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Abstract

Playing text-based games requires skills in processing natural language and sequen-
tial decision making. Achieving human-level performance on text-based games
remains an open challenge, and prior research has largely relied on hand-crafted
structured representations and heuristics. In this work, we investigate how an agent
can plan and generalize in text-based games using graph-structured representations
learned end-to-end from raw text. We propose a novel graph-aided transformer
agent (GATA) that infers and updates latent belief graphs during planning to enable
effective action selection by capturing the underlying game dynamics. GATA is
trained using a combination of reinforcement and self-supervised learning. Our
work demonstrates that the learned graph-based representations help agents con-
verge to better policies than their text-only counterparts and facilitate effective
generalization across game configurations. Experiments on 500+ unique games
from the TextWorld suite show that our best agent outperforms text-based baselines
by an average of 24.2%.

1 Introduction

Text-based games are complex, interactive simulations in which the game state is described with
text and players act using simple text commands (e.g., light torch with match). They serve as a
proxy for studying how agents can exploit language to comprehend and interact with the environment.
Text-based games are a useful challenge in the pursuit of intelligent agents that communicate with
humans (e.g., in customer service systems).

Solving text-based games requires a combination of reinforcement learning (RL) and natural language
processing (NLP) techniques. However, inherent challenges like partial observability, long-term
dependencies, sparse rewards, and combinatorial action spaces make these games very difficult.2 For
instance, Hausknecht et al. [16] show that a state-of-the-art model achieves a mere 2.56% of the total
possible score on a curated set of text-based games for human players [5]. On the other hand, while
text-based games exhibit many of the same difficulties as linguistic tasks like open-ended dialogue,
they are more structured and constrained.

To design successful agents for text-based games, previous works have relied largely on heuristics that
exploit games’ inherent structure. For example, several works have proposed rule-based components

∗ Equal contribution.
2We challenge readers to solve this representative game: https://aka.ms/textworld-tryit.
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You find yourself in a backyard. You make out a patio 

table.  But it is empty. You see a patio chair. The patio 

chair is stylish. But there isn’t a thing on it. You see a 

gleam over in a corner, where you can see a BBQ. 

There is a closed screen door leading south. There is 

an open wooden door leading west.

Welcome to the shed. You can barely contain your 

excitement. You can make out a closed toolbox here. 

You can see a workbench. The workbench is wooden. 

Looks like someone’s already been here and taken 

everything off it, though. You swear loudly. There is an 

open wooden door leading east.

go west𝑂𝑡−1 𝑂𝑡

𝐴𝑡−1

𝐺𝑡−1 𝐺𝑡

… …𝐴𝑡
GATA

Game

Figure 1: GATA playing a text-based game by updating its belief graph. In response to action At−1,
the environment returns text observation Ot. Based on Ot and Gt−1, the agent updates Gt and selects
a new action At. In the figure, blue box with squares is the game engine, green box with diamonds is
the graph updater, red box with slashes is the action selector.

that prune the action space or shape the rewards according to a priori knowledge of the game
dynamics [50, 24, 1, 48]. More recent approaches take advantage of the graph-like structure of text-
based games by building knowledge graph (KG) representations of the game state: Ammanabrolu and
Riedl [4], Ammanabrolu and Hausknecht [3], for example, use hand-crafted heuristics to populate
a KG that feeds into a deep neural agent to inform its policy. Despite progress along this line, we
expect more general, effective representations for text-based games to arise in agents that learn and
scale more automatically, which replace heuristics with learning [37].

This work investigates how we can learn graph-structured state representations for text-based games
in an entirely data-driven manner. We propose the graph aided transformer agent (GATA)3 that, in
lieu of heuristics, learns to construct and update graph-structured beliefs4 and use them to further
optimize rewards. We introduce two self-supervised learning strategies—based on text reconstruction
and mutual information maximization—which enable our agent to learn latent graph representations
without direct supervision or hand-crafted heuristics.

We benchmark GATA on 500+ unique games generated by TextWorld [9], evaluating performance
in a setting that requires generalization across different game configurations. We show that GATA
outperforms strong baselines, including text-based models with recurrent policies. In addition, we
compare GATA to agents with access to ground-truth graph representations of the game state. We
show that GATA achieves competitive performance against these baselines even though it receives
only partial text observations of the state. Our findings suggest, promisingly, that graph-structured
representations provide a useful inductive bias for learning and generalizing in text-based games, and
act as a memory enabling agents to optimize rewards in a partially observed setting.

2 Background

Text-based Games: Text-based games can be formally described as partially observable Markov
decision processes (POMDPs) [9]. They are environments in which the player receives text-only
observations Ot (these describe the observable state, typically only partially) and interacts by issuing
short text phrases as actions At (e.g., in Figure 1, go west moves the player to a new location). Often,
the end goal is not clear from the start; the agent must infer the objective by earning sparse rewards
for completing subgoals. Text-based games have a variety of difficulty levels determined mainly
by the environment’s complexity (i.e., how many locations in the game, and how many objects are
interactive), the game length (i.e., optimally, how many actions are required to win), and the verbosity
(i.e., how much text information is irrelevant to solving the game).

Problem Setting: We use TextWorld [9] to generate unique choice-based games of varying difficulty.
All games share the same overarching theme: an agent must gather and process cooking ingredients,
placed randomly across multiple locations, according to a recipe it discovers during the game. The
agent earns a point for collecting each ingredient and for processing it correctly. The game is won

3Code and dataset used: https://github.com/xingdi-eric-yuan/GATA-public
4Text-based games are partially observable environments.
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upon completing the recipe. Processing any ingredient incorrectly terminates the game (e.g., slice
carrot when the recipe asked for a diced carrot). To process ingredients, an agent must find and use
appropriate tools (e.g., a knife to slice, dice, or chop; a stove to fry, an oven to roast).

We divide generated games, all of which have unique recipes and map configurations, into sets for
training, validation, and test. Adopting the supervised learning paradigm for evaluating generalization,
we tune hyperparameters on the validation set and report performance on a test set of previously
unseen games. Testing agents on unseen games (within a difficulty level) is uncommon in prior RL
work, where it is standard to train and test on a single game instance. Our approach enables us to
measure the robustness of learned policies as they generalize (or fail to) across a “distribution” of
related but distinct games. Throughout the paper, we use the term generalization to imply the ability
of a single policy to play a distribution of related games (within a particular difficulty level).

Graphs and Text-based Games: We expect graph-based representations to be effective for text-
based games because the state in these games adheres to a graph-like structure. The essential content
in most observations of the environment corresponds either to entity attributes (e.g., the state of the
carrot is sliced) or to relational information about entities in the environment (e.g., the kitchen is
north_of the bedroom). This information is naturally represented as a dynamic graph Gt = (Vt, Et),
where the vertices Vt represent entities (including the player, objects, and locations) and their current
conditions (e.g., closed, fried, sliced), while the edges Et represent relations between entities (e.g.,
north_of, in, is) that hold at a particular time-step t. By design, in fact, the full state of any game
generated by TextWorld can be represented explicitly as a graph of this type [53]. The aim of our
model, GATA, is to estimate the game state by learning to build graph-structured beliefs from raw
text observations. In our experiments, we benchmark GATA against models with direct access to the
ground-truth game state rather than GATA’s noisy estimate thereof inferred from text.

3 Graph Aided Transformer Agent (GATA)

In this section, we introduce GATA, a novel transformer-based neural agent that can infer a graph-
structured belief state and use that state to guide action selection in text-based games. As shown in
Figure 2, the agent consists of two main modules: a graph updater and an action selector. 5 At game
step t, the graph updater extracts relevant information from text observation Ot and updates its belief
graph Gt accordingly. The action selector issues action At conditioned on Ot and the belief graph Gt.
Figure 1 illustrates the interaction between GATA and a text-based game.

3.1 Belief Graph

We denote by G a belief graph representing the agent’s belief about the true game state according
to what it has observed so far. We instantiate G ∈ [−1, 1]R×N×N as a real-valued adjacency tensor,
where R and N indicate the number of relation types and entities. Each entry {r, i, j} in G indicates
the strength of an inferred relationship r from entity i to entity j. We select R = 10 and N = 99 to
match the maximum number of relations and entities in our TextWorld-generated games. In other
words, we assume that GATA has access to the vocabularies of possible relations and entities but it
must learn the structure among these objects, and their semantics, from scratch.

3.2 Graph Updater

The graph updater constructs and updates the dynamic belief graph G from text observations Ot.
Rather than generating the entire belief graph at each step t, we generate a graph update, ∆gt, that
represents the change of the agent’s belief after receiving a new observation. This is motivated by
the fact that observations Ot typically communicate only incremental information about the state’s
change from time step t − 1 to t. The relation between ∆gt and G is given by

Gt = Gt−1 ⊕∆gt, (1)

5The graph updater and action selector share some structures but not their parameters (unless specified).
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Figure 2: GATA in detail. The coloring scheme is same as in Figure 1. The graph updater first
generates ∆gt using Gt−1 and Ot. Afterwards the action selector uses Ot and the updated graph Gt

to select At from the list of action candidates Ct. Purple dotted line indicates a detached connection
(i.e., no back-propagation through such connection).

where ⊕ is a graph operation function that produces the new belief graph Gt given Gt−1 and ∆gt. We
formulate the graph operation function ⊕ using a recurrent neural network (e.g., a GRU [8]) as:

∆gt = f∆(hGt−1
, hOt

, hAt−1
);

ht = RNN(∆gt, ht−1);
Gt = fd(ht).

(2)

The function f∆ aggregates the information in Gt−1, At−1, and Ot to generate the graph update ∆gt.
hGt−1

denotes the representation of Gt−1 from the graph encoder. hOt
and hAt−1

are outputs of the
text encoder (refer to Figure 2, left part). The vector ht is a recurrent hidden state from which we
decode the adjacency tensor Gt; ht acts as a memory that carries information across game steps—a
crucial function for solving POMDPs [15]. The function fd is a multi-layer perceptron (MLP) that
decodes the recurrent state ht into a real-valued adjacency tensor (i.e., the belief graph Gt). We
elaborate on each of the sub-modules in Appendix A.

Training the Graph Updater: We pre-train the graph updater using two self-supervised training
regimes to learn structured game dynamics. After pre-training, the graph updater is fixed during
GATA’s interaction with games; at this time it provides belief graphs G to the action selector. We
train the action selector subsequently via RL. Both pre-training tasks share the same goal: to ensure
that Gt encodes sufficient information about the environment state at game step t. For training data,
we gather a collection of transitions by following walkthroughs in FTWP games.6 To ensure variety
in the training data, we also randomly sample trajectories off the optimal path. Next we describe our
pre-training approaches for the graph updater.

• Observation Generation (OG): Our first approach to pre-train the graph updater involves
training a decoder model to reconstruct text observations from the belief graph. Conditioned on
the belief graph, Gt, and the action performed at the previous game step, At−1, the observation
generation task aims to reconstruct Ot = {O1

t , . . . , O
LOt

t } token by token, where LOt
is the length

of Ot. We formulate this task as a sequence-to-sequence (Seq2Seq) problem and use a transformer-
based model [43] to generate the output sequence. Specifically, conditioned on Gt and At−1, the
transformer decoder predicts the next token Oi

t given {O1
t , . . . , O

i−1
t }. We train the Seq2Seq model

using teacher-forcing to optimize the negative log-likelihood loss:

LOG = −
LOt

∑
i=1

log pOG(Oi
t∣O1

t , ..., O
i−1
t ,Gt, At−1), (3)

where pOG is the conditional distribution parametrized by the observation generation model.

• Contrastive Observation Classification (COC): Inspired by the literature on contrastive repre-
sentation learning [41, 19, 44, 7], we reformulate OG mentioned above as a contrastive prediction
task. We use contrastive learning to maximize mutual information between the predicted Gt and the
text observations Ot. Specifically, we train the model to differentiate between representations corre-
sponding to true observations Ot and “corrupted” observations Õt, conditioned on Gt and At−1. To
obtain corrupted observations, we sample randomly from the set of all collected observations across
our pre-training data. We use a noise-contrastive objective and minimize the binary cross-entropy
(BCE) loss given by

LCOC =
1

K

K

∑
t=1

(EO [logD (hOt
, hGt

)] + EÕ [log (1 −D (hÕt
, hGt

))]) . (4)

6This is an independent and unique set of TextWorld games [39]. Details are provided in Appendix F.
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Here, K is the length of a trajectory as we sample a positive and negative pair at each step and D is
a discriminator that differentiates between positive and negative samples. The motivation behind
contrastive unsupervised training is that one does not require to train complex decoders. Specifically,
compared to OG, the COC’s objective relaxes the need for learning syntactical or grammatical
features and allows GATA to focus on learning the semantics of the Ot.

We provide further implementation level details on both these self-supervised objectives in Ap-
pendix B.

3.3 Action Selector

The graph updater discussed in the previous section defines a key component of GATA that enables the
model to maintain a structured belief graph based on text observations. The second key component
of GATA is the action selector, which uses the belief graph Gt and the text observation Ot at
each time-step to select an action. As shown in Figure 2, the action selector consists of four main
components: the text encoder and graph encoder convert text inputs and graph inputs, respectively,
into hidden representations; a representation aggregator fuses the two representations using an
attention mechanism; and a scorer ranks all candidate actions based on the aggregated representations.

• Graph Encoder: GATA’s belief graphs, which estimate the true game state, are multi-relational
by design. Therefore, we use relational graph convolutional networks (R-GCNs) [32] to encode
the belief graphs from the updater into vector representations. We also adapt the R-GCN model to
use embeddings of the available relation labels, so that we can capture semantic correspondences
among relations (e.g., east_of and west_of are reciprocal relations). We do so by learning a vector
representation for each relation in the vocabulary that we condition on the word embeddings of the
relation’s name. We concatenate the resulting vector with the standard node embeddings during
R-GCN’s message passing phase. Our R-GCN implementation uses basis regularization [32] and
highway connections [36] between layers for faster convergence. Details are given in Appendix A.1.

• Text Encoder: We adopt a transformer encoder [43] to convert text inputs from Ot and At−1

into contextual vector representations. Details are provided in Appendix A.2.

• Representation Aggregator: To combine the text and graph representations, GATA uses a
bi-directional attention-based aggregator [49, 33]. Attention from text to graph enables the agent to
focus more on nodes that are currently observable, which are generally more relevant; attention from
nodes to text enables the agent to focus more on tokens that appear in the graph, which are therefore
connected with the player in certain relations. Details are provided in Appendix A.3.

• Scorer: The scorer consists of a self-attention layer cascaded with an MLP layer. First, the
self-attention layer reinforces the dependency of every token-token pair and node-node pair in the
aggregated representations. The resulting vectors are concatenated with the representations of action
candidates Ct (from the text encoder), after which the MLP generates a single scalar for every action
candidate as a score. Details are provided in Appendix A.4.

Training the Action Selector: We use Q-learning [45] to optimize the action selector on reward
signals from the training games. Specifically, we use Double DQN [42] combined with multi-step
learning [38] and prioritized experience replay [31]. To enable GATA to scale and generalize to
multiple games, we adapt standard deep Q-Learning by sampling a new game from the set of training
games to collect an episode. Consequently, the replay buffer contains transitions from episodes of
different games. We provide further details on this training procedure in Appendix E.2.

3.4 Variants Using Ground-Truth Graphs

In GATA, the belief graph is learned entirely from text observations. However, the TextWorld API
also provides access to the underlying graph states for games, in the format of discrete KGs. Thus,
for comparison, we also consider two models that learn from or encode ground-truth graphs directly.

GATA-GTP: Pre-training a discrete graph updater using ground-truth graphs. We first consider
a model that uses ground-truth graphs to pre-train the graph updater, in lieu of self-supervised methods.
GATA-GTP uses ground-truth graphs from FTWP during pre-training, but infers belief graphs from
the raw text during RL training of the action selector to compare fairly against GATA. Here, the
belief graph Gt is a discrete multi-relational graph. To pre-train a discrete graph updater, we adapt the
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command generation approach proposed by Zelinka et al. [53]. We provide details of this approach
in Appendix C.

GATA-GTF: Training the action selector using ground-truth graphs. To get a sense of the upper
bound on performance we might obtain using a belief graph, we also train an agent that uses the
full ground-truth graph Gfull during action selection. This agent requires no graph updater module;
we simply feed the ground-truth graphs into the action selector (via the graph encoder). The use of
ground-truth graphs allows GATA-GTF to escape the error cascades that may result from inferred
belief graphs. Note also that the ground-truth graphs contain full state information, relaxing partial
observability of the games. Consequently, we expect more effective reward optimization for GATA-
GTF compared to other graph-based agents. GATA-GTF’s comparison with text-based agents is a
sanity check for our hypothesis—that structured representations help learning general policies.

4 Experiments and Analysis

We conduct experiments on generated text-based games (Section 2) to answer two key questions:
Q1: Does the belief-graph approach aid GATA in achieving high rewards on unseen games after
training? In particular, does GATA improve performance compared to SOTA text-based models?
Q2: How does GATA compare to models that have access to ground-truth graph representations?

4.1 Experimental Setup and Baselines

We divide the games into four subsets with one difficulty level per subset. Each subset contains 100
training, 20 validation, and 20 test games, which are sampled from a distribution determined by their
difficulty level. To elaborate on the diversity of games: for easier games, the recipe might only require
a single ingredient and the world is limited to a single location, whereas harder games might require
an agent to navigate a map of 6 locations to collect and appropriately process up to three ingredients.
We also test GATA’s transferability across difficulty levels by mixing the four difficulty levels to
build level 5. We sample 25 games from each of the four difficulty levels to build a training set. We
use all validation and test games from levels 1 to 4 for level 5 validation and test. In all experiments,
we select the top-performing agent on validation sets and report its test scores; all validation and test
games are unseen in the training set. Statistics of the games are shown in Table 1.

Table 1: Games statistics (averaged across all games within a difficulty level).

Level Recipe Size #Locations Max Score Need Cut Need Cook #Action Candidates #Objects

1 1 1 4 3 7 8.9 17.1
2 1 1 5 3 3 8.9 17.5
3 1 9 3 7 7 4.9 34.1
4 3 6 11 3 3 10.8 33.4

5 Mixture of levels {1,2,3,4}

As baselines, we use our implementation of LSTM-DQN [29] and LSTM-DRQN [50], both of which
use onlyOt as input. Note that LSTM-DRQN uses an RNN to enable an implicit memory (i.e., belief);
it also uses an episodic counting bonus to encourage exploration [50]. This draws an interesting
comparison with GATA, wherein the belief is extracted and updated dynamically, in the form of a
graph. For fair comparison, we replace the LSTM-based text encoders with a transformer-based text
encoder as in GATA. We denote those agents as Tr-DQN and Tr-DRQN respectively. We denote a
Tr-DRQN equipped with the episodic counting bonus as Tr-DRQN+. These three text-based baselines
are representative of the current top-performing neural agents on text-based games.

Additionally, we test the variants of GATA that have access to ground-truth graphs (as described
in Section 3.4). Comparing with GATA, the GATA-GTP agent also maintains its belief graphs
throughout the game; however, its graph updater is pre-trained on FTWP using ground-truth graphs—
a stronger supervision signal. GATA-GTF, on the other hand, does not have a graph updater. It
directly uses ground-truth graphs as input during game playing.
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Table 2: Agents’ normalized test scores and averaged relative improvement (% ↑) over Tr-DQN
across difficulty levels. An agent m’s relative improvement over Tr-DQN is defined as (Rm −
RTr-DQN)/RTr-DQN where R is the score. All numbers are percentages. ♦represents ground-truth full
graph; ♣represents discrete Gt generated by GATA-GTP; ♠represents Ot. ⋆and ∞are continuous
Gt generated by GATA, when the graph updater is pre-trained with OG and COC tasks, respectively.

20 Training Games 100 Training Games Avg.

Difficulty Level 1 2 3 4 5 % ↑ 1 2 3 4 5 % ↑ % ↑

Agent Text-based Baselines

Tr-DQN 66.2 26.0 16.7 18.2 27.9 —– 62.5 32.0 38.3 17.7 34.6 —- —-

Tr-DRQN 62.5 32.0 28.3 12.7 26.5 +10.3 58.8 31.0 36.7 21.4 27.4 -2.6 +3.9

Tr-DRQN+ 65.0 30.0 35.0 11.8 18.3 +10.7 58.8 33.0 33.3 19.5 30.6 -3.4 +3.6

Input GATA

⋆ 70.0 20.0 20.0 18.6 26.3 -0.2 62.5 32.0 46.7 27.7 35.4 +16.1 +8.0

⋆♠ 66.2 48.0 26.7 15.5 26.3 +24.8 66.2 36.0 58.3 14.1 45.0 +16.1 +20.4

∞ 73.8 42.0 26.7 20.9 24.5 +27.1 62.5 30.0 51.7 23.6 36.0 +13.2 +20.2

∞♠ 68.8 33.0 41.7 17.7 27.0 +34.9 62.5 33.0 46.7 25.9 33.4 +13.6 +24.2

GATA-GTP

♣ 56.2 26.0 40.0 17.3 17.7 +16.6 37.5 31.0 45.0 13.6 18.7 -18.9 -1.2

♣♠ 65.0 32.0 41.7 12.3 23.5 +24.6 62.5 32.0 51.7 21.8 23.5 +5.2 +14.9

GATA-GTF

♦ 48.7 61.0 46.7 23.6 28.9 +64.2 95.0 95.0 70.0 37.3 52.8 +99.0 +81.6

Q1: Performance of GATA compared to text-based baselines

In Table 2, we show the normalized test scores achieved by agents trained on either 20 or 100 games
for each difficulty level. Equipped with belief graphs, GATA significantly outperforms all text-based
baselines. The graph updater pre-trained on both of the self-supervised tasks (Section 3.2) leads
to better performance than the baselines (⋆ and ∞). We observe further improvements in GATA’s
policies when the text observations (♠) are also available. We believe the text observations guide
GATA’s action scorer to focus on currently observable objects through the bi-attention mechanism.
The attention may further help GATA to counteract accumulated errors from the belief graphs.
In addition, we observe that Tr-DRQN and Tr-DRQN+ outperform Tr-DQN, with 3.9% and 3.6%
relative improvement (% ↑). This suggests the implicit memory of the recurrent components improves
performance. We also observe GATA substantially outperforms Tr-DQN when trained on 100 games,
whereas the DRQN agents struggle to optimize rewards on the larger training sets.

Q2: Performance of GATA compared to models with access to the ground-truth graph

Table 2 also reports test performance for GATA-GTP (♣) and GATA-GTF (♦). Consistent with
GATA, we find GATA-GTP also performs better when given text observations (♠) as additional input
to the action scorer. Although GATA-GTP outperforms Tr-DQN by 14.9% when text observations
are available, its overall performance is still substantially poorer than GATA. Although the graph
updater in GATA-GTP is trained with ground-truth graphs, we believe the discrete belief graphs
and the discrete operations for updating them (Appendix C.1) make this approach vulnerable to an
accumulation of errors over game steps, as well as errors introduced by the discrete nature of the
predictions (e.g., round-off error). In contrast, we suspect that the continuous belief graph and the
learned graph operation function (Eqn. 2) are easier to train and recover more gracefully from errors.

Meanwhile, GATA-GTF, which uses ground-truth graphs Gfull during training and testing, obtains
significantly higher scores than does GATA and all other baselines. Because Gfull turns the game
environment into a fully observable MDP and encodes accurate state information with no error
accumulation, GATA-GTF represents the performance upper-bound of all the Gt-based baselines. The
scores achieved by GATA-GTF reinforce our intuition that belief graphs improve text-based game
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Figure 3: Left: Training curves on 20 level 2 games (averaged over 3 seeds). Right: Density
comparison between a ground-truth graph (binary) and a belief graph G generated by the COC
pre-training procedure. Both matrices are slices of adjacency tensors corresponding the is relation.

agents. At the same time, the performance gap between GATA and GATA-GTF invites investigation
into better ways to learn accurate graph representations of text.

Additional Results

We also show the agents’ training curves and examples of the belief graphs G generated by GATA.
Figure 3 (Left) shows an example of all agents’ training curves. We observe consistent trends with
the testing results of Table 2 — GATA outperforms the text-based baselines and GATA-GTP, but
a significant gap exists between GATA and GATA-GTF (which uses ground-truth graphs as input
to the action scorer). Figure 3 (Right) highlights the sparsity of a ground-truth graph compared to
that of a belief graph G. Since generation of G is unsupervised by any ground-truth graphs, we do
not expect G to be interpretable nor sparse. Further, since the self-supervised models learn belief
graphs directly from text, some of the learned features may correspond to the underlying grammar or
other features useful for the self-supervised tasks, rather than only being indicative of relationships
between objects. However, we show G encodes useful information for a relation prediction probing
task in Appendix D.5.

Given space limitations, we only report a representative selection of our results in this section.
Appendix D provides an exhaustive set of results including training curves, training scores, and test
scores for all experimental settings introduced in this work. We also provide a detailed qualitative
analysis including hi-res visualizations of the belief graphs. We encourage readers to refer to it.

5 Related Work

Dynamic graph extraction: Numerous recent works have focused on constructing graphs to
encode structured representations of raw data, for various tasks. Kipf et al. [23] propose contrastive
methods to learn latent structured world models (C-SWMs) as state representations for vision-based
environments. Their work, however, does not focus on learning policies to play games or to generalize
across varying environments. Das et al. [10] leverage a machine reading comprehension mechanism
to query for entities and states in short text passages and use a dynamic graph structure to track
changing entity states. Fan et al. [12] propose to encode graph representations by linearizing the
graph as an input sequence in NLP tasks. Johnson [21] construct graphs from text data using gated
graph transformer neural networks. Yang et al. [46] learn transferable latent relational graphs from
raw data in a self-supervised manner. Compared to the existing literature, our work aims to infer
multi-relational KGs dynamically from partial text observations of the state and subsequently use
these graphs to inform general policies. Concurrently, Srinivas et al. [35] propose to learn state
representations with contrastive learning methods to facilitate RL training. However, they focus on
vision-based environments and they do not investigate generalization.

More generally, we want to note that compared to traditional knowledge base construction (KBC)
works, our approach is more related to the direction of neural relational inference [22]. In particular,
we seek to generate task-specific graphs, which tend to be dynamic, contextual and relatively small,
whereas traditional KBC focus on generating large, static graphs.

Playing Text-based Games: Recent years have seen a host of work on playing text-based games.
Various deep learning agents have been explored [29, 17, 14, 51, 20, 3, 52, 47]. Fulda et al. [13]
use pre-trained embeddings to reduce the action space. Zahavy et al. [51], Seurin et al. [34], and
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Jain et al. [20] explicitly condition an agent’s decisions on game feedback. Most of this literature
trains and tests on a single game without considering generalization. Urbanek et al. [40] use memory
networks and ranking systems to tackle adventure-themed dialog tasks. Yuan et al. [50] propose a
count-based memory to explore and generalize on simple unseen text-based games. Madotto et al.
[26] use GoExplore [11] with imitation learning to generalize. Adolphs and Hofmann [1] and Yin
and May [48] also investigate the multi-game setting. These methods rely either on reward shaping
by heuristics, imitation learning, or rule-based features as inputs. We aim to minimize hand-crafting,
so our action selector is optimized only using raw rewards from games while other components of
our model are pre-trained on related data. Recently, Ammanabrolu and Riedl [4], Ammanabrolu
and Hausknecht [3], Yin and May [48] leverage graph structure by using rule-based, untrained
mechanisms to construct KGs to play text-based games.

6 Conclusion

In this work, we investigate how an RL agent can play and generalize within a distribution of text-
based games using graph-structured representations inferred from text. We introduce GATA, a novel
neural agent that infers and updates latent belief graphs as it plays text-based games. We use a
combination of RL and self-supervised learning to teach the agent to encode essential dynamics of the
environment in its belief graphs. We show that GATA achieves good test performance, outperforming
a set of strong baselines including agents pre-trained with ground-truth graphs. This evinces the
effectiveness of generating graph-structured representations for text-based games.

7 Broader Impact

Our work’s immediate aim—improved performance on text-based games—might have limited
consequences for society; however, taking a broader view of our work and where we’d like to take
it forces us to consider several social and ethical concerns. We use text-based games as a proxy
to model and study the interaction of machines with the human world, through language. Any
system that interacts with the human world impacts it. As mentioned previously, an example of
language-mediated, human-machine interaction is online customer service systems.

• In these systems, especially in products related to critical needs like healthcare, providing
inaccurate information could result in serious harm to users. Likewise, failing to communi-
cate clearly, sensibly, or convincingly might also cause harm. It could waste users’ precious
time and diminish their trust.

• The responses generated by such systems must be inclusive and free of bias. They must not
cause harm by the act of communication itself, nor by making decisions that disenfranchise
certain user groups. Unfortunately, many data-driven, free-form language generation systems
currently exhibit bias and/or produce problematic outputs.

• Users’ privacy is also a concern in this setting. Mechanisms must be put in place to protect
it. Agents that interact with humans almost invariably train on human data; their function
requires that they solicit, store, and act upon sensitive user information (especially in the
healthcare scenario envisioned above). Therefore, privacy protections must be implemented
throughout the agent development cycle, including data collection, training, and deployment.

• Tasks that require human interaction through language are currently performed by people.
As a result, advances in language-based agents may eventually displace or disrupt human
jobs. This is a clear negative impact.

Even more broadly, any systems that generate convincing natural language could be used to spread
misinformation.

Our work is immediately aimed at improving the performance of RL agents in text-based games, in
which agents must understand and act in the world through language. Our hope is that this work, by
introducing graph-structured representations, endows language-based agents with greater accuracy
and clarity, and the ability to make better decisions. Similarly, we expect that graph-structured
representations could be used to constrain agent decisions and outputs, for improved safety. Finally,
we believe that structured representations can improve neural agents’ interpretability to researchers
and users. This is an important future direction that can contribute to accountability and transparency
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in AI. As we have outlined, however, this and future work must be undertaken with awareness of its
hazards.
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