
FedFormer: Contextual Federation with Attention in
Reinforcement Learning

Liam Hebert
University of Waterloo

Waterloo, Canada
liam.hebert@uwaterloo.ca

Lukasz Golab
University of Waterloo

Waterloo, Canada
lgolab@uwaterloo.ca

Pascal Poupart
University of Waterloo, Waterloo, Canada

Vector Institute, Toronto, Canada
ppoupart@uwaterloo.ca

Robin Cohen
University of Waterloo

Waterloo, Canada
rcohen@uwaterloo.ca

ABSTRACT
A core issue in multi-agent federated reinforcement learning is
defining how to aggregate insights from multiple agents. This
is commonly done by taking the average of each participating
agent’s model weights into one common model (FedAvg). We in-
stead propose FedFormer, a novel federation strategy that utilizes
Transformer Attention to contextually aggregate embeddings from
models originating from different learner agents. In so doing, we
attentively weigh the contributions of other agents with respect
to the current agent’s environment and learned relationships, thus
providing a more effective and efficient federation. We evaluate
our methods on the Meta-World environment and find that our
approach yields significant improvements over FedAvg and non-
federated Soft Actor-Critic single-agent methods. Our results com-
pared to Soft Actor-Critic show that FedFormer achieves higher
episodic return while still abiding by the privacy constraints of
federated learning. Finally, we also demonstrate improvements
in effectiveness with increased agent pools across all methods in
certain tasks. This is contrasted by FedAvg, which fails to make
noticeable improvements when scaled.

KEYWORDS
Federated Learning, Multi-agent Learning, Transformer Networks
ACM Reference Format:
Liam Hebert, Lukasz Golab, Pascal Poupart, and Robin Cohen. 2023. Fed-
Former: Contextual Federation with Attention in Reinforcement Learning.
In Proc. of the 22nd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2023), London, United Kingdom, May 29 – June
2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION
Reinforcement learning has become a ubiquitous tool in applica-
tions such as autonomous vehicles [26, 27], where vehicles learn to
navigate the streets of many complex environments, and Internet-
of-Things devices [1, 20, 36]. However, to obtain robust perfor-
mance, a large collection of training episodes is often needed. In the
case of safety-critical systems such as autonomous vehicles, train-
ing episodes must also be diverse enough to account for the many

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

possible edge cases that the system could face. As a result, the scale
and diversity of data collection needed to achieve adequate perfor-
mance quickly becomes infeasible for a single party. To account for
these challenges, a common technique for data collection relies on
crowdsourcing, where training episodes are collected from many
agents that explore their local environment and then transmitted
to a central controller to train a generalized model [23].

However, this strategy comes with a crucial challenge: privacy.
In our example of autonomous vehicles, training data consist of
sensitive images of local surroundings, which need to be broadcast
over the internet to a centralized source. This presents an opportu-
nity for bad actors to intercept these data for malicious purposes.
Motivated by this challenge, privacy-preserving federated machine
learning and federated reinforcement learning have been proposed.
Here, rather than transmitting training observations, local model
weights are transmitted instead. These model weights are then ag-
gregated by a centralized controller to form a new common model,
all without seeing any sensitive data.

The current state-of-the-art general method in federated rein-
forcement learning to combine agents is FedAvg [18]. This strategy
takes the weighted average of transmitted model weights across all
agents according to the number of observations that an agent has
seen. However, there are several drawbacks that come with this
approach. In reinforcement learning, policy and critic networks are
already prone to instability, which could be further exacerbated by
the averaging of model parameters. In addition, the averaging of
model weights across multiple agents often prohibits individual
exploration in non-identical environments, a challenge when fed-
erating models explore diverse environments [23]. An example of
this can be seen in autonomous vehicles, where knowledge gained
from agents exploring rural roads is less useful to agents exploring
urban cities. Despite this, contributions from both sets of agents
would still be equally weighted under FedAvg, potentially creating
a final agent that performs worse in both environments.

To address these drawbacks, inspired by recent advancements in
natural language processing, we propose Federated Transformers
(FedFormer), a novel federation policy based on transformer en-
coder models [5, 32]. Instead of taking the average of model weights,
we utilize transformer encoders to learn contextual relationships
between agents. We then leverage these learned relationships to
contextually federate agents together during inference. This method
allows local agents tomaintainmodels specific to their environment,

allowing for local exploration, while also contextually including
insights from other agents according to their relevance to the cur-
rent environment. Importantly, these relationships can be learned
without divulging confidential metadata, such as geolocation data,
health information or other sensitive attributes. In addition, we
compute these relationships during each time step, allowing for the
dynamic federation as an agent’s environment changes throughout
the episode. This allows our approach to providing a more efficient
aggregation of model insights during inference.

We evaluate FedFormer using the Meta-World environment [37],
a benchmark of robotic manipulation tasks. Despite training on het-
erogeneous environments, our approach brings improved episodic
return over FedAvg and over non-federated Soft Actor-Critic (SAC)
[11] single-agent methods. This is despite SAC being trained on the
entire set of environments as the federated strategies, represent-
ing performance without the privacy constraints of the federation.
We also demonstrate the onboarding performance of FedFormer,
finding that convergence speed increases 5-fold by leveraging pre-
trained agents in the federation network despite being applied to
never-before-seen environments. Notably, these results are obtained
without intervention from the other agents, further increasing pri-
vacy and effectiveness. When scaled to 10 and 15 agents, FedFormer
outperforms the episodic return of FedAvg by a factor of 2.4 and
3.8 at the last epoch, respectively. This illustrates that FedFormer
performs well when scaled to increased agent pools (with matching
or increased performance), whereas FedAvg fails to make notice-
able improvements or presents degraded performance when scaled.
In all, our results illustrate that FedFormer performs better than
state-of-the-art FedAvg, scales without degradation of performance,
and is more effective than single-agent Soft Actor-Critic while still
abiding by the privacy constraints of federated learning. Our source
code is available at https://github.com/liamhebert/FedFormer.

2 BACKGROUND
2.1 Federated Learning and Federated

Reinforcement Learning
There are four key properties of federated learning: distribution,
data protection, generality and status equality [23]. Distribution
states that federated model training is done in parallel by all par-
ticipating models. Data protection ensures that the training data
held by each participating party is not transmitted to other par-
ties. Generality states that federated models must generalize to
diverse environments. Finally, status equality ensures that training
favours all participating parties equally, and often with identical
infrastructures.

Satisfying these constraints, McMahan et al. [18] proposed the
FedAvg federation strategy. Given a set of 𝑁 parties with loss func-
tions {F𝑖 }𝑁𝑖=1 and datasets {𝐷𝑖 }𝑁𝑖=1 ∈ 𝐷 interested in formulating a
joint cooperative model, FedAvg updates a centralized model as

∀𝑖,𝑤𝑖 (𝑡 + 1) = 𝑤𝑖 (𝑡) − 𝛾∇𝐹𝑖 (𝑤𝑖 (𝑡)) (1)

𝑤𝑔 (𝑡 + 1) =
𝑁∑︁
𝑖=1

|𝐷𝑖 |
|𝐷 | 𝑤𝑖 (𝑡 + 1) (2)

where𝑤𝑖 (𝑡) is the model update computed by agent 𝑖 at time step
𝑡 , 𝛾 is a fixed learning rate and 𝑤𝑔 are the parameters of the cen-
tralized model. Under this policy, one can tune how often each
model communicates its parameters to the centralized source. This
strategy has been transferred to reinforcement learning, with many
techniques applying FedAvg to federate policy and critic networks
[23]. Themost common extension of FedAvg is to introduce domain-
specific adjustments to the weighing of model parameters. This has
been done in the context of the game Pong [21]; for ioT devices, to
optimize edge computation [25, 31, 34], and for the valued, recent
application of real-time electric vehicle charging [39].

Another direction in federated reinforcement learning is to uti-
lize metadata about agents to weigh their contributions. Lim et al.
[16] and Chu et al. [3] weigh agent contributions according to their
average reward. Similarly, Wang et al. [33] propose weighing Fe-
dAvg according to metadata such as batch size, average loss, dataset
size and hit rate. In each of these prior settings, the training envi-
ronments are similar, allowing for a non-disruptive application of
parameter averaging. We refer to this class of federated methods as
Weighted Federated Averaging.

However, it has also been shown that the performance of Fe-
dAvg degrades significantly when environments are perturbed and
are heterogeneous between agents [23]. This is important since in
many prior works, it is assumed that the environments of agents
are consistent and non-heterogeneous [25, 31, 34]. For other ex-
amples of federated reinforcement learning, we refer the reader
to a survey by Qi et al. [23]. Since most of the prior work relies
on FedAvg with minor adjustments towards domain-specific goals,
different model structures or additional processing steps prior to
applying FedAvg, we focus our attention on directly comparing
to FedAvg and Weighted FedAvg. This aligns with our focus on
proposing a method that can directly replace FedAvg with a focus
on applications for federated reinforcement learning.

In this work, we mitigate the downfalls of FedAvg and propose
a general framework for federated reinforcement learning that uti-
lizes an attention-based aggregation mechanism to federate agent
predictions. Instead of using a hand-made federation strategy, we
utilize a transformer model to learn contextual relationships be-
tween agents for federation. This approach allows federated re-
inforcement learning to be applied to tasks where environments
are significantly different while still benefiting from the mutual
federation.

2.2 Reinforcement Learning
Reinforcement Learning (RL) is based on a formalization of Markov
Decision Processes with a set 𝑆 of states 𝑠 , a set 𝐴 of actions 𝑎,
a transition function 𝑃 (𝑠′ |𝑠, 𝑎) that indicates the probability of
reaching state 𝑠′ when executing action 𝑎 in state 𝑠 , a reward
function 𝑅(𝑠, 𝑎) = 𝑟 ∈ ℜ that returns the expected immediate
reward of executing 𝑎 in 𝑠 , a discount factor 𝛾 ∈ [0, 1), and a plan-
ning horizon ℎ (assumed to be infinite throughout this paper). In
RL, an agent optimizes a policy 𝜋 (𝑎 |𝑠) that indicates the proba-
bility of executing 𝑎 in 𝑠 . The value 𝐽𝜋 (𝑠) of executing a policy
𝜋 when starting in state 𝑠 is the sum of expected discounted re-
wards (i.e., 𝐽𝜋 (𝑠0) = 𝐸𝜋 [

∑ℎ
𝑡=0 𝛾

𝑡𝑅(𝑠𝑡 , 𝑎𝑡)]). Similarly, the value of
executing 𝑎 in 𝑠 followed by the policy 𝜋 is𝑄𝜋 (𝑠0, 𝑎0) = 𝑅(𝑠0, 𝑎0) +

https://github.com/liamhebert/FedFormer

Local
Encoder

Frozen
External
Encoders

[CLS]

Agent ID
Embedding

Attention Head Concat

(oi, ai)

Local
Decoder

e([CLS])

Transformer Federator

Q(oi, ai)

Figure 1: Federated Transformer Q-Function

𝛾𝐸𝜋 [
∑ℎ
𝑡=1 𝛾

𝑡𝑅(𝑠𝑡 , 𝑎𝑡)]. An optimal policy 𝜋∗ achieves the highest
expected cumulative reward (i.e., 𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋 𝐽𝜋 (𝑠)∀𝜋, 𝑠). How-
ever, since the transition distribution and the reward function are
unknown, the agent must perform this optimization based on tra-
jectories of states, actions and rewards (i.e., 𝑠1, 𝑎1, 𝑟1, 𝑠2, 𝑎2, 𝑟2, ...)
that it experiences as it interacts with the environment.

2.2.1 Soft Actor-Critic (SAC). Within reinforcement learning, tra-
ditional policy gradient techniques update the parameters 𝜃 of a
policy 𝜋𝜃 by taking steps in the direction of the gradient of the
value function [30, 35]:

∇𝜃 𝐽𝜋𝜃 (𝑠𝑡) = ∇𝜃 𝑙𝑜𝑔(𝜋𝜃 (𝑎𝑡 |𝑠𝑡))
∞∑︁
𝑡 ′=𝑡

𝛾𝑡
′−𝑡𝑅(𝑠𝑡 ′ , 𝑎𝑡 ′) (3)

However, a key weakness of this approach is the high variance
brought on from the sum of discounted rewards for a given episode∑∞
𝑡 ′=𝑡 , as rewards can vary significantly from episode to episode

[15]. To account for this, Actor-Critic methods were proposed,
which utilize a function to approximate the sum of expected re-
wards and train that function separately. This function, called the
Q-function or critic function, is trained through off-policy temporal-
difference learning by minimizing:

L𝑄 (𝜓) = E(𝑠,𝑎,𝑟,𝑠′)≈𝐷 (𝑄𝜓 (𝑠, 𝑎) − 𝑦)2 (4)
𝑦 = 𝑟 (𝑠, 𝑎) + 𝛾E𝑎′≈𝜋 (𝑠′)𝑄𝜓 (𝑠′,𝑎′) (5)

where𝑄𝜓 is a target Q-function (parameterized by𝜓), an average of
past Q-functions, and 𝐷 is a replay buffer of past episodes. Recent
approaches towards Actor-Critic methods include an entropy term
during the policy gradient step to encourage exploration [11]. This
new variant, titled Soft Actor-Critic (SAC), proposes a soft policy
update given as

∇𝜃 𝐽 (𝜋𝜃) (6)
= E𝑠≈𝐷,𝑎≈𝜋∇𝜃 𝑙𝑜𝑔(𝜋𝜃 (𝑎 |𝑠) (−𝛼𝑙𝑜𝑔(𝜋𝜃 (𝑎 |𝑠)) +𝑄𝜓 (𝑠, 𝑎) − 𝑏 (𝑠)))

where 𝑏 (𝑠) is a learned state-dependent baseline function.

3 METHODS
Our FedFormer model adapts the SAC algorithm by introducing
a contextual federated Q-function (Section 2.2.1). Our only core
modification from standard Soft Actor-Critic is the usage of double
Q-Networks to help model stability [9].

The overall architecture for our federated Q-function can be
seen in Figure 1. Given a network of 𝑁 agents, we initialize the

Q-network of each agent with 𝑁 − 1 frozen external encoder net-
works, each representing the other agents, and one local encoder
network. We also initialize a local transformer encoder and a final
output decoder network. Each encoder network consists of the
same infrastructure, with the exception of each external network
having gradients disabled.

The first step during inference is to generate encodings from
each encoder network for the same action-observation pair. Follow-
ing inspiration from BERT, we first encode agent identity through
element-wise added learned embeddings according to the encoder
network that generated that representation [5] (IdEmbedding). This
allows the aggregator network to identify the source of each en-
coding to potentially aid in learning which agents are known to be
more relevant to the current agent. We also include a special [CLS]
embedding to the input set to encode the global representation of
the transformer network. This stage of encodings 𝐸 is thus given as

𝐸 = {𝐹𝐹𝑖 (𝑜, 𝑎) + 𝐼𝑑𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑖),∀𝑖 ∈ 𝑁,𝐶𝐿𝑆𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔} (7)

where 𝐹𝐹𝑖 is the encoder network for agent 𝑖 . We then feed our
set of encodings 𝐸 into a transformer encoder network. Given this
set of embeddings, each layer of our transformer encoder network
computes:

𝑄 = 𝐸𝑊𝑄 , 𝐾 = 𝐸𝑊𝐾 , 𝑉 = 𝐸𝑊𝑉 , (8)

𝐴𝑡𝑡𝑛(𝐸) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐸
⊤

√
𝑑

)𝑉 (9)

where 𝐴𝑡𝑡𝑛(𝐸) is an attention-weighted representation of E and
𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 are all learnable weight matrices representing the
Query, Key and Value embeddings of the input. In our work, we
utilize a two-layer transformer encoder architecture, but this can
be tuned in future work.

After aggregating each representation through our transformer
encoder, we concatenate the transformed encoding of the [CLS]
token (𝑒 [𝐶𝐿𝑆]) with the local encoder representation 𝐹𝐹𝑙 ((𝑜, 𝑎))
into a final decoder network, predicting the Q-value for that action-
observation pair for agent 𝑖 . This is given as:

𝑄𝑖 (𝑜, 𝑎) = 𝐹𝐹𝑑 (𝑒 ([CLS]), 𝐹 𝐹𝑙𝑜𝑐𝑎𝑙 (𝑜, 𝑎)) (10)

Since each agent has its own transformer encoder network that is
trained according to the agent’s own local loss function, the [CLS]
encoding is therefore trained to be a global representation relevant
to the task of that agent. During back-propagation, we fine-tune
end-to-end apart from the external encoder networks.

At the end of every epoch, the frozen external networks are
updated with the local encoder networks from the other agents.
Since each agent needs only to transmit the weights of its local en-
coder network to the other agents, network bandwidth is increased
compared to a FedAvg-based strategy, but not proportionally due to
the increase in model complexity. In practice, network bandwidth
is kept negligible due to the small size of local encoder networks.
For our experiments, each agent was required to upload 1.8MB and
download 1.8MB × 𝑁 − 1, which is negligible under modern net-
works. In addition, we only replace the encoders in the Q-function,
not the target Q-function, as the target Q-function is eventually
replaced by the Q-function regardless as part of Soft Actor-Critic
[11].

An interesting aspect of our architecture is the ease of agent
onboarding, the process by which agents are introduced into the
federation network. Since transformer networks can scale to a vari-
ety of input sizes, onboarding new agents consist of simply adding
a new encoder network to the set of external encoder networks.
This is significantly different from FedAvg, which could introduce
untrained noise into other networks through parameter averaging.

4 RESULTS
4.1 Experimental Design
To evaluate FedFormer, we utilize the Meta-World benchmark [37],
which includes a set of robotic manipulation tasks, each able to be
parameterized with random variables. As a result, we can initialize
a wide variety of diverse heterogeneous environments while main-
taining the same task, a challenge for traditional FedAvg methods.
For this work, we evaluate our methods on a set of seven tasks that
concern operating a robotic arm to push buttons, open and close
windows, doors, and drawers as well as reach specific destinations,
among other complex tasks. 1

We compare our solution against Federated Averaging (FedAvg)
[18], Weighted FedAvg (FedWeightedAvg) as implemented in Chu
et al. [3] and non-federated Soft Actor-Critic (SAC) [11]. As dis-
cussed in Section 2, recent advances in federated reinforcement
learning are grounded in federated averaging with many domain-
specific adjustments. Therefore, we focus our evaluation on com-
paring underlying federation strategies as our method can behave
as a direct replacement for FedAvg. We also compare our methods
against SAC to measure performance degradation by preserving
privacy in a federated setting. Our experiments against SAC are
trained on a centralized set of environments used by the federation
methods. It is important to note that performance degradation is
expected due to the restrictions of privacy preservation. As such,
matching or exceeding non-federated methods is an extremely
difficult benchmark and is often referred to as an upper limit for
federated learning [23].

In each experiment, we follow the same hyper-parameters as
proposed for SAC in the Meta-World paper [37], with the exception
that we train for 250 epochs with 600 training iterations during
each epoch due to computing limitations. We utilize a batch size
of 1200 steps and keep a replay buffer of size 106. Each agent com-
prising the evaluated federation strategies learns from a set of five
sampled environment configurations and is tested on a different
set of five sampled environments. As such, each agent has access
to a small constrained set of heterogeneous environments. Both
federation strategies (FedAvg and our FedFormer) have five partici-
pating agents unless otherwise stated. For non-federated SAC, the
single agent learns from the set of all sampled environments: 25 en-
vironments for training and 25 environments for testing. To ensure
the robustness of our experiments, we utilize ten random seeds
for each method and average the results with error bars reflecting
standard error, represented as shaded areas in the figures.

In each experiment, we use a three-layer feed-forward network
with two output heads to predict the mean and variance of a tanh

1While theMeta-World benchmark can assess howwell ameta-learning agent improves
over a collection of tasks, we instead evaluate how well our solution performs on each
of the several different tasks individually.

Table 1: Hyperparameters Used

Parameter Value
Batch Size 1200
Number of Epochs 250
Path Length 500
Gradient Steps per Epoch 600
Discount Factor 0.99
Optimizer Adam
Policy Hidden Sizes (256, 256, 256)
Policy Activation Function ReLU
Policy Learning Rate 3 × 10−4

Policy Minimum Standard Deviation 𝑒−20

Policy Maximum Standard Deviation 𝑒2

Soft Target Interpolation 5 × 10−3

Use Automatic Entropy Tuning True
FedFormer
Transformer Layers 2
Transformer Heads 4
Transformer Hidden Sizes 256
Encoder Hidden Size (256, 256, 256)
Decoder Hidden Size (256, 256, 256)
Batch Normalization True
Activation Function ReLU
Q-Function Learning Rate 3 × 10−4

SAC and FedAvg
Hidden Size (256, 256, 256)
Activation Function ReLU
Q-Function Learning Rate 3 × 10−4

distribution over the action space as the policy network. For Fed-
Former, our Q-network consists of a two-layer transformer model
with a hidden size of 400. Each encoder and decoder network con-
sists of a three-layer feed-forward network with each layer having a
hidden size of 400 except for the final decoder layer, which consists
of a single output unit representing the Q-value. For FedAvg and
SAC, the Q-network consists of a three-layer feed-forward network
each with a hidden size of 400, apart from the last layer which has a
single output unit representing the Q-Value. We include a detailed
list of all hyperparameters in Table 1.

To implement our work, we modified an implementation of SAC
in RLKit [24] with additional modules borrowed from Garage [4]
and PyTorch [22]. RLKit and Garage are licensed under the MIT
license2 and Pytorch is licensed under the BSD-3 "Revised" license 3.
Experiments were run in parallel on a computing cluster consisting
of RTX 3080, RTX 2080Ti, V100 and P100 GPUs, depending on
availability.

4.2 Meta-World Evaluation
In the first set of experiments, we compare the performance of
FedFormer (blue) against FedAvg [18] (orange), Weighted FedAvg
[3] (red) and non-Federated SAC [11] (green) on seven Meta-World

2https://spdx.org/licenses/MIT.html
3https://github.com/pytorch/pytorch/blob/master/LICENSE

0 100 200
Epoch

0

500

1000

1500

2000

2500

3000

3500

Re
tu

rn
s

window-open

0 100 200
Epoch

0

1000

2000

3000

4000

5000

Re
tu

rn
s

drawer-close

0 100 200
Epoch

500

1000

1500

2000

2500

3000

3500

Re
tu

rn
s

door-open

0 100 200
Epoch

500

1000

1500

2000

2500

Re
tu

rn
s

button-press

0 100 200
Epoch

500

1000

1500

2000

2500

3000

Re
tu

rn
s

drawer-open

0 100 200
Epoch

0

1000

2000

3000

4000

Re
tu

rn
s

window-close

0 100 200
Epoch

500

1000

1500

2000

2500

3000

3500

Re
tu

rn
s

reach

FedFormer (5)
SAC
FedAvg (5)
FedWeightedAvg (5)

Figure 2: Performance on Meta-World tasks

tasks. Figure 2 shows the results, where the X-axis represents train-
ing epochs and the Y-axis is the average episodic return. Improve-
ments in the X-axis indicate that the agent is able to learn faster, and
the Y-axis indicates enhanced performance, where the agent outper-
forms other agents. Further, separation in standard error (shaded
area) between each method indicates improved performance based
on 10 evaluated seeds.

FedFormer outperforms FedAvg andWeighted FedAvg andmatches
or exceeds the performance of non-federated SAC in all of our
evaluated tasks. As demonstrated by the standard error bars, Fed-
Former demonstrates consistently superior performance to FedAvg
across six of the seven evaluated tasks. The only exception is the
drawer-close task, in which all methods achieved similar returns.

The performance difference between FedFormer and FedAvg
increases as training progresses. At the final epoch, FedFormer
achieves 2.17x (door-open), 1.77x (drawer-open), 1.48x (window-close),
2.25x (button-press), 3.41x (reach) and 2.60x (window-open) per-
formance gains over FedAvg. The only task where FedAvg performs
comparably to FedFormer is on the drawer-close task. We also
see that FedAvg behaves similarly to FedWeightedAvg with the ex-
ception of window-close, where FedWeightedAvg achieves much
stronger performance.

Notably, increases in effectiveness can be seen in the button-press,
drawer-open and door-open tasks, where FedAvg appears to plateau
early in performance around epoch 50. This is contrasted by Fed-
Former, which continues to grow in performance. We hypothesize
that this can be attributed to stifled exploration in FedAvg, a key fea-
ture of reinforcement learning that differs from traditional machine
learning. When an individual agent makes considerable gains in
FedAvg, it is forced to average its parameters with those of the other

agents, which could be performing much worse. This is overcome
by FedFormer, which allows for attentive and selective aggregation
between agents according to their learned relevance.

Most surprising are the results compared to non-federated SAC.
In the door-open, reach, window-open and window-close tasks,
FedFormer consistently exceeds the performance of SAC at each
epoch, robust to standard error. Focusing on the final epoch, we also
obtain 1.56x performance gains in the drawer-open task, 1.36x per-
formance gains in the button-press task, and 1.58x performance
gains in the window-open task. In each other task, we obtain similar
performance to SAC. Recall that SAC agents are centralized and
train on the entire set of environments without preserving privacy,
whereas FedFormer abides by the privacy constraints of federated
learning with a distributed pool of agents. We attribute many of
these gains to our transformer aggregation network, which can
contextually leverage the individual expertise of agents without
forcing a centralized model.

4.3 Scalability
Next, we measure the ability of our method to scale to larger sets
of agents. To do this, we compare the results of both federation
strategies (FedAvg and our FedFormer) when scaled to 5, 10 and
15 agents (Figure 3) 4. As was the case in our tests in Section 4.2,
each agent is given five sampled environments for training and
five sampled environments for testing without replacement. Since
Meta-World generates 50 environments per task, some agents will
have overlapping tasks for training that will be testing tasks for
others, but never in the same agent. It is assumed that including

4Although we evaluate our methods up to 15 agents, we can scale up to 512 agents (or
1024 with sparse variants) due to our usage of transformers

0 50 100 150 200 250
Epoch

0

500

1000

1500

2000

2500

3000

3500

4000

Re
tu

rn
s

window-close
FedFormer (5)
FedFormer (10)
FedFormer (15)
FedAvg (5)
FedAvg (10)
FedAvg (15)

0 100 200
Epoch

0

500

1000

1500

2000

2500

Re
tu

rn
s

window-open

0 100 200
Epoch

500

1000

1500

2000

2500

3000

3500

Re
tu

rn
s

door-open

0 100 200
Epoch

500

1000

1500

2000

2500

Re
tu

rn
s

reach

0 100 200
Epoch

500

1000

1500

2000

2500

Re
tu

rn
s

drawer-open

Figure 3: Performance when scaling federation methods to 5, 10 and 15 agents

more agents in federated learning should result in more robust
models due to the larger availability of training data. However, it is
also important to note that the performance reported is the average
performance of all agents. Therefore, all agents must perform well
in order to achieve a high metric in our results. It is important to
note that scaling poses a more difficult problem due to the increased
heterogeneity of the environments that each agent is tasked with.

We find that increasing the number of agents results in better
performance in FedFormer and worse performance for FedAvg. Fo-
cusing on the final epoch and when utilizing 10 agents, we can
see performance improvements of 2.23x (window-close), 2.95x
(door-open), 1.47x (drawer-open), 1.83x (reach) and 2.70x (window-open)
compared to FedAvg. We see similar gains with 15 agents, where
we can see performance improvements of 1.98x (window-close),
2.75x (door-open), 1.62x (drawer-open), and 1.88x (window-open).
We also see that FedAvg fails to meaningfully scale above FedAvg
(5), with FedAvg (5) and FedAvg (10) performing comparably or
worse across all tasks. Many of the results reported are also ro-
bust to standard error. We hypothesize the poor performance of
FedAvg is due to many agents attempting to explore the environ-
ment simultaneously but subsequently being forced into a single
representation. In our experimentation, we found FedWeightedAvg
to exhibit similar trends as FedAvg with marginal improvements as
the number of agents increased.

As a result, we conclude that our federation strategy can effi-
ciently scale to include multiple agents. This result aligns with
previous work in transformer models, which has shown the ability
to reason over larger sets of embeddings [5].

0 50 100 150 200 250
Epoch

1000

2000

3000

4000

Re
tu

rn
s

FedFormer Onboarding
FedFormer (5)
SAC
FedAvg (5)

Figure 4: Performance of onboarding agents into pre-trained
federation networks on the window-close task

4.4 Agent Onboarding
In real-life use cases, agents are often introduced at random inter-
vals into federation strategies. When an agent joins an established
federation network, the network must adapt to account for the new
environments introduced by the new agent. In the case of FedAvg,
this can be a significant setback as model averaging can introduce
noise into existing converged models when the models originate
from heterogeneous environments. In addition, FedAvg can require
all agents to restart training to keep up with the modifications of
the new agent.

We now evaluate the onboarding strategy of FedFormer, which
overcomes all these challenges (Section 3). To do this, we train a

FedFormer network on the window-close task and save the result-
ing converged encoder networks. We then train a single new agent
on five never-before-seen environments utilizing the saved encoder
networks of the previous agents as the external network set. The
main difference here is that we do not update the external networks
throughout training by the federation. In our experiments, we eval-
uate our methods by utilizing the resulting trained networks from
each seed of the window-close task. The results for this experi-
ment compared against FedFormer, SAC and FedAvg can be seen
in Figure 4.

We see that the onboarded agent (red) drastically benefits from
the pre-trained encoder networks. Within the first 60 epochs, the
new agent obtains near the equivalent performance of the original
FedFormer network after it had trained for 250 epochs, obtaining
a ≈ 5x efficiency increase. We also obtain 6.5x performance gains
over SAC and 11.23x performance gains over FedAvg at epoch 60,
demonstrating the increased speed of convergence. In addition,
performance continues to improve beyond this point, obtaining a
1.24x increase over FedFormer at epoch 250. It is important to note
that this onboarding process was done without any further training
from the other agents.

4.5 Ablation Study
To evaluate the usefulness of attention in our federation network,
we have conducted additional experiments replacing the Trans-
former network in FedFormer with a three-layer non-attention
multi-layer perceptron model (FedMLP). To do this, we concatenate
the embeddings generated by each of the encoder networks as the
input to the MLP. Then, the output layer of the MLP generates an
embedding of size 256, matching the dimensionality of the CLS
embeddings created by FedFormer. Just like FedFormer, this embed-
ding is then decoded by a local decoder network to generate the
respective Q value for that state-action pair (Figure 1). This baseline
is similar to work by Zhuo et al. [40], which proposed concatenat-
ing the Q-network embeddings of two agents into a global MLP.
Our results when scaling this method from 5, 10 and 15 agents can
be seen in Figure 5, following the procedure outlined in Section 4.3.
It is important to note that scaling poses a more difficult problem
due to the increased heterogeneity of the environments that each
agent is tasked with.

In each of the tasks evaluated, we see the dominant performance
of FedFormer over the FedMLP baseline. This can be most evidently
seen in the window-close task, where FedFormer (5) often achieves
over 2x the performance of FedMLP (5) across each epoch. It is
important to note the large differences between the two methods
when scaled to include larger agent pools. The largest difference can
again be seen on the window-close task, where the performance
of FedMLP drops by 2.4x when scaled to 10 agents and 3.8x when
scaled to 15 agents. This is contrasted by FedFormer, where the per-
formance is either maintained or increased with increased agents.
These results indicate the importance of the attention mechanism
for FedFormer, especially in relation to scalability. With attention,
it is possible to contextually select and aggregate the insights of
participating agents in relation to the needs of the current agent.
This is contrasted by FedMLP, which must aggregate the insights
of all agents, including agents that provide irrelevant input. The

problem of noisy inputs is then further exacerbated with increased
agent counts, as seen in Figure 5.

5 RELATEDWORK
A similar field to federated reinforcement learning is multi-agent
reinforcement learning (MARL). MARL focuses on tasks where mul-
tiple agents interact in the same environment and share insights
with each other to solve a cooperative or competitive task [28]. An
important challenge with these systems is the non-stationarity of
the environment, where each agent has their own perspective on
the environment and actions committed by a single agent can affect
the environment for another [38]. Therefore, it becomes critical
that multiple agents can efficiently share information, similar to
federated learning [8, 17, 29]. However, MARL allows for the con-
stant flow of observation information between agents and often
uses a centralized model to plan the actions of each agent [12, 17],
therefore making the methods unsuitable for federated learning.

OneMARL approach related to ourwork isMulti-Agent-Attention-
Critic (MAAC), proposed by Iqbal and Sha [14]. This method pro-
posed utilizing transformermodels to coordinate cooperative agents
to solve a collective task. During each timestep, each agent broad-
casts their local observation-action pairs to a centralized model.
These inputs are then aggregated using a transformer encoder into
a set of Q-Values corresponding to each agent, which is then broad-
cast back to each agent. As a result, each resulting Q-value is created
with respect to each other agent’s observations and the model is
fine-tuned end-to-end to optimize a joint goal.

While our approach also utilizes transformer models, there are
significant differences, notwithstanding the obvious constraints
of privacy. The transformer model in MAAC is used for cooper-
ative learning, where the central model coordinates observation
embeddings from many agents towards a shared goal. In our work,
each agent has their own decentralized transformer network that is
optimized for aggregating embeddings toward that agent’s goal. In
addition, the input to each agent is a set of embeddings encoding
the same local observation but with different federated encoder
networks, whereas MAAC requires observation sharing from each
agent during each timestep. We also include elements from nat-
ural language processing, such as [CLS] tokens to encode global
representations and position encodings [5].

6 CONCLUSION
We presented a novel federation strategy based on transformer
models, FedFormer. Our technique addresses concerns about uti-
lizing federated learning towards reinforcement learning, which is
typically done through the FedAvg method of averaging parame-
ters. Instead, our method utilizes attention to compute contextual
relationships between agents without compromising the ability of
individual agents to explore the environment.

Our method outperforms FedAvg and single-agent Soft Actor-
Critic (SAC), with FedFormer outperforming FedAvg by a factor
of 4.4 and SAC by a factor of 1.75. In addition, we demonstrate
that FedFormer can effectively scale to more agents, with gains of
2.4x and 3.8x over FedAvg with 10 and 15 agents respectively. This
contrasts with FedAvg, which has negligible performance gains
and at times performs worse. Lastly, we also demonstrate the ease

0 50 100 150 200 250
Epoch

0

500

1000

1500

2000

2500

3000

3500

4000

Re
tu

rn
s

window-close
FedFormer (5)
FedFormer (10)
FedFormer (15)
FedMLP (5)
FedMLP (10)
FedMLP (15)

0 100 200
Epoch

0

500

1000

1500

2000

2500

Re
tu

rn
s

window-open

0 100 200
Epoch

500

1000

1500

2000

2500

3000

3500

Re
tu

rn
s

door-open

0 100 200
Epoch

500

1000

1500

2000

2500

Re
tu

rn
s

reach

0 100 200
Epoch

500

1000

1500

2000

2500

Re
tu

rn
s

drawer-open

Figure 5: Scaling Performance when replacing Transformer Network with MLP Network

of agent onboarding in our methods, resulting in 5x convergence
speeds by leveraging pre-trained models without sacrificing the
performance of other models. All of this is achieved while still
abiding by the privacy constraints of federated learning.

The primary limitation of our work is related to computational
latency. Previous work in transformer models states a computa-
tional limit of ≈ 512 embeddings when computing attention [5].
This is due to the quadratic increase in latency with additional
embeddings. Further, each new agent will add an encoder network
to the model. As a result, this limits the number of agents that
can participate as part of the federation network. However, this
limit can be addressed by utilizing domain-specific agent sampling
strategies, such as those explored by Ren et al. [25], Wang et al.
[34] and Tehrani et al. [31].

With our advancements with introducing FedFormer, there are
several future work directions that could be pursued. First, since
our approach does not rely on averaging parameters, it would be
interesting to explore the use of deep learning models to represent
the encoder networks [19]. This could potentially allow for the
federation to tackle more complicated tasks involving computer
vision and partial observability by leveraging deep encoders such
as convolutional neural networks and recurrent neural networks.
The utilization of these models would have been previously difficult
due to instability brought on by parameter averaging [23].

Another interesting direction for future work is to explore re-
lated work in supervised heterogeneous federated learning. This
area proposes techniques to group and filter agents, including to
address tolerance to faults from byzantine agents [10]. These tech-
niques support learning from a set of changing heterogeneous
environments but often assume that the environments (datasets)

of individual agents remain consistent [10]. While this is often not
the case in federated reinforcement learning, these techniques still
present interesting insights to explore. For example, Huang et al.
[13] could be adapted to cluster agents based on their Q-values,
Fang and Ye [7] could be repurposed to address the detection of
byzantine agents. The work of Fan et al. [6] and Chen et al. [2] will
also become relevant. Byzantine filtering layers proposed by Fan
et al. [6] could be applied on the input encoder networks; Chen’s in-
sights into theoretical guarantees may inspire us to expand beyond
our current experimental validation. Since both Fan et al. [6] and
Chen et al. [2] are grounded in FedAvg, using FedFormer instead
with these approaches may provide important steps forward.

Lastly, our work opens the door for advances in existing FedAvg-
based architectures. From IoT devices to self-driving cars, we believe
that our methods can serve as a direct stand-in for FedAvg to pro-
vide better performance. Further evaluation of these tasks with the
addition of domain-specific adjustments such as those proposed in
previous work [21, 25, 31, 34] would be especially interesting. We
hope that our work can be used to improve federated reinforcement
learning and introduce advancements in deep learning to this criti-
cal field, especially as privacy becomes harder to obtain in favour
of performance.

ACKNOWLEDGMENTS
The authors thank the Natural Sciences and Engineering Research
Council of Canada, the Canada Research Chairs Program, the Vector
Institute and the University of Waterloo Cheriton Scholarship for
financial support. We are also grateful to the reviewers for their
valued feedback on the paper.

REFERENCES
[1] Fanyu Bu and Xin Wang. 2019. A smart agriculture IoT system based on deep

reinforcement learning. Future Generation Computer Systems 99 (2019), 500–507.
[2] Yiding Chen, Xuezhou Zhang, Kaiqing Zhang, Mengdi Wang, and Xiaojin Zhu.

2022. Byzantine-Robust Online and Offline Distributed Reinforcement Learning.
arXiv preprint arXiv:2206.00165 (2022).

[3] Yunfei Chu, Zhinong Wei, Xicheng Fang, Sheng Chen, and Yizhou Zhou. 2022.
A Multiagent Federated Reinforcement Learning Approach for Plug-In Electric
Vehicle Fleet Charging Coordination in a Residential Community. IEEE Access 10
(2022), 98535–98548. https://doi.org/10.1109/ACCESS.2022.3206020

[4] Garage Contributors. 2019. Garage: A toolkit for reproducible reinforcement
learning research.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, 4171–4186.

[6] Xiaofeng Fan, Yining Ma, Zhongxiang Dai, Wei Jing, Cheston Tan, and Bryan
Kian Hsiang Low. 2021. Fault-tolerant federated reinforcement learning with
theoretical guarantee. Advances in Neural Information Processing Systems 34
(2021), 1007–1021.

[7] Xiuwen Fang and Mang Ye. 2022. Robust Federated Learning With Noisy and
Heterogeneous Clients. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 10072–10081.

[8] Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon White-
son. 2016. Learning to communicate with deep multi-agent reinforcement learn-
ing. Advances in neural information processing systems 29 (2016).

[9] Scott Fujimoto, Herke Hoof, and David Meger. 2018. Addressing function ap-
proximation error in actor-critic methods. In International conference on machine
learning. PMLR, 1587–1596.

[10] Dashan Gao, Xin Yao, and Qiang Yang. 2022. A Survey on Heterogeneous
Federated Learning. arXiv preprint arXiv:2210.04505 (2022).

[11] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In International conference on machine learning. PMLR, 1861–
1870.

[12] Yanlin Han and Piotr Gmytrasiewicz. 2019. IPOMDP-Net: ADeepNeural Network
for Partially Observable Multi-Agent Planning Using Interactive POMDPs. In
Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence. AAAI
Press.

[13] Wenke Huang, Mang Ye, and Bo Du. 2022. Learn From Others and Be Yourself in
Heterogeneous Federated Learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 10143–10153.

[14] Shariq Iqbal and Fei Sha. 2019. Actor-attention-critic for multi-agent reinforce-
ment learning. In International Conference on Machine Learning. PMLR, 2961–
2970.

[15] Vijay Konda and John Tsitsiklis. 1999. Actor-critic algorithms. Advances in neural
information processing systems 12 (1999).

[16] Hyun-Kyo Lim, Ju-Bong Kim, Joo-Seong Heo, and Youn-Hee Han. 2020. Federated
Reinforcement Learning for Training Control Policies on Multiple IoT Devices.
Sensors 20, 5 (2020).

[17] Hangyu Mao, Zhengchao Zhang, Zhen Xiao, and Zhibo Gong. 2018. Modelling
the dynamic joint policy of teammates with attention multi-agent DDPG. arXiv
preprint arXiv:1811.07029 (2018).

[18] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR,
1273–1282.

[19] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[20] Mehdi Mohammadi, Ala Al-Fuqaha, Mohsen Guizani, and Jun-Seok Oh. 2017.
Semisupervised deep reinforcement learning in support of IoT and smart city

services. IEEE Internet of Things Journal 5, 2 (2017), 624–635.
[21] Chetan Nadiger, Anil Kumar, and Sherine Abdelhak. 2019. Federated reinforce-

ment learning for fast personalization. In 2019 IEEE Second International Confer-
ence on Artificial Intelligence and Knowledge Engineering (AIKE). IEEE, 123–127.

[22] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[23] Jiaju Qi, Qihao Zhou, Lei Lei, and Kan Zheng. 2021. Federated reinforce-
ment learning: Techniques, applications, and open challenges. arXiv preprint
arXiv:2108.11887 (2021).

[24] RAIL-Berkeley and RLKit contributors. 2021. RLKit: Reinforcement learning
framework and algorithms implemented in PyTorch.

[25] Jianji Ren, Haichao Wang, Tingting Hou, Shuai Zheng, and Chaosheng Tang.
2019. Federated Learning-Based Computation Offloading Optimization in Edge
Computing-Supported Internet of Things. IEEE Access 7 (2019), 69194–69201.

[26] Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. 2017.
Deep Reinforcement Learning framework for Autonomous Driving. Electronic
Imaging 29, 19 (2017), 70–76.

[27] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. 2016. Safe,
multi-agent, reinforcement learning for autonomous driving. arXiv preprint
arXiv:1610.03295 (2016).

[28] Peter Stone and Manuela Veloso. 2000. Multiagent systems: A survey from a
machine learning perspective. Autonomous Robots 8, 3 (2000), 345–383.

[29] Sainbayar Sukhbaatar, Rob Fergus, et al. 2016. Learning multiagent communica-
tion with backpropagation. Advances in neural information processing systems 29
(2016).

[30] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. 1999.
Policy gradient methods for reinforcement learning with function approximation.
Advances in neural information processing systems 12 (1999).

[31] Peyman Tehrani, Francesco Restuccia, and Marco Levorato. 2021. Federated
Deep Reinforcement Learning for the Distributed Control of NextG Wireless
Networks. In 2021 IEEE International Symposium on Dynamic Spectrum Access
Networks (DySPAN). IEEE, 248–253.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[33] Xiaofei Wang, Ruibin Li, Chenyang Wang, Xiuhua Li, Tarik Taleb, and Victor CM
Leung. 2020. Attention-weighted federated deep reinforcement learning for
device-to-device assisted heterogeneous collaborative edge caching. IEEE Journal
on Selected Areas in Communications 39, 1 (2020), 154–169.

[34] Xiaofei Wang, Chenyang Wang, Xiuhua Li, Victor CM Leung, and Tarik Taleb.
2020. Federated deep reinforcement learning for Internet of Things with decen-
tralized cooperative edge caching. IEEE Internet of Things Journal 7, 10 (2020),
9441–9455.

[35] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning 8, 3 (1992), 229–256.

[36] Xiong Xiong, Kan Zheng, Lei Lei, and Lu Hou. 2020. Resource allocation based
on deep reinforcement learning in IoT edge computing. IEEE Journal on Selected
Areas in Communications 38, 6 (2020), 1133–1146.

[37] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea
Finn, and Sergey Levine. 2020. Meta-world: A benchmark and evaluation for
multi-task and meta reinforcement learning. In Conference on Robot Learning.
PMLR, 1094–1100.

[38] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. 2021. Multi-agent reinforce-
ment learning: A selective overview of theories and algorithms. Handbook of
Reinforcement Learning and Control (2021), 321–384.

[39] Zixuan Zhang, Yuning Jiang, Yuanming Shi, Ye Shi, andWei Chen. 2022. Federated
Reinforcement Learning for Real-Time Electric Vehicle Charging and Discharging
Control. In 2022 IEEE Globecom Workshops (GC Wkshps). 1717–1722. https:
//doi.org/10.1109/GCWkshps56602.2022.10008598

[40] Hankz Hankui Zhuo, Wenfeng Feng, Yufeng Lin, Qian Xu, and Qiang Yang. 2019.
Federated deep reinforcement learning. arXiv preprint arXiv:1901.08277 (2019).

https://doi.org/10.1109/ACCESS.2022.3206020
https://doi.org/10.1109/GCWkshps56602.2022.10008598
https://doi.org/10.1109/GCWkshps56602.2022.10008598

	Abstract
	1 Introduction
	2 Background
	2.1 Federated Learning and Federated Reinforcement Learning
	2.2 Reinforcement Learning

	3 Methods
	4 Results
	4.1 Experimental Design
	4.2 Meta-World Evaluation
	4.3 Scalability
	4.4 Agent Onboarding
	4.5 Ablation Study

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

