
Published as a conference paper at ICLR 2022

DISTRIBUTIONAL REINFORCEMENT LEARNING
WITH MONOTONIC SPLINES

Yudong Luo1,4, Guiliang Liu1,4 , Haonan Duan2,4, Oliver Schulte3, Pascal Poupart1,4
1University of Waterloo, 2University of Toronto, 3Simon Fraser University, 4Vector Institute
{yudong.luo,guiliang.liu,ppoupart}@uwaterloo.ca
haonand@cs.toronto.edu, oschulte@cs.sfu.ca

ABSTRACT

Distributional Reinforcement Learning (RL) differs from traditional RL by esti-
mating the distribution over returns to capture the intrinsic uncertainty of MDPs.
One key challenge in distributional RL lies in how to parameterize the quantile
function when minimizing the Wasserstein metric of temporal differences. Ex-
isting algorithms use step functions or piecewise linear functions. In this paper,
we propose to learn smooth continuous quantile functions represented by mono-
tonic rational-quadratic splines, which also naturally solve the quantile crossing
problem. Experiments in stochastic environments show that a dense estimation
for quantile functions enhances distributional RL in terms of faster empirical con-
vergence and higher rewards in most cases.

1 INTRODUCTION

A fundamental problem in traditional value-based RL is to estimate the expectation of future re-
turns (Mnih et al., 2015; Van Hasselt et al., 2016). Distributional RL differs from this by also taking
into account the intrinsic randomness of returns within MDPs (Morimura et al., 2010; Bellemare
et al., 2017). To do so, distributional RL algorithms characterize the total return as a random vari-
able and estimate its underlying distribution. In contrast, traditional value-based RL algorithms
focus only on the mean of the random variable.

Distributional RL offers several advantages over value-based RL that computes only expected re-
turns. The distribution of returns enables risk-sensitive RL by facilitating the optimization of other
statistics than just the mean of the returns (Dabney et al., 2018a; Martin et al., 2020). Even when
we stick to maximizing the mean of the returns, the distribution offers a more reliable and robust
way of computing the expectation, which has led to a series of records on the Atari benchmark
among value-based non-distributed RL techniques (Bellemare et al., 2017; Dabney et al., 2018a;b;
Hessel et al., 2018; Yang et al., 2019; Zhou et al., 2020; Nguyen et al., 2021). Intuitively, while it
is sufficient to represent an expected return by a single mean value, errors due to finite samples and
function approximations can be reduced by ”canceling” each other when multiple sample returns or
quantile values are used. This is similar to the benefits of ensemble learning techniques although,
strictly speaking, distributional RL is not an ensemble RL technique. In fact, distributional RL has
been combined with ensemble learning and truncated critic predictions to mitigate overestimation
bias in continuous control (Kuznetsov et al., 2020).

One key aspect of distributional RL algorithms is the parameterization of return distributions. In
Categorical DQN (C51) (Bellemare et al., 2017), the return distributions are limited to categorical
distributions over a fixed set of discrete values. It is also shown that the distributional Bellman
operator is a contraction under the maximal form of the Wasserstein metric, but in practice, C51
optimizes the cross-entropy loss with a Cramér-minimizing projection (Rowland et al., 2018). To
bridge the gap between theoretical analysis and algorithmic implementation, quantile regression
(QR)-based distributional RL algorithms (Dabney et al., 2018a;b; Yang et al., 2019; Zhou et al.,
2020) estimate a finite number of quantile values instead of the distribution of returns since quantile
regression can easily use the Wasserstein metric as the objective. In fact, the Wasserstein metric is
approximately minimized by optimizing the quantile Huber loss (Huber, 1992) between the Bellman
updated distribution and the current return distribution.

1

Published as a conference paper at ICLR 2022

Although with an infinite number of quantiles, the step quantile function in those quantile regres-
sion based methods will approximate the full quantile function arbitrarily closely, in practice, it is
infeasible to have infinite quantiles in most existing architectures. In addition, the quantile crossing
issue, recently pointed out and solved by (Zhou et al., 2020), was ignored by previous distributional
RL techniques. The issue is that if no global constraint is applied, the quantile values estimated by
a neural network at different quantile levels are not guaranteed to satisfy monotonicity, which can
distort policy search and affect exploration during training (Zhou et al., 2020).

In this work, we propose to learn a continuous representation for quantile functions based on mono-
tonic rational-quadratic splines (Gregory & Delbourgo, 1982). The monotonic property of these
splines naturally solves the quantile crossing issue described above. Furthermore, unlike step func-
tions or piecewise linear functions that provide a crude approximation in each bin, monotonic
splines provide a more flexible and smooth approximation. With sufficiently many knots, splines
can approximate any quantile function arbitrarily closely. We compare empirically our spline-based
technique with other quantile-based methods in stochastic environments. We demonstrate that our
method offers greater accuracy in terms of quantile approximation, faster convergence during train-
ing and higher rewards at test time.

2 DISTRIBUTIONAL REINFORCEMENT LEARNING

In standard RL settings, agent-environment interactions are modeled as a MDP, represented as a
tuple (S,A, R, P, γ) (Puterman, 2014). S and A denote state and action spaces. P (·|s, a) defines
the transition. R is the state and action dependent reward, and γ ∈ (0, 1) is a discount factor.

For a policy π, the discounted sum of returns is denoted as a random variable Zπ(s, a) =∑∞
t=0 γ

tR(st, at), where s0 = s, a0 = a, st+1 ∼ P (·|st, at), and at ∼ π(·|st). The Q-value
(state-action value) is defined as Qπ(s, a) = E[Zπ(s, a)]. The optimal Q-value, Q∗(s, a) =
maxπ Q

π(s, a), is the unique fixed point of the Bellman optimality operator T (Bellman, 1966)

Q∗(s, a) = T Q∗(s, a) := E[R(s, a)] + γEP max
a′

Q∗(s′, a′) (1)

In most deep RL studies, Q is approximated by a neural network. To update Q, Q-learning trains
the network iteratively to minimize the squared temporal difference (TD) error

L2
t = [rt + γmax

a′
Qφ−(s′, a′)−Qφ(s, a)]2, (2)

where φ− is the target network which is updated periodically with the most recent φ.

Instead of learning the scalar Q(s, a), distributional RL considers the distribution over returns (the
law of Z) to capture the aleatoric uncertainty (intrinsic stochasticity in the environment). A similar
distributional Bellman operator for Z can be derived as (Bellemare et al., 2017)

T πZ(s, a)
D
= R(s, a) + γZ(S′, A′), (3)

with S′ ∼ P (·|s, a), A′ ∼ π(·|S′), and X D
= Y indicates that random variables X and Y follow the

same distribution. In theory, Bellemare et al. (2017) proved the distributional Bellman operator is a
contraction in the p-Wasserstein metric

Wp(X,Y) = (

∫ 1

0

|F−1X (ω)− F−1Y (ω)|pdω)1/p, (4)

where F−1 is the quantile function (inverse cumulative distribution function). Following this theory,
a series of distributional RL algorithms have been proposed based on quantile regression to estimate
F−1 at precisely chosen quantile fractions, such that the Wasserstein metric is minimized.

2.1 QUANTILE REGRESSION FOR DISTRIBUTIONAL RL

In QR-DQN (Dabney et al., 2018b), the random return is approximated by a uniform mixture of N
Diracs

Zθ(s, a) =
1

N

N∑
i=1

δθi(s,a), (5)

2

Published as a conference paper at ICLR 2022

with each θi set to a fixed quantile fraction, τ̂i = τi−1+τi
2 for 1 ≤ i ≤ N , and τi = i/N . The

quantile estimation is performed by minimizing the quantile Huber loss, with threshold η

1

N

N∑
i=1

N∑
j=1

ρητ̂i(δij) (6)

on the pairwise TD error δij = r + γθj(s
′, a′)− θi(s, a), where

ρητ (δ) = |τ − Iδ<0|Lη(δ), with

Lη(δ) =

{
1
2δ

2, |δ| ≤ η
η(|δ| − 1

2η), otherwise.

(7)

Based on QR-DQN, Dabney et al. (2018a) proposed to sample quantile fractions from a base distri-
bution, e.g. τ ∈ U([0, 1]) rather than fixing them. They built an implicit quantile network (IQN) to
learn mappings from sampled probability embeddings to corresponding quantile values. FQF (Yang
et al., 2019) further improves IQN by learning a function to propose τ ’s. However, the quantile
values generated by neural networks may not satisfy the non-decreasing property of F−1 (known
as the quantile crossing issue). This was recently solved by NC-QR-DQN (Zhou et al., 2020), by
applying a softmax, followed by a cumulative sum of the output logits of the neural network Ω, and
then rescaling by multiplying a non-negative factor α(s, a) and adding an offset β(s, a):

θi(s, a) = α(s, a)× ιi,a + β(s, a), with

ιi,a =

i∑
j=0

χj,a, and χj,a = softmax(Ω(s))j,a
(8)

One recent method NDQFN (Zhou et al., 2021) further combines the ideas of NC-QR-DQN and IQN
to learn a monotonic function for F−1 by connecting the neighboring two monotonic quantile data
points with line segments. Different from NC-QR-DQN, NDQFN generates monotonic quantile
values by first learning a baseline value and then adding non-negative increments.

2.2 OTHER DISTRIBUTIONAL METHODS

Other recent methods investigate different metrics for the distributional Bellman operator. Moment
matching, generally parameterized as the maximum mean discrepancy (MMD) between two sample
sets in a reproducing Hilbert kernel space (Gretton et al., 2012), is adopted by Nguyen et al. (2021)
to propose moment matching DQN (MM-DQN). The MMD loss with kernel κ is derived as:

d2κ({υi}, {ψi}) =
1

N2

∑
i,j

κ(υi, υj) +
1

M2

∑
i,j

κ(ψi, ψj)−
2

NM

∑
i,j

κ(υi, ψj), (9)

where {υi}Ni=1 ∼ Z(s, a) and {ψi}Mi=1 ∼ R(s, a) + γZ(S′, A′).

It is worth noting that the theoretical analysis by Nguyen et al. (2021) shows the distributional
Bellman operator under MMD is not a contraction with commonly used Gaussian kernels or exp-
prod kernels. It is a contraction only when the kernel function is shift invariant and scale sensitive.

Categorical distributional RL was also combined with policy gradient to obtain the Reactor algo-
rithm (Gruslys et al., 2018) for discrete control and the Distributed Distributional Deep Determin-
istic Policy Gradient (D4PG) algorithm (Barth-Maron et al., 2018) for continuous control. Subse-
quently, Singh et al. (2020) replaced categorical return distributions by samples in Sample-based
Distributional Policy Gradient (SDPG), yielding improved sample efficiency. The return distribu-
tion can also be represented by a generative network trained by adversarial training (in the same way
as GANs) to minimize temporal differences between sampled returns (Doan et al., 2018; Freirich
et al., 2019). While most distributional RL techniques compute state-action return distributions,
Li & Faisal (2021) proposed the Bayesian Distributional Policy Gradient (BDPG) algorithm that
computes state return distributions and uses inference to derive a curiosity bonus. In another line of
work, Tessler et al. (2019) introduced the Distributional Policy Optimization (DPO) framework in
which an agent’s policy evolves towards a distribution over improving actions.

3

Published as a conference paper at ICLR 2022

Figure 1: System Flow of SPL-DQN architecture

3 OUR ALGORITHM

Our method is originally motivated by NC-QR-DQN, where a special architecture is designed for
the last layer of the neural network to satisfy the monotonicity of F−1. The output represents the
estimated quantile values at chosen quantile fractions. One drawback of discretization is that a
precise approximation for F−1 may need infinite fractions. But in practice, one can only use finite
quantile fractions to estimate quantile values for decision making. In this work, we propose to learn
a dense approximation for F−1 using monotonic rational-quadratic splines (Gregory & Delbourgo,
1982) as a building block.

3.1 QUANTILE APPROXIMATION WITH MONOTONIC RATIONAL QUADRATIC SPLINES

Monotonic splines produce a monotonic interpolant to a set of monotonic data points (called
knots) {(xk, yk)}Kk=0, which has been recently used as a transformation function in normalizing
flows (Durkan et al., 2019; Dolatabadi et al., 2020). Furthermore, denote {dk}Kk=0, a set of posi-
tive numbers, as the derivative of each knot. The monotonic rational-quadratic splines aim to find
rational-quadratic functions with form fk(x) = Ok(x)

Pk(x)
to fit the points and derivatives in each inter-

val (called bin) [xk, xk+1], where Ok and Pk are quadratic functions (with form ax2 + bx+ c).

Gregory & Delbourgo (1982) suggested to construct Ok and Pk as follows. Denote gk = (yk+1 −
yk)/(xk+1 − xk) and hk(x) = (x− xk)/(xk+1 − xk) for x ∈ [xk, xk+1]. The expressions for the
quadratic Ok(hk(x)) and Pk(hk(x)) for the kth bin is defined by (use hk for short of hk(x)):

Ok(hk) = gkyk+1h
2
k + (ykdk+1 + yk+1)hk(1− hk) + gkyk(1− hk)2

Pk(hk) = gk + (dk+1 + dk − 2gk)hk(1− hk)
(10)

Then, the rational-quadratic function for the kth bin is computed by the quotient of Ok and Pk

fk(hk) =
Ok(hk)

Pk(hk)
= yk +

(yk+1 − yk)[gkh
2
k + dkhk(1− hk)]

gk + (dk+1 + dk − 2gk)hk(1− hk)
. (11)

Equation 11 is proven to be monotonic and continuously differentiable, while passing through the
knots and satisfying the given derivatives at the knots (Gregory & Delbourgo, 1982).

The monotonicity of the above splines fits the non-decreasing property of F−1. Let F−1Z(s,a)(τ) be
the quantile function for the random variable of the discounted total return Z(s, a) with τ ∈ [0, 1].
Given the number of bins K, the aims of the spline approximator for F−1Z(s,a) are threefold. First,
propose a partition for the domain of definition [0, 1] with τ0 < ... < τk < ... < τK . Here τ0 = 0
and τK = 1. Second, estimate the corresponding quantile values q0 < ... < qk < ... < qK . Third,
assess the derivatives at those points with d0, ..., dk, ..., dK . We give a small fixed positive value for
d0 and dK as they are assigned with endpoints. After the generation of these three sets of statistics,
the monotonic spline of each bin is given by Equation 11 (by replacing xk by τk and yk by qk).

3.2 MODEL IMPLEMENTATION

We now show how to learn the monotonic splines for quantile functions in distributional RL by
neural networks, and we name the technique spline DQN (SPL-DQN). As shown in Figure 1, the

4

Published as a conference paper at ICLR 2022

SPL-DQN consists of three major components, including a Feature Extractor which extracts latent
features from a state, a Knots Logit Network which, for each action, generates the logits of the
widths and heights for K bins, and derivatives for K − 1 inner knots, and a Bin Scale Network
which recovers the heights in [0, 1] to the original quantile range. Here we describe the model for a
discrete action space of size |A|. To use monotonic splines in continuous control, the model can be
modified by taking state-action pairs as input and only producing knots for that state-action pair.

The Feature Extractor F is usually made up of multiple convolutional layers with subsequent fully-
connected layers for image-like inputs or stacked fully-connected layers for non-image inputs. It
produces the feature embedding F(s) ∈ Rd of state s. Then the Knots Logit NetworkW maps F(s)
to unconstrained logits v with dimension |A| × (3K − 1) using a fully-connected layer. The vector
va for each action a is partitioned as va = [vWa , v

H
a , v

D
a], where vWa and vHa have length K, and vDa

has length K − 1. Instead of directly learning τk,a and qk,a associated with each monotonic knot,
we propose to learn the normalized width and height of each bin. Here, vectors vWa and vHa are each
passed through a softmax function and are interpreted as the normalized widths and heights. Vector
vDa is regarded as the derivatives, and is passed through a softplus function to satisfy monotonicity.

With the width and height of each bin, τk,a and qk,a of each knot can be easily calculated by a
cumulative sum. Since the values of vWa and vHa fall into [0, 1], each τk,a (k > 0) is computed by

τk,a =

k∑
i=1

vWi,a, k = 1, ...,K; a = 1, ..., |A| (12)

without rescaling as the domain of a quantile function is [0, 1] (τ0,a = 0 by definition). To compute
each qk,a, another transformation is required to rescale vHa to a range corresponding to the true
quantile values. Inspired by NC-QR-DQN, we introduce the Bin Scale Network to generate two
adaptive scale factors α and β by applying a fully connected layer C: Rd → R|A|×2 to the state
embedding F(s). We compute the exponential of α to ensure the total bin height is positive. Then
q0,a = βa and for k > 0, qk,a is computed by

qk,a = exp(αa)×
k∑
i=1

vHi,a + βa, k = 1, ...,K; a = 1, ..., |A| (13)

3.3 APPROXIMATE WASSERSTEIN METRIC MINIMIZATION

When using continuous approximations of the quantile functions, there are several choices to com-
pute the integral of the Wasserstein metric between two quantile functions. We can try to calculate
the integral directly, but this is not straightforward for rational-quadratic functions since the integral
rarely has a closed form. Alternatively, we can calculate the Riemann integral, but this leads to a
loss function analogous to the L1-norm, which may cause instability in training. Thus, in this work,
we perform quantile regression (Koenker & Hallock, 2001) in a projected space to approximately
minimize the Wasserstein metric.

Let τ̃ = (τ̃0, ..., τ̃N) be a fixed sequence of non-decreasing quantile fractions (note that the set τ̃ is
different from the x-values of knots in Section 3.1 to partition the [0, 1] domain, which are learned
by the neural network. In our experiments, we let τ̃ be uniformly fixed), we project the monotonic
spline quantile function f to a quantile distribution space ZQ by computing

Zq(s, a) =

N∑
i=1

(τ̃i − τ̃i−1)δq̂i(s,a), (14)

where each q̂i(s, a) is the corresponding quantile value at the quantile fraction τ̂i = τ̃i−1+τ̃i
2 given

by f(τ̂i) with 1 ≤ i ≤ N . To compute f(τ̂i), we first search which bin τ̂i lies in. Then the value is
returned by the corresponding spline function given hk(τ̂i) as input. In this case, the optimal value
distribution Z is achieved by minimizing the 1-Wasserstein metric with Zq

W1(Z(s, a), Zq(s, a)) =

N∑
i=1

∫ τ̃i

τ̃i−1

|F−1Z(s,a)(ω)− q̂i(s, a)|dω, (15)

which is equivalent to finding a projection operator ΠW1 such that
ΠW1Z := arg min

Zq∈ZQ

(Z,Zq). (16)

5

Published as a conference paper at ICLR 2022

Figure 2: (a) Windy Gridworld, with wind strength shown along bottom row. (b) & (c) The quantile
functions for value distribution of the cyan square state and yellow circle state by MC, SPL-DQN
(SPL), NC-QR-DQN (NC-QR), NDQFN, and QR-DQN (QR).

Furthermore, Dabney et al. (2018b) shows that the unique minimizer of this operator is given by

F−1Z(s,a)(τ̂i) = q̂i(s, a), τ̂i =
τ̃i−1 + τ̃i

2
(17)

Proposition 1. [Proposition 2 in Dabney et al. (2018b)] Let ΠW1
be the quantile projector defined

above. When applied to value distributions, it gives a projection for each state-value distribution.
For any two value distributions Z1, Z2 ∈ Z for an MDP with countable state and action spaces,

d∞(ΠW1
T πZ1,ΠW1

T πZ2) ≤ γd∞(Z1, Z2), (18)

where dp(Z1, Z2) = sups,aWp(Z1(s, a), Z2(s, a)) and Z is the space of action-value distributions
with finite moments.

Proposition 1 suggests that after projecting f to Zq , the operator ΠW1T π is a γ-contraction under
the measure d∞ and the repetition of this operator converges to a fixed point in space ZQ.

Based on Proposition 1, the ultimate goal is to estimate quantile values in Equation 17 for F−1Z(s,a)

using quantile regression in each training batch. In our implementation, we uniformly fix τ̃ =
(τ̃0, ..., τ̃N) to be consistent with QR-DQN and NC-QR-DQN, which leads to the same quantile
Huber loss as shown in Equations 6 and 7. However, the advantage of our method over QR-DQN
and NC-QR-DQN is that we can freely enrich the density of τ̃ to get a better estimation of the
quantile function without increasing the size of the model architecture, while QR-DQN and NC-
QR-DQN must enlarge the output dimension of their models to get more quantile estimates. Since
we can freely query quantile values at any quantile fraction, quantile fraction embedding as done in
IQN and FQF is no longer necessary in our method.

Remark: Although one recent method, NDQFN, also learns continuous monotonic quantile func-
tions, our method is different from NDQFN in three aspects. First, the x-values of those monotonic
knots, i.e., τ0, ..., τK , are uniformly fixed in NDQFN, while they are trainable in our method. Sec-
ond, by also learning the derivatives at each knot, we get a smooth interpolant over the entire domain,
while NDQFN connects those knots with line segments, which has limited approximation ability.
Third, to get the increments of y-values of those knots, i.e., q0, ..., qK , NDQFN learns a function
taking the quantile fraction embeddings, i.e., the embeddings of corresponding τs, as input, while
we do not calculate increments but use a scale network as discussed in Section 3.2.

To demonstrate the monotonicity and approximation strength of our method in stochastic environ-
ments, we plot the quantile functions learned by SPL-DQN, NC-QR-DQN, NDQFN, and QR-DQN
in a variant of the classic Windy Gridworld domain (Sutton & Barto, 2018). In Figure 2a, the agent
starts at the yellow circle state and makes standard moves in a gridworld to reach the red flag. A
reward of−1 is earned at each step. Some columns are affected by some wind blowing from bottom
to top. The orange line shows the optimal trajectory without stochasticity. We set each state tran-
sition to have probability 0.1 of moving in a random direction without any wind effect, otherwise
the transition is affected by the wind, which pushes the agent northward. All methods here use the
same training settings and similar network architectures as discussed in Appendix A.1. We compute
the ground truth value distribution for an optimal policy (learned by policy iteration) at each state
by performing one thousand Monte-Carlo (MC) rollouts and recording the observed returns as an
empirical distribution. Then we transform the empirical distribution to the quantile function as the
baseline. Here we show case the learned quantile functions at cyan square state and yellow circle
state (start state) as shown in Figures 2b and 2c.

6

Published as a conference paper at ICLR 2022

All these four methods eventually learn the optimal policy, however their quantile approximations
are quite different. Without constraints, quantile functions given by QR-DQN clearly violate the
monotonic property, which is known as the quantile crossing issue (Zhou et al., 2020). Although
NC-QR-DQN applies monotonic constraints, the estimated quantile range is biased towards smaller
values according to the quantile functions given by MC, and we observe that the quantile functions
learned by NC-QR-DQN are straight lines for some states, e.g. cyan square state, which means that
it fails to learn the value distribution in those states, and in turn this leads to a biased estimation
for the start state. The reason for this biased estimation is that in NC-QR-DQN, when rescaling
the quantile range in Equation 8, a ReLU function is imposed to the coefficient α to ensure it is
non-negative. However, this often sets α to zero and the quantile distribution will only depend on
the shift parameter β (which leads to a straight line). In this case, the value distribution cannot be
precisely captured. For NDQFN, its quantile approximation at the goal nearing state (cyan square
state) is close to SPL-DQN , but it overestimates the quantile range at the start state. We also observe
the overestimation issue of NDQFN at another state in the middle of the orange line trajectory as
shown in Figure 6 in the appendix. Though still exhibiting estimation errors, the quantile functions
learned by SPL-DQN are often the closest to the ground truth.

4 EXPERIMENTS

Figure 3: Performance comparison
in stochastic Cartpole. Each curve
is averaged over 5 seeds.

While most previous distributional RL algorithms were eval-
uated with Atari games from the Arcade Learning Environ-
ment (ALE), it was noted that the ALE is deterministic (Belle-
mare et al., 2017) and therefore questionable as a benchmark
to evaluate distributional algorithms that are designed to cap-
ture environment stochasticity when there is none. However,
we note that sticky actions can be used in Atari games to intro-
duce stochasticity in policies (Machado et al., 2018) and this
regime was used to evaluate IQN and FQF (Yang et al., 2019).
When the environment is deterministic, value distributions still
arise due to stochastic policies, stochastic approximations and
random parameter initialization, but the resulting value distri-
butions tend to be simple and close to deterministic. It is also
well-known that deterministic environments possess optimal
policies that are open-loop and therefore ignore observations (Machado et al., 2018; Koul et al.,
2019). In practice, it is often desirable to train controllers with simulators in which noise is injected
to increase the robustness of the learned policies in case of discrepancies between the simulator and
the real world. Hence, in this work, we modify several robotics environments by adding stochas-
ticity, including one discrete environment from OpenAI Gym (Brockman et al., 2016) and nine
continuous environments from PyBulletGym (Ellenberger, 2018–2019). We compare our method
with QR-DQN, IQN, FQF, NC-QR-DQN, MM-DQN, and NDQFN. For MM-DQN, we used the
unrectified Kernel κα(x, y) = −||x− y||α with α = 1 (parameter taken from Nguyen et al. (2021))
instead of the Gaussian kernel recommended by the authors when they tested on Atari games since
the unrectified kernel gave better results in the robotics benchmarks used in this paper. A summary
of how different QR-based methods compute the QR loss is provided in Appendix B. For a fair
comparison, we made sure the same Feature Extractor architecture was used in different models. To
simplify acronyms, we omit -DQN when referring to a method in what follows.

4.1 DISCRETE CONTROL IN CARTPOLE

We begin our experimental results in a stochastic environment with a discrete action space modified
from Cartpole (Florian, 2007). The system is controlled by a force of +1 or−1 applied to the cart. A
reward of +1 is returned if the pole remains upright. We set each state transition to have probability
0.05 of moving to a neighboring state to make the environment stochastic. The QR-based methods
use N = 8 quantiles to compute the QR loss. MM-DQN uses N = M = 8 samples. More training
details are provided in Appendix A.2.

As the episode rewards may vary significantly due to stochasticity, to better reflect the training
process, we define the running score as a soft update of episode rewards:

running score = 0.99× running score+ 0.01× episode rewards (19)

7

Published as a conference paper at ICLR 2022

Figure 3 shows the running score curves for stochastic Cartpole. In general, SPL learns much faster
(faster empirical convergence) than its counterparts. As discussed before, SPL can freely increase
the number of quantiles when performing quantile regression without enlarging the output dimension
of the model. We further increase the number of quantiles to 24 to compute the QR loss while
keeping the number of bins unchanged (K = 8 and N = 24), yielding the curve labeled ’SPL1’
in Figure 3. This curve shows that approximately minimizing the Wasserstein metric with more
quantiles leads to better quantile approximations and increases the learning speed and performance
of SPL. As NDQFN also learns continuous quantile functions, we do the same experiment (K =
8 and N = 24) for NDQFN, whose training curve is labeled by ’NDQFN1’ in Figure 7 in the
appendix. Although its training performance improves, SPL with N = 24 is still better.

4.2 CONTINUOUS CONTROL IN PYBULLETGYM

PyBulletGym provides RoboSchool1, which is a free port of MuJoCo2. The state of these environ-
ments contains joint information of a robot and an action is a multi-dimensional continuous vector.
We take nine environments from RoBoSchool and make them stochastic by introducing Gaussian
noiseN (µ, σ) to both the location and velocity of each part of the robot, with µ = 0 and σ varying in
different environments. We choose a reasonable σ for each environment such that robots won’t ex-
hibit unrealistic motion. That is, for noise sensitive environments, such as Walker2D and Humanoid,
we use a smaller σ, and for relatively easy tasks, like InvertedPendulumSwingup, we choose a bigger
one. The noise setting for different environments is shown in Table 3 in the appendix.

To evaluate on continuous control tasks, we combine distributional RL with DDPG (Lillicrap et al.,
2016) by modifying the critic, as done by Zhang & Yao (2019). Instead of learning Q, the critic
learns the distribution Z directly. To handle continuous actions, the critic takes state-action pairs
as input. As an exception, for the Humanoid environment, we combine distributional RL with
SAC (Haarnoja et al., 2018) due to the fact that DDPG is not as good as SAC for this environment.
To update the actor in DDPG and SAC, the expectation ofQ values is computed as the expectation of
quantile samples given by the distributional critic. We refer to the original papers for hyperparameter
settings, which are discussed in Appendix A.3. We also include raw DDPG and SAC as baselines.

Figure 4 shows the running score curves given by Equation 19 for these stochastic environments.
Generally, the training performance varies among different approaches in different environments,
however, in most cases, the quantile regression based methods who learn monotonic quantile rep-
resentations are better than those whose quantile representations have no monotonicity guarantee,
which clarifies that the quantile crossing issue can distort policy learning as pointed out by Zhou
et al. (2020). Especially, for SPL, apart from Reacher and InvertedPendulumSwingup, it always
converges faster and performs better during training. For InvertedPendulumSwingup, SPL performs
comparably to NC-QR. Although NDQFN also learns continuous monotonic quantile functions, its
performance is even worse than NC-QR in most cases, because NDQFN queries linear functions for
quantile samples when computing QR loss, but the approximation ability of piecewise linear func-
tion is very limited. For methods with no monotonic quantile guarantee, we notice that although
IQN is the best in Reacher, it performs worse in InvertedPendulum and Humanoid during training.

To further demonstrate the ability of our method to handle uncertainty of the environment, we
slightly increase the noise in HalfCheetah toN (0, 0.008) (labeled by HalfCheetah1) andN (0, 0.01)
(labeled by HalfCheetah2). The training curves in these two environments are shown in Figure 5. On
average, QR and MM for DDPG behave poorly in these three HalfCheetah variants. The enhanced
randomness of environments degrades the training performance of SPL, but SPL is generally faster
and better than NC-QR and IQN, thanks to more precise quantile approximations.

During training, Ornstein-Uhlenheck noise OU(µ′, σ′) (Uhlenbeck & Ornstein, 1930) is utilized
when selecting actions to induce exploration in DDPG. At the evaluation stage, the methods are
executed with only exploitation (without action noise). We test the best models we get after training
for each method, and the testing score across different environments are shown in Table 6 in Ap-
pendix A.3. Apart from Reacher, SPL outperforms its counterparts in all other domains. For the first
two environments, although the training performances vary significantly among different methods,
the testing scores of their best models are close to each other. For most remaining environments, the

1https://openai.com/blog/roboschool/
2http://www.mujoco.org

8

Published as a conference paper at ICLR 2022

Figure 4: Performance comparison in stochastic RoboSchool. Each curve is averaged by 7 seeds.
The first eight environments are solved with DDPG. The last one is assigned to SAC.

Figure 5: Performance comparison in two stochastic HalfCheetahs with enhanced randomness.

testing scores of SPL and NC-QR are significantly better than other methods. Appendix C provides
additional results for SPL and NDQFN when trained with uniformly spaced quantile fractions and
random quantile fractions sampled from U([0, 1]).

Limitations: Our technique assumes full state observability. This is a limitation that could be re-
moved in future work by extending it to partially observable domains. Similar to previous work in
distributional RL, there is a computational cost associated with representing the value distribution.
Hence our technique does not scale as well as non-distributional RL techniques. While we demon-
strated our spline approximation in combination with DQN, DDPG and SAC, our distributional RL
technique is limited to RL techniques that include a critic.

5 CONCLUSION

Based on previous works in distributional RL, we propose a more general and precise approximation
for quantile functions using monotonic rational-quadratic splines when minimizing the Wasserstein
metric. With a monotonic continuous representation of the quantile function, the quantile value at
every quantile level is accessible during training, yielding greater accuracy. One direction for future
work is to investigate other monotonic function approximators for quantile estimation.

9

Published as a conference paper at ICLR 2022

ACKNOWLEDGMENTS

We acknowledge the funding from the Canada CIFAR AI Chairs program, the Natural Sciences
and Engineering Research Council of Canada (NSERC) and support from SportLogiq. Resources
used in this work were provided, in part, by the Province of Ontario, the Government of Canada
through CIFAR, and companies sponsoring the Vector Institute https://vectorinstitute.
ai/partners/.

ETHICS STATEMENT

We confirm that our work has no ethics issue.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have discussed the detailed experiment settings in Appendix A. The
code for the main experiments is released in the supplementary material.

REFERENCES

Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan, TB Dhruva,
Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic
policy gradients. In Proceedings of the International Conference on Learning Representations
(ICLR), 2018.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In Proceedings of the International Conference on Machine Learning (ICML), pp. 449–
458. PMLR, 2017.

Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. In Proceedings of the International conference on machine
learning (ICML), pp. 1096–1105. PMLR, 2018a.

Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), volume 32, 2018b.

Thang Doan, Bogdan Mazoure, and Clare Lyle. Gan q-learning. arXiv preprint arXiv:1805.04874,
2018.

Hadi Mohaghegh Dolatabadi, Sarah Erfani, and Christopher Leckie. Invertible generative modeling
using linear rational splines. In International Conference on Artificial Intelligence and Statistics
(AISTAT), pp. 4236–4246. PMLR, 2020.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. In
Advances in Neural Information Processing Systems (NeurIPS), volume 32, 2019.

Benjamin Ellenberger. Pybullet gymperium. https://github.com/benelot/
pybullet-gym, 2018–2019.

Razvan V Florian. Correct equations for the dynamics of the cart-pole system. Center for Cognitive
and Neural Studies (Coneural), Romania, 2007.

Dror Freirich, Tzahi Shimkin, Ron Meir, and Aviv Tamar. Distributional multivariate policy eval-
uation and exploration with the bellman gan. In Proceedings of the International Conference on
Machine Learning (ICML), pp. 1983–1992. PMLR, 2019.

10

https://vectorinstitute.ai/partners/
https://vectorinstitute.ai/partners/
 https://github.com/benelot/pybullet-gym
 https://github.com/benelot/pybullet-gym

Published as a conference paper at ICLR 2022

JA Gregory and R Delbourgo. Piecewise rational quadratic interpolation to monotonic data. IMA
Journal of Numerical Analysis, 2(2):123–130, 1982.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola.
A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

Audrunas Gruslys, Will Dabney, Mohammad Gheshlaghi Azar, Bilal Piot, Marc Bellemare, and
Remi Munos. The reactor: A fast and sample-efficient actor-critic agent for reinforcement learn-
ing. In Proceedings of the International Conference on Learning Representations (ICLR), 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the
International Conference on Machine Learning (ICML), pp. 1861–1870. PMLR, 2018.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), volume 32, 2018.

Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics, pp. 492–
518. Springer, 1992.

Roger Koenker and Kevin F Hallock. Quantile regression. Journal of economic perspectives, 15(4):
143–156, 2001.

Anurag Koul, Sam Greydanus, and Alan Fern. Learning finite state representations of recurrent
policy networks. In Proceedings of the International Conference on Learning Representations
(ICLR), 2019.

Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov. Controlling overesti-
mation bias with truncated mixture of continuous distributional quantile critics. In Proceedings
of the International Conference on Machine Learning (ICML), pp. 5556–5566. PMLR, 2020.

Luchen Li and A Aldo Faisal. Bayesian distributional policy gradients. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 2021.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Inter-
national Conference on Learning Representations (ICLR), 2016.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

John Martin, Michal Lyskawinski, Xiaohu Li, and Brendan Englot. Stochastically dominant dis-
tributional reinforcement learning. In Proceedings of the International Conference on Machine
Learning (ICML), pp. 6745–6754. PMLR, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya, and Toshiyuki Tanaka.
Parametric return density estimation for reinforcement learning. In Proceedings of the Conference
on Uncertainty in Artificial Intelligence (UAI), pp. 368–375, 2010.

Thanh Tang Nguyen, Sunil Gupta, and Svetha Venkatesh. Distributional reinforcement learning
via moment matching. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
2021.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

11

Published as a conference paper at ICLR 2022

Mark Rowland, Marc Bellemare, Will Dabney, Rémi Munos, and Yee Whye Teh. An analysis
of categorical distributional reinforcement learning. In International Conference on Artificial
Intelligence and Statistics, pp. 29–37. PMLR, 2018.

Rahul Singh, Keuntaek Lee, and Yongxin Chen. Sample-based distributional policy gradient. arXiv
preprint arXiv:2001.02652, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Chen Tessler, Guy Tennenholtz, and Shie Mannor. Distributional policy optimization: An alternative
approach for continuous control. Advances in Neural Information Processing Systems (NeurIPS),
32:1352–1362, 2019.

George E Uhlenbeck and Leonard S Ornstein. On the theory of the brownian motion. Physical
review, 36(5):823, 1930.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), volume 30,
2016.

Derek Yang, Li Zhao, Zichuan Lin, Tao Qin, Jiang Bian, and Tieyan Liu. Fully parameterized
quantile function for distributional reinforcement learning. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 6190–6199, 2019.

Shangtong Zhang and Hengshuai Yao. Quota: The quantile option architecture for reinforcement
learning. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), volume 33,
pp. 5797–5804, 2019.

Fan Zhou, Jianing Wang, and Xingdong Feng. Non-crossing quantile regression for distributional
reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems (NeurIPS), volume 33, pp. 15909–
15919. Curran Associates, Inc., 2020.

Fan Zhou, Zhoufan Zhu, Qi Kuang, and Liwen Zhang. Non-decreasing quantile function network
with efficient exploration for distributional reinforcement learning. In Proceedings of Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pp. 3455–3461. International Joint Con-
ferences on Artificial Intelligence Organization, 2021.

12

Published as a conference paper at ICLR 2022

A EXPERIMENT DETAILS

A.1 WINDY GRIDWORLD

Training hyperparameters We train SPL-DQN with NC-QR-DQN, NDQFN, and QR-DQN in the
stochastic Windy Gridworld. The common parameter settings are summarized in Table 1. The
model inputs are the coordinates of the state. The ε-greedy parameter decreases by a half every
two thousand episodes. To make the results comparable, we use the same Feature Extractor for the
methods. For SPL-DQN and NDQFN, the number of bins is K = 30.

Table 1: Common hyperparameters for SPL-DQN, NC-QR-DQN, NDQFN, and QR-DQN.

Hyperparameter Value
Optimizer Adam

Learning rate 0.001
Batch size 50

Discount factor (γ) 1
Initial ε-greedy 0.3

Minimal ε-greedy 0.01
Training episodes 30000

Sampling quantiles number 30
Feature Extractor hidden size [20, 40, 80]

Additional results The learned quantile functions for the green square state are shown in Figure 6.
NDQFN overestimates the quantile range.

To further demonstrate the approximation ability of SPL compared with NDQFN, we train SPL and
NDQFN with 10 random seeds in windy gridworld, and check the quantile functions learnt by these
two methods for the states on the orange line trajectory (apart from the goal state). There are 15 states
on the trajectory times 10 seeds, which yield 150 quantile functions. For each state, we can use the
shortest path to determine an upper bound on the return for that state. Whenever a quantile function
goes above that upper bound, we have a clear overestimation. For NDQFN, 36.7% (55/150) of the
quantile functions yield an overestimation. In contrast, for SPL, only 4% (6/150) of the quantile
functions yield an overestimation.

Figure 6: The learned quantile functions at the green square state

A.2 CARTPOLE

Training hyperparameters We train SPL-DQN with QR-DQN, IQN, FQF, NC-QR-DQN, MM-
DQN, and NDQFN in the stochastic Cartpole. The common parameter settings are summarized in
Table 2. The model input is a vector of length 4, which contains the cart position, the cart velocity,
the pole angle, and the pole angular velocity. The ε-greedy parameter decreases by 0.00005 every
time step. To make the results comparable, we use the same Feature Extractor for the methods.

13

Published as a conference paper at ICLR 2022

Specifically, for SPL-DQN and NDQFN, the number of bins is K = 8. For FQF, it contains a quan-
tile fraction proposal network, whose learning rate is 2.5e−9, and the optimizer is RMSProp (Yang
et al., 2019).

Table 2: Common hyperparameters across SPL-DQN, QR-DQN, IQN, FQF, NC-QR-DQN, MM-
DQN, and NDQFN

Hyperparameter Value
Optimizer Adam

Learning rate 0.001
Batch size 32

Discount factor (γ) 0.99
Initial ε-greedy 0.3

Minimal ε-greedy 0.1
Training episodes 800

Sampling quantiles number (QR based methods) 8
Samples number (MM-DQN) 8
Feature Extractor hidden size [128, 128]

Additional results As NDQFN also learns continuous quantile functions, the number of quantile
samples can be enlarged when computing the QR loss. Here we train NDQFN with bin number
K = 8 and quantile number N = 24. The training curve is labeled by ’NDQFN1’ as shown in
Figure 7. The curves labeled by ’SPL1’, ’SPL’, and ’NDFQN’ are taken from Figure 3.

Figure 7: Performance comparison in stochastic Cartpole

A.3 PYBULLETGYM

Noise setting for different environments We introduce different noise levels in PyBulletGym’s
environments while ensuring that the robots won’t exhibit unrealistic motion. The noise settings are
shown in Table 3.

Table 3: Noise settings for different environments in PyBulletGym

Environments Noise
InvertedPendulum N (0, 0.02)

InvertedDoublePendulum N (0, 0.01)
InvertedPendulumSwingup N (0, 0.05)

Reacher N (0, 0.01)
Walker2D N (0, 0.005)

HalfCheetah N (0, 0.005)
HalfCheetah1 N (0, 0.008)
HalfCheetah2 N (0, 0.01)

Ant N (0, 0.01)
Hopper N (0, 0.003)

Humanoid N (0, 0.003)

14

Published as a conference paper at ICLR 2022

Training hyperparameters Hyperparameters for DDPG and DDPG based models are summarized
in Table 4. The critic also uses an L2 weight decay of 10−2. The soft target update coefficient
is 0.001. Ornstein-Uhlenheck noise (OU(µ′, σ′)) (Uhlenbeck & Ornstein, 1930) is combined with
actions for exploration in DDPG, where we use µ′ = 0 and σ′ = 0.1.

Hyperparameters for SAC and SAC based models are summarized in Table 5. The soft target update
coefficient is 0.005.

For the critic implemented by SPL-DQN and NDQFN, the number of bins is K = 32. For the critic
implemented by FQF, the learning rate for quantile fraction network is 2.5e−9, and the correspond-
ing optimizer is RMSProp.

Table 4: Hyperparameters for DDPG and DDPG based methods

Hyperparameter Value
Optimizer Adam

Actor learning rate 10−4

Critic learning rate 10−3

Batch size 64
Discount factor (γ) 0.99

Training frames one million
Sampling quantiles number 32

Actor hidden size [400, 300]
Critic’s Feature Extractor hidden size [400, 300]

Table 5: Hyperparameters for SAC and SAC based methods

Hyperparameter Value
Optimizer Adam

Actor learning rate 3× 10−3

Critic learning rate 3× 10−3

Entropy learning rate 3× 10−3

Batch size 64
Discount factor (γ) 0.99

Training frames three million
Sampling quantiles number 32

Actor hidden size [256, 256]
Critic’s Feature Extractor hidden size [256, 256]

Additional results We test the best models given by different methods with four random seeds. The
results are shown in Table 6. We test all DDPG based agents without Ornstein-Uhlenheck noise for
0.125 million frames, and SAC based agents for 2.5 thousand episodes. We treat DDPG and SAC
scores as baselines and scale other methods’ scores by them, i.e.

method scaled test score =
method raw test score

DDPG/SAC raw test score
(20)

B COMPUTING QR LOSS

We summarize how different QR-based distributional RL methods sample quantile values when
computing the QR loss. Since the QR loss is computed in a TD manner, we will need N current
quantile samples ({q1i }, i = 1, ..., N) and N ′ target quantile samples ({q2i }, i = 1, ..., N ′) corre-
sponding to two quantile fraction sets ({τ1i }, i = 1, ..., N) and ({τ2i }, i = 1, ..., N ′). Without loss
of generalization, we consider N = N ′. Here we discuss the case with discrete actions, and denote
the action space by |A|.
For discrete quantile approximations, including QR-DQN, NC-QR-DQN, IQN, and FQF, in order
to get N quantile samples for each action, the output dimension of the model is |A|×N for an input

15

Published as a conference paper at ICLR 2022

Table 6: Scaled testing scores across different stochastic environments. Scores are averaged over 4
seeds.

Environments MM QR FQF IQN NDQFN NC-QR SPL
InvertedPendulum 0.911 0.940 0.953 0.970 0.992 0.969 0.999

InvertedDoublePendulum 0.814 0.978 0.975 0.967 0.990 0.993 1.019
InvertedPendulumSwingup 0.461 0.945 0.223 0.944 1.091 1.145 1.179

Reacher -1.501 0.412 -10.546 4.269 3.416 4.241 2.972
Walker2D 0.503 0.661 0.585 1.375 0.776 1.732 3.142

HalfCheetah 0.731 1.084 0.809 2.122 1.039 2.932 3.004
HalfCheetah1 0.763 0.897 0.859 1.764 1.156 2.158 2.633
HalfCheetah2 0.834 0.855 0.773 1.741 1.231 1.812 2.21

Ant 0.871 2.283 0.345 2.403 2.388 3.045 3.321
Hopper 0.689 0.868 0.671 0.960 0.893 1.405 1.609

Humanoid 1.077 1.409 0.035 0.044 1.108 1.558 1.640

state. For QR-DQN and NC-QR-DQN, {τ1i } and {τ2i } are assumed to be uniformly spaced. For
IQN, {τ1i } and {τ2i } are independently drawn from a uniform distribution U([0, 1]). For FQF, {τ1i }
and {τ2i } are proposed by a quantile fraction network.

For methods that learn a continuous approximation of the quantile function, including SPL-DQN
and NDQFN, the output (for an input state) consists of knots with shape |A| × (K + 1) when the
domain is divided into K bins. For SPL-DQN, it leanrs the x, y values, and derivatives of those
knots. A smooth continuous function with closed form is obtained in each bin. When sampling
quantile values to compute the QR loss, SPL-DQN uniformly fixes {τ1i } and {τ2i }, and {q1i } and
{q2i } are obtained by querying the closed form with {τ1i } and {τ2i } as inputs. For NDQFN, it
only learns the y-values of those knots, and the x-values of the knots are uniformly spaced. The
continuous function is constructed by connecting neighboring knots with linear functions. When
sampling quantile values to compute the QR loss, NDQFN draws {τ1i } and {τ2i } from a uniform
distributionU([0, 1]) independently, and {q1i } and {q2i } are obtained by querying the linear functions
in each bin.

C COMPARISON OF SPL AND NDQFN WITH TWO TRAINING REGIMES

Figure 8 shows additional results that compare SPL and NDQFN when trained with uniformly
spaced points versus points sampled uniformly at random. In this figure, SPL corresponds to train-
ing with uniformly spaced quantile fractions as described in the main paper. NDQFN corresponds
to training with quantile fractions sampled from U([0, 1]) as described in (Zhou et al., 2021). To
iron out this difference in the training, we also report SPL-rnd where training is done with quantile
fractions sampled from U([0, 1]) and NDQFN-uni where training is done with uniformly spaced
quantile fractions. We observe that SPL outperforms NDQFN in both training regimes.

D DDPG AND SAC WITH DISTRIBUTIONAL CRITIC

We summarize the algorithm when using distributional critic for DDPG and SAC in this section. For
FQF critic, it has to update the quantile fraction proposal network separately, so it is individually
described. Similarly, for MM critic, it uses moment matching instead of quantile regression, and it
is individually described as well. For SAC based methods, readers can refer to the original paper for
how to compute gradient for policy and state value.

16

Published as a conference paper at ICLR 2022

Figure 8: Performance comparison of SPL and NDQFN when trained with uniformly spaced quan-
tile fractions or random quantile fractions sampled from U([0, 1]) in eight environments with DDPG
as the baseline

Algorithm 1 DDPG with QR-based distributional critic (apart from FQF)

Require: Initialize critic network Z(s, a|ψ) with weights ψ; Initialize actor network µ(s|θ) with
weights θ; Initialize target network Z ′ and µ′ with weights ψ′ ← ψ, θ′ ← θ; Initialize reply
buffer D

1: for each episode do
2: Initialize random process OU for action exploration
3: for each time step t do
4: at ∼ µ(st|θ) +OU t
5: st+1 ∼ p(st+1|st, at)
6: D ← D ∪ {(st, at, r(st, at), st+1)}
7: Sample minibatch of N transitions (si, ai, ri, si+1) from D
8: Choose current quantile fractions {τ} according to critic’s strategy
9: Compute corresponding current quantiles {qi} ← Z(si, ai|ψ)

10: Choose target quantile fractions {τ̄} according to critic’s strategy
11: Compute corresponding target quantiles {q̄i+1} ← ri + γZ ′(si+1, µ

′(si+1|θ′)|ψ′)
12: Update critic by minimizing QR loss
13: Compute expectation of quantiles Qs,a ← E[Z(s, a|ψ)]
14: Update actor by
15: ∇θJ ≈ 1

N

∑
i∇aQs,a|s=si,a=µ(si)∇θµ(s|µ)|si

16: Update target networks
17: ψ′ ← σψ + (1− σ)ψ′

18: θ′ ← σθ + (1− σ)θ′

19: end for
20: end for

17

Published as a conference paper at ICLR 2022

Algorithm 2 DDPG with QR-based distributional critic (FQF)

Require: Initialize critic value network Z(s, a|ψ) with weights ψ; Initialize actor network µ(s|θ)
with weights θ; Initialize target network Z ′ and µ′ with weights ψ′ ← ψ, θ′ ← θ; Initialize
reply buffer D

1: Initialize critic fraction proposal network P (s, a|ω) with weights ω and its target P ′(s, a|ω′)
with weights ω′

2: for each episode do
3: Initialize random process OU for action exploration
4: for each time step t do
5: at ∼ µ(st|θ) +OU t
6: st+1 ∼ p(st+1|st, at)
7: D ← D ∪ {(st, at, r(st, at), st+1)}
8: Sample minibatch of N transitions (si, ai, ri, si+1) from D
9: Compute current quantile fractions {τ} ← P (si, ai|ω)

10: Compute corresponding current quantiles {qi} ← Z(si, ai|ψ)
11: Choose target quantile fractions {τ̄} ← P (si+1, µ

′(si+1|θ′)|ω)
12: Compute corresponding target quantiles {q̄i+1} ← ri + γZ ′(si+1, µ

′(si+1|θ′)|ψ′)
13: Update critic fraction proposal network by
14: ∂ω

∂τi
= 2Z[τi]− Z[τ̂i]− Z[τ̂i−1], τ̂ = τi+τi+1

2

15: Update critic value network by minimizing QR loss
16: Compute expectation of quantiles Qs,a ← E[Z(s, a|ψ)]
17: Update actor by
18: ∇θJ ≈ 1

N

∑
i∇aQs,a|s=si,a=µ(si)∇θµ(s|µ)|si

19: Update target networks
20: ψ′ ← σψ + (1− σ)ψ′

21: θ′ ← σθ + (1− σ)θ′

22: ω′ ← σω + (1− σ)ω′

23: end for
24: end for

Algorithm 3 DDPG with MM distributional critic

Require: Initialize critic network Z(s, a|ψ) with weights ψ; Initialize actor network µ(s|θ) with
weights θ; Initialize target network Z ′ and µ′ with weights ψ′ ← ψ, θ′ ← θ; Initialize reply
buffer D

1: for each episode do
2: Initialize random process OU for action exploration
3: for each time step t do
4: at ∼ µ(st|θ) +OU t
5: st+1 ∼ p(st+1|st, at)
6: D ← D ∪ {(st, at, r(st, at), st+1)}
7: Sample minibatch of N transitions (si, ai, ri, si+1) from D
8: Compute current Q samples {qi} ← Z(si, ai|ψ)
9: Compute target Q samples {q̄i+1} ← ri + γZ ′(si+1, µ

′(si+1|θ′)|ψ′)
10: Update critic by minimizing MMD loss
11: Compute expectation of Q values Qs,a ← E[Z(s, a|ψ)]
12: Update actor by
13: ∇θJ ≈ 1

N

∑
i∇aQs,a|s=si,a=µ(si)∇θµ(s|µ)|si

14: Update target networks
15: ψ′ ← σψ + (1− σ)ψ′

16: θ′ ← σθ + (1− σ)θ′

17: end for
18: end for

18

Published as a conference paper at ICLR 2022

Algorithm 4 SAC with QR-based distributional critic (apart from FQF)

Require: The learning rates λπ , λZ , and λV for functions πθ, Zw, and Vψ; Initialize parameters θ,
w, ψ, ψ̄; Initialize reply buffer D

1: for each iteration do
2: for each time step t do
3: at ∼ πθ(st)
4: st+1 ∼ p(st+1|st, at)
5: D ← D ∪ {(st, at, r(st, at), st+1)}
6: end for
7: for each gradient update step do
8: Choose current and target quantile fractions according to critic’s strategy
9: Compute current and target quantile values (for computing JZ)

10: ψ ← ψ − λV∇ψJV (ψ)
11: wi ← wi − λZ∇wi

JZ(wi) for i ∈ {1, 2} (JZ is QR loss)
12: θ ← θ − λπ∇θJπ(θ)
13: ψ̄ ← σψ + (1− σ)ψ̄
14: end for
15: end for

Algorithm 5 SAC with QR-based distributional critic (FQF)

Require: The learning rates λπ , λZ , and λV for functions πθ, Zw, and Vψ; Initialize parameters
θ, w, ψ, ψ̄; Initialize reply buffer D; The learning rate λP for fraction proposal network Pφ;
Initialize parameter φ

1: for each iteration do
2: for each time step t do
3: at ∼ πθ(st)
4: st+1 ∼ p(st+1|st, at)
5: D ← D ∪ {(st, at, r(st, at), st+1)}
6: end for
7: for each gradient update step do
8: Compute current and target quantile fractions using Pφ
9: Compute current and target quantile values (for computing JZ)

10: ψ ← ψ − λV∇ψJV (ψ)
11: φ← φ− λφ∇φJP (φ) (JP is quantile fraction loss)
12: wi ← wi − λZ∇wiJZ(wi) for i ∈ {1, 2} (JZ is QR loss)
13: θ ← θ − λπ∇θJπ(θ)
14: ψ̄ ← σψ + (1− σ)ψ̄
15: end for
16: end for

Algorithm 6 SAC with QR-based distributional critic (MM)

Require: The learning rates λπ , λZ , and λV for functions πθ, Zw, and Vψ; Initialize parameters θ,
w, ψ, ψ̄; Initialize reply buffer D

1: for each iteration do
2: for each time step t do
3: at ∼ πθ(st)
4: st+1 ∼ p(st+1|st, at)
5: D ← D ∪ {(st, at, r(st, at), st+1)}
6: end for
7: for each gradient update step do
8: Compute current and target Q value samples (for computing JZ)
9: ψ ← ψ − λV∇ψJV (ψ)

10: wi ← wi − λZ∇wi
JZ(wi) for i ∈ {1, 2} (JZ is MMD loss)

11: θ ← θ − λπ∇θJπ(θ)
12: ψ̄ ← σψ + (1− σ)ψ̄
13: end for
14: end for

19

	Introduction
	Distributional Reinforcement Learning
	Quantile Regression for Distributional RL
	Other Distributional Methods

	Our Algorithm
	Quantile Approximation with Monotonic Rational Quadratic Splines
	Model Implementation
	Approximate Wasserstein Metric Minimization

	Experiments
	Discrete control in Cartpole
	Continuous control in PyBulletGym

	Conclusion
	Experiment Details
	Windy Gridworld
	Cartpole
	PyBulletGym

	Computing QR loss
	Comparison of SPL and NDQFN with two training regimes
	DDPG and SAC with distributional critic

