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Abstract

This paper examines approaches to representing uncer-
tainty in reputation systems for electronic markets with the
aim of constructing a decision theoretic framework for col-
lecting information about selling agents and making pur-
chase decisions in the context of a social reputation system.
A selection of approaches to representing reputation using
Dempster-Shafter Theory and Bayesian probability are sur-
veyed and a model for collecting and using reputation is
developed using a Partially Observable Markov Decision
Process.

1. Introduction

Trust is a desirable property of any market, because it
reduces the friction by which we do business. A good ex-
ample of ease which trust provides is a business agreement
using a handshake instead of legal contracts. The success
of trust in streamlining transactions in traditional markets
motivates the search for a comparable measure of trust in
emerging electronic markets which can be populated by
agents that automate the transactions between buyers and
sellers. We examine trust from the perspective of an agent
required to decide who to do business with, based in part on
trust. A model of reputation can aid in these trust decisions
by providing a reputation for each agent, essentially model-
ing how trustworthy an agent was in the past. In any market
without perfect security, trust will be an important factor in
any purchase decisions made by a buyer.

The aim of this paper is to construct a principled frame-
work for buyers to choose the best seller based on some
measure of reputation in a market consisting of autonomous
agents. We proceed to this framework by first examining
three distinct classes of reputation systems. Upon choosing
the reputation system most appropriate for our multi-agent
environment, we take a close look at how reputation can be

modeled so as to capture the most relevant aspects of the
reputation system. We then present a framework based on
Markov Decision Processes and give a brief discussion of
some of the challenges to the efficient functioning of it.

As a whole, our research explores the topic of trust in
communities populated by intelligent agents, specifically in
electronic marketplaces. In particular, we provide a basis
for designing effective buying agents that will be trustwor-
thy for their users by making informed purchase decisions.
Our research also proposes an environment in which trust
between buying agents is fostered, including the sharing of
information in order to make the most effective purchases.

2. Reputation Systems

We can define three classes of reputation systems based
on the source of the information used to construct the repu-
tation and who has access to the reputation.

2.1. Global Reputation Systems

One approach to modeling the reputation of sellers is to
establish a central service which is responsible for collect-
ing feedback from buyers, constructing a single reputation
for each seller in the market and making this global repu-
tation available to all buyers. Examples of this approach
are reputation systems used by online auction sites such as
eBay1 and amazon.com auctions2 and theoretical models
such as CONFESS [8]. While the presence of a global repu-
tation allows buyers to learn about sellers they have not yet
interacted with, there are some drawbacks to this approach.

The central service that tracks and publishes seller rep-
utations must be trusted by all agents in the marketplace.
There is no simple way to evaluate the truthfulness of feed-
back given by buyers. Since the central service is not di-
rectly involved in any transaction, it can not easily verify

1www.ebay.com
2auctions.amazon.com



the quality of the goods being shipped or received. Further-
more, the presence of a central service carries the common
disadvantages inherent in centralized architectures, such as
having a single point of failure, and not scaling well as the
number of agents increase.

2.2. Personal Reputation Systems

Another approach to modeling seller reputation is to
allow each buying agent to individually collect feedback
from past purchases to develop a personal model of a sell-
ing agent’s reputation w hich is constructed using only the
transactions in which the individual buying agent has been
involved. An example of this approach is the reputation
model developed by Cohen and Tran [29] in which a buy-
ing agent uses only its past purchases from sellers to learn
to avoid dishonest sellers.

The advantage to only using transactions the buying
agent has been involved with is the agent is certain regard-
ing the outcome of those transactions. However, with this
approach the buying agent is limited to modeling only those
sellers from whom the buying agent has purchased in the
past. There are many situations in which the set of potential
selling agents for a good may be comprised of agents with
whom a buying agent has no direct experience.

2.3. Social Reputation Systems

A natural extension of the personal reputation model is
one in which a buying agent can choose to query other buy-
ing agents for information about sellers for which the origi-
nal buying agent has no information. We describe the other
buying agents in this context as advisors. There are many
examples in the literature of reputation systems that allow
agents to share reputation [12, 24, 33, 32]. However, not all
systems use the same representation of reputation.

A social reputation system allows for a decentralized ap-
proach whose strengths and weaknesses lie between the ex-
tremes of the personal and public reputation system. The
main advantage is that the responsibility for collecting feed-
back and constructing a reputation model rests with the in-
dividual buying agent. While a buying agent may not have
access to a global seller reputation that takes into account
all past buyer interactions, the buying agent has the free-
dom to solicit as much or as little information as it needs
from others until it has constructed a reasonable model of a
seller’s reputation.

Using the social reputation model as a foundation we
will now examine possible representations of the reputation
that will be the basis of our buying agents’ decisions.

3. Reputation Representation

The model of reputation will be constructed from a buy-
ing agent’s positive and negative past experiences with the
aim of predicting how satisfied the buying agent will be with
the results of future interactions with a selling agent. The
model of reputation needs to capture two important and dis-
tinct notions of uncertainty about how past interactions will
dictate future interactions. We classify these two classes of
uncertainty in a similar fashion to Sentz and Ferson [25] as:

Stochastic Uncertainty - uncertainty which results from
the randomness of a system.
Also known as: irreducible, aleatory, or objective un-
certainty as well as variability.

Epistemic Uncertainty - uncertainty which results from a
lack of knowledge about the randomness of a system.
Also known as: reducible or subjective uncertainty as
well as ignorance.

To function within our social reputation system, we must
be able to perform some specific operations on the reputa-
tion of a seller held by a buyer. Given a set of reputations
collected from other buyers we need to be able to combine
these reputations. This combination needs to respect the dif-
fering levels of trust that one buyer may have in another. For
example, if reputations were represented by a single num-
ber, then a simple average over all the reputations collected
from other buyers would not take into account the fact that
some of the other buyers may have less experience or are
less trustworthy.

Work has been done to represent reputation in many dif-
ferent ways. We will now survey some of this work, moving
from fairly simple ad-hoc reputation models [33], to sys-
tematic models [2, 7, 15, 31, 32] which rely on Dempster-
Shafer Theory [4, 26] and Bayesian probability.

3.1. Ad-hoc Reputation Models

There are many models of reputation in the literature that
allow the reputation of a seller to be represented by a single
value. Most of the work on these models involves deriving
equations for the update of this reputation value such that
it exhibits some desired behavior. An often cited example
of such a reputation model is the Sporos reputation mecha-
nism [33] which uses the following expression to update the
single reputation value of a seller:

Rt+1 =
1
Θ
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1
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A full understanding of the preceding expression is not
necessary; the aim is simply to draw the reader’s attention
to some aspects of the model. Expression 1 allows for the
weighted combination of reputation information for a seller
given by other buyers. In the expression the ratingWi for
a seller given by another agenti is weighted by reputation
of that other agent denoted byRother

i+1 . The major drawback
of such ad-hoc reputation models that represent reputation
using only a single value is that they do not contain any
measure of theepistemicuncertainty. In the context of our
social reputation system, the use of equation 1 leaves no
clear way to determine when enough other buyers have been
consulted to make an informed decision about which seller
to purchase from.

3.2. Dempster-Shafer Theory

Dempster-Shafer Theory (DST) is a mathematical theory
of evidence which rests on a generalization of probability
theory in which probabilities are assigned to sets instead of
mutually exclusive atomic events. We can interpret the ele-
ments of the sets as possible hypotheses about events. DST
does not force the sum of the probability of the atomic ele-
ments to sum to one, so theepistemicuncertainty due to, for
instance, the lack of evidence against a hypothesis is easily
expressed. The likelihood of a particular hypothesis given
a set of evidence can be reasoned about using the following
three functions:

Basic Probability Assignment - The basic probability as-
signment, denotedbpa or m, defines a mapping of all
possible subsets of the set of our atomic elements to a
number between 0 and 1.

Belief function - The belief function, denotedbel(A) for a
setA, is defined as the sum of all the basic probability
assignments over all proper subsets ofA.

Plausibility function - The plausibility function, denoted
pl(A) for a setA, is defined as the sum of all the basic
probability assignments over all the setsB that inter-
sect the setA.

The basic probability assignment for a given setA can
be thought of as expressing the proportion of evidence that
supports the claim that some elementX belongs to the set
A, but to no particular subset ofA. The belief and plausibil-
ity functions essentially represent a lower and upper bound
on the likelihood of a hypothesis represented byA.

The reputation system developed by Yu and Singh [32]
should help make our discussion of DST concrete and il-
lustrate how DST can be used to model reputation. They
define{T,¬T} to be their set of hypotheses. In their model
the bpam({T}) represents the evidence for a good seller

reputation and can be calculated by taking the proportion of
all past experiences in which the buying agent’s satisfaction
with a purchase was above some threshold.m({¬T}) rep-
resents the evidence for a bad seller reputation, and can be
calculated by taking the proportion of all past experiences in
which the buying agent’s satisfaction with a purchase was
below another threshold.m({T,¬T}) measures theepis-
temicuncertainty or lack of evidence and is found by simply
taking the proportion of past experiences that fall between
the two thresholds.

In his original work on the subject, Shafer [26] devel-
oped a method for combining beliefs about the same set
of elements that are based on distinct bodies of evidence.
This allows for reputation information collected from other
buyers in the market to be combined to form a new repu-
tation. To this basic approach to combining reputation, the
authors Yu and Singh add a method for taking into account
how trustworthy other agents are by adapting Littleston and
Warmuth’s weighted majority algorithm [10] to allow for
reputations with different weights to be combined.

The reputation model developed by Yu and Singh [32]
provides a representation for reputation in our social reputa-
tion system that takes into account bothstochasticandepis-
temic uncertainty while allowing for reputation to be up-
dated through weighted combinations of the reputation col-
lected from other buying agents. However, an even richer
representation of theepistemicuncertainty can be obtained
with Bayesian interpretations of tradition probability theory.

3.3. Bayesian Approaches

We can represent thestochasticuncertainty inherent in
a process using basic probability. Given a coin that has
yielded 8 heads and 2 tails after 10 flips, it is natural to say
we believe the next flip will be heads with 0.8 probability.
At first glance it does not capture theepistemicuncertainty
since if we had seen 800 heads and 200 tails, the proba-
bility p = 0.8 of heads does not capture our increasing
certainty about our knowledge of the underlying process.
However, by using a probability density function which rep-
resents a second-order probability assigning a probability to
each value ofp we can capture both classes of uncertainty.
We begin with a prior distribution over all the values of the
probabilityp of heads and update this distribution with each
coin flip we observe. This approach can be referred to as
Bayesian since we represent our beliefs about the outcome
of the coin flip using a distribution which is updated as we
gather evidence.

The beta probability density function allows us to rep-
resent the probability distribution over the outcome of bi-
nary events such as heads/tails, or in our market setting, the
transactions in which a buyer is satisfied/unsatisfied.

Beta Distribution - The beta distribution is a family of



probability density functions indexed by the parame-
tersα andβ and can be expressed using the gamma
function as follows:

f(p|α, β) =
Γ(α + β)
Γ(α)Γ(β)

pα−1(1− p)β−1 (2)

which yields the following simple expression for the
expectation:

E(p) =
α

α + β
(3)

A nice property of the beta distribution is the ease at
which a distribution can be calculated that incorporates a
prior distribution and new observations. If we haver obser-
vations of the outcomex ands observations of the outcome
x̄, we can express the beta distribution in terms of these ob-
servations by settingα = r + 1 andβ = s + 1. Figure 1
shows a beta distribution given by Jøsang and Ismail [7] for
a process in whichx has been observed 7 times andx̄ has
been observed once which gives usf(p|8, 2).

The Beta Reputation System

2 Building Blocks in the Beta Reputation System
The beta reputation system consists of elements that can be used separately or in combination in order
to provide a flexible framework for integrating reputation services into e-commerce applications. The
reputation function and reputation rating which are described in Sections 2.2 and 2.3 below form a
basis on which the building blocks described in the subsequent sections can be added depending on the
requirements.

2.1 The Beta Density Function
Our reputation system is based on the beta probability density function which can be used to repre-
sent probability distributions of binary events. This provides a sound mathematical basis for combining
feedback and for expressing reputation ratings. The mathematical analysis leading to the expression for
posteriori probability estimates of binary events can be found in many text books on probability theory,
e.g. Casella & Berger 1990[2] p.298, and we will only present the results here.

Posteriori probabilities of binary events can be represented as beta distributions. The beta-family of
probability density functions is a continuous family of functions indexed by the two parameters and .
The beta distribution can be expressed using the gamma function as:

where (1)

with the restriction that the probability variable if , and if . The probability
expectation value of the beta distribution is given by:

(2)

Let us consider a process with two possible outcomes , and let be the observed number of
outcome and let be the observed number of outcome . Then the probability density function of
observing outcome in the future can be expressed as a function of past observations by setting:

and where (3)

As an example, a process with two possible outcomes that has produced outcome seven
times and outcome only once, will have a beta function expressed as which is plotted in
Figure 1.

0.2 0.4 0.6 0.8 1
p

1

2

3

4

5
f

Figure 1: Beta function of event after 7 observations of and 1 observation of .
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Figure 1. Beta function f(p|8, 2)

Jøsang and Ismail develop the Beta Reputation Sys-
tem [7] in which the binary process is a series of transac-
tions in which a buyer is either satisfied or unsatisfied. The
observationsr are interpreted as positive feedback and the
observationss as negative feedback. The expectationE(p)
models thestochasticuncertainty while the distribution over
all possible values ofp models theepistemicuncertainty.

Combining the feedbackr1, r2 ands1, s2 from two dif-
ferent buying agents (1 and 2) in this model is as simple
as constructing a new distribution withr = r1 + r2 and
s = s1 + s2. To take into account the trust one agent may
have for another when combining feedback, the authors de-
velop a more sophisticated model that allows buying agents
to model the reputation of other buying agents. This is best
illustrated with an example in which we have a buying agent
X who uses the feedback provided by buying agent Y about

a selling agent Z. The buying agent X models the trustwor-
thiness of the other buying agent Y by keeping track of feed-
backrX

Y andsX
Y from past interactions with Y3. The buying

agent Y provides the feedbackrY
Z andsY

Z about the selling
agent Z and our buying agent X can weigh this feedback
with what it knows about Y to construct the feedbackrX:Y

Z

andsX:Y
Z about Z as follows:

rX:Y
Z =

2 rX
Y rY

Z(
sX

Y + 2
) (

rY
Z + sY

Z + 2
)

+ 2 rX
Y

(4)

sX:Y
Z =

2 rX
Y sY

Z(
sX

Y + 2
) (

rY
Z + sY

Z + 2
)

+ 2 rX
Y

(5)

This feedback is then incorporated into the density func-
tion to arrive at what Jøsang and Ismail call the discounted
reputation function by X through Y [7]. Like the DST
model presented by Yu and Singh, the Beta Reputation
System provides methods for combining weighted reputa-
tion information from other agents. Each model captures
both thestochasticandepistemicuncertainty; however, the
Bayesian approach used by the Beta Reputation System al-
lows for a richer representation of theepistemicuncertainty
since a distribution is maintained over each possible value
of the probability modelingstochasticuncertainty. The Yu
and Singh model, in comparison, uses a single scalar value
to represent theepistemicuncertainty.

The Beta Reputation System is not the only work using
Bayesian methods to model reputation. Mui et al. [15] de-
velop a similar model based on the beta distribution, but do
not mention methods for combining and weighing informa-
tion from other buying agents. Barber and Kim [2] use a
Bayesian network to combine reputation information gath-
ered from other buying agents where each connection rep-
resents the conditional dependence of a selling agent’s rep-
utation on the reputation contributed by each buying agent.
Wang and Vassileva [31] use a Bayesian network to repre-
sent how the buyer/client’s observations of a seller/server’s
different capabilities can influence a single trust rating for
the seller.

The Beta Reputation System illustrates how Bayesian
methods can be used to construct a rich model of reputation.
Unfortunately, in the context of a social reputation system,
the work of Jøsang and Ismail [7] and others [2, 15, 32]
does not address how reputation information is collected
from other buyers, and how purchase decisions are eventu-
ally made. The next section will lay out a decision theoretic
framework that makes use of Bayesian methods to develop
policies about when to ask other buyers and when to make
a purchase.

3the superscript denotes who is holding the feedback, while the sub-
script denotes who it is about



4. Decision Framework

4.1. Definition of Reputation

Reputation is a rich concept with many dimensions, but
for our purposes we restrict the definition of the reputation
of a seller in a similar way to Carter and Ghorbani [3] as a
measure of how well the seller fulfills the role of providing
quality goods at a reasonable price. The extent to which a
selling agent fulfills this role is defined by how the buyer’s
expectations are met and these expectations are captured by
a utility function. As in Tran and Cohen [29] the buyer has
an expected utility which it demands of a transaction with
a seller. After a good is delivered the buyer compares this
expected utility with the utility which was actually realized.
If the realized utility surpasses the expected utility, then a
buyer is said to be satisfied and if the realized utility falls
below the expected (demanded) utility, the buyer is said to
be unsatisfied. A seller who consistently fulfills its role and
satisfies the buyer will attain a high reputation and engender
trust.

Many other duties can be incorporated into the seller’s
role, such as delivering a good on time, but for the purposes
of exploring how to gather and use reputation information
in a principled manner, we limit our selves to this narrow
definition of seller reputation.

4.2. The Advisor-POMDP

In our social reputation system a buyer will ask other
buyers (which we denote advisors) in order to accumulate
information about a seller’s reputation before making a de-
cision about which seller to purchase from. Generally, we
seek some principled way to integrate the reputation infor-
mation provided by each advisor with what the buyer al-
ready knows, while allowing for the possibility that the ad-
visors may vary in accuracy and experience.

We can use the a Bayesian interpretation of probability
to represent the uncertainty about what information an ad-
visor may provide and the satisfaction a buying agent will
experience after a purchase. We assign utilities to possible
outcomes of actions and and use these utilities to determine
the best possible action. A natural way to model the deci-
sion making process given uncertainty about possible utility
is a Markov Decision Process.

A Markov Decision Process (MDP) is defined by the tu-
ple 〈S,A, T,R〉 whereS is the set of states andA is the set
actions that can be taken from each state. Each action will
probabilistically move the agent into another state as deter-
mined by a transition functionT . A reward is associated
with each state using the reward functionR, and a policy
can be constructed which dictates which action to take from

each state so as to maximize the expected reward. Puter-
man [21] gives a good introduction to methods for comput-
ing optimal policies for a given Markov Decision Process.

We can define an MDP for our social reputation system
in which the states which represent thestochasticuncer-
tainty about each seller and the actions a buyer can take
are toaskan advisor orbuy from a seller. Specifically the
state will hold a reputation for each seller represented as
the probability that seller will satisfy the buyer by fulfill-
ing its role. However, our buyer has only partial knowledge
of the underlyingstochasticprocess that the reputation is
modeling since it only has information about a subset of a
seller’s past interactions. We can model thisepistemicun-
certainty by extending the MDP to a Partially Observable
Markov Decision Process (POMDP), described by Kael-
bling et al. [9], which places a belief distribution over the
possible states and uses observations to adjust this belief.
Instead of knowing exactly what the current state is, the
agent will have a belief about the current state, represented
by the functionb : State → [0, 1] which assigns a proba-
bility to every possible state. In our reputation system the
state represents the actual reputations of the sellers (given
all interactions), and is only partially observable through
the information given by advisors.

The way in which the elements of the POMDP interact is
illustrated in Figure 2. A directed arrow in the figure indi-
cated that the probability of the reward, state or observation
being pointed to is influenced by the state or action that is
the source of the arrow.

State

Action

Reward

Observation

State State

Action

Reward

Observation

Figure 2. An influence diagram for the POMDP

Our Advisor-POMDP is described by the tuple
〈S,A, T, R,Ω, O〉 for which each element is defined as fol-
lows:



S - State
A state 〈~r, sat〉 in our POMDP is composed of a
vector ~r of real values in the range [0,1] represent-
ing the reputation of each seller and a scalar value
sat ∈ {−1, 0, 1} representing the satisfaction result-
ing from a purchase. Before a purchase thesat com-
ponent of our state modeling buyer satisfaction will be
equal to zero. For convenience, we will refer to any
state in whichsat is zero as an advice state. After a
purchase thesat component is set to -1 or 1 and we re-
fer to such a state as a purchase state. Asat value of 1
will signify that the buyer is satisfied with a purchase,
while asat value of -1 means the buyer is unsatisfied.

A - Actions
A buying agent can choose from two sets of possible
actions. It can either choose toaskan advisor for in-
formation about a selling agent or it can choose tobuy
from a selling agent.

T - State-Transition function
In an advice state we can interpret the~r component of
the state as representing the actual reputations of sell-
ers and anaskaction will not change this, nor will it
change thesat value. Asking an advisor for informa-
tion leaves us in the same state, but changes our belief
b about how likely we are to be in each possible state,
since we cannot directly observe the current state. For-
mally, given any advice stateq, the transition function,
for any ask action, will map back toq. The buy ac-
tion will transition from a advice state to a purchase
state where thesat component of the state represents
the outcome of the purchase.

R - Reward
There is no reward associated with advice states, how-
ever we associate a small cost forask actions. A pur-
chase state with asat value of 1 will yield a large pos-
itive reward, while asat value of -1 will yield a large
negative reward.

Ω - Observations
The observations in our POMDP are composed of the
information received by our buying agent in response
to asking advisors. The advisor will respond with
〈repi, cfi〉 where rep is the reputation and the cer-
tainty factorcf is a measure of the epistemic uncer-
tainty for each selleri.

O - Observation function
The observation function expresses the likelihood of
receiving an observation given the current state and the
action that led to this state. We can interpret the obser-
vation function as the likelihood of an advisor giving a

set of seller reputations, given the actual seller reputa-
tions. For instance, an honest, knowledgeable advisor
would be likely to paint a seller as reputable, given that
the seller is in fact actually reputable.

We can specify the observation function to account for
how each individual advisor will change our belief about
the actual reputations of sellers, and we can specify the tran-
sition function that mapsbuy actions in reputation states
to purchase states to capture how our knowledge about a
seller’s reputation will dictate the outcome of a purchase
from a particular seller. Given both the transition and obser-
vation functions, the POMDP provides a principled frame-
work for integration of this information to find the best ac-
tion given the agents current belief.

Given a POMDP specified by〈S,A, T, R,Ω, O〉, we
would like to find the best course of action that maximizes
expected rewards. We define apolicy π to be a mapping
from belief b (a probability distribution over states) to ac-
tionsa. Intuitively, a policy encodes a strategy specifying
which action should be executed at each time step given the
current belief state.4 We can measure how good a policyπ
is by defining a value functionV π(b0), which indicates the
expected total rewards earned by followingπ from any ini-
tial belief stateb0 (e.g.V π(b0) =

∑
t=0∞ Eπ[R(bt)] where

R(bt) =
∑

s bt(s)R(s) andEπ[·] denotes an expectationbt

with respect toπ). A policy π∗ is optimal when its value
function V π∗ is at least as high as any other policyπ for
all belief states (e.g.V π∗(b) ≥ V π(b) ∀π, b).5 We will
explain in Section 4.4 how to find an optimal policy for a
given POMDP.

In the context of reputation modeling, the POMDP
framework provides a principled approach for optimizing
the exploration/exploitation tradeoffs that arise when hav-
ing to decide between buying from a seller or asking ad-
visors for more information about some seller’s reputation.
Intuitively, asking an advisor to share its experience about
a seller provides information that reduces the uncertainty in
a seller’s reputation. In turn, this reduced uncertainty, will
allow the buyer to make a more informed decision when
selecting a seller in the future. We can quantify thevalue
of the information gained by the amount of utility that we
expect to gain when using this information in our buying
decision. In general, it will only make sense to ask an advi-
sor to share its experience about a seller, when the expected
value of the information gained is higher than the cost of
consulting the advisor. By definition, optimal policies for
the advisor-POMDP earn the highest possible expected to-

4We assume astationarypolicy that uses the same mapping from be-
lief states to actions at each time step. This assumption is reasonable since
there always exists an optimal policy within the class of stationary poli-
cies [11].

5There always exists adominatingpolicy, which has a value function
at least as high as any other policy for all belief states [11].



tal reward, and therefore pick at any point in time the best
action (e.g., the best advisor to consult or the best seller to
buy from).

The next section illustrates with an example how a policy
might dictate the actions of our buyer.

4.3. Example

To help ground our discussion, we take a closer look at
a scenario involving two sellerss1, s2 and four advisors
a1, a2, a3, a4. Given that we are representing two sellers,
the~r component of state space representing the seller rep-
utations for our Advisor-POMDP will be two dimensional.
It may be helpful to use some images to conceptualize what
is happening with the belief over the possible states. If the
~r component were composed of a single seller reputationr
and we ignored thesat component, then the possible advice
states would be all the possible values ofr ∈ [0, 1]. A be-
lief representing highepistemicuncertainty would assign a
small probability close to zero to every state and could be
graphed as follows:

1

0 1reputation

probability 
of reputation

Figure 3. Belief - high epistemic uncertainty

A belief representing lowepistemicuncertainty would
assign low probabilities most states and a high probability
to a small number of states. A graph of one such belief is as
follows:

1

0 1reputation

probability 
of reputation

Figure 4. Belief - low epistemic uncertainty

The state space for our example with two seller reputa-
tions can be conceptualized as a two dimensional plane and
the belief over these reputations as a surface of this plane.

When the belief expresses highepistemicuncertainty, the
surface would be relatively flat. As theepistemicuncer-
tainty decreases and the agent becomes more certain about
what state it is in, the surface will develop valleys over states
that are not likely and peaks over states which are likely. To
simplify our example let us discretize this state space into
three possible reputations. Let us assume that a seller can
either have a low, medium or high reputation, represented
by the values 0.1, 0.5 and 0.9 respectively. Now let us as-
sume that the buyer begins with little information about the
reputations of sellers. Table 1 gives a belief for each possi-
ble advice state with thesat component omitted given that
it will be zero.

Table 1. Belief b(〈rs1 , rs2〉) for state represent-
ing reputations of seller s1 and s2

b(〈.1, .1〉) = 1/9 b(〈.1, .5〉) = 1/9 b(〈.1, .9〉) = 1/9
b(〈.5, .1〉) = 1/9 b(〈.5, .5〉) = 1/9 b(〈.5, .9〉) = 1/9
b(〈.9, .1〉) = 1/9 b(〈.9, .5〉) = 1/9 b(〈.9, .9〉) = 1/9

We adopt a simple observation function which defines
advisor observations that are similar to a given state as likely
and observations that are very different from a given state
as unlikely. The observation function incorporates theepis-
temic uncertainty of the observationo by interpretingcf
as the number of transactions the reputation is stemming
from. We can formally define the observation function
O(o, s) = Pr(o|s), capturing the probability of an obser-
vationo given a states as follows:

P (o = 〈〈reps1 , cfs1〉, 〈reps1 , cfs1〉〉|s = 〈rs1 , rs2〉)
= (rs1)

reps1cfs1 (1− rs1)
(1−reps1 )cfs1 × (6)

× (rs2)
reps2cfs1 (1− rs2)

(1−reps2 )cfs2

Given the policy generated for the POMDP we will now
step through an example of the kinds of actions that would
be chosen based on the current belief state, the observation
each action would generate and how the observation will
influence the next belief state.

Action: aska1 leads to observation:〈〈0.5, 12〉, 〈0.9, 20〉〉
The policy weighs the small cost of asking an advisor,
with the decrease in uncertainty about seller reputa-
tions. Given the relatively flat belief state, the buyer
will have a higher expected satisfaction after asking
advisors, since the eventual result will be a more in-
formed purchase decision. For the purposes of this ex-
ample, suppose thata1 has been determined to be the
best advisor to ask.



Once theask action is taken the buyer observes the
reputationrepi and certainty factorcfi given by the
advisor for each selleri. Using the observation func-
tion, the buyer’s new beliefb′ for each state is updated
using Bayes’ Rule as follows:

b′(s) = P (s|o)

=
P (s)P (o|s)

P (o)
(7)

= k · b(s)O(s, o)

wherek =
1

P (o)
is a constant normalization factor

The result of the belief update is shown in following
table.

b(〈.1, .1〉) = .00 b(〈.1, .5〉) = .05 b(〈.1, .9〉) = .06
b(〈.5, .1〉) = .01 b(〈.5, .5〉) = .36 b(〈.5, .9〉) = .42
b(〈.9, .1〉) = .00 b(〈.9, .5〉) = .05 b(〈.9, .9〉) = .06

Action: aska3 leads to observation:〈〈0.5, 4〉, 〈0.8, 6〉〉
Given the updated belief about actual state, the pol-
icy would once again dictate that our buyer should ask
an advisor and specify the best advisor to ask. The
advisor has a similar impression of the reputation of
each seller, but is less certain about the reputations it
holds. The buyer incorporates this observation updat-
ing its belief to the following.

b(〈.1, .1〉) = .00 b(〈.1, .5〉) = .00 b(〈.1, .9〉) = .01
b(〈.5, .1〉) = .00 b(〈.5, .5〉) = .18 b(〈.5, .9〉) = .79
b(〈.9, .1〉) = .00 b(〈.9, .5〉) = .00 b(〈.9, .9〉) = .01

Action: buys2

At this point, there is enough of a peak in the belief
space that the best action is to select a seller. The tran-
sition function captures what the outcome of a pur-
chase will be given the actual state. Given the belief
about the likelihood of each state, the policy chooses
to buy from the seller that will maximize the expected
reward based on buyer satisfaction.

In our case, the expected reward for buying froms2

will be far higher than that ofs1 and the policy chooses
to buy froms2. The buyer will then complete the trans-
action, purchasing froms2 and evaluating the result of
the purchase, comparing the expected outcome with
the actual outcome, to gauge satisfaction.

This example demonstrates how a policy can lead a
buyer to gather information from advisors. It also shows

how to use this information with a simple observation func-
tion to update its belief about the true reputation of the sell-
ers and when theepistemicuncertainty is low enough, buy
from the seller that will lead to the highest expected satis-
faction.

The Advisor-POMDP can use a state with an~r compo-
nent representing seller reputations that take on a small set
discrete integral values between 0 and 1 as in our example.
However, to more accurately model the reputation of sellers
a real value for the reputation can be used. The next sec-
tion discusses some of the challenges of calculating a policy
given the way in which we have defined our POMDP.

4.4. Calculating Policies

Partially Observable Markov Decision Processes provide
a principled and expressive framework for reputation mod-
eling; however calculating optimal policies for POMDPs is
not a trivial exercise. There are two broad classes of algo-
rithms for finding optimal POMDP policies. The first class,
known asvalue iteration, uses dynamic programming to in-
directly build an optimal policy by incrementally computing
the optimal value function. The idea is to compute the opti-
mal value function for each time step starting from the end
and going backwards in time. More precisely, the optimal
value functionV n(b) for n steps-to-go is the one that yields
the highest possible rewards for then remaining steps. We
can recursively compute then-step optimal value function
V n from then− 1-step optimal value functionV n−1 using
Bellman’s equation:

V n(b) = max
a

Ra(b) +
∑

o

Pr(o|b, a)V n−1(b′) (8)

where

Ra(b) =
∑

b(s)Ra(s)

Pr(o|b, a) =
∑

s

b(s) Pr(s′|s, a) Pr(o|s′)

The valueb′ is the updated belief state after executinga and
observingo.

Note that by remembering the actiona that maximizes
the right-hand-side of Bellman’s equation, we indirectly ob-
tain a policy. While Bellman’s equation gives us a dynamic
programming algorithm that can be used in theory to find
optimal policies, in practice, the continuous belief space is
problematic since it is not possible to apply Bellman’s equa-
tion to an infinite number of belief points. Fortunately, as
pointed out by Smallwood and Sondik [27], optimal value
functions arepiecewise-linear and convex, which can be ex-
ploited to apply Bellman’s equation a finite number of times
(once per linear piece of the value function). Alternatively,



approximate solutions can be efficiently computed bypoint-
based value iterationalgorithms [17, 28].

The second class of algorithms, often referred aspolicy
searchtechniques, seek to directly optimize a policy. Popu-
lar approaches include policy iteration [6, 19] and gradient
descent [14, 16], which incrementally improve a policy by
searching for possible modifications that could improve the
value of the policy.

Most of the value iteration and policy search techniques
are designed to find policies for POMDPs with discrete
states. Similar to the example in Section 4.3, we can often
simplify the space of reputations to a few possible represen-
tative reputations, essentially discretizing the state space.
While this sidesteps the continuous nature of the state space,
the number of resulting discrete states can grow exponen-
tially with the number of sellers. Nevertheless, techniques
such as VDCBPI [20] or Perseus+ADD [18] can often ex-
ploit problem-specific structural properties to work with
compressed yet lossless state representations, which may
be polynomial (instead of exponential) with respect to the
number of sellers.

If we do not restrict the space of reputations to a few rep-
resentatives, several model free approaches have been pro-
posed that can deal with continuous state spaces [14, 16, 1].
These approaches optimize policies by stochastic simula-
tions, essentially circumventing the continuous nature of
the state space. However, it is unclear how much simula-
tion will be required in practice. Alternatively, the Advisor-
POMDP can also be viewed as a special case ofBayesian
Reinforcement Learning[13], for which the design of effi-
cient algorithms is an active area of research [5, 23].

The investigation and implementation of efficient algo-
rithms for the Advisor-POMDP is an important direction of
future research.

5. Conclusion

This work examines the problem of reasoning under the
uncertainty present in social reputation systems for elec-
tronic markets with buying and selling agents. A brief sur-
vey of other reputation models was presented and the degree
to which they satisfy the requirements of a social reputation
system was analyzed.

The main contribution of this paper is the Advisor-
POMDP, a decision theoretic framework in which a buyer
can ask other advisors to accumulate information about a
seller’s reputation and eventually make an informed pur-
chase. This framework captures both thestochasticand
epistemicuncertainty that is inherent in the problem posed.

The Advisor-POMDP allows buyers to make decisions
about which sellers to make purchases from using informa-
tion about a seller’s reputation. Since the past fulfillment of
the seller’s role of providing quality goods is taken into ac-

count, sellers are discouraged from neglecting this role and
our reputation system serves as a partial mechanism for en-
suring good market behavior and further engendering trust
on behalf of all agents involved.

In this paper, we have argued that a POMDP approach is
effective for buying agents to determine whether to do busi-
ness with a selling agent. In particular, we discuss how buy-
ing agents can elect to ask other buying agents for advice,
in order to improve their decision making ability regarding
appropriate business partners. This research therefore pro-
vides a basis for incorporating a social reputation system
within the electronic marketplace, fostering trust between
agents and resulting in buying agents that will themselves
be trustworthy for their users.

6. Future Work

The Advisor-POMDP defined here is preliminary and
the bulk of future work will center around developing meth-
ods for extracting usable policies using reinforcement learn-
ing methods while taking care to limit the amount of sam-
pling necessary. Some subset of the approaches listed in
Section 4.4 need to be adapted to our specific POMDP in-
stance and an analysis done to gauge the complexity of find-
ing policies given the large state space. There is some hope
that we may be able to exploit structure that is specific to the
Advisor-POMDP to limit the potential policies that must be
evaluated. Once a reasonable approach to finding policies is
implemented, an empirical analysis of the Advisor-POMDP
will be undertaken comparing the policies generated to sim-
pler heuristic approaches.

Another topic for future work is to develop more precise
strategies for modeling the advisors in the marketplace and
to use these models to adjust the belief values that are cal-
culated following observations from these advisors. Regan
and Cohen [22] identify two issues that must be overcome
in a social reputation system namely, deception and subjec-
tivity. Each advisor can deceive the buyer when offering
information. Furthermore each advisor may be using stan-
dards for determining whether a purchase is satisfactory that
are specific to the advisor. The deceptiveness of an advisor
can be modeled using the observation function by making
observations that match a given state less likely. To model
the higher standards of a particular advisor, an observation
function can be used in which the observations from that
advisor that are slightly lower than the actual state are most
likely.

In order to address the issue of possibly deceptive advi-
sors, it is in fact ideal to develop some kind of mechanism
within the marketplace [30] in order for buyers to be more
inclined to share correct information with other buyers. An-
other avenue for future work is to articulate and integrate
some kind of mechanism to foster more trustworthy social



networks of buying agents.
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