appendix
C.1). The objective is to discover a constraint on the lateral velocity and signed distance to the target
lane for doing a lane change in either direction. Note that just like the HighD environment, the
real world constraint function is not known for this setting. The recovered constraint functions are
reported in Figure 11 and the accruals are reported in Figure 29.

Overall, we find that only ICL is able to find a satisfactory constraint function for this setting. GAIL-
Constraint finds a diffused constraint that overlaps the expert state-action pairs (and hence disallows
them), while ICRL is unable to find a reasonable constraint. We can interpret the constraint plot of
ICL as follows. Since the top-right and bottom-left quadrants (v ≥ 0, d ≥ 0 and v ≤ 0, d ≤ 0) are
high in constraint value (white), they are relatively unsafe/prohibited. This is in line with expectation,
since depending on the sign of the distance to the target lane, movement in one direction should
be allowed and other should be disallowed (some risky behaviour is permitted since this is a soft
constraint). More specifically, to reduce the magnitude of d, we must apply a control input v of
opposite sign. Further, the shape of the constraint is also not exactly square/rectangular. That is, it
constrains movement to be in one direction when far away (e.g., for d = 10, v ≤ −1), and allows
movement in both directions as we get closer to the target lane (e.g., for d = 2.5, any v is allowed).

C TRAINING SETUP AND EXPERIMENTAL DETAILS

All PPO variants mentioned in this paper are single-process for simplicity. For the tables, we
abbreviate the Gridworld (A, B), CartPole (MR, Mid), Ant-Constrained, HalfCheetah-Constrained
environments as GA, GB, CMR, CMid, Ant and HC.

C.1 ENVIRONMENTS

We use the following environments in this work:

• Gridworld (A, B) are 7x7 gridworld environments (adapted from yrlu’s repository (Lu,
2019)). The start states, true constraint function and the goal state are indicated in Figure 12.
The action space consists of 8 discrete actions including 4 nominal directions and 4 diagonal
directions.

• CartPole (MR, Mid) (MR means Move Right) are variants of CartPole environment from
OpenAI Gym (Brockman et al., 2016) where the objective is to balance a pole for as long as
possible (maximum episode length is 200). The start regions and the true constraint function
are indicated in Figure 12. Both variants may start in a region of high constraint value, and
the objective is to move to a region of low constraint value and balance the pole there, while
the constraint function is being learned.

• HighD environment: We construct an environment using ≈ 100 trajectories of length
≤ 1000 from the HighD highway driving dataset (Krajewski et al., 2018) (see Figure 13).
The environment is adapted from the Wise-Move framework (Lee et al., 2019). For each
trajectory, the agent starts on a straight road on the left side of the highway, and the objective
is to reach the right side of the highway without colliding into any longitudinally moving
cars. The state features consist of 7 ego features (x, y, speed, acceleration, rate of change of
steering angle, steering angle and the heading angle) and 7 relevant predicates, propositions,
and processed features (distance to the vehicle in front, processed distance, whether the ego
is stopped, whether the ego has reached goal state, whether time limit has been exceeded,
whether the ego is within road boundaries, and if ego has collided with another vehicle).
The action space consists of a single continuous action, i.e., acceleration. Note that for
this environment, we do not have the true constraint function. Instead, we aim to learn a
constraint function that is able to capture the relationship between an agent’s velocity and
the distance to the car in front.

• Ant-Constrained, HalfCheetah-Constrained environments are Mujoco robotics envi-
ronments used in (Malik et al., 2021) (see Figure 14). One difference in our experiments
is the use of z ≥ −1 constraint rather than z ≥ −3 constraint used in the original paper,
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Gridworld (A) Gridworld (B) CartPole (MR) CartPole (Mid)

Figure 12: Environments used in the experiments. White regions indicate constraint value of 1.
Light green (or yellow) regions correspond to start states. Dark green regions correspond to the
goal state. Gridworld environments have discrete states and discrete actions. Cartpole environments
have continuous states and discrete actions. For the CartPole environments, the constraints represent
desired behaviour. For CartPole (MR), the pole must stay in x ≥ 0.2 and for CartPole (Mid), the pole
is not allowed to go right (a = 1) for x ≥ 1 and not allowed to go left (a = 0) for x ≤ −1.

Figure 13: HighD driving dataset environment. Leftmost white region indicates start region and
rightmost white region indicates end region. Ego car is in blue, other cars are in red. This environment
has both discrete and continuous states, and a continuous action.

which is more challenging than the original setting. More concretely, the agent must stay in
z ∈ [−1,∞) and it cannot go backwards, otherwise it will violate the constraint.

• ExiD environment: Similar to the HighD environment, we construct an environment using
≈ 1000 trajectories of varying lengths (≤ 1000) from 5 different scenarios of ExiD highway
driving dataset (Moers et al., 2022). To do so, we select trajectories where ego performs
a lane change such that there are no other vehicles around the ego. On every reset, the
environment initializes to the starting location of one of the ≈ 1000 trajectories. The goal
is to perform a lane change to reach the target lane, which can be either to the left or right.
The state consists of the signed distance (m) to the target lane and the action is a continuous
lateral velocity (ms−1) that can be directly controlled by the agent.

The environments are more clearly illustrated in Figures 12 and 13.

C.2 DESCRIPTION OF BASELINE METHODS

We use the following two baselines to compare against our method:

• GAIL-Constraint: Generative adversarial imitation learning (Ho & Ermon, 2016) is an
imitation learning method that can be used to learn a policy that mimics the expert policy.
The discriminator can be considered as a local reward function that incentivizes the agent to
mimic the expert. We assume that the agent is maximizing the reward r(s, a) := r0(s, a) +
log(1− c(s, a)) where r0 is the given true reward, and then the log term corresponds to the
GAIL’s discriminator. Note that when c(s, a) = 0, the discriminator reward is 0, and when
c(s, a) = 1, the discriminator reward tends to −∞.

• Inverse constrained reinforcement learning (ICRL) (Malik et al., 2021) is a recent method
that is able to learn arbitrary Markovian neural network constraint functions, however, it can
only handle hard constraints.

For both these methods, we use a similar training regime as adopted by (Malik et al., 2021), however,
we try to keep the constraint function architecture fixed across all experiments (baselines and our
method). Note that we did not include the method in Scobee and Sastry (Scobee & Sastry, 2019) as
it is unable to handle continuous state spaces. Similarly, we did not include the binary constraint
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Ant-Constrained HalfCheetah-Constrained

Figure 14: Mujoco environments used in the experiments. These environments have continuous states
and continuous actions. Figures taken from ICRL paper (Malik et al., 2021). Instead of the original
constraint z ≥ −3, we consider a more challenging constraint z ≥ −1.

Real world map for the shown scenario.

Start (cyan) and target (green) lanes for the
lane change in this scenario.

Simplified environment (agent starts from left-
most point)

Simplified environment (agent moves accord-
ing to chosen action)

Figure 15: ExiD dataset lane change environment (one of multiple scenarios). The state space
contains the signed distance to the target lane, and the action space contains the lateral velocity. There
are no other vehicles, only the ego car. The objective is to find a constraint on the lateral velocity
(action) that an agent must maintain for any certain signed distance from the target lane.
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(BC) method described in (Malik et al., 2021) as GC and ICRL empirically perform better than BC,
according to their experiments.

C.3 METRICS

We define two metrics for our experiments.

• Constraint Mean Squared Error (CMSE) is computed as the mean squared error between
the true constraint function and the recovered constraint function on a uniformly discretized
state-action space for the respective environment.

• Normalized Accrual Dissimilarity (NAD) is computed as follows. Given a policy learned
by the method, we compute an agent dataset of trajectories. Then, the accrual (state-action
visitation frequency) is computed for both the agent dataset and the expert dataset over
a uniformly discretized state-action space, which is the same as the one used for CMSE.
Finally, the accruals are normalized to sum to 1, and the Wasserstein distance is computed
between the accruals.

More concretely, the NAD metric is computed as follows. Given the policy π learned by any method
(ICL or a baseline), we sample a dataset Dπ of agent trajectories (note that |Dπ| = |D|, where D is
the expert dataset):

Dπ := SAMPLEτ (Π = {π}, p = {1}), SAMPLE is defined in Algorithm 1

Then, the accrual (state-action visitation frequency) is computed for both the agent dataset and the
expert dataset over a uniformly discretized state-action space (this depends on the constraint function
inputs). For the various environments, these are:

• Gridworld (A, B): {(x, y)|x, y ∈ {0, 1, ..., 6}}
• CartPole (MR, Mid): {(x, a)|x ∈ {−2.4,−2.3, · · · , 2.4}, a ∈ {0, 1}}
• HighD: {(v, g)|v ∈ {0, 1, · · · , 40}, g ∈ {0, 1, · · · , 80}} (here, v is in ms−1 and g is in

pixels, where 1 pixel = 2.5m)
• Ant-Constrained, HalfCheetah-Constrained: {z|z ∈ {−5,−4.9, · · · , 5}}
• ExiD: {(d, v)|d ∈ {−10,−9.5, · · · , 10}, v ∈ {−2.5,−2.4, · · · , 2.5}} (here d is in m and
v is in ms−1)

Finally, the accruals are normalized to sum to 1, and the Wasserstein distance is computed between the
accruals. If the environment is CartPole/Ant-Constrained/HalfCheetah-Constrained, the 1D distance
is computed and summed across actions. Otherwise, the 2D distance is computed. We use the Python
Optimal Transport library (Flamary et al., 2021), specifically the emd2 function to achieve this.

C.4 COMMON HYPERPARAMETERS

Hyperparameters common to all the experiments are listed in Table 7.

Since HighD/ExiD/Ant-Constrained/HalfCheetah-Constrained are continuous action space environ-
ments, we use TANH activation for the policy, which outputs the mean and std. deviation of a learned
Gaussian action distribution.

The inputs to the constraint functions are as follows:

• Gridworld (A, B): x, y coordinates of the agent’s position in the 7x7 grid
• CartPole (MR, Mid): x position of the cart, and the discrete action (0/1 corresponding to

left or right)
• HighD: velocity (ms−1) of the ego, and the distance of the ego to the front vehicle in pixels

(1 pixel ≈ 2.5 m)
• Ant-Constrained, HalfCheetah-Constrained: z-coordinate of the agent
• ExiD: signed distance (m) of the ego to the center line of the target lane, and the lateral

velocity action (ms−1) of the ego
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Table 7: Common Hyperparameters

Hyperparameter Value(s)
PPO learning rate (η2) 5× 10−4

Constraint function learning rate (η3) 5× 10−4

Constraint function hidden layers 64+RELU, 64+RELU
Constraint function final activation SIGMOID

PPO policy layers 64+RELU, 64+RELU
PPO value fn. layers 64+RELU, 64+RELU

Minibatch size 64
PPO clip parameter (ϵPPO) 0.1

PPO entropy coefficient (λent) 0.01
PPO updates per epoch 25

No. of trajectories for any dataset 50
Training seeds 1, 2, 3, 4, 5

The environment maximum horizons (episodes are terminated after these many steps) are as follows:

• Gridworld (A, B): 50 steps
• CartPole (MR, Mid): 200 steps
• HighD: 1000 steps
• Ant-Constrained: 500 steps
• HalfCheetah-Constrained: 1000 steps
• ExiD: 1000 steps

C.5 HYPERPARAMETERS FOR GAIL-CONSTRAINT

Hyperparameters specific to the GAIL-Constraint method are listed in Table 8. This method was
adapted from Malik et al. (Malik et al., 2021) and they performed 1M timesteps of training on
all environments. To be sure that this method performs as expected, we did 2M timesteps of
training (except for the HighD environment where we do 0.4M timesteps of training, since it was
computationally expensive to simulate).

Table 8: GAIL-Constraint Hyperparameters

Hyperparameter Environment
GA GB CMR CMid HighD

Discount factor (γ) 1.0 1.0 0.99 0.99 0.99
PPO steps per epoch 2000 2000 2000 2000 2000

PPO value fn. loss coefficient 0.5 0.5 0.5 0.5 0.5
PPO gradient clip value 0.5 0.5 0.5 0.5 0.5

PPO total steps 2M 2M 2M 2M 0.4M

Hyperparameter Environment
Ant HC ExiD

Discount factor (γ) 0.99 0.99 0.99
PPO steps per epoch 4000 4000 1000

PPO value fn. loss coefficient 0.5 0.5 0.5
PPO gradient clip value 0.5 0.5 0.5

PPO total steps 3.5M 3.5M 3.5M

C.6 HYPERPARAMETERS FOR ICRL

Similar to GAIL-Constraint, we performed 2M timesteps of training on all environments except
HighD, where we performed 0.4M timesteps of training. Hyperparameters are listed in Table 9. ICRL
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did not perform as expected on two out of the four synthetic environments, that is, Gridworld (B)
and the CartPole (Mid) environments, and may require further environment specific hyperparameter
tuning. Nevertheless, we use these parameters since they (somewhat) worked on Gridworld (A) and
CartPole (MR) environments. Note that for a fair comparison, we tried to ensure that for some of
the parameters, we use the same value as our method, ICL (these parameters are number of rollouts,
batch size, learning rate, γ, constraint function architecture etc.).

Table 9: ICRL Hyperparameters

Hyperparameter Environment
GA GB CMR CMid HighD

Discount factor (γ) 1.0 1.0 0.99 0.99 0.99
PPO steps per epoch 2000 2000 2000 2000 2000

PPO value fn. loss coefficient 0.5 0.5 0.5 0.5 0.5
Constraint value fn. loss coefficient 0.5 0.5 0.5 0.5 0.5

PPO gradient clip value 0.5 0.5 0.5 0.5 0.5
Eval episodes 100 100 100 100 100

ICRL Iterations 200 200 200 200 40
Forward PPO timesteps 10000 10000 10000 10000 10000

PPO Budget 0 0 0 0 0
Penalty initial value (ν) 0.1 0.1 0.1 0.1 0.1

Penalty learning rate 0.01 0.01 0.01 0.01 0.01
Per step importance sampling Yes Yes Yes Yes Yes

Forward KL (Old/New) 10 10 10 10 10
Backward KL (New/Old) 2.5 2.5 2.5 2.5 2.5

Backward iterations 5 5 5 5 5
Constraint network reg. coefficient 0.6 0.6 0.6 0.6 0.6

Hyperparameter Environment
Ant HC ExiD

Discount factor (γ) 0.99 0.99 0.99
PPO steps per epoch 4000 4000 1000

PPO value fn. loss coefficient 0.5 0.5 0.5
Constraint value fn. loss coefficient 0.5 0.5 0.5

PPO gradient clip value 0.5 0.5 0.5
Eval episodes 100 100 100

ICRL Iterations 125 125 250
Forward PPO timesteps 10000 10000 10000

PPO Budget 0 0 0
Penalty initial value (ν) 0.1 0.1 0.1

Penalty learning rate 0.01 0.01 0.01
Per step importance sampling Yes Yes Yes

Forward KL (Old/New) 10 10 10
Backward KL (New/Old) 2.5 2.5 2.5

Backward iterations 5 5 5
Constraint network reg. coefficient 0.6 0.6 0.6

C.7 HYPERPARAMETERS FOR ICL (OUR METHOD)

The hyperparameters for our method are listed in Table 10. Our PPO implementation differs from the
baselines (the baseline code was adapted from Malik et al. (Malik et al., 2021) official repository) as
it does a fixed number of episodes per epoch rather than doing a fixed number of environment steps
per epoch. We adjusted the number of PPO epochs in ICL so that each PPO procedure is roughly the
same length (or less) as the ICRL/GAIL PPO procedure. Even then, the entire ICL training process
requires a lot more steps than the GAIL-Constraint/ICRL baselines, since every iteration requires a
complete PPO procedure. We have mentioned this in our conclusions section.

For the Gridworld (A, B) environments, we chose β = 0.99 to disallow any state of constraint value
1. For the CartPole (MR, Mid) environments, the cartpole may start in a high constraint value region.
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To allow it to navigate to a low constraint value region, we chose a high β. We chose β by doing a
hyperparameter search on β ∈ {30, 50} for the CartPole environments.

For some environments, we use a variant of ICL that uses PPO-Lagrange (Ray et al., 2019) as the
forward constrained RL procedure. This implementation (provided by OpenAI) is highly optimized
for constrained RL tasks, especially robotics tasks. We use this variant of ICL for our Mujoco and
ExiD experiments. For this implementation, we mostly use the default parameters provided by Ray
et al. (2019). A list of relevant hyperparameters are provided in Table 11. Certain hyperparameters
have not been altered (e.g., learning rate, training iterations etc.). PPO epochs for the intermediate
CRL procedures have also been kept at 50 (as in the source code), which is sufficient to achieve
decent performance for these constrained environments. β was chosen by doing a hyperparameter
search on β ∈ {5, 15} for the Mujoco and ExiD environments.

To choose λ, we tried values 1.5, 15, 150 and found that 1.5 was insufficient for the optimization.
We know that λ is the RELU multiplier term in the soft loss objective, and it cannot be a low value
for constraint adjustment procedure. Hence, we chose a value of 15 which was appropriate for our
experiments.

Table 10: ICL Hyperparameters

Hyperparameter Environment)
GA GB CMR CMid HighD

Discount factor (γ) 1.0 1.0 0.99 0.99 0.99
ICL Iterations (n) 10 10 10 10 3

Correction learning rate (η1) 2.5× 10−5 2.5× 10−5 2.5× 10−5 2.5× 10−5 2.5× 10−5

PPO episodes per epoch 20 20 20 20 20
β 0.99 0.99 50 30 0.1

Constraint update epochs (e) 20 20 20 20 25
PPO epochs (m) 500 500 300 300 50

Soft loss coefficient λ 15 15 15 15 15

Table 11: ICL Hyperparameters (with PPO-Lagrange from Ray et al. (2019))

Hyperparameter Environment
Ant HC ExiD

Discount factor (γ) 0.99 0.99 0.99
GAE Lambda (λGAE) 0.97 0.97 0.97

ICL Iterations (n) 5 5 5
PPO steps per epoch 4000 4000 1000

β 5 15 5
Constraint update epochs (e) 25 25 25

PPO epochs (m) 50 50 50

C.8 TRAINING TIME STATISTICS

Training time statistics are provided in Table 12. For each environment and method, we report the
average training time in hours and minutes, averaged across 5 seeds. In principle, if one forward
constrained RL procedure takes t time and one constraint adjustment procedure takes t′ time, we
expect GAIL-Constraint and ICRL to take at least 2t time, since we run these procedures at least twice
as long as one forward procedure (longer for Mujoco and ExiD environments, but still a constant
times t). With n iterations of ICL, ICL should take at least n(t+ t′) time which depends on t, t′, n.
Empirically, since n ≤ 10 and the implementation of forward constrained RL (PPO-Lagrange/PPO-
Penalty) differs from the baselines, we observe that ICL is actually comparable to the baselines in
overall runtime. We also note that the training times may depend on CPU/GPU load.
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Table 12: Average training times (hours/minutes), averaged across 5 seeds. PPOPen refers to ICL
implementation with PPO-Penalty, and PPOLag refers to the ICL implementation with PPO-Lagrange
(Ray et al., 2019).

Environment↓, Method→ Average training time
GAIL-Constraint ICRL ICL (n, type)

GA 7 h 15 m 10 h 43 m 1 h 16 m (10, PPOPen)
GB 7 h 13 m 10 h 37 m 1 h 20 m (10, PPOPen)

CMR 7 h 39 m 15 h 56 m 9 h 43 m (10, PPOPen)
CMid 8 h 0 m 16 h 0 m 7 h 40 m (10, PPOPen)
HighD 1 h 47 m 3 h 34 m 5 h 9 m (3, PPOPen)

Ant 2 h 8 m 6 h 48 m 6 h 25 m (5, PPOLag)
HC 2 h 32 m 7 h 28 m 9 h 32 m (5, PPOLag)

ExiD 1 h 52 m 32 h 20 m 2 h 22 m (5, PPOLag)

C.9 EXPERT DATASET GENERATION PROCESS

For synthetic experiments (Gridworld and CartPole) and robotics experiments (Mujoco), we simply
perform constrained RL for sufficient number of epochs until convergence. Afterwards, we generate
trajectories using the learned policy, ensuring that the expected discounted constraint value across the
expert dataset is ≤ β for the specific environment.

For the HighD dataset, the data collection process is described in Krajewski et al. (2018). For this
dataset, we choose one of the multiple scenarios in this dataset and use ≈ 100 trajectories from this
scenario that go from the start region to the end region. For the ExiD dataset, the data collection
process is similarly described in Moers et al. (2022). For this dataset, we randomly choose 5 scenarios,
and filter tracks to get ≈ 1000 trajectories in each of which a vehicle performs a single lane change,
with no vehicle in the target lane.

C.10 CONSTRAINT FUNCTION ARCHITECTURE CHOICE

We also further assess whether the chosen constraint function architecture is sufficient to capture the
true constraint arbitrarily closely. To perform this assessment, we consider the following constraint
function architectures:

• architectures where the number of hidden nodes vary:
– (A1): two hidden layers with 32 nodes each and RELU activation, followed by sigmoid

activation for the output
– (B): two hidden layers with 64 nodes each and RELU activation, followed by sigmoid

activation for the output; this is the architecture we use for all the ICL and baseline
experiments

– (C1): two hidden layers with 128 nodes each and RELU activation, followed by
sigmoid activation for the output

• architectures where the number of hidden layers vary:
– (A2): one hidden layers with 64 nodes and RELU activation, followed by sigmoid

activation for the output
– (B): two hidden layers with 64 nodes each and RELU activation, followed by sigmoid

activation for the output; this is the architecture we use for all the ICL and baseline
experiments

– (C2): three hidden layers with 64 nodes each and RELU activation, followed by
sigmoid activation for the output

Given a particular constraint function architecture, we train to minimize error w.r.t. the known true
constraint function, using supervised learning. This produces a lower bound on the CMSE for that
setting. Intuitively, an architecture with more representational power will lead to a lower value of this
lower bound. Our results are reported in Tables 13 and 14. As can be seen from the tables, having too
few hidden nodes or layers is not sufficient to arbitrarily approximate the true constraint function.
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Table 13: CMSE achieved by various constraint function architectures (varying number of hidden
nodes), which can be treated as lower bounds for CMSE in the requisite settings.

Environment↓, CMSE→ Architecture
A1 B C1

GA 0.03 ± 0.01 0.00 ± 0.00 0.00 ± 0.00
GB 0.02 ± 0.01 0.00 ± 0.00 0.00 ± 0.00

CMR 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
CMid 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Ant 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
HC 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Table 14: CMSE achieved by various constraint function architectures (varying number of hidden
layers), which can be treated as lower bounds for CMSE in the requisite settings.

Environment↓, CMSE→ Architecture
A2 B C2

GA 0.06 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
GB 0.09 ± 0.01 0.00 ± 0.00 0.00 ± 0.00

CMR 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
CMid 0.02 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Ant 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
HC 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

D TRAINING PLOTS

For completeness, we provide the training plots for the recovered constraint functions (Figures 16,
18, 20, 22, 24, 26) and their respective accruals (Figures 17, 19, 21, 23, 28, 25, 27, 29). Note that
we have reported the costs for the HighD/ExiD environments in the main paper and in the Appendix
(Figures 2, 11).

Please note that we have omitted the individual reward and constraint value plots, since there aren’t
any interesting insights. Typically, the reward goes up over time and the constraint value goes down
over time, similar to Figures 3 and 4.

True constraint fn. GAIL-Constraint ICRL ICL (β = 0.99)

Figure 16: Average constraint function value (averaged across 5 training seeds) for Gridworld (A)
environment.
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Expert accruals GAIL-Constraint ICRL ICL (β = 0.99)

Figure 17: Average normalized accruals (averaged across 5 training seeds) for Gridworld (A)
environment.

True constraint fn. GAIL-Constraint ICRL ICL (β = 0.99)

Figure 18: Average constraint function value (averaged across 5 training seeds) for Gridworld (B)
environment.

Expert accruals GAIL-Constraint ICRL ICL (β = 0.99)

Figure 19: Average normalized accruals (averaged across 5 training seeds) for Gridworld (B)
environment.

True constraint fn. GAIL-Constraint ICRL ICL (β = 50)

Figure 20: Average constraint function value (averaged across 5 training seeds) for CartPole (MR)
environment. Blue line represents the constraint value for a = 0 (going left) and the orange line
represents the constraint value for a = 1 (going right).
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Expert accruals GAIL-Constraint ICRL ICL (β = 50)

Figure 21: Average normalized accruals (averaged across 5 training seeds) for CartPole (MR)
environment.

True constraint fn. GAIL-Constraint ICRL ICL (β = 30)

Figure 22: Average constraint function value (averaged across 5 training seeds) for CartPole (Mid)
environment. Blue line represents the constraint value for a = 0 (going left) and the orange line
represents the constraint value for a = 1 (going right).

Expert accruals GAIL-Constraint ICRL ICL (β = 30)

Figure 23: Average normalized accruals (averaged across 5 training seeds) for CartPole (Mid)
environment.

True constraint fn. GAIL-Constraint ICRL ICL (β = 5)

Figure 24: Average constraint function value (averaged across 5 training seeds) for Ant-Constrained
environment.
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Expert accruals GAIL-Constraint ICRL ICL (β = 5)

Figure 25: Average normalized accruals (averaged across 5 training seeds) for Ant-Constrained
environment.

True constraint fn. GAIL-Constraint ICRL ICL (β = 5)

Figure 26: Average constraint function value (averaged across 5 training seeds) for HalfCheetah-
Constrained environment.

Expert accruals GAIL-Constraint ICRL ICL (β = 5)

Figure 27: Average normalized accruals (averaged across 5 training seeds) for HalfCheetah-
Constrained environment.

Expert accruals GAIL-Constraint ICRL ICL (β = 0.1)

Figure 28: Average normalized binary accruals (averaged across 5 training seeds) for HighD en-
vironment. The X-axis and Y-axis are ego velocity in ms−1 and gap to the front vehicle g in m
respectively.
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Expert accruals GAIL-Constraint ICRL ICL (β = 5)

Figure 29: Average normalized accruals (averaged across 5 training seeds) for ExiD lane change
environment. The X-axis and Y-axis are lateral velocity v in ms−1 and signed distance to the the
center line of the target lane d in m respectively.
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