
Contents in Appendices:

• In Appendix A, we describe each of the components in GATA in detail.
• In Appendix B, we provide detailed information on how we pre-train GATA’s graph updater

with the two proposed methods (i.e., OG and COC).
• In Appendix C, we provide detailed information on GATA-GTP, the discrete version of

GATA. Since the action scorer module is the same as in GATA, this appendix elaborates on
how a discrete graph updater works and how to pre-train the discrete graph updater.

• In Appendix D, we provide additional results and discussions. This includes training
curves, training scores, testing scores, and high-res examples of the belief graphs learned
by GATA. We provide a set of probing experiments to show that the belief graphs learned
by GATA can capture useful information for relation classification tasks. We also provide
qualitative analysis on GATA’s OG task, which also suggests the belief graphs contain useful
information for reconstructing the text observation Ot.

• In Appendix E, we provide implementation details for all our experiments.
• In Appendix F, we show examples of graphs in TextWorld games.

A Details of GATA

Notations

In this section, we use Ot to denote text observation at game step t, Ct to denote a list of action
candidate provided by a game, and Gt to denote a belief graph that represents GATA’s belief to the
state.

We use L to refer to a linear transformation and Lf means it is followed by a non-linear activation
function f . Brackets [⋅; ⋅] denote vector concatenation. Overall structure of GATA is shown in
Figure 2.

A.1 Graph Encoder

As briefly mentioned in Section 3.3, GATA utilizes a graph encoder which is based on R-GCN [32].

To better leverage information from relation labels, when computing each node’s representation, we
also condition it on a relation representation E:

h̃i = σ
⎛
⎜
⎝
∑
r∈R

∑
j∈N r

i

W
l
r[hlj ;Er] +W l

0[hli;Er]
⎞
⎟
⎠
, (5)

in which, l denotes the l-th layer of the R-GCN, N r
i denotes the set of neighbor indices of node i

under relation r ∈ R, R indicates the set of different relations, W l
r and W l

0 are trainable parameters.
Since we use continuous graphs, N r

i includes all nodes (including node i itself). To stabilize the
model and preventing from the potential explosion introduced by stacking R-GCNs with continuous
graphs, we use Tanh function as σ (in contrast with the commonly used ReLU function).

As the initial input h0 to the graph encoder, we concatenate a node embedding vector and the averaged
word embeddings of node names. Similarly, for each relation r, Er is the concatenation of a relation
embedding vector and the averaged word embeddings of r’s label. Both node embedding and relation
embedding vectors are randomly initialized and trainable.

To further help our graph encoder to learn with multiple layers of R-GCN, we add highway connec-
tions [36] between layers:

g = L
sigmoid(h̃i),

h
l+1
i = g ⊙ h̃i + (1 − g)⊙ h

l
i,

(6)

where ⊙ indicates element-wise multiplication.

We use a 6-layer graph encoder, with a hidden size H of 64 in each layer. The node embedding size
is 100, relation embedding size is 32. The number of bases we use is 3.

14

A.2 Text Encoder

We use a transformer-based text encoder, which consists of a word embedding layer and a transformer
block [43]. Specifically, word embeddings are initialized by the 300-dimensional fastText [28] word
vectors trained on Common Crawl (600B tokens) and kept fixed during training in all settings.

The transformer block consists of a stack of 5 convolutional layers, a self-attention layer, and a 2-layer
MLP with a ReLU non-linear activation function in between. In the block, each convolutional layer
has 64 filters, each kernel’s size is 5. In the self-attention layer, we use a block hidden size H of 64,
as well as a single head attention mechanism. Layernorm [6] is applied after each component inside
the block. Following standard transformer training, we add positional encodings into each block’s
input.

We use the same text encoder to process text observation Ot and the action candidate list Ct. The
resulting representations are hOt

∈ RLOt×H and hCt
∈ RNCt×LCt×H , where LOt

is the number of
tokens in Ot, NCt

denotes the number of action candidates provided, LCt
denotes the maximum

number of tokens in Ct, and H = 64 is the hidden size.

A.3 Representation Aggregator

The representation aggregator aims to combine the text observation representations and graph
representations together. Therefore this module is activated only when both the text observation
Ot and the graph input Gt are provided. In cases where either of them is absent, for instance,
when training the agent with only Gbelief as input, the aggregator will be deactivated and the graph
representation will be directly fed into the scorer.

For simplicity, we omit the subscript t denoting game step in this subsection. At any game step, the
graph encoder processes graph input G, and generates the graph representation hG ∈ RNG×H . The
text encoder processes text observation O to generate text representation hO ∈ RLO×H . NG denotes
the number of nodes in the graph G, LO denotes the number of tokens in O.

We adopt a standard representation aggregation method from question answering literature [49] to
combine the two representations using attention mechanism.

Specifically, the aggregator first uses an MLP to convert both hG and hO into the same space, the
resulting tensors are denoted as h′G ∈ RNG×H and h′O ∈ RLO×H . Then, a trilinear similarity function
[33] is used to compute the similarities between each token in h′O with each node in h′G . The similarity
between ith token in h′O and jth node in h′G is thus computed by:

Sim(i, j) =W (h′Oi
, h

′
Gj
, h

′
Oi
⊙ h

′
Gj
), (7)

where W is trainable parameters in the trilinear function. By applying the above computation for
each pair of h′O and h′G , a similarity matrix S ∈ RLO×NG is resulted.

Softmax of the similarity matrix S along both dimensions (number of nodesNG and number of tokens
LO) are computed, producing SG and SO. The information contained in the two representations are
then aggregated by:

hOG = [h′O;P ;h
′
O ⊙ P ;h

′
O ⊙Q],

P = SGh
′⊤
G ,

Q = SGS
⊤
Oh

′⊤
O ,

(8)

where hOG ∈ RLO×4H is the aggregated observation representation, each token in text is represented
by the weighted sum of graph representations. Similarly, the aggregated graph representation hGO ∈

RNG×4H can also be obtained, where each node in the graph is represented by the weighted sum of
text representations. Finally, a linear transformation projects the two aggregated representations to a
space with size H of 64:

hGO = L(hGO),
hOG = L(hOG).

(9)

15

A.4 Scorer

The scorer consists of a self-attention layer, a masked mean pooling layer, and a two-layer MLP. As
shown in Figure 2 and described above, the input to the scorer is the action candidate representation
hCt

, and one of the following game state representation:

st =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

hGt
if only graph input is available,

hOt
if only text observation is available, this degrades GATA to a Tr-DQN,

hGOt
, hOGt

if both are available.

First, a self-attention is applied to the game state representation st, producing ŝt. If st includes graph
representations, this self-attention mechanism will reinforce the connection between each node and its
related nodes. Similarly, if st includes text representation, the self-attention mechanism strengthens
the connection between each token and other related tokens. Further, masked mean pooling is applied
to the self-attended state representation ŝt and the action candidate representation hCt

, this results in
a state representation vector and a list of action candidate representation vectors. We then concatenate
the resulting vectors and feed them into a 2-layer MLP with a ReLU non-linear activation function in
between. The second MLP layer has an output dimension of 1, after squeezing the last dimension,
the resulting vector is of size NCt

, which is the number of action candidates provided at game step t.
We use this vector as the score of each action candidate.

A.5 The f∆ Function

As mentioned in Eqn. 2, f∆ is an aggregator that combines information in Gt−1, At−1, and Ot to
generate the graph difference ∆gt.

In specific, f∆ uses the same architecture as the representation aggregator described in Appendix A.3.
Denoting the aggregator as a function Aggr:

hPQ, hQP = Aggr(hP , hQ), (10)

f∆ takes text observation representations hOt
∈ RLOt×H , belief graph representations hGt−1

∈

RNG×H , and action representations hAt−1
∈ RLAt−1×H as input. LOt

and LAt−1
are the number of

tokens in Ot and At−1, respectively; NG is the number of nodes in the graph; H is hidden size of the
input representations.

We first aggregate hOt
with hGt−1

, then similarly hAt−1
with hGt−1

:

hOG , hGO = Aggr(hOt
, hGt−1

),
hAG , hGA = Aggr(hAt−1

, hGt−1
). (11)

The output of f∆ is:
∆gt = [¯hOG ; ¯hGO; ¯hAG ; ¯hGA], (12)

where X̄ is the masked mean of X on the first dimension. The resulting concatenated vector ∆gt has
the size of R4H .

A.6 The fd Function

fd is a decoder that maps a hidden graph representation ht ∈ RH (generated by the RNN) into a
continuous adjacency tensor G ∈ [−1, 1]2R×N×N .

Specifically, fd consists of a 2-layer MLP:

h1 = L
ReLU
1 (ht),

h2 = L
tanh
2 (h1).

(13)

In which, h1 ∈ RH , h2 ∈ [−1, 1]R×N×N . To better facilitate the message passing process of
R-GCNs used in GATA’s graph encoder, we explicitly use the transposed h2 to represent the inversed
relations in the belief graph. Thus, we have G defined as:

G = [h2;h
T
2]. (14)

16

The transpose is performed on the last two dimensions (both of size N), the concatenation is
performed on the dimension of relations.

The tanh activation function on top of the second layer of the MLP restricts the range of our belief
graph G within [−1, 1]. Empirically we find it helpful to keep the input of the multi-layer graph
neural networks (the R-GCN graph encoder) in this range.

B Details of Pre-training Graph Updater for GATA

As briefly described in Section 3.2, we design two self-supervised tasks to pre-train the graph updater
module of GATA. As training data, we gather a collection of transitions from the FTWP dataset. Here,
we denote a transition as a 3-tuple (Ot−1, At−1, Ot). Specifically, given text observation Ot−1, an
action At−1 is issued; this leads to a new game state and Ot is returned from the game engine. Since
the graph updater is recurrent (we use an RNN as its graph operation function), the set of transitions
are stored in the order they are collected.

B.1 Observation Generation (OG)

As shown in Figure 4, given a transition (Ot−1, At−1, Ot), we use the belief graph Gt and At−1 to
reconstruct Ot. Gt is generated by the graph updater, conditioned on the recurrent information ht−1

carried over from previous data point in the transition sequence.

Text

Encoder

Graph

Encoder

Representation

Aggregator

Observation

Generator𝐺𝑡

𝐴𝑡−1

Graph

Updater

(§3.2)

ℎ𝑡−1

𝐴𝑡−1

𝑂𝑡

ℎ𝑡

𝑂𝑡

Discriminator

Text

Encoder

Graph

Encoder

Representation

Aggregator𝐺𝑡

𝐴𝑡−1

Graph

Updater

(§3.2)

ℎ𝑡−1

𝐴𝑡−1

𝑂𝑡

ℎ𝑡

𝑙𝑎𝑏𝑒𝑙

Figure 4: Observation generation model.

B.1.1 Observation Generator Layer

The observation generator is a transformer-based decoder. It consists of a word embedding layer, a
transformer block, and a projection layer.

Similar to the text encoder, the embedding layer is frozen after initializing with the pre-trained
fastText [28] word embeddings. Inside the transformer block, there is one self attention layer, two
attention layers and a 3-layer MLP with ReLU non-linear activation functions in between. Taking
word embedding vectors and the two aggregated representations produced by the representation
aggregator as input, the self-attention layer first generates a contextual encoding vectors for the
words. These vectors are then fed into the two attention layers to compute attention with graph
representations and text observation representations respectively. The two resulting vectors are thus
concatenated, and they are fed into the 3-layer MLP. The block hidden size of this transformer is
H = 64.

Finally, the output of the transformer block is fed into the projection layer, which is a linear transfor-
mation with output size same as the vocabulary size. The resulting logits are then normalized by a
softmax to generate a probability distribution over all words in vocabulary.

Following common practice, we also use a mask to prevent the decoder transformer to access “future”
information during training.

B.2 Contrastive Observation Classification (COC)

The contrastive observation classification task shares the same goal of ensuring the generated belief
graph Gt encodes the necessary information describing the environment state at step t. However,
instead of generating Ot from Gt, it requires a model to differentiate the real Ot from some Õt that
are randomly sampled from other data points. In this task, the belief graph does not need to encode

17

the syntactical information as in the observation generation task, rather, a model can use its full
capacity to learn the semantic information of the current environmental state.

We illustrate our contrastive observation classification model in Figure 5. This model shares most
components with the previously introduced observation generation model, except replacing the
observation generator module by a discriminator.

Text

Encoder

Graph

Encoder

Representation

Aggregator

Observation

Generator𝐺𝑡

𝐴𝑡−1

Graph

Updater

(§3.2)

ℎ𝑡−1

𝐴𝑡−1

𝑂𝑡

ℎ𝑡

𝑂𝑡

Discriminator

Text

Encoder

Graph

Encoder

Representation

Aggregator𝐺𝑡

𝐴𝑡−1

Graph

Updater

(§3.2)

ℎ𝑡−1

𝐴𝑡−1

𝑂𝑡

ℎ𝑡

𝑙𝑎𝑏𝑒𝑙

𝑂𝑡
~

𝑂𝑡

Figure 5: Contrastive observation classification model.

B.3 Reusing Graph Encoder in Action Scorer

Both of the graph updater and action selector modules rely heavily on the graph encoder layer.
It is natural to reuse the graph updater’s graph encoder during the RL training of action selector.
Specifically, we use the pre-trained graph encoder (and all its dependencies such as node embeddings
and relation embeddings) from either the above model to initialize the graph encoder in action selector.
In such settings, we fine-tune the graph encoders during RL training. In Appendix D, we compare
GATA’s performance between reusing the graph encoders with randomly initialize them.

C GATA-GTP and Discrete Belief Graph

As mentioned in Section 3.4, since the TextWorld API provides ground-truth (discrete) KGs that
describe game states at each step, we provide an agent that utilizes this information, as a strong
baseline to GATA. To accommodate the discrete nature of KGs provided by TextWorld, we propose
GATA-GTP, which has the same action scorer with GATA, but equipped with a discrete graph updater.
We show the overview structure of GATA-GTP in Figure 6.

C.1 Discrete Graph Updater

In the discrete graph setting, we follow [53], updating Gt with a set of discrete update operations that
act on Gt−1. In particular, we model the (discrete) ∆gt as a set of update operations, wherein each
update operation is a sequence of tokens. We define the following two elementary operations so that
any graph update can be achieved in k ≥ 0 such operations:

• add(node1, node2, relation): add a directed edge, named relation, between node1 and node2.

• delete(node1, node2, relation): delete a directed edge, named relation, between node1 and
node2. If the edge does not exist, ignore this command.

Given a new observation string Ot and Gt−1, the agent generates k ≥ 0 such operations to merge the
newly observed information into its belief graph.

Table 3: Update operations matching the transition in Figure 1.

<s> add player shed at <|> add shed backyard west_of <|> add wooden door shed
east_of <|> add toolbox shed in <|> add toolbox closed is <|> add workbench
shed in <|> delete player backyard at </s>

We formulate the update generation task as a sequence-to-sequence (Seq2Seq) problem and use a
transformer-based model [43] to generate token sequences for the operations. We adopt the decoding
strategy from [27], where given an observation sequence Ot and a belief graph Gt−1, the agent

18

Action Selector Discrete Graph Updater

Text

Encoder

Graph

Encoder Representation

Aggregator

𝑂𝑡
Text

Encoder
𝐶𝑡

Scorer 𝐴𝑡

𝐺𝑡

Command

Generator

𝑂𝑡

𝐺𝑡−1

𝛥𝑔𝑡
Representation

Aggregator

Text

Encoder

Graph

Encoder

𝐺𝑡−1

𝐺𝑡

Figure 6: GATA-GTP in detail. The coloring scheme is same as in Figure 1. The discrete graph
updater first generates ∆gt using Gt−1 andOt. Afterwards the action selector usesOt and the updated
graph Gt to select At from the list of action candidates Ct. Purple dotted line indicates a detached
connection (i.e., no back-propagation through such connection).

generates a sequence of tokens that contains multiple graph update operations as subsequences,
separated by a delimiter token <|>.

Since Seq2Seq set generation models are known to learn better with a consistent output ordering [27],
we sort the ground-truth operations (e.g., always add before delete) for training. For the transition
shown in Figure 1, the generated sequence is shown in Table 3.

C.2 Pre-training Discrete Graph Updater

As described above, we frame the discrete graph updating behavior as a language generation task.
We denote this task as command generation (CG). Similar to the continuous version of graph updater
in GATA, we pre-train the discrete graph updater using transitions collected from the FTWP dataset.
It is worth mentioning that despite requiring ground-truth KGs in FTWP dataset, GATA-GTP does
not require any ground-truth graph in the RL game to train and evaluate the action scorer.

For training discrete graph updater, we use the Gseen type of graphs provided by the TextWorld API.
Specifically, at game step t, Gseen

t is a discrete partial KG that contains information the agent has
observed from the beginning until step t. It is only possible to train an agent to generate belief about
the world it has seen and experienced.

In the collection FTWP transitions, every data point contains two consecutive graphs, we convert the
difference between the graphs to ground-truth update operations (i.e., add and delete commands).
We use standard teacher forcing technique to train the transformer-based Seq2Seq model. Specifically,
conditioned on the output of representation aggregator, the command generator is required to predict
the kth token of the target sequence given all the ground-truth tokens up to time step k − 1. The
command generator module is transformer-based decoder, similar to the observation generator
described in Appendix B.1.1. Negative log-likelihood is used as loss function for optimization. An
illustration of the command generation model is shown in Figure 7.

Graph

Encoder

Representation

Aggregator

𝐺𝑡−1

𝐺𝑡

Text

Encoder
𝐴𝐶𝑡

Action

Scorer
𝐴𝑡

Graph

Encoder

Graph

Encoder

Representation

Aggregator

𝐺𝑡−1

𝐺𝐶𝑡

Text

Encoder
𝐴𝑡−1

Graph

Scorer
𝐺𝑡

Graph

Encoder

Text

Encoder

Graph

Encoder

Representation

Aggregator

Command

Generator

𝑂𝑡

𝐺𝑡−1

𝛥𝑔𝑡

Graph

Encoder
𝐺 Discriminator 𝑙𝑎𝑏𝑒𝑙

Figure 7: Command Generation Model.

During the RL training of action selector, the graph updater is detached without any back-propagation
performed. It generates token-by-token started by a begin-of-sequence token, until it generates an
end-of-sequence token, or hitting the maximum sequence length limit. The resulting tokens are
consequently used to update the discrete belief graph.

C.3 Pre-training a Discrete Graph Encoder for Action Scorer

In the discrete graph setting, we take advantage of the accessibility of the ground-truth graphs.
Therefore we also consider various pre-training approaches to improve the performance of the graph
encoder in the action selection module. Similar to the training of graph updater, we use transitions
collected from the FTWP dataset as training data.

19

In particular, here we define a transition as a 6-tuple (Gt−1, Ot−1, Ct−1, At−1,Gt, Ot. Specifically,
given Gt−1 and Ot−1, an action At−1 is selected from the candidate list Ct−1; this leads to a new game
state St, thus Gt and Ot are returned. Note that Gt in transitions can either be Gfull

t that describes the
full environment state or Gseen

t that describes the part of state that the agent has experienced.

In this section, we start with providing details of the pre-training tasks and their corresponding
models, and then show these models’ performance for each of the tasks.

C.3.1 Action Prediction (AP)

Given a transition (Gt−1, Ot−1, Ct−1, At−1,Gt, Ot, rt−1), we use At−1 as positive example and use
all other action candidates in Ct−1 as negative examples. A model is required to identify At−1

amongst all action candidates given two consecutive graphs Gt−1 and Gt.

Graph

Encoder

Representation

Aggregator

𝐺𝑡−1

𝐺𝑡

Text

Encoder
𝐶𝑡

Scorer 𝐴𝑡

Graph

Encoder

Graph

Encoder

Representation

Aggregator

𝐺𝑡−1

𝐺𝐶𝑡

Text

Encoder
𝐴𝑡−1

Graph

Scorer
𝐺𝑡

Graph

Encoder

Text

Encoder

Graph

Encoder

Representation

Aggregator

Command

Generator

𝑂𝑡

𝐺𝑡−1

𝛥𝑔𝑡

Graph

Encoder
𝐺 Discriminator 𝑙𝑎𝑏𝑒𝑙Figure 8: Action Prediction Model.

We use a model with similar structure and components as the action selector of GATA. As illustrated in
Figure 8, the graph encoder first converts the two input graphs Gt−1 and Gt into hidden representations,
the representation aggregator combines them using attention mechanism. The list of action candidates
(which includes At−1 and all negative examples) are fed into the text encoder to generate action
candidate representations. The scorer thus takes these representations and the aggregated graph
representations as input, and it outputs a ranking over all action candidates.

In order to achieve good performance in this setting, the bi-directional attention between Gt−1 and Gt

in the representation aggregator needs to effectively determine the difference between the two sparse
graphs. To achieve that, the graph encoder has to extract useful information since often the difference
between Gt−1 and Gt is minute (e.g., before and after taking an apple from the table, the only change
is the location of the apple).

C.3.2 State Prediction (SP)

Graph

Encoder

Representation

Aggregator

𝐺𝑡−1

𝐺𝑡

Text

Encoder
𝐴𝐶𝑡

Action

Scorer
𝐴𝑡

Graph

Encoder

Graph

Encoder

Representation

Aggregator

𝐺𝑡−1

𝐺𝐶𝑡

Text

Encoder
𝐴𝑡−1

Graph

Scorer
𝐺𝑡

Graph

Encoder

Text

Encoder

Graph

Encoder

Representation

Aggregator

Command

Generator

𝑂𝑡

𝐺𝑡−1

𝛥𝑔𝑡

Graph

Encoder
𝐺 Discriminator 𝑙𝑎𝑏𝑒𝑙

Figure 9: State Prediction Model.

Given a transition (Gt−1, Ot−1, Ct−1, At−1,Gt, Ot, rt−1), we use Gt as positive example and gather
a set of game states by issuing all other actions in Ct−1 except At−1. We use the set of graphs
representing the resulting game states as negative samples. In this task, a model is required to identify
Gt amongst all graph candidates GCt given the previous graph Gt−1 and the action taken At−1.

As shown in Figure 9, a similar model is used to train both the SP and AP tasks.

C.3.3 Deep Graph Infomax (DGI)

This is inspired by Velickovic et al., [44]. Given a transition (Gt−1, Ot−1, Ct−1, At−1,Gt, Ot, rt−1),
we map the graph Gt into its node embedding space. The node embedding vectors of Gt is denoted as
H . We randomly shuffle some of the node embedding vectors to construct a “corrupted” version of
the node representations, denoted as H̃ .

20

Graph

Encoder

Representation

Aggregator

𝐺𝑡−1

𝐺𝑡

Text

Encoder
𝐴𝐶𝑡

Action

Scorer
𝐴𝑡

Graph

Encoder

Graph

Encoder

Representation

Aggregator

𝐺𝑡−1

𝐺𝐶𝑡

Text

Encoder
𝐴𝑡−1

Graph

Scorer
𝐺𝑡

Graph

Encoder

Text

Encoder

Graph

Encoder

Representation

Aggregator

Command

Generator

𝑂𝑡

𝐺𝑡−1

𝛥𝑔𝑡

Graph

Encoder
𝐺 Discriminator 𝑙𝑎𝑏𝑒𝑙

Figure 10: Deep Graph Infomax Model.

Given node representations H = {−→h1,
−→
h2, ...,

−→
hN} and corrupted representations of these nodes

H̃ = {−̃→h1,
−̃→
h2, ...,

−̃→
hN}, where N is the number of vertices in the graph, a model is required to

discriminate between the original and corrupted representations of nodes. As shown in Figure 10,
the model is composed of a graph encoder and a discriminator. Specifically, following [44], we
utilize a noise-contrastive objective with a binary cross-entropy (BCE) loss between the samples
from the joint (positive examples) and the product of marginals (negative examples). To enable the
discriminator to discriminate between Gt and the negative samples, the graph encoder must learn
useful graph representations at both global and local level.

C.3.4 Performance on Graph Encoder Pre-training Tasks

We provide test performance of all the models described above for graph representation learning. We
fine-tune the models on validation set and report their performance on test set.

Additionally, as mentioned in Section 3.3 and Appendix A, we adapt the original R-GCN to condition
the graph representation on additional information contained by the relation labels. We show an
ablation study for this in Table 4, where R-GCN denotes the original R-GCN [32] and R-GCN w/
R-Emb denotes our version that considers relation labels.

Note, as mentioned in previous sections, the dataset to train, valid and test these four pre-training
tasks are extracted from the FTWP dataset. There exist unseen nodes (ingredients in recipe) in the
validation and test sets of FTWP, it requires strong generalizability to get decent performance on
these datasets.

From Table 4, we show the relation label representation significantly boosts the generalization
performance on these datasets. Compared to AP and SP, where relation label information has
significant effect, both models perform near perfectly on the DGI task. This suggests the corruption
function we consider in this work is somewhat simple, we leave this for future exploration.

Table 4: Test performance of models on all pre-training tasks.

Task Graph Type R-GCN R-GCN w/ R-Emb

Accuracy

AP full 0.472 0.891
seen 0.631 0.873

SP full 0.419 0.926
seen 0.612 0.971

DGI full 0.999 1.000
seen 1.000 1.000

D Additional Results and Discussions

D.1 Training Curves

We report the training curves of all our mentioned experiment settings. Figure 11 shows the GATA’s
training curves. Figure 12 shows the training curves of the three text-based baseline (Tr-DQN,
Tr-DRQN, Tr-DRQN+). Figure 13 shows the training curve of GATA-GTF (no graph updater, the
action scorer takes ground-truth graphs as input) and GATA-GTP (graph updater is trained using
ground-truth graphs from the FTWP dataset, the trained graph updater maintains a discrete belief
graph throughout the RL training).

21

Fi
gu

re
11

:G
A

TA
’s

tr
ai

ni
ng

cu
rv

es
(a

ve
ra

ge
d

ov
er

3
se

ed
s,

ba
nd

re
pr

es
en

ts
st

an
da

rd
de

vi
at

io
n)

.C
ol

um
ns

ar
e

di
ffi

cu
lty

le
ve

ls
1/

2/
3/

4/
5.

T
he

up
pe

rt
w

o
ro

w
s

ar
e

G
A

TA
us

in
g

be
lie

fg
ra

ph
s

ge
ne

ra
te

d
by

th
e

gr
ap

h
up

da
te

rp
re

-t
ra

in
ed

w
ith

ob
se

rv
at

io
n

ge
ne

ra
tio

n
ta

sk
;T

he
lo

w
er

tw
o

ro
w

s
ar

e
G

AT
A

us
in

g
be

lie
fg

ra
ph

s
ge

ne
ra

te
d

by
th

e
gr

ap
h

up
da

te
rp

re
-t

ra
in

ed
w

ith
co

nt
ra

st
iv

e
ob

se
rv

at
io

n
cl

as
si

fic
at

io
n

ta
sk

.I
n

th
e

4
ro

w
s,

th
e

pr
es

en
ce

of
te

xt
ob

se
rv

at
io

n
ar

e
Fa

ls
e/

Tr
ue

/F
al

se
/T

ru
e.

In
th

e
fig

ur
e,

bl
ue

lin
es

in
di

ca
te

th
e

gr
ap

h
en

co
de

ri
n

ac
tio

n
se

le
ct

or
is

ra
nd

om
ly

in
iti

al
iz

ed
;o

ra
ng

e
lin

es
in

di
ca

te
th

e
gr

ap
h

en
co

de
ri

n
ac

tio
n

se
le

ct
or

is
in

iti
al

iz
ed

by
th

e
pr

e-
tr

ai
ne

d
ob

se
rv

at
io

n
ge

ne
ra

tio
n

an
d

co
nt

ra
st

iv
e

ob
se

rv
at

io
n

cl
as

si
fic

at
io

n
ta

sk
s.

So
lid

lin
es

in
di

ca
te

20
tr

ai
ni

ng
ga

m
es

,d
as

he
d

lin
es

in
di

ca
te

10
0

tr
ai

ni
ng

ga
m

es
.

22

Fi
gu

re
12

:T
he

te
xt

-b
as

ed
ba

se
lin

e
ag

en
ts

’t
ra

in
in

g
cu

rv
es

(a
ve

ra
ge

d
ov

er
3

se
ed

s,
ba

nd
re

pr
es

en
ts

st
an

da
rd

de
vi

at
io

n)
.C

ol
um

ns
ar

e
di

ffi
cu

lty
le

ve
ls

1/
2/

3/
4/

5,
ro

w
s

ar
e

Tr
-D

Q
N

,T
r-

D
R

Q
N

an
d

Tr
-D

R
Q

N
+,

re
sp

ec
tiv

el
y.

A
ll

of
th

e
th

re
e

ag
en

ts
ta

ke
te

xt
ob

se
rv

at
io

n
O

t
as

in
pu

t.
In

th
e

fig
ur

e,
bl

ue
so

lid
lin

es
in

di
ca

te
th

e
tr

ai
ni

ng
se

t
w

ith
20

ga
m

es
;o

ra
ng

e
da

sh
ed

lin
es

in
di

ca
te

th
e

tr
ai

ni
ng

se
tw

ith
10

0
ga

m
es

.

23

Fi
gu

re
13

:G
A

TA
-G

T
P

an
d

G
A

TA
-G

T
F’

s
tr

ai
ni

ng
cu

rv
es

(a
ve

ra
ge

d
ov

er
3

se
ed

s,
ba

nd
re

pr
es

en
ts

st
an

da
rd

de
vi

at
io

n)
.C

ol
um

ns
ar

e
di

ffi
cu

lty
le

ve
ls

1/
2/

3/
4/

5.
T

he
up

pe
rt

w
o

ro
w

s
ar

e
G

AT
A

-G
TF

w
he

n
te

xt
ob

se
rv

at
io

n
is

ab
se

nt
an

d
pr

es
en

ta
s

in
pu

t;
th

e
lo

w
er

tw
o

ro
w

s
ar

e
G

AT
A

-G
TP

w
he

n
te

xt
ob

se
rv

at
io

n
is

ab
se

nt
an

d
pr

es
en

t
as

in
pu

t.
In

th
e

fig
ur

e,
bl

ue
/o

ra
ng

e/
gr

ee
n

in
di

ca
te

th
e

ag
en

t’s
gr

ap
h

en
co

de
ri

s
in

iti
al

iz
ed

w
ith

A
P/

SP
/D

G
Ip

re
-t

ra
in

in
g

ta
sk

s.
R

ed
lin

es
in

di
ca

te
th

e
gr

ap
h

en
co

de
ri

s
ra

nd
om

ly
in

iti
al

iz
ed

.S
ol

id
lin

es
in

di
ca

te
20

tr
ai

ni
ng

ga
m

es
,d

as
he

d
lin

es
in

di
ca

te
10

0
tr

ai
ni

ng
ga

m
es

.

24

D.2 Training Scores

In Table 5 we provide all agents’ max training scores, each score is averaged over 3 random seeds.
All scores are normalized. Note as described in Section 3.3, we use ground-truth KGs to train the
action selector, Gbelief is only used during evaluation.

Table 5: Agents’ Max performance on Training games, averaged over 3 random seeds. In this table,
♠, ♦represent Ot and Gfull

t , respectively. ♣represents discrete belief graph generated by GATA-GTP
(trained with ground-truth graphs of FTWP). ⋆and ∞indicate continuous belief graph generated by
GATA, pre-trained with observation generation (OG) task and contrastive observation classification
(COC) task, respectively. Light blue shadings represent numbers that are greater than or equal to
Tr-DQN; light yellow shading represent number that are greater than or equal to all of Tr-DQN,
Tr-DRQN and Tr-DRQN+.

20 Training Games 100 Training Games Avg.

Difficulty Level 1 2 3 4 5 % ↑ 1 2 3 4 5 % ↑ % ↑

Input Agent Text-based Baselines

♠ Tr-DQN 90.8 36.9 69.3 31.5 61.2 —– 63.4 33.2 66.1 31.9 55.2 —– —–

♠ Tr-DRQN 88.8 41.7 76.6 29.6 60.7 +2.9 60.8 33.7 71.7 30.6 44.9 -3.4 -0.2

♠ Tr-DRQN+ 89.1 35.6 78.0 30.9 58.1 +0.0 61.1 32.8 70.0 30.0 50.3 -2.8 -1.4

Pre-training GATA

⋆ N/A 87.9 40.4 40.1 30.8 50.1 -11.2 65.1 34.6 51.2 32.0 41.8 -7.9 -9.6
⋆ OG 88.8 40.8 40.1 32.1 48.2 -10.6 63.8 33.9 51.9 32.6 39.3 -9.1 -9.8

⋆♠ N/A 90.2 35.4 69.0 32.0 62.8 -0.2 63.9 41.2 72.2 32.2 50.8 +5.4 +2.6
⋆♠ OG 90.0 57.1 70.6 31.7 57.9 +10.2 64.2 38.9 72.5 32.4 50.1 +4.1 +7.1

∞ N/A 89.0 43.1 41.2 31.8 48.7 -9.0 65.8 33.4 51.5 29.1 44.0 -9.4 -9.2
∞ COC 89.6 41.0 39.2 31.9 54.4 -8.7 65.8 33.4 48.6 31.2 47.2 -7.8 -8.2

∞♠ N/A 90.9 41.4 66.1 31.3 58.8 +0.6 67.1 33.1 73.6 29.9 51.2 +0.7 +0.6
∞♠ COC 90.2 50.8 66.4 31.9 59.3 +6.2 67.4 41.5 66.6 31.4 50.8 +4.5 +5.4

GATA-GTP

♣ N/A 73.3 34.5 50.5 21.7 43.5 -22.6 49.3 31.1 54.3 25.1 28.8 -23.1 -22.8
♣ AP 68.4 34.8 61.3 23.8 43.1 -19.2 40.9 31.3 55.4 24.8 28.8 -25.7 -22.4
♣ SP 62.7 38.1 57.5 23.5 44.1 -19.6 50.2 30.8 55.0 23.7 28.0 -24.0 -21.8
♣ DGI 64.9 37.0 55.6 25.7 47.4 -17.8 43.4 31.8 58.3 25.3 30.2 -22.7 -20.3

♣♠ N/A 77.5 33.9 45.6 26.3 40.2 -21.6 59.5 32.3 55.4 29.1 27.6 -16.8 -19.2
♣♠ AP 87.5 35.8 50.4 22.3 45.4 -17.8 61.3 32.2 56.3 25.3 33.0 -16.4 -17.1
♣♠ SP 80.0 35.5 50.2 23.5 44.0 -19.4 57.3 32.1 58.3 27.1 29.2 -17.4 -18.4
♣♠ DGI 70.3 33.9 51.4 26.3 42.1 -20.9 57.7 32.7 55.6 28.8 29.8 -16.4 -18.6

GATA-GTF

♦ N/A 98.6 58.4 95.6 36.1 80.9 +30.3 96.0 53.4 97.9 36.0 76.4 +42.3 +36.3
♦ AP 98.7 97.5 98.3 48.1 79.3 +59.4 97.1 74.7 98.3 44.5 75.9 +60.8 +60.1
♦ SP 100.0 96.9 98.3 44.9 76.6 +56.5 98.6 90.5 99.0 38.9 73.4 +66.6 +61.5
♦ DGI 96.9 45.4 95.3 28.7 72.6 +15.4 98.2 39.1 90.1 33.0 62.4 +25.1 +20.2

♦♠ N/A 91.7 55.9 80.9 33.6 63.2 +15.8 73.5 48.1 67.7 31.8 56.7 +13.1 +14.5
♦♠ AP 87.9 62.4 78.8 32.4 62.8 +17.0 76.8 54.0 73.7 34.1 55.6 +20.6 +18.8
♦♠ SP 90.7 55.8 83.8 30.7 64.2 +14.9 60.4 40.1 67.4 31.1 51.5 +1.8 +8.3
♦♠ DGI 88.1 38.1 73.0 32.5 62.5 +2.2 66.4 35.5 59.1 30.4 49.6 -2.8 -0.3

25

D.3 Test Results

In Table 6 we provide all our agent variants and the text-based baselines’ test scores. We report
agents’ test score corresponding to their best validation scores.

Table 6: Agents’ performance on test games, model selected using best validation performance.
Boldface and underline represent the highest and second highest values in a setting (excluding GATA-
GTF which has access to the ground-truth graphs of the RL games). In this tabel, ♠, ♦represent
Ot and Gfull

t , respectively. ♣represents discrete belief graph generated by GATA-GTP (pre-trained
with ground-truth graphs of FTWP). ⋆and ∞indicate continuous belief graph generated by GATA,
pre-trained with observation generation (OG) task and contrastive observation classification (COC)
task, respectively. Light blue shadings represent numbers that are greater than or equal to Tr-DQN;
light yellow shading represent number that are greater than or equal to all of Tr-DQN, Tr-DRQN and
Tr-DRQN+.

20 Training Games 100 Training Games Avg.

Difficulty Level 1 2 3 4 5 % ↑ 1 2 3 4 5 % ↑ % ↑

Input Agent Text-based Baselines

♠ Tr-DQN 66.2 26.0 16.7 18.2 27.9 —– 62.5 32.0 38.3 17.7 34.6 —– —–

♠ Tr-DRQN 62.5 32.0 28.3 12.7 26.5 +10.3 58.8 31.0 36.7 21.4 27.4 -2.6 +3.9

♠ Tr-DRQN+ 65.0 30.0 35.0 11.8 18.3 +10.7 58.8 33.0 33.3 19.5 30.6 -3.4 +3.6

Pre-training GATA

⋆ N/A 70.0 20.0 20.0 18.6 26.3 -0.2 62.5 32.0 46.7 27.7 35.4 +16.1 +8.0
⋆ OG 66.2 28.0 21.7 15.9 24.3 +2.4 66.2 34.0 40.0 21.4 34.0 +7.2 +4.8

⋆♠ N/A 66.2 34.0 30.0 12.7 24.3 +13.5 66.2 38.0 36.7 27.3 36.1 +15.8 +14.6
⋆♠ OG 66.2 48.0 26.7 15.5 26.3 +24.8 66.2 36.0 58.3 14.1 45.0 +16.1 +20.4

∞ N/A 73.8 42.0 26.7 20.9 24.5 +27.1 62.5 30.0 51.7 23.6 36.0 +13.2 +20.2
∞ COC 66.2 29.0 30.0 18.2 27.7 +18.1 66.2 34.0 41.7 19.1 40.3 +9.1 +13.6

∞♠ N/A 68.8 33.0 41.7 17.7 27.0 +34.9 62.5 33.0 46.7 25.9 33.4 +13.6 +24.2
∞♠ COC 66.2 44.0 16.7 20.0 21.7 +11.4 70.0 34.0 45.0 12.3 36.2 +2.0 +6.7

GATA-GTP

♣ N/A 56.2 23.0 41.7 11.4 22.1 +13.0 45.0 32.0 30.0 10.5 17.4 -28.0 -7.5
♣ AP 50.0 20.0 25.0 9.5 24.3 -11.7 45.0 31.0 50.0 15.9 24.4 -8.0 -9.9
♣ SP 45.0 25.0 38.3 11.8 22.6 +7.9 42.5 32.0 50.0 11.4 22.5 -14.4 -3.3
♣ DGI 56.2 26.0 40.0 17.3 17.7 +16.6 37.5 31.0 45.0 13.6 18.7 -18.9 -1.2

♣♠ N/A 73.8 31.0 28.3 8.2 22.5 +5.2 62.5 29.0 38.3 13.2 19.8 -15.5 -5.2
♣♠ AP 62.5 32.0 46.7 12.3 21.1 +28.1 58.8 30.0 40.0 10.9 29.2 -12.4 +7.9
♣♠ SP 65.0 32.0 41.7 12.3 23.5 +24.6 62.5 32.0 51.7 21.8 23.5 +5.2 +14.9
♣♠ DGI 75.0 27.0 33.3 17.3 24.3 +19.7 62.5 31.0 46.7 19.5 24.7 +0.1 +9.9

GATA-GTF

♦ N/A 83.8 53.0 33.3 23.6 24.8 +49.7 100.0 90.0 68.3 37.3 52.7 +96.5 +73.1
♦ AP 85.0 39.0 26.7 26.4 27.5 +36.4 92.5 88.0 63.3 53.6 51.6 +108.0 +72.2
♦ SP 48.7 61.0 46.7 23.6 28.9 +64.2 95.0 95.0 70.0 37.3 52.8 +99.0 +81.6
♦ DGI 85.0 27.0 31.7 14.1 22.1 +15.7 100.0 40.0 70.0 31.8 50.6 +58.7 +37.2

♦♠ N/A 92.5 39.0 30.0 15.9 23.6 +28.3 96.3 56.0 55.0 14.5 46.6 +37.9 +33.1
♦♠ AP 73.8 36.0 46.7 25.9 23.9 +51.5 85.0 42.0 68.3 36.4 47.5 +57.7 +54.6
♦♠ SP 62.5 24.0 36.7 14.5 28.6 +17.7 60.0 43.0 46.7 25.0 47.9 +26.4 +21.1
♦♠ DGI 81.2 30.0 25.0 16.8 30.7 +18.0 73.8 39.0 48.3 15.0 40.6 +13.6 +15.8

26

D.4 Other Remarks

Pre-training graph encoder helps. In Table 5 and Table 6, we also show GATA, GATA-GTP and
GATA-GTF’s training and test scores when their action scorer’s graph encoder are initialized with
pre-trained parameters as introduced in Section 3.2 (for GATA) and Appendix C.3 (for GATA-GTP
and GATA-GTF). We observe in most settings, pre-trained graph encoders produce better training
and test results compared to their randomly initialized counterparts. This is particularly obvious in
GATA-GTP and GATA-GTF, where graphs are discrete. For instance, from Table 6 we can see that
only with text observation as additional input (♣♠), and when graph encoder are initialized with
AP/SP/DGI, the GATA-GTP agent can outperform the text-based baselines on test game sets.

Fine-tuning graph encoder helps. For all experiment settings where the graph encoder in action
scorer is initialized with pre-trained parameters (OG/COC for GATA, AP/SP/DGI for GATA-GTP),
we also compare between freezing vs. fine-tuning the graph encoder in RL training. By freezing
the graph encoders, we can effectively reduce the number of parameters to be optimized with RL
signal. However, we see consistent trends that fine-tuning the graph encoders can always provide
better training and testing performance in both GATA and GATA-GTP.

Text input helps more when graphs are imperfect. We observe clear trends that for GATA-GTF,
using text together with graph as input (to the action selector) does not provide obvious performance
increase. Instead, GATA-GTF often shows better performance when text observation input is disabled.
This observation is coherent with the intuition of using text observations as additional input. When the
input graph to the action selector is imperfect (e.g., belief graph maintained by GATA or GATA-GTP
itself), the text observation provides more accurate information to help the agent to recover from
errors. On the other hand, GATA-GTF uses the ground-truth full graph (which is even accurate
than text) as input to the action selector, the text observation might confuse the agent by providing
redundant information with more uncertainty.

Learning across difficulty levels. We have a special set of RL games — level 5 — which is a
mixture of the other four difficulty levels. We use this set to evaluate an agent’s generalizability
on both dimensions of game configurations and difficulty levels. From Table 5, we observe that
almost all agents (including baseline agents) benefit from a larger training set, i.e., achieve better test
results when train on 100 level 5 games than 20 of them. Results show GATA has a more significant
performance boost from larger training set. We notice that all GATA-GTP variants perform worse
than text-based baselines on level 5 games, whereas GATA outperforms text-based baselines when
training on 100 games. This may suggest the continuous belief graphs can better help GATA to adapt
to games across difficulty levels, whereas its discrete counterpart may struggle more. For example,
both games in level 1 and 2 have only single location, while level 3 and 4 games have multiple
locations. GATA-GTP might thus get confused since sometimes the direction relations (e.g., west_of)
are unused. In contrast, GATA, equipped with continuous graphs, may learn such scenario easier.

D.5 Probing Task and Belief Graph Visualization

In this section, we investigate whether generated belief graphs contain any useful information about
the game dynamics. We first design a probing task to check if G encodes the existing relations
between two nodes. Next, we visualize a few slices of the adjacency tensor associated to G.

D.5.1 Probing Task

We frame the probing task as a multi-label classification of the relations between a pair of nodes.
Concretely, given two nodes i, j, and the vector Gi,j ∈ [−1, 1]R (in which R denotes the number of
relations) extracted from the belief graph G corresponding to the nodes i and j, the task is to learn a
function f such that it minimizes the following binary cross-entropy loss:

LBCE (f(Gi,j , hi, hj), Yi,j) , (15)

where hi, hj are the embeddings for nodes i and j, Yi,j ∈ {0, 1}R is a binary vector representing the
presence of each relation between the nodes (there are R different relations). Following Alain and
Bengio [2], we use a linear function as f , since we assume the useful information should be easily
accessible from G.

27

Table 7: Probing task results showing that belief graphs obtained from OG and COC do contain
information about the game dynamics, i.e. node relationships.

Exact Match F1 score
Train Test Train Test

Model + − Avg + − Avg + − Avg + − Avg
Random 0.00 0.99 0.49 0.00 0.99 0.49 0.00 0.99 0.49 0.00 0.99 0.49
Ground-truth 0.98 0.96 0.97 0.97 0.96 0.97 0.98 0.96 0.97 0.98 0.96 0.97
Tr-DRQN 0.61 0.84 0.73 0.61 0.83 0.72 0.61 0.84 0.73 0.61 0.83 0.72
GATA (OG) 0.69 0.86 0.78 0.70 0.86 0.78 0.71 0.85 0.78 0.72 0.86 0.79
GATA (COC) 0.65 0.86 0.75 0.65 0.84 0.75 0.67 0.85 0.76 0.67 0.84 0.75

We collect a dataset for this probing task by following the walkthroughs of 120 games. At every game
step, we collect a tuple (G,Gseen) (see Appendix C.2 for the definition of Gseen). We used tuples from
100 games as training data and the remaining for evaluation.

From each tuple in the dataset, we extract several node pairs (i, j) and their corresponding Yi,j from
Gseen (positive examples, denoted as “+”). To make sure a model can only achieve good performance
on this probing task by using the belief graph G, without overfitting by memorising node-relation
pairs (e.g., the unique relation between player and kitchen is at), we augment the dataset by adding
plausible node pairs (i.e., Yi,j = 0⃗

R) but that have no relation according to the current G (negative
examples, denoted as “−”). For instance, if at a certain game step the player is in the bedroom, the
relation between the player and kitchen should be empty (0⃗R). We expect G to have captured that
information.

We use two metrics to evaluate the performance on this probing task:
• Exact match represents the percentage of predictions that have all their labels classified correctly,
i.e., when f(Gi,j , hi, hj) = Y n

i,j .
• F1 score which is the harmonic mean between precision and recall. We report the macro-
averaging of F1 over all the predictions.

To better understand the probe’s behaviors on each settings, we also report their training and test
performance on the positive samples (+) and negative samples (−) separately.

From Table 7, we observe that belief graphs G generated by models pre-trained with either OG or
COC do contain useful information about the relations between a pair of nodes. We first compare
against a random baseline where each G is randomly sampled from N (0, 1) and kept fixed throughout
the probing task. We observe the linear probe fails to perform well on the training set (and as a result
also fails to generalize on test set). Interestingly, with random belief graphs provided, the probe
somehow overfits on negative samples and always outputs zeros all the time. In both training and
testing phases, it produces zero performance on positive examples. This baseline suggests the validity
of our probing task design — there is no way to correctly predict the relations without having the
information encoded in the belief graph G.

Next, we report the performance of using ground-truth graphs (Gseen) as input to f . We observe the
linear model can perform decently on training data, and can generalize from training to testing data —
on both sets, the linear probe achieves near-perfect performance. This also verifies the probing task
by showing that given the ground-truth knowledge, the linear probe is able to solve the task easily.

Given the two extreme cases as upper bound and lower bound, we investigate the belief graphs
G generated by GATA, pre-trained with either of the two self-supervised methods, OG and COC
(proposed in Section 3.2). From Table 7, we can see G generated by both OG and COC methods help
similarly in the relation prediction task, both provide more than 75% of testing exact match scores.

In Section 4, we show that GATA outperforms a set of baseline systems, including Tr-DRQN (as
described in Section 4.1), an agent with recurrent components. To further investigate if the belief
graphs generated by GATA can better facilitate the linear probe in this relation prediction task, we
provide an additional setting. We modify the Tr-DRQN agent by replacing its action scorer by a
text generator (the same decoder used in OG training), and train this model with the same data and
objective as OG. After pre-training, we obtain a set of probing data by collecting the recurrent hidden
states produced by this agent given the same probing game walkthroughs. Since these recurrent

28

hidden states are computed from the same amount of information as GATA’s belief graphs, they
could theoretically contain the same information as G. However, from Table 7, we see that the scores
of Tr-DRQN are consistently lower than GATA’s score. This is coherent with our findings in the
RL experiments (Section 4), except the gap between GATA and Tr-DRQN is less significant in the
relation prediction task setting.

While being able to perform the classification correctly in a large portion of examples, we observe a
clear performance gap comparing GATA’s belief graphs with ground-truth graphs. The cause of the
performance gap can be twofold. First, compared to ground-truth graphs that accurately represent
game states without information loss, G (iteratively generated by a neural network across game steps)
can inevitably suffer from information loss. Second, the information encoded in G might not be
easily extracted by a linear probe (compared to ground-truth). Both aspects suggest potential future
directions to improve the belief graph generation module.

We optimize all probing models for 10 epochs with Adam optimizer, using the default hyperparameters
and a learning rate of 0.0001. Note in all the probing models, only parameters of the linear layer f
are trainable, everything else (including node embeddings) are kept fixed.

D.5.2 Belief Graph Visualization

In Figure 14, we show a slice of the ground-truth adjacency tensor representing the is relation. To
give context, that tensor has been extracted at the end of a game with a recipe requesting a fried diced
red apple, a roasted sliced red hot pepper, and a fried sliced yellow potato. Correspondingly, for the
same game and same time step, Figure 15 shows the same adjacency tensor’s slice for the belief
graphs G generated by GATA pre-trained on observation generation (OG) and contrastive observation
classification (COC) tasks.

For visualization, we found that subtracting the mean adjacency tensor, computed across all games
and steps, helps by removing information about the marginal distribution of the observations (e.g.,
underlying grammar or other common features needed for the self-supervised tasks). Those “cleaner”
graphs are shown in Figure 16. One must keep in mind that there is no training signal to force the
belief graphs to align with any ground-truth graphs since the belief graph generators are trained with
pure self-supervised methods.

29

pl
ay

er
in

ve
nt

or
y

ch
op

pe
d

ro
as

te
d

di
ce

d
bu

rn
ed

op
en

fri
ed

gr
ille

d
co

ns
um

ed
clo

se
d

sli
ce

d
ex

it
ki

tc
he

n
pa

nt
ry

liv
in

gr
oo

m
ba

th
ro

om
ba

ck
ya

rd
be

dr
oo

m
ga

rd
en

sh
ed

dr
iv

ew
ay

st
re

et
co

rri
do

r
su

pe
rm

ar
ke

t
bb

q
ba

na
na

ba
rn

 d
oo

r
be

d
bl

ac
k

pe
pp

er
bl

oc
k

of
 c

he
es

e
ca

rro
t

ch
ick

en
 b

re
as

t
ch

ick
en

 le
g

ch
ick

en
 w

in
g

cil
an

tro
co

m
m

er
cia

l g
la

ss
 d

oo
r

co
ok

bo
ok

co
uc

h
co

un
te

r
eg

g
fib

er
gl

as
s d

oo
r

flo
ur

fri
dg

e
fro

nt
 d

oo
r

fro
st

ed
-g

la
ss

 d
oo

r
gr

ee
n

ap
pl

e
gr

ee
n

be
ll

pe
pp

er
gr

ee
n

ho
t p

ep
pe

r
ki

tc
he

n
isl

an
d

kn
ife

le
ttu

ce
m

ilk
m

ea
l

ol
iv

e
oi

l
or

an
ge

 b
el

l p
ep

pe
r

ov
en

pa
rs

le
y

pa
tio

 c
ha

ir
pa

tio
 d

oo
r

pa
tio

 ta
bl

e
pe

an
ut

 o
il

pl
ai

n
do

or
po

rk
 c

ho
p

pu
rp

le
 p

ot
at

o
ra

w
re

cip
e

bo
ok

re
cip

e
re

d
ap

pl
e

re
d

be
ll

pe
pp

er
re

d
ho

t p
ep

pe
r

re
d

on
io

n
re

d
po

ta
to

re
d

tu
na

re
fri

ge
ra

to
r

sa
lt

sc
re

en
 d

oo
r

sh
el

f
sh

ow
ca

se
sli

di
ng

 d
oo

r
sli

di
ng

 p
at

io
 d

oo
r

so
fa

st
ov

e
su

ga
r

ta
bl

e
to

ile
t

to
m

at
o

to
ol

bo
x

un
cu

t
ve

ge
ta

bl
e

oi
l

wa
te

r
wh

ite
 o

ni
on

wh
ite

 tu
na

wo
od

en
 d

oo
r

wo
rk

be
nc

h
ye

llo
w

ap
pl

e
ye

llo
w

be
ll

pe
pp

er
ye

llo
w

on
io

n
ye

llo
w

po
ta

to

player
inventory
chopped
roasted

diced
burned

open
fried

grilled
consumed

closed
sliced

exit
kitchen
pantry

livingroom
bathroom
backyard
bedroom

garden
shed

driveway
street

corridor
supermarket

bbq
banana

barn door
bed

black pepper
block of cheese

carrot
chicken breast

chicken leg
chicken wing

cilantro
commercial glass door

cookbook
couch

counter
egg

fiberglass door
flour

fridge
front door

frosted-glass door
green apple

green bell pepper
green hot pepper

kitchen island
knife

lettuce
milk

meal
olive oil

orange bell pepper
oven

parsley
patio chair
patio door
patio table
peanut oil
plain door
pork chop

purple potato
raw

recipe book
recipe

red apple
red bell pepper
red hot pepper

red onion
red potato

red tuna
refrigerator

salt
screen door

shelf
showcase

sliding door
sliding patio door

sofa
stove
sugar
table
toilet

tomato
toolbox

uncut
vegetable oil

water
white onion
white tuna

wooden door
workbench

yellow apple
yellow bell pepper

yellow onion
yellow potato

0.0

0.2

0.4

0.6

0.8

1.0

Figure 14: Slice of a ground-truth adjacency tensor representing the is relation.

30

pl
ay

er
in

ve
nt

or
y

ch
op

pe
d

ro
as

te
d

di
ce

d
bu

rn
ed

op
en

fri
ed

gr
ille

d
co

ns
um

ed
clo

se
d

sli
ce

d
ex

it
ki

tc
he

n
pa

nt
ry

liv
in

gr
oo

m
ba

th
ro

om
ba

ck
ya

rd
be

dr
oo

m
ga

rd
en

sh
ed

dr
iv

ew
ay

st
re

et
co

rri
do

r
su

pe
rm

ar
ke

t
bb

q
ba

na
na

ba
rn

 d
oo

r
be

d
bl

ac
k

pe
pp

er
bl

oc
k

of
 c

he
es

e
ca

rro
t

ch
ick

en
 b

re
as

t
ch

ick
en

 le
g

ch
ick

en
 w

in
g

cil
an

tro
co

m
m

er
cia

l g
la

ss
 d

oo
r

co
ok

bo
ok

co
uc

h
co

un
te

r
eg

g
fib

er
gl

as
s d

oo
r

flo
ur

fri
dg

e
fro

nt
 d

oo
r

fro
st

ed
-g

la
ss

 d
oo

r
gr

ee
n

ap
pl

e
gr

ee
n

be
ll

pe
pp

er
gr

ee
n

ho
t p

ep
pe

r
ki

tc
he

n
isl

an
d

kn
ife

le
ttu

ce
m

ilk
m

ea
l

ol
iv

e
oi

l
or

an
ge

 b
el

l p
ep

pe
r

ov
en

pa
rs

le
y

pa
tio

 c
ha

ir
pa

tio
 d

oo
r

pa
tio

 ta
bl

e
pe

an
ut

 o
il

pl
ai

n
do

or
po

rk
 c

ho
p

pu
rp

le
 p

ot
at

o
ra

w
re

cip
e

bo
ok

re
cip

e
re

d
ap

pl
e

re
d

be
ll

pe
pp

er
re

d
ho

t p
ep

pe
r

re
d

on
io

n
re

d
po

ta
to

re
d

tu
na

re
fri

ge
ra

to
r

sa
lt

sc
re

en
 d

oo
r

sh
el

f
sh

ow
ca

se
sli

di
ng

 d
oo

r
sli

di
ng

 p
at

io
 d

oo
r

so
fa

st
ov

e
su

ga
r

ta
bl

e
to

ile
t

to
m

at
o

to
ol

bo
x

un
cu

t
ve

ge
ta

bl
e

oi
l

wa
te

r
wh

ite
 o

ni
on

wh
ite

 tu
na

wo
od

en
 d

oo
r

wo
rk

be
nc

h
ye

llo
w

ap
pl

e
ye

llo
w

be
ll

pe
pp

er
ye

llo
w

on
io

n
ye

llo
w

po
ta

to

player
inventory
chopped
roasted

diced
burned

open
fried

grilled
consumed

closed
sliced

exit
kitchen
pantry

livingroom
bathroom
backyard
bedroom

garden
shed

driveway
street

corridor
supermarket

bbq
banana

barn door
bed

black pepper
block of cheese

carrot
chicken breast

chicken leg
chicken wing

cilantro
commercial glass door

cookbook
couch

counter
egg

fiberglass door
flour

fridge
front door

frosted-glass door
green apple

green bell pepper
green hot pepper

kitchen island
knife

lettuce
milk

meal
olive oil

orange bell pepper
oven

parsley
patio chair
patio door
patio table
peanut oil
plain door
pork chop

purple potato
raw

recipe book
recipe

red apple
red bell pepper
red hot pepper

red onion
red potato

red tuna
refrigerator

salt
screen door

shelf
showcase

sliding door
sliding patio door

sofa
stove
sugar
table
toilet

tomato
toolbox

uncut
vegetable oil

water
white onion
white tuna

wooden door
workbench

yellow apple
yellow bell pepper

yellow onion
yellow potato

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

pl
ay

er
in

ve
nt

or
y

ch
op

pe
d

ro
as

te
d

di
ce

d
bu

rn
ed

op
en

fri
ed

gr
ille

d
co

ns
um

ed
clo

se
d

sli
ce

d
ex

it
ki

tc
he

n
pa

nt
ry

liv
in

gr
oo

m
ba

th
ro

om
ba

ck
ya

rd
be

dr
oo

m
ga

rd
en

sh
ed

dr
iv

ew
ay

st
re

et
co

rri
do

r
su

pe
rm

ar
ke

t
bb

q
ba

na
na

ba
rn

 d
oo

r
be

d
bl

ac
k

pe
pp

er
bl

oc
k

of
 c

he
es

e
ca

rro
t

ch
ick

en
 b

re
as

t
ch

ick
en

 le
g

ch
ick

en
 w

in
g

cil
an

tro
co

m
m

er
cia

l g
la

ss
 d

oo
r

co
ok

bo
ok

co
uc

h
co

un
te

r
eg

g
fib

er
gl

as
s d

oo
r

flo
ur

fri
dg

e
fro

nt
 d

oo
r

fro
st

ed
-g

la
ss

 d
oo

r
gr

ee
n

ap
pl

e
gr

ee
n

be
ll

pe
pp

er
gr

ee
n

ho
t p

ep
pe

r
ki

tc
he

n
isl

an
d

kn
ife

le
ttu

ce
m

ilk
m

ea
l

ol
iv

e
oi

l
or

an
ge

 b
el

l p
ep

pe
r

ov
en

pa
rs

le
y

pa
tio

 c
ha

ir
pa

tio
 d

oo
r

pa
tio

 ta
bl

e
pe

an
ut

 o
il

pl
ai

n
do

or
po

rk
 c

ho
p

pu
rp

le
 p

ot
at

o
ra

w
re

cip
e

bo
ok

re
cip

e
re

d
ap

pl
e

re
d

be
ll

pe
pp

er
re

d
ho

t p
ep

pe
r

re
d

on
io

n
re

d
po

ta
to

re
d

tu
na

re
fri

ge
ra

to
r

sa
lt

sc
re

en
 d

oo
r

sh
el

f
sh

ow
ca

se
sli

di
ng

 d
oo

r
sli

di
ng

 p
at

io
 d

oo
r

so
fa

st
ov

e
su

ga
r

ta
bl

e
to

ile
t

to
m

at
o

to
ol

bo
x

un
cu

t
ve

ge
ta

bl
e

oi
l

wa
te

r
wh

ite
 o

ni
on

wh
ite

 tu
na

wo
od

en
 d

oo
r

wo
rk

be
nc

h
ye

llo
w

ap
pl

e
ye

llo
w

be
ll

pe
pp

er
ye

llo
w

on
io

n
ye

llo
w

po
ta

to

player
inventory
chopped
roasted

diced
burned

open
fried

grilled
consumed

closed
sliced

exit
kitchen
pantry

livingroom
bathroom
backyard
bedroom

garden
shed

driveway
street

corridor
supermarket

bbq
banana

barn door
bed

black pepper
block of cheese

carrot
chicken breast

chicken leg
chicken wing

cilantro
commercial glass door

cookbook
couch

counter
egg

fiberglass door
flour

fridge
front door

frosted-glass door
green apple

green bell pepper
green hot pepper

kitchen island
knife

lettuce
milk

meal
olive oil

orange bell pepper
oven

parsley
patio chair
patio door
patio table
peanut oil
plain door
pork chop

purple potato
raw

recipe book
recipe

red apple
red bell pepper
red hot pepper

red onion
red potato

red tuna
refrigerator

salt
screen door

shelf
showcase

sliding door
sliding patio door

sofa
stove
sugar
table
toilet

tomato
toolbox

uncut
vegetable oil

water
white onion
white tuna

wooden door
workbench

yellow apple
yellow bell pepper

yellow onion
yellow potato

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 15: Adjacency tensor’s slices for G generated by GATA, pre-trained with OG task (top) and
COC task (bottom).

31

pl
ay

er
in

ve
nt

or
y

ch
op

pe
d

ro
as

te
d

di
ce

d
bu

rn
ed

op
en

fri
ed

gr
ille

d
co

ns
um

ed
clo

se
d

sli
ce

d
ex

it
ki

tc
he

n
pa

nt
ry

liv
in

gr
oo

m
ba

th
ro

om
ba

ck
ya

rd
be

dr
oo

m
ga

rd
en

sh
ed

dr
iv

ew
ay

st
re

et
co

rri
do

r
su

pe
rm

ar
ke

t
bb

q
ba

na
na

ba
rn

 d
oo

r
be

d
bl

ac
k

pe
pp

er
bl

oc
k

of
 c

he
es

e
ca

rro
t

ch
ick

en
 b

re
as

t
ch

ick
en

 le
g

ch
ick

en
 w

in
g

cil
an

tro
co

m
m

er
cia

l g
la

ss
 d

oo
r

co
ok

bo
ok

co
uc

h
co

un
te

r
eg

g
fib

er
gl

as
s d

oo
r

flo
ur

fri
dg

e
fro

nt
 d

oo
r

fro
st

ed
-g

la
ss

 d
oo

r
gr

ee
n

ap
pl

e
gr

ee
n

be
ll

pe
pp

er
gr

ee
n

ho
t p

ep
pe

r
ki

tc
he

n
isl

an
d

kn
ife

le
ttu

ce
m

ilk
m

ea
l

ol
iv

e
oi

l
or

an
ge

 b
el

l p
ep

pe
r

ov
en

pa
rs

le
y

pa
tio

 c
ha

ir
pa

tio
 d

oo
r

pa
tio

 ta
bl

e
pe

an
ut

 o
il

pl
ai

n
do

or
po

rk
 c

ho
p

pu
rp

le
 p

ot
at

o
ra

w
re

cip
e

bo
ok

re
cip

e
re

d
ap

pl
e

re
d

be
ll

pe
pp

er
re

d
ho

t p
ep

pe
r

re
d

on
io

n
re

d
po

ta
to

re
d

tu
na

re
fri

ge
ra

to
r

sa
lt

sc
re

en
 d

oo
r

sh
el

f
sh

ow
ca

se
sli

di
ng

 d
oo

r
sli

di
ng

 p
at

io
 d

oo
r

so
fa

st
ov

e
su

ga
r

ta
bl

e
to

ile
t

to
m

at
o

to
ol

bo
x

un
cu

t
ve

ge
ta

bl
e

oi
l

wa
te

r
wh

ite
 o

ni
on

wh
ite

 tu
na

wo
od

en
 d

oo
r

wo
rk

be
nc

h
ye

llo
w

ap
pl

e
ye

llo
w

be
ll

pe
pp

er
ye

llo
w

on
io

n
ye

llo
w

po
ta

to

player
inventory
chopped
roasted

diced
burned

open
fried

grilled
consumed

closed
sliced

exit
kitchen
pantry

livingroom
bathroom
backyard
bedroom

garden
shed

driveway
street

corridor
supermarket

bbq
banana

barn door
bed

black pepper
block of cheese

carrot
chicken breast

chicken leg
chicken wing

cilantro
commercial glass door

cookbook
couch

counter
egg

fiberglass door
flour

fridge
front door

frosted-glass door
green apple

green bell pepper
green hot pepper

kitchen island
knife

lettuce
milk

meal
olive oil

orange bell pepper
oven

parsley
patio chair
patio door
patio table
peanut oil
plain door
pork chop

purple potato
raw

recipe book
recipe

red apple
red bell pepper
red hot pepper

red onion
red potato

red tuna
refrigerator

salt
screen door

shelf
showcase

sliding door
sliding patio door

sofa
stove
sugar
table
toilet

tomato
toolbox

uncut
vegetable oil

water
white onion
white tuna

wooden door
workbench

yellow apple
yellow bell pepper

yellow onion
yellow potato

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

pl
ay

er
in

ve
nt

or
y

ch
op

pe
d

ro
as

te
d

di
ce

d
bu

rn
ed

op
en

fri
ed

gr
ille

d
co

ns
um

ed
clo

se
d

sli
ce

d
ex

it
ki

tc
he

n
pa

nt
ry

liv
in

gr
oo

m
ba

th
ro

om
ba

ck
ya

rd
be

dr
oo

m
ga

rd
en

sh
ed

dr
iv

ew
ay

st
re

et
co

rri
do

r
su

pe
rm

ar
ke

t
bb

q
ba

na
na

ba
rn

 d
oo

r
be

d
bl

ac
k

pe
pp

er
bl

oc
k

of
 c

he
es

e
ca

rro
t

ch
ick

en
 b

re
as

t
ch

ick
en

 le
g

ch
ick

en
 w

in
g

cil
an

tro
co

m
m

er
cia

l g
la

ss
 d

oo
r

co
ok

bo
ok

co
uc

h
co

un
te

r
eg

g
fib

er
gl

as
s d

oo
r

flo
ur

fri
dg

e
fro

nt
 d

oo
r

fro
st

ed
-g

la
ss

 d
oo

r
gr

ee
n

ap
pl

e
gr

ee
n

be
ll

pe
pp

er
gr

ee
n

ho
t p

ep
pe

r
ki

tc
he

n
isl

an
d

kn
ife

le
ttu

ce
m

ilk
m

ea
l

ol
iv

e
oi

l
or

an
ge

 b
el

l p
ep

pe
r

ov
en

pa
rs

le
y

pa
tio

 c
ha

ir
pa

tio
 d

oo
r

pa
tio

 ta
bl

e
pe

an
ut

 o
il

pl
ai

n
do

or
po

rk
 c

ho
p

pu
rp

le
 p

ot
at

o
ra

w
re

cip
e

bo
ok

re
cip

e
re

d
ap

pl
e

re
d

be
ll

pe
pp

er
re

d
ho

t p
ep

pe
r

re
d

on
io

n
re

d
po

ta
to

re
d

tu
na

re
fri

ge
ra

to
r

sa
lt

sc
re

en
 d

oo
r

sh
el

f
sh

ow
ca

se
sli

di
ng

 d
oo

r
sli

di
ng

 p
at

io
 d

oo
r

so
fa

st
ov

e
su

ga
r

ta
bl

e
to

ile
t

to
m

at
o

to
ol

bo
x

un
cu

t
ve

ge
ta

bl
e

oi
l

wa
te

r
wh

ite
 o

ni
on

wh
ite

 tu
na

wo
od

en
 d

oo
r

wo
rk

be
nc

h
ye

llo
w

ap
pl

e
ye

llo
w

be
ll

pe
pp

er
ye

llo
w

on
io

n
ye

llo
w

po
ta

to

player
inventory
chopped
roasted

diced
burned

open
fried

grilled
consumed

closed
sliced

exit
kitchen
pantry

livingroom
bathroom
backyard
bedroom

garden
shed

driveway
street

corridor
supermarket

bbq
banana

barn door
bed

black pepper
block of cheese

carrot
chicken breast

chicken leg
chicken wing

cilantro
commercial glass door

cookbook
couch

counter
egg

fiberglass door
flour

fridge
front door

frosted-glass door
green apple

green bell pepper
green hot pepper

kitchen island
knife

lettuce
milk

meal
olive oil

orange bell pepper
oven

parsley
patio chair
patio door
patio table
peanut oil
plain door
pork chop

purple potato
raw

recipe book
recipe

red apple
red bell pepper
red hot pepper

red onion
red potato

red tuna
refrigerator

salt
screen door

shelf
showcase

sliding door
sliding patio door

sofa
stove
sugar
table
toilet

tomato
toolbox

uncut
vegetable oil

water
white onion
white tuna

wooden door
workbench

yellow apple
yellow bell pepper

yellow onion
yellow potato

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 16: Adjacency tensor’s slices after subtracting the mean for G generated by GATA, pre-trained
with OG task (top) and COC task (bottom).

32

Table 8: Selected example of test set of the observation generation task. On this specific data point,
The model gets an F1 score of 0.64. We use same colors to shade the information overlap between
ground-truth observation with the model prediction.

Ground-Truth

-= kitchen = - of every kitchen you could have sauntered into , you had to saunter into a normal one . you can make out a fridge .

the fridge contains a raw chicken wing , a raw chicken leg and a block of cheese . you can make out an oven . you hear a noise

behind you and spin around , but you ca n’t see anything other than a table . wow , is n’t textworld just the best ? you see a cookbook

on the table . hmmm ... what else , what else ? you make out a counter . now why would someone leave that there ? the counter is vast .

on the counter you make out a raw purple potato and a knife . you can make out a stove . the stove is conventional . unfortunately ,

there is n’t a thing on it . hopefully this does n’t make you too upset . there is an open frosted - glass door leading east . there is an
exit to the north . do n’t worry , there is no door . you need an exit without a door ? you should try going west . there is a white onion
on the floor .

Prediction

-= kitchen = - you ’re now in a kitchen . you begin looking for stuff . you can make out a fridge . the fridge contains a raw chicken

leg . you can make out a closed oven . you can make out a table . the table is massive . on the table you see a knife . you see a

counter . the counter is vast . on the counter you can make out a cookbook . you can make out a stove . the stove is conventional .

but the thing has n’t got anything on it . you can make out a stove . the stove is conventional . but the thing has n’t got anything on it .

there is an open frosted - glass door leading east . there is an exit to the east .

D.6 GATA’s Performance on Graph Updater Pre-training Tasks

In this subsection, we report the test performance of the two graph updater pre-training tasks for
GATA.

In the observation generation (OG) task, our model achieves a test loss of 22.28 (when using ground-
truth history tokens as input to the decoder), and a test F1 score of 0.68 (when using the previously
generated token as input to the decoder).

In the contrastive observation classification (COC) task, our model achieves a test loss of 0.06, and a
test accuracy of 0.97.

In Table 8, we show a selected test example from the observation generation task. In the example,
the prediction has fair amount of overlap (semantically, not necessarily word by word) with the
ground-truth. This suggests the belief graph Gbelief

t generated by GATA’s updater model can to some
extent capture and encode the state information of the environment — since the model is able to
reconstruct Ot using Gbelief

t .

D.7 Future Directions

As mentioned in Appendix D.5, the belief graphs generated by GATA lack of interpretability because
the training is not supervised by any ground-truth graph. Technically, they are recurrent hidden states
that encode the game state, we only (weakly) ground these real-valued graphs by providing node and
relation vocabularies (word embeddings) for the message passing in R-GCN.

Therefore, there can be two potential directions deriving from the current approach. First, it would be
interesting to investigate regularization methods and auxiliary tasks that can make the belief graph
sparser (without relying on ground-truth graphs to train). A sparser belief graph may increase GATA’s
interpretability, however, it does not guarantee to produce better performance on playing text-based
games (which is what we care more about).

Second, it would also be interesting to see how GATA can be adapted to environments where the
node and relation names are unknown. This will presumably make the learned belief graphs even far
away from interpretable, but at the same time it will further relax GATA from the need of requiring
any prior knowledge about the environments. We believe this is an essential property for an agent that
is generalizabile to out-of-distribution environments. For instance, without the need of a pre-defined
node and relation vocabularies, we can expand GATA to the setting where training on the cooking
games, and testing on games from another genre, or even text-based games designed for humans [14].

33

Algorithm 1 Training Strategy for GATA Action Selector
1: Input: games X , replay buffer B, update frequency F , patience P , tolerance τ , evaluation frequency E.
2: Initialize counters k ← 1, p← 0, best validation score V ← 0, transition cache C, policy π, checkpoint Π.
3: for e← 1 to NB_EPISODES do
4: Sample a game x ∈ X , reset C.
5: for i← 1 to NB_STEPS do
6: play game, push transition into C, k ← k + 1
7: if k%F = 0 then sample batch from B, Update(π)
8: if done then break
9: end for

10: if average score in C > τ ⋅ average score in B then
11: for all item in C do push item into B
12: end if
13: if e%E ≠ 0 then continue
14: v ← Evaluate(π)
15: if v >= V then Π← π, p← 0, continue
16: if p > P then π ← Π, p← 0
17: else p← p + 1
18: end for

E Implementation Details

In Appendix A, we have introduced hyperparameters regarding model structures. In this section, we
provide hyperparameters we used in training and optimizing.

In all experiments, we use Rectified Adam [25] as the step rule for optimization. The learning rate is
set to 0.001. We clip gradient norm of 5.

E.1 Graph Updater

To pre-train the recurrent graph updater in GATA, we utilize the backpropagation through time
(BPTT) algorithm. Specifically, we unfold the recurrent graph updater and update every 5 game steps.
We freeze the parameters in graph updater after its own training process. Although it can theoretically
be trained on-the-fly together with the action selector (with reward signal), we find the standalone
training strategy more effective and efficient.

E.2 Action Selector

The overall training procedure of GATA’s action selector is shown in Algorithm 1.

We report two strategies that we empirically find effective in DQN training. First, we discard the
underachieving trajectories without pushing them into the replay buffer (lines 10–12). Specifically,
we only push a new trajectory that has an average reward greater than τ ∈ R+0 times the average
reward for all transitions in the replay buffer. We use τ = 0.1, since it keeps around some weaker
but acceptable trajectories and does not limit exploration too severely. Second, we keep track of the
best performing policy Π on the validation games. During training, when GATA stops improving on
validation games, we load Π back to the training policy π and resume training. After training, we
report the performance of Π on test games. Note these two strategies are not designed specifically for
GATA; rather, we find them effective in DQN training in general.

We use a prioritized replay buffer with memory size of 500,000, and a priority fraction of 0.6. We
use ε-greedy, where the value of ε anneals from 1.0 to 0.1 within 20,000 episodes. We start updating
parameters after 100 episodes of playing. We update our network after every 50 game steps (update
frequency F in Algorithm 1) 7. During update, we use a mini-batch of size 64. We use a discount
γ = 0.9. We update target network after every 500 episodes. For multi-step learning, we sample
the multi-step return n ∼ Uniform[1, 3]. We refer readers to Hessel et al. [18] for more information
about different components of DQN training.

750 is the total steps performed within a batch. For instance, when batch size is 1, we update per 50 steps;
whereas when batch size is 10, we update per 5 steps. Note the batch size here refers to the parallelization of the
environment, rather than the batch size for backpropagation.

34

In our implementation of the Tr-DRQN and Tr-DRQN+ baselines, following Yuan et al. [50], we
sample a sequence of transitions of length 8, use the first 4 transitions to estimate reasonable recurrent
states and use the last for to update. For counting bonus, we use a γc = 0.5, the bonus is scaled by an
coefficient λc = 0.1.

For all experiment settings, we train agents for 100,000 episodes (NB_EPISODES in Algorithm 1).
For each game, we set maximum step of 50 (NB_STEPS in Algorithm 1). When an agent has used
up all its moves, the game is forced to terminate. We evaluate them after every 1,000 episodes
(evaluation frequency E in Algorithm 1). Patience P and tolerance τ in Algorithm 1 are 3 and 0.1,
respectively. The agents are implemented using PyTorch [30].

E.3 Wall Clock Time

We report our experiments’ wall clock time. We run all the experiments on single NVIDIA P40/P100
GPUs.

Table 9: Wall clock time for all experiments.

Setting/Component Batch Size Approximate Time

GATA

Graph Updater - OG (Section 3.2) 48 2 days

Graph Updater - COC (Section 3.2) 64 2 days

Action Scorer (Section 3.3) 64 (backprop) 2 days

GATA-GTP

Discrete Graph Updater (Appendix C.2) 128 2 day

Action Scorer (same as (Section 3.3)) 64 (backprop) 2 days

GATA-GTF

Action Scorer (same as (Section 3.3)) 64 (backprop) 2 days

Discrete Graph Encoder Pre-training

Action Prediction w/ full graph, for GATA-GTF (Appendix C.3) 256 2 days

Action Prediction w/ seen graph, for GATA-GTP (Appendix C.3) 256 2 days

State Prediction w/ full graph, for GATA-GTF (Appendix C.3) 48 5 days

State Prediction w/ seen graph, for GATA-GTP (Appendix C.3) 48 5 days

Deep Graph Infomax w/ full graph, for GATA-GTF (Appendix C.3) 256 1 day

Deep Graph Infomax w/ seen graph, for GATA-GTP (Appendix C.3) 256 1 day

Text-based Baselines

Tr-DQN (Section 4.1) 64 (backprop) 2 days

Tr-DRQN (Section 4.1) 64 (backprop) 2 days

Tr-DRQN+ (Section 4.1) 64 (backprop) 2 days

35

F Details of the FTWP dataset

Previously, Trischler et al. [39] presented the First TextWorld Problems (FTWP) dataset, which
consists of TextWorld games that follow a cooking theme across a wide range of difficulty levels.
Although this dataset is analogous to what we use in this work, it has only 10 games per difficulty
level. This is insufficient for reliable experiments on generalization, so we generate new game sets
for our work. As mentioned in Section 3.2 and Appendix B, we use a set of transitions collected
from the FTWP dataset. To ensure the fairness of using this dataset, we make sure there is no overlap
between the FTWP and the games we use to train and evaluate our action selector.

Extracting Ground-truth Graphs from FTWP Dataset

Under the hood, TextWorld relies on predicate logic to handle the game dynamics. Therefore, the
underlying game state consists of a set of predicates, and logic rules (i.e. actions) can be applied to
update them. TextWorld’s API allows us to obtain such underlying state St at a given game step t for
any games generated by the framework. We leverage St to extract both Gfull

t and Gseen
t .

In which, Gfull
t is a discrete KG that contains the full information of the current state at game step t;

Gseen
t is a discrete partial KG that contains information the agent has observed from the beginning

until step t.

Figure 17 shows an example of consecutive Gseen
t as the agent explores the environment of a FTWP

game. Figure 18 shows the Gfull extracted from the same game.

(a) Gseen
0 after starting the game. (b) Gseen

1 after go east. (c) Gseen
2 after go west.

(d) Gseen
3 after go south that leads to the kitchen which contains many objects.

Figure 17: A sequence of Gseen extracted after issuing three consecutive actions in a FTWP game.

36

Figure 18: Gfull at the start of a FTWP game.

37

	Details of GATA
	Graph Encoder
	Text Encoder
	Representation Aggregator
	Scorer
	The f Function
	The fd Function

	Details of Pre-training Graph Updater for GATA
	Observation Generation (OG)
	Observation Generator Layer

	Contrastive Observation Classification (COC)
	Reusing Graph Encoder in Action Scorer

	GATA-GTP and Discrete Belief Graph
	Discrete Graph Updater
	Pre-training Discrete Graph Updater
	Pre-training a Discrete Graph Encoder for Action Scorer
	Action Prediction (AP)
	State Prediction (SP)
	Deep Graph Infomax (DGI)
	Performance on Graph Encoder Pre-training Tasks

	Additional Results and Discussions
	Training Curves
	Training Scores
	Test Results
	Other Remarks
	Probing Task and Belief Graph Visualization
	Probing Task
	Belief Graph Visualization

	GATA's Performance on Graph Updater Pre-training Tasks
	Future Directions

	Implementation Details
	Graph Updater
	Action Selector
	Wall Clock Time

	Details of the FTWP dataset

