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Abstract modeled so as to capture the most relevant aspects of the

reputation system. We then present a framework based on
This paper examines approaches to representing uncer-Markov Decision Processes and give a brief discussion of
tainty in reputation systems for electronic markets with the some of the challenges to the efficient functioning of it.
aim of constructing a decision theoretic framework for col-  As a whole, our research explores the topic of trust in
lecting information about selling agents and making pur- communities populated by intelligent agents, specifically in
chase decisions in the context of a social reputation systemelectronic marketplaces. In particular, we provide a basis
A selection of approaches to representing reputation using for designing effective buying agents that will be trustwor-
Dempster-Shafter Theory and Bayesian probability are sur- thy for their users by making informed purchase decisions.
veyed and a model for collecting and using reputation is Our research also proposes an environment in which trust
developed using a Partially Observable Markov Decision between buying agents is fostered, including the sharing of
Process. information in order to make the most effective purchases.

2. Reputation Systems

1. Introduction
We can define three classes of reputation systems based

on the source of the information used to construct the repu-

Trust is a desirable property of any market, because it . )
property y tation and who has access to the reputation.

reduces the friction by which we do business. A good ex-
ample of ease which trust provides is a business agreemen
using a handshake instead of legal contracts. The succes
of trust in streamlining transactions in traditional markets . ) )
motivates the search for a comparable measure of trust in Ong approach to quelmg 'the.reputanon. of sellers is to
emerging electronic markets which can be populated by_establlsh a central service which is r_esp0n§|ble for coIIe_ct-
agents that automate the transactions between buyers anif9 feedback from buyers, constructing a single reputation
sellers. We examine trust from the perspective of an agent©r €ach seller in the market and making this global repu-
required to decide who to do business with, based in part ontétion available to all buyers. Examples of this approach
trust. A model of reputation can aid in these trust decisions &€ reputation systems used by online auction sites such as
by providing a reputation for each agent, essentially model-€Bay and amazon.com auctighand theoretical models

ing how trustworthy an agent was in the past. In any market Such as CONFESS [8]. While the presence of a global repu-

without perfect security, trust will be an important factor in  tation allows buyers to learn about sellers they have not yet
any purchase decisions made by a buyer. interacted with, there are some drawbacks to this approach.

The aim of this paper is to construct a principled frame- The central service that tracks and publishes seller rep-
tations must be trusted by all agents in the marketplace.

work for buyers to choose the best seller based on som ! .
measure of reputation in a market consisting of autonomous! N€r is no simple way to evaluate the truthfulness of feed-

agents. We proceed to this framework by first examining Pack given by buyers. Since the central service is not di-
three distinct classes of reputation systems. Upon choosind€CtlY involved in any transaction, it can not easily verify
the reputation system most appropriate for our multi-agent  1yw.ebay.com

environment, we take a close look at how reputation can be 2auctions.amazon.com

.1. Global Reputation Systems




the quality of the goods being shipped or received. Further-3. Reputation Representation

more, the presence of a central service carries the common

disadvantages inherent in centralized architectures, such as The model of reputation will be constructed from a buy-
having a single point of failure, and not scaling well as the ing agent's positive and negative past experiences with the
number of agents increase. aim of predicting how satisfied the buying agent will be with
the results of future interactions with a selling agent. The
model of reputation needs to capture two important and dis-
tinct notions of uncertainty about how past interactions will
dictate future interactions. We classify these two classes of
uncertainty in a similar fashion to Sentz and Ferson [25] as:

2.2. Personal Reputation Systems

Another approach to modeling seller reputation is to
allow each buying agent to individually collect feedback stochastic Uncertainty - uncertainty which results from

from past purchases to develop a personal model of a sell-  the randomness of a system.
ing agent’s reputation w hich is constructed using only the Also known as: irreducible, aleatory, or objective un-
transactions in which the individual buying agent has been certainty as well as variability.

involved. An example of this approach is the reputation _ _ _ _
model developed by Cohen and Tran [29] in which a buy- Epistemic Uncertainty - uncertainty which results from a

ing agent uses only its past purchases from sellers to learn  lack of knowledge about the randomness of a system.
to avoid dishonest sellers. Also known as: reducible or subjective uncertainty as

The advantage to only using transactions the buying well as ignorance.

agent has been involved with is the agent is certain regard-  Tq function within our social reputation system, we must
ing the outcome of those transactions. However, with this pe aple to perform some specific operations on the reputa-
approach the buying agent is limited to modeling only those tjon of a seller held by a buyer. Given a set of reputations
sellers from whom the buying agent has purchased in thecg|iected from other buyers we need to be able to combine
past. There are many situations in which the set of potentialhese reputations. This combination needs to respect the dif-
selling agents for a good may be comprised of agents withfering levels of trust that one buyer may have in another. For
whom a buying agent has no direct experience. example, if reputations were represented by a single num-
ber, then a simple average over all the reputations collected
from other buyers would not take into account the fact that
some of the other buyers may have less experience or are
less trustworthy.

A natural extension of the personal reputation model is ~ Work has been done to represent reputation in many dif-
one in which a buying agent can choose to query other buy_ferent ways. We will now survey some of this work, moving
ing agents for information about sellers for which the origi- from fairly simple ad-hoc reputation models [33], to sys-
nal buying agent has no information. We describe the othertématic models [2, 7, 15, 31, 32] which rely on Dempster-
buying agents in this context as advisors. There are manyShafer Theory [4, 26] and Bayesian probability.
examples in the literature of reputation systems that allow )
agents to share reputation [12, 24, 33, 32]. However, not all3-1. Ad-hoc Reputation Models
systems use the same representation of reputation.

2.3. Social Reputation Systems

There are many models of reputation in the literature that

A social reputation system allows for a decentralized ap- llow the reputation of ller to be represented b inal
proach whose strengths and weaknesses lie between the et OW the reputation of a sefler to be represented by a single
value. Most of the work on these models involves deriving

tremes of the personal and public reputation system. Thee uations for the update of this reputation value such that
main advantage is that the responsibility for collecting feed- . quatiol P > ep .
it exhibits some desired behavior. An often cited example

back and constructing a reputation model rests with the in- . ; .
9 b of such a reputation model is the Sporos reputation mecha-

dividual buying agent. While a buying agent may not have . . : )
access to a global seller reputation that takes into account"™>" [33] Wh'CTh uses the following expression to update the
single reputation value of a seller:

all past buyer interactions, the buying agent has the free-
dom to solicit as much or as little information as it needs

from others until it has constructed a reasonable model of a 1< other Riia

seller’s reputation. Riq ) Z‘I’ (Ri) - R (Wi“ D > (1)
Using the social reputation model as a foundation we ! 1

will now examine possible representations of the reputation ®(R) = <1 - (RD))

that will be the basis of our buying agents’ decisions. l+e 7



A full understanding of the preceding expression is not reputation and can be calculated by taking the proportion of
necessary; the aim is simply to draw the reader’s attentionall past experiences in which the buying agent’s satisfaction
to some aspects of the model. Expression 1 allows for thewith a purchase was above some thresheld{—7'}) rep-
weighted combination of reputation information for a seller resents the evidence for a bad seller reputation, and can be
given by other buyers. In the expression the rafitigfor calculated by taking the proportion of all past experiences in
a seller given by another agenis weighted by reputation  which the buying agent’s satisfaction with a purchase was
of that other agent denoted B¢!"*". The major drawback  below another thresholdm ({T, =T"}) measures thepis-
of such ad-hoc reputation models that represent reputatiortemicuncertainty or lack of evidence and is found by simply
using only a single value is that they do not contain any taking the proportion of past experiences that fall between
measure of thepistemiauncertainty. In the context of our the two thresholds.
social reputation system, the use of equation 1 leaves no In his original work on the subject, Shafer [26] devel-
clear way to determine when enough other buyers have beemped a method for combining beliefs about the same set
consulted to make an informed decision about which seller of elements that are based on distinct bodies of evidence.

to purchase from. This allows for reputation information collected from other
buyers in the market to be combined to form a new repu-
3.2. Dempster-Shafer Theory tation. To this basic approach to combining reputation, the

authors Yu and Singh add a method for taking into account

Dempster-Shafer Theory (DST) is a mathematical theory NOW trustworth'y other agents are by adapting Littleston and
of evidence which rests on a generalization of probability Warmuth's weighted majority algorithm [10] to allow for
theory in which probabilities are assigned to sets instead of’€Putations with different weights to be combined.
mutually exclusive atomic events. We can interpret the ele-  1he reputation model developed by Yu and Singh [32]
ments of the sets as possible hypotheses about events., DSoOVides a representation for reputation in our social reputa-
does not force the sum of the probability of the atomic ele- tion system that takes into account betbchastiandepis-
ments to sum to one, so tegistemiancertainty due to, for ~ {emic uncertainty while allowing for reputation to be up-
instance, the lack of evidence against a hypothesis is easilylated through weighted combinations of the reputation col-
expressed. The likelihood of a particular hypothesis given €cted from other buying agents. However, an even richer

a set of evidence can be reasoned about using the following €Presentation of thepistemiaincertainty can be obtained
three functions: with Bayesian interpretations of tradition probability theory.

Basic Probability Assignment - The basic probability as-  3-3. Bayesian Approaches
signment, denoteblpa or m, defines a mapping of all

possible subsets of the set of our atomic elements to a We can represent thetochasticuncertainty inherent in
number between 0 and 1. a process using basic probability. Given a coin that has

yielded 8 heads and 2 tails after 10 flips, it is natural to say

Belief function - The belief function, denoteletl( A) for a we believe the next flip will be heads with 0.8 probability.

setA, is defined as the sum of all the basic probability At first glance it does not capture tlegistemiauncertainty

assignments over all proper subsetsiof since if we had seen 800 heads and 200 tails, the proba-
bility p = 0.8 of heads does not capture our increasing
certainty about our knowledge of the underlying process.
However, by using a probability density function which rep-
resents a second-order probability assigning a probability to
each value op we can capture both classes of uncertainty.
We begin with a prior distribution over all the values of the
probabilityp of heads and update this distribution with each
coin flip we observe. This approach can be referred to as
Bayesian since we represent our beliefs about the outcome
of the coin flip using a distribution which is updated as we
gather evidence.
! , The beta probability density function allows us to rep-
The reputation system developed by Yu and Singh [32] resent the probability distribution over the outcome of bi-

should help make our discussion of DST concrete and il- nary events such as headsf/tails, or in our market setting, the
lustrate how DST can be used to model reputation. Theyy,nqations in which a buyer is satisfied/unsatisfied.
define{T, —T'} to be their set of hypotheses. In their model

the bpam({T'}) represents the evidence for a good seller Beta Distribution - The beta distribution is a family of

Plausibility function - The plausibility function, denoted
pl(A) for a setA, is defined as the sum of all the basic
probability assignments over all the sésthat inter-
sect the sed.

The basic probability assignment for a given getan
be thought of as expressing the proportion of evidence that
supports the claim that some eleméatbelongs to the set
A, but to no particular subset &f. The belief and plausibil-
ity functions essentially represent a lower and upper bound
on the likelihood of a hypothesis representedy



probability density functions indexed by the parame- a selling agent Z. The buying agent X models the trustwor-
tersa and 5 and can be expressed using the gamma thiness of the other buying agent Y by keeping track of feed-

function as follows: backrss andss;s from past interactions with ¥ The buying
r agent Y provides the feedback ands}, about the selling
f(pla, B) = Mpa—lﬁ — p)ﬁ—l ) agent Z and our buying agent X can weigh this feedback
L)L (B) with what it knows about Y to construct the feedbagk®
XY .
which yields the following simple expression for the andsz*" about Z as follows:
expectation: .y
@ 273
E(p) = () XY _ y"z 4
®)=3+5 (LA 5 i 5 s gy g S
A nice property of the beta distribution is the ease at v
which a distribution can be calculated that incorporates a sXY = 21y sy (5)

prior distribution and new observations. If we havebser-
vations of the outcome ands observations of the outcome
Z, we can express the beta distribution in terms of these ob-  This feedback is then incorporated into the density func-
servations by setting = r + 1 and = s + 1. Figure 1 tion to arrive at what Jgsang and Ismail call the discounted
shows a beta distribution given by Jgsang and Ismail [7] for "eputation function by X through Y [7]. Like the DST

a process in which: has been observed 7 times antias ~ Model presented by Yu and Singh, the Beta Reputation
been observed once which givesf(®|8, 2). System provides methods for combining weighted reputa-
tion information from other agents. Each model captures
both thestochasticandepistemiauncertainty; however, the
Bayesian approach used by the Beta Reputation System al-

(s +2) (Y sy +2) + 20

p lows for a richer representation of tepistemiauncertainty
since a distribution is maintained over each possible value
4 of the probability modelingtochastiauncertainty. The Yu
and Singh model, in comparison, uses a single scalar value
3 to represent thepistemiauncertainty.

The Beta Reputation System is not the only work using

Bayesian methods to model reputation. Mui et al. [15] de-

velop a similar model based on the beta distribution, but do
not mention methods for combining and weighing informa-
i tion from other buying agents. Barber and Kim [2] use a
Bayesian network to combine reputation information gath-

ered from other buying agents where each connection rep-

Figure 1. Beta function  f(p|8, 2) resents the conditional dependence of a selling agent'’s rep-

utation on the reputation contributed by each buying agent.

Wang and Vassileva [31] use a Bayesian network to repre-

Jgsang and Ismail develop the Beta Reputation Sys-sent how the buyer/client’s observations of a seller/server’s
tem [7] in which the binary process is a series of transac- different capabilities can influence a single trust rating for

tions in which a buyer is either satisfied or unsatisfied. The the seller.

observations- are interpreted as positive feedback and the  The Beta Reputation System illustrates how Bayesian

observations as negative feedback. The expectatiofp) methods can be used to construct a rich model of reputation.

models thestochastiaincertainty while the distribution over Unfortunately, in the context of a social reputation system

all possiple_ values gf models theepistemimncertainty._ the work of Jgsang and Ismail [7] and others [2, 15, 32]
Combining the feedback, ; ands., s, from two dif- does not address how reputation information is collected

ferent buying agents (1 and 2) in this model is as simple from other buyers, and how purchase decisions are eventu-
as constructing a new distribution with= 7, + 72 and  4)ly made. The next section will lay out a decision theoretic
s = s1 + s2. To take into account the trust one agent may framework that makes use of Bayesian methods to develop

have for another when combining feedback, the authors deyq|icies about when to ask other buyers and when to make
velop a more sophisticated model that allows buying agentsy purchase.

to model the reputation of other buying agents. This is best
illustrated with an example in WhiCh we ha\_/e abuyingagent  3ihe superscript denotes who is holding the feedback, while the sub-
X who uses the feedback provided by buying agent Y about script denotes who it is about




4. Decision Framework
4.1. Definition of Reputation

Reputation is a rich concept with many dimensions, but
for our purposes we restrict the definition of the reputation
of a seller in a similar way to Carter and Ghorbani [3] as a
measure of how well the seller fulfills the role of providing

quality goods at a reasonable price. The extent to which a

selling agent fulfills this role is defined by how the buyer's

expectations are met and these expectations are captured t%

a utility function. As in Tran and Cohen [29] the buyer has
an expected utility which it demands of a transaction with
a seller. After a good is delivered the buyer compares this
expected utility with the utility which was actually realized.
If the realized utility surpasses the expected utility, then a
buyer is said to be satisfied and if the realized utility falls
below the expected (demanded) utility, the buyer is said to
be unsatisfied. A seller who consistently fulfills its role and

satisfies the buyer will attain a high reputation and engender,

trust.
Many other duties can be incorporated into the seller’s

each state so as to maximize the expected reward. Puter-
man [21] gives a good introduction to methods for comput-
ing optimal policies for a given Markov Decision Process.

We can define an MDP for our social reputation system
in which the states which represent tschasticuncer-
tainty about each seller and the actions a buyer can take
are toaskan advisor otbuy from a seller. Specifically the
state will hold a reputation for each seller represented as
the probability that seller will satisfy the buyer by fulfill-
ing its role. However, our buyer has only partial knowledge
of the underlyingstochasticprocess that the reputation is
odeling since it only has information about a subset of a
seller’s past interactions. We can model tbEstemicun-
certainty by extending the MDP to a Partially Observable
Markov Decision Process (POMDP), described by Kael-
bling et al. [9], which places a belief distribution over the
possible states and uses observations to adjust this belief.
Instead of knowing exactly what the current state is, the
agent will have a belief about the current state, represented
by the functionb : State — [0, 1] which assigns a proba-
bility to every possible state. In our reputation system the
state represents the actual reputations of the sellers (given
all interactions), and is only partially observable through

role, such as delivering a good on time, but for the PUrPOSESiha information given by advisors.

of exploring how to gather and use reputation information
in a principled manner, we limit our selves to this narrow
definition of seller reputation.

4.2. The Advisor-POMDP

In our social reputation system a buyer will ask other
buyers (which we denote advisors) in order to accumulate
information about a seller’s reputation before making a de-
cision about which seller to purchase from. Generally, we
seek some principled way to integrate the reputation infor-
mation provided by each advisor with what the buyer al-
ready knows, while allowing for the possibility that the ad-
visors may vary in accuracy and experience.

We can use the a Bayesian interpretation of probability
to represent the uncertainty about what information an ad-
visor may provide and the satisfaction a buying agent will

The way in which the elements of the POMDP interact is
illustrated in Figure 2. A directed arrow in the figure indi-
cated that the probability of the reward, state or observation
being pointed to is influenced by the state or action that is
the source of the arrow.

Reward Reward

Action Action

State State State

experience after a purchase. We assign utilities to possible
outcomes of actions and and use these utilities to determine

the best possible action. A natural way to model the deci-
sion making process given uncertainty about possible utility
is a Markov Decision Process.

A Markov Decision Process (MDP) is defined by the tu-
ple (S, A, T, R) whereS is the set of states and is the set

Observation Observation

Figure 2. Aninfluence diagram for the POMDP

actions that can be taken from each state. Each action will

probabilistically move the agent into another state as deter-

mined by a transition functiofi’. A reward is associated Our Advisor-POMDP is described by the tuple
with each state using the reward functié and a policy (S, A, T, R, 0, O) for which each element is defined as fol-
can be constructed which dictates which action to take from lows:



S - State set of seller reputations, given the actual seller reputa-

A state (7, sat) in our POMDP is composed of a tions. For instance, an honest, knowledgeable advisor
vector 7 of real values in the range [0,1] represent- would be likely to paint a seller as reputable, given that
ing the reputation of each seller and a scalar value the seller is in fact actually reputable.

sat € {—1,0,1} representing the satisfaction result-

ing from a purchase. Before a purchase ¢hecom- We can specify the observation function to account for

ponent of our state modeling buyer satisfaction will be how each individual advisor will change our belief about
equal to zero. For convenience, we will refer to any the actual reputations of sellers, and we can specify the tran-
state in whichsat is zero as an advice state. After a sition function that map$uy actions in reputation states
purchase theat component is set to -1 or 1 and we re- to purchase states to capture how our knowledge about a
fer to such a state as a purchase stateatAvalue of 1 seller's reputation will dictate the outcome of a purchase
will signify that the buyer is satisfied with a purchase, from a particular seller. Given both the transition and obser-
while asat value of -1 means the buyer is unsatisfied. vation functions, the POMDP provides a principled frame-
work for integration of this information to find the best ac-

A - Actions tion given the agents current belief.
A buying agent can choose from two sets of possible  Given a POMDP specified byS, A, T, R,Q,0), we
actions. It can either choose &skan advisor for in-  would like to find the best course of action that maximizes
formation about a selling agent or it can choosbug expected rewards. We definepalicy = to be a mapping
from a selling agent. from beliefb (a probability distribution over states) to ac-
tionsa. Intuitively, a policy encodes a strategy specifying
T - State-Transition function which action should be executed at each time step given the
In an advice state we can interpret theomponent of  current belief staté.We can measure how good a policy
the state as representing the actual reputations of sellis by defining a value functiol™ (b,), which indicates the
ers and araskaction will not change this, nor will it expected total rewards earned by followindgrom any ini-
change theat value. Asking an advisor for informa-  tial belief statehy (€.9.V™(bo) = _,_g Ex[R(b:)] where
tion leaves us in the same state, but changes our beliefr(s,) = S°_b,(s)R(s) andE,[-] denotes an expectatidp
b about how likely we are to be in each possible state, with respect tor). A policy 7* is optimal when its value
since we cannot directly observe the current state. For-function V™" is at least as high as any other policyfor
mally, given any advice statg the transition function,  all belief states (e.g.V™ (b) > V7 (b) Vx,b).> We will
for any askaction, will map back ta;. Thebuyac-  explain in Section 4.4 how to find an optimal policy for a
tion will transition from a advice state to a purchase given POMDP.
state where theat component of the state represents In the context of reputation modeling, the POMDP
the outcome of the purchase. framework provides a principled approach for optimizing
the exploration/exploitation tradeoffs that arise when hav-
R - Reward ing to decide between buying from a seller or asking ad-

Q - Observations

There is no reward associated with advice states, how-yjsors for more information about some seller’s reputation.
ever we associate a small cost fork: actions. A pur-  |ntuitively, asking an advisor to share its experience about
chase state with sut value of 1 will yield a large pos- 3 seller provides information that reduces the uncertainty in
itive reward, while asat value of -1 will yield a large 5 seller's reputation. In turn, this reduced uncertainty, will
negative reward. allow the buyer to make a more informed decision when
selecting a seller in the future. We can quantify ttadue

) ) of the information gained by the amount of utility that we
The observations in our POMDP are composed of the gypect to gain when using this information in our buying

information received by our buying agent in response gecision. In general, it will only make sense to ask an advi-
to asking advisors.  The advisor will respond with g1 15 share its experience about a seller, when the expected
(repi,cfi) whererep is the reputation and the cer- y4jue of the information gained is higher than the cost of
tainty factorcf is a measure of the epistemic uncer- consyiting the advisor. By definition, optimal policies for
tainty for each sellef. the advisor-POMDP earn the highest possible expected to-

O - Observation function “We assume atationarypolicy that uses the same mapping from be-

The observation function expresses the likelihood of lief states to actions at each time step. This assumption is reasonable since
receiving an observation given the current state and th g}ng;e[lall}/vays exists an optimal policy within the class of stationary poli-
action that led to this state. We can interpret the obser-  stnere aways exists dominatingpolicy, which has a value function

vation function as the likelihood of an advisor giving a at least as high as any other policy for all belief states [11].



tal reward, and therefore pick at any point in time the best When the belief expresses higipistemicuncertainty, the
action (e.g., the best advisor to consult or the best seller tosurface would be relatively flat. As thepistemicuncer-

buy from). tainty decreases and the agent becomes more certain about
The next section illustrates with an example how a policy what state itis in, the surface will develop valleys over states
might dictate the actions of our buyer. that are not likely and peaks over states which are likely. To
simplify our example let us discretize this state space into

4.3. Example three possible reputations. Let us assume that a seller can

either have a low, medium or high reputation, represented

To help ground our discussion, we take a closer look at by the values 0.1, 0.5 and 0.9 respectively. Now let us as-
a scenario involving two sellers;, so and four advisors sume that the buyer begins with little information about the
a1, a9,as,as. Given that we are representing two sellers, reputations of sellers. Table 1 gives a belief for each possi-
the 7 component of state space representing the seller repble advice state with theat component omitted given that
utations for our Advisor-POMDP will be two dimensional. it will be zero.
It may be helpful to use some images to conceptualize what
is happening with the belief over the possible states. If the
7 component were composed of a single seller reputation
and we ignored theat component, then the possible advice
states would be all the possible values-of [0, 1]. A be-
lief representing higkepistemiauncertainty would assign a b((.1,.1) =1/9 b((.1,.5) =1/9 b({.1,.9)) =1/9
small probability close to zero to every state and could be b((.5,.1)) =1/9 b((.5,.5) =1/9 b((.5,.9)) =1/9

graphed as follows: b((.9,.1))=1/9 b((.9,.5))=1/9 b(({.9,.9)) =1/9

Table 1. Belief b({rs,,rs,)) for state represent-
ing reputations of seller s, and s,

1

We adopt a simple observation function which defines
probability advisor observations that are similar to a given state as likely
of reputation and observations that are very different from a given state
as unlikely. The observation function incorporatesepés-
. temic uncertainty of the observatiom by interpretingc f
0 reputation ] as the number of transactions the reputation is stemming
from. We can formally define the observation function
O(o,s) = Pr(o|s), capturing the probability of an obser-
vationo given a state as follows:

Figure 3. Belief - high epistemic uncertainty

A belief representing lowepistemicuncertainty would P
. X - 0= ((reps,,cfs,), (reps,,cfs;))|s = (rs,,7s.
assign low probabilities most states and a high probability ( ((reps,, efor) <fp vl >>11_ < ; ; )
to a small number of states. A graph of one such belief is as = (rsy) P (1 — 7y, )P (6)
follows: X (rg, ) eP2cfor (1 — py,)(17TePs2)efon

! Given the policy generated for the POMDP we will now
step through an example of the kinds of actions that would
orobability be chosen based on the current belief state, the observation
of reputation each action would generate and how the observation will
influence the next belief state.

Action: aska, leads to observation({0.5, 12), (0.9, 20))
The policy weighs the small cost of asking an advisor,
with the decrease in uncertainty about seller reputa-
Figure 4. Belief - low epistemic uncertainty tions. Given the relatively flat belief state, the buyer
will have a higher expected satisfaction after asking
advisors, since the eventual result will be a more in-
The state space for our example with two seller reputa- formed purchase decision. For the purposes of this ex-
tions can be conceptualized as a two dimensional plane and  ample, suppose that has been determined to be the
the belief over these reputations as a surface of this plane. best advisor to ask.

0 reputation 1



Once theask action is taken the buyer observes the how to use this information with a simple observation func-
reputationrep; and certainty factorf; given by the tion to update its belief about the true reputation of the sell-
advisor for each seller. Using the observation func-  ers and when thepistemiauncertainty is low enough, buy
tion, the buyer’s new belidf for each state is updated from the seller that will lead to the highest expected satis-
using Bayes’ Rule as follows: faction.
The Advisor-POMDP can use a state with/@nompo-
nent representing seller reputations that take on a small set

b'(s) = P(slo) discrete integral values between 0 and 1 as in our example.
P(s)P(o|s) However, to more accurately model the reputation of sellers
= P(0) ) a real value for the reputation can be used. The next sec-

tion discusses some of the challenges of calculating a policy

= k-b(s)O(s,0) given the way in which we have defined our POMDP.

1. o
wherek = Pl 'S 2 constant normalization factor

(0) 4.4. Calculating Policies
The result of the belief update is shown in following
table. Partially Observable Markov Decision Processes provide
a principled and expressive framework for reputation mod-
b({.1,.1)) =.00 b({.1,.5)) =.05 b({.1,.9)) = .06 eling; however calculating optimal policies for POMDPs is
b((.5,.1)) =.01  b((.5,.5)) =.36 b({.5,.9)) = .42 not a trivial exercise. There are two broad classes of algo-
b({.9,.1)) =.00  b({.9,.5)) =.05 b({.9,.9)) = .06 rithms for finding optimal POMDP policies. The first class,

known asvalue iteration uses dynamic programming to in-
directly build an optimal policy by incrementally computing
Action: askas leads to observatior({0.5, 4), (0.8, 6)) the optimal value function. The idea is to compute the opti-

Given the updated belief about actual state, the pol- mal value function for each time step starting from the end
icy would once again dictate that our buyer should ask and going backwards in time. More precisely, the optimal
an advisor and specify the best advisor to ask. The value functionl’™(b) for n steps-to-go is the one that yields
advisor has a similar impression of the reputation of the highest possible rewards for theemaining steps. We
each seller, but is less certain about the reputations itcan recursively compute the-step optimal value function
holds. The buyer incorporates this observation updat- V" from then — 1-step optimal value functiol™™~* using

ing its belief to the following. Bellman’s equation:
b({.1,.1)) =.00 b((.1,.5)) =.00 b({.1,.9)) = .01
b({.5,.1)) =.00 b((.5,.5)) =.18 b({.5,.9)) =.79 V" (b) = max R*(b) + ZPr(o|b7 a)V" L) (8)
b({.9,.1)) =.00 b({.9,.5)) =.00 b({.9,.9)) = .01 ¢ o
where

Action: buy s, R () = Zb(S)R (5)

At this point, there is enough of a peak in the belief  py(o|p, a) = Zb(s) Pr(s'|s, a) Pr(o|s’)

space that the best action is to select a seller. The tran- B

sition function captures what the outcome of a pur-

chase will be given the actual state. Given the belief The value’ is the updated belief state after executingnd

about the likelihood of each state, the policy chooses observingo.

to buy from the seller that will maximize the expected Note that by remembering the actianthat maximizes

reward based on buyer satisfaction. the right-hand-side of Bellman'’s equation, we indirectly ob-
tain a policy. While Bellman'’s equation gives us a dynamic
programming algorithm that can be used in theory to find

to buy froms,. The buyer will then complete the trans- optimal policies, in practice, the continuous belief space is
action, purchasing from, and evaluating the result of problematic since it is not possible to apply Bellman’s equa-

the purchase, comparing the expected outcome withtion to an infinite number of belief points. Fortunately, as
the actual out’come to gauge satisfaction. pointed out by Smallwood and Sondik [27], optimal value

functions argiecewise-linear and convewhich can be ex-
This example demonstrates how a policy can lead aploited to apply Bellman’s equation a finite number of times
buyer to gather information from advisors. It also shows (once per linear piece of the value function). Alternatively,

In our case, the expected reward for buying fresn
will be far higher than that of; and the policy chooses



approximate solutions can be efficiently computegbint- count, sellers are discouraged from neglecting this role and

based value iteratioalgorithms [17, 28]. our reputation system serves as a partial mechanism for en-
The second class of algorithms, often referregalicy suring good market behavior and further engendering trust

searchtechniques, seek to directly optimize a policy. Popu- on behalf of all agents involved.

lar approaches include policy iteration [6, 19] and gradient  In this paper, we have argued that a POMDP approach is

descent [14, 16], which incrementally improve a policy by effective for buying agents to determine whether to do busi-

searching for possible modifications that could improve the ness with a selling agent. In particular, we discuss how buy-

value of the policy. ing agents can elect to ask other buying agents for advice,
Most of the value iteration and policy search techniques in order to improve their decision making ability regarding

are designed to find policies for POMDPs with discrete appropriate business partners. This research therefore pro-

states. Similar to the example in Section 4.3, we can oftenvides a basis for incorporating a social reputation system

simplify the space of reputations to a few possible represen-within the electronic marketplace, fostering trust between

tative reputations, essentially discretizing the state spaceagents and resulting in buying agents that will themselves

While this sidesteps the continuous nature of the state spacehe trustworthy for their users.

the number of resulting discrete states can grow exponen-

tially with the number of sellers. Nevertheless, techniques 6. Future Work

such as VDCBPI [20] or Perseus+ADD [18] can often ex-

loi lem- ifi I i k with
ploit problem-specific structural properties to work wit The Advisor-POMDP defined here is preliminary and

compressed yet lossless state representations, which ma% bulk of fut K will ¢ d develobi th
be polynomial (instead of exponential) with respect to the € bulk ot future work will center around developing meth-
ods for extracting usable policies using reinforcement learn-

number of sellers. . thods while taki to limit th t of
If we do not restrict the space of reputations to a few rep- INg methods while taking care to imit the amount ol sam-,
ling necessary. Some subset of the approaches listed in

resentatives, several model free approaches have been prg: = e :
posed that can deal with continuous state spaces [14, 16, 1;.%%“0” 4.4 need to be adapted to our specific POMDP in-

These approaches optimize policies by stochastic simula-.Stance and an analysis done to gauge the complexity of find-

tions, essentially circumventing the continuous nature of ing policies given the large s_tate space. Thgre IS some hope
the state space. However, it is unclear how much simula-th"’“.We may be able .to gxploﬂ struc'ture thqt Is specific to the
tion will be required in practice. Alternatively, the Advisor- Advisor-POMDP to limit the potential poI|C|e§ that mus_t _be .
POMDP can also be viewed as a special casBaylesian _evaluated. Once area_s_onable approach to f|n<_j|ng policies is
Reinforcement Learninfl.3], for which the design of effi- mplemented, an emp|r|ca|_ana|y3|s O.f t.he Adwsor-POMl?P
cient algorithms is an active area of research [5, 23]. will be undertaken comparing the policies generated to sim-

The investigation and implementation of efficient algo- pler heuristic approaches.

rithms for the Advisor-POMDP is an important direction of Ano'Fher topic for future work.|s to Qevelop more precise
future research. strategies for modeling the advisors in the marketplace and

to use these models to adjust the belief values that are cal-
. culated following observations from these advisors. Regan
5. Conclusion and Cohen [22] identify two issues that must be overcome
in a social reputation system namely, deception and subjec-
This work examines the problem of reasoning under the tivity. Each advisor can deceive the buyer when offering
uncertainty present in social reputation systems for elec-information. Furthermore each advisor may be using stan-
tronic markets with buying and selling agents. A brief sur- dards for determining whether a purchase is satisfactory that
vey of other reputation models was presented and the degreare specific to the advisor. The deceptiveness of an advisor
to which they satisfy the requirements of a social reputation can be modeled using the observation function by making
system was analyzed. observations that match a given state less likely. To model
The main contribution of this paper is the Advisor- the higher standards of a particular advisor, an observation
POMDP, a decision theoretic framework in which a buyer function can be used in which the observations from that
can ask other advisors to accumulate information about aadvisor that are slightly lower than the actual state are most
seller's reputation and eventually make an informed pur- likely.
chase. This framework captures both gtechasticand In order to address the issue of possibly deceptive advi-
epistemiauncertainty that is inherent in the problem posed. sors, it is in fact ideal to develop some kind of mechanism
The Advisor-POMDP allows buyers to make decisions within the marketplace [30] in order for buyers to be more
about which sellers to make purchases from using informa-inclined to share correct information with other buyers. An-
tion about a seller’s reputation. Since the past fulfillment of other avenue for future work is to articulate and integrate
the seller’s role of providing quality goods is taken into ac- some kind of mechanism to foster more trustworthy social



networks of buying agents.
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