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ABSTRACT
While most current POMDP planning methods have focused
on the development of scalable approximate algorithms, they
often neglect the important aspect of solution quality and
sacrifice performance guarantees to improve efficiency. In
contrast, we propose a novel approach to optimize POMDP
controllers by probabilistic inference while obtaining bounds
on solution quality as follows: 1) re-formulate the original
POMDP problem as a task of marginal-MAP (maximum a
posteriori) inference in a novel single-DBN model, 2) de-
fine a dual representation of the marginal-MAP problem
and derive a Bayesian variational approximation framework
to obtain the approximate solution and an upper bound,
and 3) design hybrid message-passing algorithms to solve
a POMDP problem by approximate variational marginal-
MAP inference in the equivalent single-DBN model.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent agents, Multiagent systems

General Terms
Algorithms, Theory, Performance, Experimentation

Keywords
Planning under uncertainty, Probabilistic Inference, POMDPs

1. INTRODUCTION
Partially observable Markov decision processes (POMDPs)

provide a natural framework for planning under uncertainty.
Recent work by Toussaint et al. [15, 16] showed that it is pos-
sible to optimize controllers by maximizing the likelihood of
rewards in a certain equivalent inference problem. This ap-
proach was subsequently extended and generalized to contin-
uous [5], average reward [11], hierarchical [14], reinforcement
learning [17] and multi-agent [7] domains. So far, planning
as inference relies on the conversion of a POMDP model
into a mixture of dynamic Bayesian networks (DBN s). This
mixture of DBN s presents some hurdles in practice since
most inference techniques are designed do work on a sin-
gle graphical model and therefore must be adapted to work
with mixtures of graphical models. Our first contribution is
a new technique to convert POMDPs into a single DBN in
which maximizing the likelihood of a random value vari-
able is equivalent to optimizing a POMDP controller. The
simplification to a single graphical model opens the door to
a wider range of inference techniques. Our second contri-
bution is the formulation of a Marginal-MAP (Maximum A

Posteriori) inference problem for policy optimization. In the
novel single-DBN model, we maximize over the policy vari-
ables while marginalizing the remaining variables. We solve
this mixed (“max-sum”) inference problem by a proposed
message passing. Our third contribution is the formulation
of message-passing rules for Marginal-MAP inference in gen-
eral cyclic factor graphs, which extends [8]’s message passing
rules for pairwise graphs. The message-passing rules can be
instantiated to find an approximation or an upper bound on
the value of the best controller.

2. BACKGROUND
The challenge of planning problems in partially observable

settings is to find a control policy for selecting actions when
the precise state of the environment is unknown and the
agent can only perceive partial observations, which convey
incomplete information about the world’s state. A partially
observable Markov decision process (POMDP) provides a
framework for sequential decision making under uncertainty,
and is formally defined by a tuple

⟨
S,A,O, T, O,R, b0, γ

⟩
,

where: 1) S is a finite set of all states s; 2) A is a set
of actions a; 3) O is a set of observations o; 4) T (s′ | s, a)
defines the transition function; 5) O(o′ | s′, a) defines the
observation function; 6) R(r | s, a) ∈ R is the immediate
reward function; 7) b0(s) ∈ Pr(s) is the initial belief state of
the environment; 8) γ ∈ [0, 1) is the discount factor at each
time step that measures the relative importance of immedi-
ate and future rewards. The agent goal is to find an optimal
control policy η∗ that maximizes the expected discounted
infinite-horizon reward: Vη = E

[∑∞
t=0 γ

trt; η
]
.

We can represent POMDP control policies compactly by
restricting the space of control policies being considered and
representing the control policy explicitly as a stochastic finite-
state controller (FSC ). A controller η = ⟨N , π, λ⟩ can en-
code a stochastic policy with three distributions (controller
parameters): p(N0) (initial), π = p(At |Nt) ∀t (action selec-
tion distribution) and λ = p(Nt |Nt−1, Ot−1) ∀t (controller
successor distribution). Thus, a policy encoded by a con-
troller is executed by performing the action associated with
each node and by following the edge associated with each
observation received.

Several techniques have been proposed to optimize con-
trollers of a given size, including gradient ascent [10], branch
and bound [3], bounded policy iteration [12], stochastic local
search [2], non-convex quadratically constrained optimiza-
tion [1] and expectation maximization (EM) [16]. The last
approach makes a key observation: planning in the space of
controllers can be transformed into an equivalent inference
problem.



More specifically, POMDP controller optimization can be
formulated as a parameter estimation problem with respect
to a mixture of dynamic Bayesian networks (DBN s). Since
the correlations between the rewards at different time steps
are irrelevant in planning, the problem can be decomposed
into a series of finite horizon DBN s with a single reward
variable at the last time step. Figure 1 shows the DBN s for
one step, two steps and t steps. The parameters π and λ
define respectively the conditional distributions Pr(At |Nt)
and Pr(Nt+1 |Nt, Ot) in each DBN . Since all nodes in a
DBN must be random variables, the reward variables are
binary variables with conditional distributions:
Pr(R̂t = true |St, At) = (R(St, At)−Rmin)/((Rmax−Rmin))
, where Rmax = maxs,aR(s, a) and Rmin = mins,aR(s, a).
This effectively normalizes the rewards between 0 and 1,
which allows us to treat them as probabilities. Since the
value Vη = E [

∑
t γ

tR(st, at) | η] of a controller η is the
expected sum of discounted rewards, we can combine the
DBN s into a mixture with probabilities induced from dis-
counting. The discount factor γ can be interpreted as the
probability with which the process continues at each step.
Hence, we can combine the DBN s into a mixture such that
the probability of the t-step DBN is proportional to the like-
lihood γt that the process will last at least t steps. Toussaint
et al. [16] showed that the value of a controller is propor-
tional to the mixture likelihood that the reward variables
are true: Vη ∝

∑
t γ

t Pr(R̂t = true | η). An optimal con-
troller achieves the highest mixture of reward likelihoods.
The search for an optimal controller can be formulated as
a parameter estimation problem that can be tackled by ex-
pectation maximization (EM) [16]. This approach of policy
optimization by likelihood maximization is appealing as it
allows for exploiting the factored structure in a controller
architecture and for taking advantage of natural structural
constraints of planning problems. Unfortunately, due to the
non-convex nature of the optimization problem in partially
observable domains, the EM algorithm is not guaranteed to
converge to a global optimum and may get stuck in arbitrar-
ily bad sub-optimal configurations. Escape techniques have
been developed to circumvent local optima [13], but there is
still no performance guarantee.
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Figure 1: Modeling the POMDP value function as mixture-
DBN model of a reward likelihood R̂ of finite-time DBN s.

3. SINGLE-DBN GENERATIVE MODEL
As a compelling alternative to the mixture of DBN s, we

developed a novel single-DBN model for planning bymarginal-
MAP inference, which allows us to adapt a Bayesian vari-
ational framework to approximate and bound the optimal
value of any deterministic controller. For the rest of the pa-
per, we will restrict ourselves to deterministic controllers
(i.e., controllers with degenerate distributions that select
unique actions and successor nodes). While stochastic con-
trollers can achieve higher value, previous work has shown
that optimal stochastic controllers are often nearly deter-
ministic [4] and it may be easier to find a good controller
when the space is restricted to deterministic controllers [3].

Deterministic controllers can be parameterized by a set
θ = π ∪ λ of categorical variables, where π = {πn}∀n and
λ = {λno}∀no. Here, πn ∈ A indicates the action to be
executed in node n and λno ∈ N indicates the successor
node after receiving observation o in node n. Fig. 2 shows
a dynamic Bayesian network that includes a controller, pa-
rameterized by π and λ, for which policy optimization is
equivalent to marginal-MAP inference. In addition to the
boolean reward variables R̂t, we also have boolean variables
Vt and Dt whose probability of being true is proportional to
the cumulative value and cumulative discount at time step
t. We set Pr(Vt |Vt−1, Rt, Dt) = ψ(Rt, Dt) + ϕ(Vt−1) such
that

ψ(Rt, Dt) =

{
(1− k) , if Rt = Dt = true
0 , otherwise

ϕ(Vt−1) =

{
k , if Vt−1 = true
0 , otherwise

Here k ∈ (0, 1) is a scaling factor to ensure that probabilities
are not greater than 1 when adding ψ and ϕ together. We
can interpret ψ(Rt = true, Dt = true) as computing a prob-
ability proportional to the immediate reward at the current
time step. Similarly, we can interpret ϕ(Vt−1 = true) as
computing a probability proportional to the discounted cu-
mulative reward up to the previous time step. The addition
of ϕ and ψ yields a probability for Vt = true that is pro-
portional to the discounted accumulated reward up to the
current time step. We also set

Pr(Dt = true |Dt−1) =

{
k · γ , if Dt−1 = true
0 , otherwise

This ensures that when we start with Pr(D1 = true) =
1, then Pr(Dt = true) is proportional to γt−1. The fol-
lowing theorem confirms that Pr(VT = true | η) is a posi-
tive affine transformation of the value function Vη

T . It fol-
lows that a solution to the marginal-MAP inference problem
maxη Pr(VT = true | η) is an optimal controller.

Theorem 1. The following equation holds:

Pr(VT = true | η) = c1 E [

T∑
t=1

γt−1R(St, At) | η] + c2 ∀T

, where c1 ∈ ℜ+ and c2 ∈ ℜ are constants.

Proof. We first prove by induction that Pr(VT = true | η) =
(1− k) · kT−1 ·

∑T
t=1 γ

t−1 Pr(R̂T = true |ST , AT , η) ∀T .
Base case:

Pr(V1 = true | η) = (1− k) Pr(R̂1 = true |S1, A1, η)



Assume by induction that Pr(VT−1 = true | η) =
(1− k)kT−2 ∑T−1

t=1 γt−1 Pr(R̂t = true |St, At, η) then

Pr(VT = true | η) = kPr(VT−1 = true | η)
+ (1− k) Pr(DT = true)Pr(RT = true |ST , AT , η)

= k(1− k)kT−2
T−1∑
t=1

γt−1 Pr(R̂t = true |St, At, η)

+ (1− k)(kγ)T−1 Pr(RT = true |ST , AT , η)

= (1− k)kT−1
T∑

t=1

γt−1 Pr(R̂t = true |St, At, η)

Since Pr(R̂T = true |ST , AT , η) is a positive affine transfor-
mation of E [R(ST , AT | η], the theorem follows.

Corollary 1. The controller η∗ = argmaxη Pr(VT =
true | η) is optimal for the corresponding POMDP problem.

Proof. By Theorem 1 and since c1 > 0, it follows that

argmax
η

Pr(VT = true | η) = argmax
η

E [
T∑

t=1

γt−1R(St, At) | η]

Interestingly, by casting the problem of optimizing POMDP
controllers as a task of marginal-MAP probabilistic inference
in the space of finite control policies, we can achieve a com-
putational complexity reduction from PSPACE -complete to
NPPP -complete in comparison to solving the POMDP mod-
els (“search” vs. “dynamic programming”). It should be
noted here that we propose to search for the best control
policy in the restricted space of controllers that has a certain
size (limit the search space with a fixed number of nodes),
but not the best policy of the arbitrary size, as we cannot
guarantee the optimal policy in a full sense for all problems.
This way, there may be policies that are better, but have a
larger size than considered by our approach.
Further, such a reformulation of the policy optimization

task as a marginal-MAP inference problem allows for adapt-
ing a Bayesian variational framework to approximate the
marginal-MAP inference and to obtain bounded algorithmic
performance guarantees.

4. PLANNING BY MMAP INFERENCE

4.1 Summary of variational MMAP approach
To approach the task of policy optimization by marginal-

MAP inference, we derived the Bayesian variational frame-
work and developed mixed-product message-passing algo-
rithms to (a) approximate the marginal-MAP inference,
and (b) compute the upper bound of its solution specifically
for general factor graphs with cycles as it is required for
our case to optimize POMDP controllers by marginal-MAP
inference in the proposed single-DBN model.
We propose to approach the original task of marginal-

MAP inference by defining its dual variational representa-
tion and replacing the inference with an equivalent contin-
uous optimization over variational distributions, which can
be summarized as follows.

(1) We transform the original marginal-MAP problem ΦMMAP

into its dual variational form ΦMMAP
qτ in order to further de-

rive the tractable approximations and variational algorithms

Figure 2: Single-DBN “V −D” model for POMDP planning

for estimating and bounding the marginal-MAP solution
(Section 4.2): ΦMMAP

bethe (approximate) ∝ ΦMMAP
qτ (exact) ≤

ΦMMAP
ttrw (bound).

(2) To solve the equivalent variational problems (ΦMMAP
bethe ,

ΦMMAP
ttrw ) approximately and obtain performance guaran-

tees, we developed the mixed-product message-passing al-
gorithms to compute a set of optimal marginals (τ∗i , τ

∗
f ) and

the optimal configuration {X∗
B} (Section 4.3).

(3) In order to obtain an upper bound ΦMMAP
ttrw on the global

optimum and guarantee its tractability, we propose a method
to decompose the original factor graph with cycles into a
special combination of its “AB” trees with a convex com-
bination of their tractable distributions, where “sum” vari-
ables are denoted by “A” and “max” variables are denoted
by “B” (Section 4.3). We also designed a new method for
computing valid weights of “B” factors, based on the con-
cave approximation of their entropy with “double counting
numbers” (free energy “convexifying”), to convexity of the
objective TTRW free energy function [20].

We are the first to our knowledge who derived these varia-
tional problems for factor graphs with cycles, and developed
hybrid “mixed-product” algorithms to solve POMDP plan-
ning problems approximately with performance bounds. As
a reference, we used previous work on variational marginal-
MAP, developed for pairwise MRF models only [8], and work
on TRW BP for “max” and “sum”-inference [18].

4.2 Variational approximation framework
We proposed a Bayesian variational framework and de-

veloped variational algorithms specifically for general factor
graphs with cycles, as it is required in our case for marginal-
MAP inference in single-DBN inference models. Particu-
larly, we develop new variational inference algorithms to
compute an approximate solution of the marginal-MAP prob-
lem and its upper bound on the global optimum by (1) rep-
resenting the marginal-MAP problem by its special expo-
nential form (convex but intractable), (2) translating this
exponential marginal-MAP into a desirable dual variational
form (differentiable objective function) with the unique op-
timal solution to further obtain tractable approximations,



and (3) deriving the desired tractable approximate varia-
tional problems (free energies) and a special message-passing
algorithm to solve the optimization problem efficiently (op-
timal MMAP configurations {X∗

B}, approximate estimate
ΦMMAP

bethe and the upper bound ΦMMAP
ttrw for the original MMAP

problem).
In order to derive the desirable variational (dual) form of

the marginal-MAP problem with the unique optimal solu-
tion, we use the convexity properties of the exponential form
of the marginal-MAP problem ΦMMAP

θ and KL-divergence
DKL(qτ || p) =

∑
x qτ log(qτ (xA |xB)/p(xA |xB)) ≥ 0. The

KL-divergence is the measure of dissimilarity between the
variational distribution qτ (x) and the true joint distribution
p(x). Therefore, when DKL(qτ || p) = 0 then qτ (x) = p(x).
Thus, we obtain the following dual form of the variational
marginal-MAP:

ΦMMAP
qτ = max

τ∈M
E qτ [θ(x)] +H(XA |XB , qτ ) = max

τ∈M
Fmix,

(1)
where: (1) M = {τ : ∃qτ (x), s.t τf (xf ) =

∑
x\xf

qτ (x)} is

the marginal polytope with factor nodes marginals τf (xf ) of
valid variational distributions qτ ; (2) qτ is a valid variational
distribution for marginals τf ∈ M , when it is consistent
with model observations, has the same form as a true joint
and maximizes entropy H(XA |XB , qτ ); (3) E qτ [θ(x)] =∑

x qτ (x)θ(x) is the expected energy for the variational dis-
tribution qτ ; (4)H(XA |XB , qτ ) = −

∑
x qτ (x) log qτ (xA |xB)

is the conditional entropy for the variational distribution qτ ,
(5) the exponential parameter vector θ(x) =

∑
fi∈F log fi(Xfi)

is introduced to transform the original joint distribution into
its exponential form P (x) = exp[θ(x)], (6) the set of sum-
nodes xi ∈ XA and the set of max-variables xi ∈ XB .
Thus, the variational form translates the original marginal-

MAP inference problem into the problem of continuous opti-
mization of the truncated free energy Fmix over the marginals
defined by the marginal polytope M . The solution of this
problem is the variational distribution qτ∗(x), which proba-
bility mass function concentrates on the optimal set {X∗

B}.
There are two primary challenges associated with the vari-

ational representation of the marginal-MAP problem: (1) the
set of constraints M (marginal polytope) is extremely diffi-
cult to characterize in an explicit manner, and (2) the opti-
mization of the truncated free energy Fmix is computation-
ally very complex since Fmix has an indirect dependency on
the marginals from the marginal polytope M . Although we
can not solve this variational problem exactly, it allows us
to derive tractable approximations and new variational al-
gorithms to estimate and bound the marginal-MAP solution
for general cyclic factor graphs.
In order to obtain tractable approximations from the exact

variational problem ΦMMAP
qτ , we relax a complex marginal

polytopeM with a large set of constraints to a simple convex
polytope L. The derived approximate variational problems
are tractable since their dual objective function has a differ-
entiable and explicit form and it is optimized over marginals
from a set of simple linear constraints. Particularly, we sub-
stitute the maximization of the indirect objective function
maxτ∈M Fmix(qτ , θ) over the complex marginal polytope M
with the maximization of the explicit approximate function
maxτ∈L F

MMAP
bethe (τ, θ) (and FMMAP

ttrw ) over locally consistent
marginals from a convex set L with simple linear constraints:
L = {τi, τfi : τi, τfi ≥ 0;

∑
xi
τi = 1;

∑
Xfi

\xj
τfi = τj}.

We apply these results to obtain the truncated Bethe free

energy FMMAP
bethe , which optimization over convex set L pro-

vides an approximate marginal-MAP solution for cyclic fac-
tor graphs:{

ΦMMAP
qτ ≈

[
ΦMMAP

bethe = maxτ∈L F
MMAP
bethe

]
FMMAP
bethe = E τ [θ(x)] +

∑
i∈AHi(τ)−

∑
fi\fB

i
Ifi(τ)

(2)
where: (1) τi(xi), τfi(Xfi) ∈ L are locally consistent marginals
of variable and factor nodes (i ∈ V, fi ∈ F ); (2) E τ [θ(x)] =∑

fi

∑
Xfi

τfi(Xfi)θfi(Xfi) is the expected energy for marginals

τi, τfi ∈ L; (3)Hi(τ) = −
∑

xi
τi(xi) log τi(xi) is the entropy

of marginals of sum variable nodes xi ∈ XA; (4) Ifi(τ) =∑
Xfi

τfi(Xfi) log

[
τfi

(Xfi
)∏

xi∈Xfi
τi(xi)

]
is the mutual information

of “A” and “AB” factors, where each of these factors either
contains only sum variables or sum variables together with
max variables fA

i , f
AB
i ∈ F , and factors fB

i (XB) with max
variables only are excluded. The truncated Bethe free en-
ergy is not convex to guarantee a global optimality of the so-
lution. However, our experiments demonstrated that it pro-
vides a high quality approximation even for complex cyclic
factor graphs.

To compute a variational upper bound for marginal-MAP
inference, we derive a new objective function: truncated
tree-reweighted free energy FMMAP

ttrw . Optimization of the
truncated tree-reweighted free energy over marginals from
the set L allows to compute an upper bound of the MMAP
problem for our single-DBN inference model. It is impor-
tant to highlight that FMMAP

ttrw is convex by its construction
and the resulting upper bound is globally optimal.

To guarantee the tractability of the resulting upper bound,
we developed a method for splitting a factor graph with cy-
cles into a tractable combination of “AB” trees, which spe-
cial structure provides an effective elimination order (Sec-
tion 4.3). Additionally, to ensure global optimality of the
upper bound, we define certain convexity constrains for the
weights ρ of “AB” trees such that resulting decomposition
of the original graph (parameter vector θT ) into a linear
combination of tractable distributions {θT } is convex.{

ΦMMAP
qτ ≤

[
ΦMMAP

ttrw = maxτ∈L F
MMAP
ttrw

]
FMMAP
ttrw = E τ [θ(x)] +

∑
i∈AHi(τ)−

∑
fi\fB

i
ρfiIfi(τ)

(3)
where: ρfi =

∑
T∋fi

ρT is the factor appearance probability,
and a set of weights assigned to the “AB” trees is defined as:
ρ = {ρT : ρT ≥ 0,

∑
T ρT = 1,

∑
T ρT θT = θ}.

Importantly, the truncated Bethe free energy FMMAP
bethe (τ, θ)

equals to the exact truncated free energy Fmix(qτ , θ) for
tree-structured graphs. This property allows us to derive
the optimal tree-based variational bound ΦMMAP

ttrw based on
the tree-based exponential general upper bound ψ(θT , ρ).
In particular, we obtain the optimal upper bound for the
marginal-MAP problem ΦMMAP

ttrw in two steps. On the first
step, we obtain a general upper bound in the exponential
form ψ(θT , ρ) (inequality 1.2), by splitting the parameter
vector θ in the exponential form of the MMAP problem
(equality 1.1) into a linear combination of parameter vec-
tors θT of tractable distributions (“AB” trees), and then by
applying the Jensen’s inequality:

ΦMMAP
θ

1.1)
= Φ(

∑
T

ρT θ
T )

1.2)

≤
∑
T

ρTΦ(θ
T ) = ψ(θT , ρ) (4)



On the second step, we finally obtain the optimal upper
bound ΦMMAP

ttrw , by proving that optimization of the expo-
nential convex function ψ(θT , ρ) by θT with the fixed param-
eters ρ is equivalent to solving the variational optimization
problem, where we maximize the convex objective function
FMMAP
ttrw (τ ; θ) over the convex set L (equality 2.1): minθT ψ(θ

T , ρ)
2.1)
= maxτ∈L F

MMAP
ttrw (τ, θ)

maxτ∈M Fmix(qτ , θ)
2.2)

≤ maxτ∈L F
MMAP
ttrw (τ, θ)

In order to prove this equivalence, we apply the Lagrangian
dual method to optimize the convex exponential function
ψ(θT , ρ) by distributions θT with linear constrains ρ. Im-
portantly, linear constrains ρ of the θ decomposition are
enforced by Lagrangian multipliers and ensure that opti-
mal pseudo-marginals agree across all “AB” trees {θT }. We
finally obtain a desirable variational optimization problem
ΦMMAP

ttrw with differentiable and convex objective function
FMMAP
ttrw (τ ; θ), which computes the globally optimal upper

bound, by combining the results of this optimization minθT ψ(θ
T , ρ)

together with the tree-based truncated Bethe free energies
for each “A-B” tree.

4.3 Mixed-product variational MMAP algorithms
We developed a new “mixed” message-passing algorithm

specifically for the factor graphs with cycles, which allows
to compute the marginal-MAP solution efficiency by execut-
ing both the maximization and marginalization operations
within one message-propagation sweep.
In short, we derived our variational“mixed”message-passing

approach by (1) introducing an approximate free energy
F ′
mix of a special generalized form to obtain a dual dif-

ferentiable objective function, (2) obtaining the generalized
message-update rules, based on the method of Lagrangian
multipliers applied to the generalized free energy, (3) trans-
forming the generalized message-update rules into the final
“mixed” message-passing rules by minimizing the approxi-
mation error, which appears due to the generalization of the
variational objective function with the weighted entropy of
“B” nodes, and finally (4) computing both the estimate and
the upper bound of the marginal-MAP problem by apply-
ing the derived mixed-product rules to optimize the varia-
tional truncated Bethe (FMMAP

bethe ) and TTRW free energies
(FMMAP

ttrw ) respectively. Importantly, we additionally discuss
methods for computing factors weights, which have critical
impact on the validity of the resulting upper bound when
optimizing the TTRW free energy with the mix-product al-
gorithm.
In order to derive the message-passing rules for optimizing

the approximate truncated free energy, we follow a similar
approach previously introduced for sum-inference in MRF
models [18]. According to this existing approach, a message-
passing scheme for optimizing the TRW free-energy of sum-
inference problems can be derived based on the method
of Lagrangian multipliers. Unfortunately, we cannot apply
this method directly to approximate a free energy of the
marginal-MAP inference since we have to remove the en-
tropy of “B” nodes from the variational objective function
as it is required for the variational form of the marginal-
MAP problem. Thus, if we attempt to formulate the dual
Lagrangian function using the same approach, it will not
cover “max” marginals τiB , τfB

i
and related constraints. In

order to overcome this problem, we propose to “add back”

the entropy of “max” nodes to the truncated free energy
with a specific temperature coefficient ϵ. In this case, it
can be proved that such an approximate variational prob-
lem approaches the exact marginal-MAP when we enforce
(ϵ→ 0+) [8].

Thus, we “add back” the entropy of max nodes to the
truncated Bethe and TTRW free energies, and formulate the
generalized variational problem for factor graphs as follows:

max
τ∈L

F ′
mix = max

τ∈L
E τ [θ(x)] +

∑
i∈V

wiHi(τ)−
∑
fi∈F

wfiIfi(τ),

(5)
where weights wi, wfi are strictly positive and depend on
the type of the variable nodes (sum-node i ∈ A or max-node
i ∈ B) and the type of the factor nodes (“B”-factors or “A”,
“AB”-factors):

wi = 1 for any i ∈ A

wi = ϵ for any i ∈ B

wfi = ρfi for any fi ∈ FA, fi ∈ FAB

wfi = ϵ·ρfi for any fi ∈ FB

(6)

Thus, we obtained the generalized free energy, which can
now be converted into either a truncated Bethe free energy
or a TTRW free energy by setting the factor weights ρfi .
An important property of this generalized dual variational
problem is its differentiable objective function, which cov-
ers all factor and variable nodes. This property allows us
to further apply the Lagrangian multipliers method and de-
rive the mixed-product algorithm, which fixed points cor-
respond to the optimal solution of the approximate varia-
tional problem. We obtain the optimal marginals τ∗j , τ

∗
fi

by
taking derivatives of the Lagrangian dual function L(τ, λ)
(omitted due to space limitation) with respect to marginals
τj , τfi and introducing “messages” from factors to variables
as µfi→xj (xj) = exp(λfixj (xj)):

τ∗j (xj) ∝
∏

fi∈N(j)

[
µfi→xj (xj)

]1/wi (7)

τ∗fi(Xfi) ∝
∏

j∈N(fi)

[
τ∗j (xj)·

(
fi(Xfi)

µfi→xj (xj)

)1/wfi
]

(8)

Further, we ensure that these marginals are valid (τi, τfi ∈
L) by deriving such message-update rules that enforce the
normalization, non-negativity and marginalization constraints
of the locally consistent set L. Note that we explicitly en-
force normalization and non-negativity constraints (

∑
xi
τi =

1, τi, τfi ≥ 0), and we apply marginalization constraints
(
∑

Xfi
\xj

τfi(Xfi) = τj(xj)) to the equations (7) and (8),

which yield the update rules for the general messages (omit-
ted due to space limitation). Finally, we derive the final
mixed message-passing scheme for general factor graphs with
cycles. In particular, in addition to the regular sum-product
message rule, we also obtain max-product and special argmax
message rules by enforcing ϵ→ 0+ for weights of “max”vari-
able nodes and “B” factors (expression 6) in the generalized
message-update rules and applying zero temperature limit
formula together with properties of limits near infinity. This
special argmax message is particularly important, since it al-
lows to decode the joint optimal configuration for all max
variable during the message propagation.



Finally, we derive the following mixed message-passing
scheme for general factor graphs with cycles. We can com-
pute the marginal-MAP solution effectively by propagating
the proposed mixed-product messages since the proposed
algorithm allows to solve “sum” and “max” problems simul-
taneously, and to decode the optimal configuration of the
“max” from the simple node beliefs during the message prop-
agation with the “argmax” messages.

Messages from variables to factors:

µxk→fi(xk) =
∏

fh∈neighbours(xk)

µfh→xk(xk)

Messages from “A” factors to variables:

µf→xj (xj) =

[∑
∼xj

∏
k ̸=j

{
µxk→f (xk)·

(
f(Xf )

µf→xk(xk)

)1/ρf
}]ρf

Messages from “B” factors to variables:

µf→xj (xj) = max
∼xj

∏
k ̸=j

{(
µxk→f (xk)

)ρf ·( f(Xf )

µf→xk(xk)

)}
Messages from “AB” factors to variables:

µf→xj
(xj) =

[ ∑
{xA,x∗

B
\xj}

∏
k ̸=j

{
µxk→f (xk)

(
f(Xf )

µf→xk
(xk)

)1/ρf
}]ρf

where xA denotes the “sum-out” random variables and x∗B
denotes the “max-out” decision variables with their domain
restricted to the values that maximize

∏
fh
µfh→xk(xk).

Thus, we compute the marginal-MAP solution effectively
by propagating the proposed mixed-product messages since
the proposed algorithm allows to solve “sum” and “max”
problems simultaneously, and to decode the optimal con-
figuration of the “max” from the simple node beliefs during
the message propagation with the “argmax” messages. It
is important to highlight, that although we compute the
marginal-MAP configurations locally for each “max” vari-
able, we continue message-propagation and continually re-
assess configurations for all “max” nodes until its conver-
gence, where at the final convergent point each“local”marginal-
MAP solution is based on the joint set of optimal configu-
rations for all other “max” variables x∗B , xB ∈ B.
It is also important that the mixed-product algorithm al-

lows to compute not only the optimal configuration of “max”
variables, but also a TTRW upper bound and the Bethe ap-
proximation for the marginal-MAP problem (where all fac-
tors weights are set as ρf = 1). In particular, the set of
“optimal” messages obtained at the convergent point of the
mixed-product algorithm can be used to find the optimal
mixed-marginals, which are required to further compute op-
timal objective functions (free energies FMMAP

ttrw , FMMAP
bethe ).

However, to obtain a valid upper bound by optimizing
the TTRW free energy with the mixed-product algorithm,
we additionally developed (1) a new method for comput-
ing “A”,“AB” factors weights, based on the decomposition
of cyclic graphs into a convex and tractable combination of
“AB”-trees, and (2) a new method for computing the prov-
ably convex weights for“B”factors, based on the approxima-
tion of convex free energies with “double counting numbers”
[20].

“AB” trees for the TTRW mixed-product algorithm

To guarantee the tractability and global optimality of the re-
sulting upper bound, we developed a method for splitting

an original factor graph with cycles (exponential parame-
ter vector θ) into a convex, tractable combination of “AB”
trees (tractable distributions {θT }), such that the weights
assigned to “AB” trees ({ρT }) satisfy convexity constraints
(ρT ≥ 0,

∑
T ρT = 1) and θ-decomposition constraints (

∑
T ρT θT =

θ), and a structure of each “AB” tree guarantees an effective
elimination order for the marginal-MAP inference. Further,
this weighted combination of “AB” trees allows to compute
a weight of each “A”, “AB” factor as a factor appearance
probability across all of its trees: {ρf =

∑
T :f∈FT ρT }.

We formulate the following rules to construct each “AB”
tree, which special structure provides an effective elimina-
tion order for the marginal-MAP inference to guarantee the
tractability of the resulting upper bound.
Rules for constructing “AB” trees for factor graphs:

− Identify all connected components of the sub-graph
with only sum-nodes and sum-factors (GA).

− Construct a spanning forest in GA by adding at most
one “AB” factor to each connected component of GA,
and remove edges and factors to eliminate cycles.

− Validate that there are no two “AB” factors connected
to the same sum node or a sub-tree with sum nodes
and sum factors. If validation fails, remove one of such
“AB” factors from the “AB” tree.

The following algorithm summarizes the proposed results
for splitting a factor graph with cycles into a tractable, con-
vex combination of“AB”trees and computing optimized“A”,
“AB” factors weights. Optimization of factor decomposition
weights is based on a full coverage of“A”,“AB”factors with a
minimum number of “AB” trees. This property allows us to
effectively compute an upper bound for the marginal-MAP
problem and additionally to avoid possible numerical issues
when the number of “AB” trees in a graph decomposition
is large. This method allows to compute an upper bound
for the marginal-MAP solution effectively by optimizing the
TTRW free energy with the mixed-product algorithm.
Algorithm to compute weights of “A”, “AB” factors:

− Identify all connected components of the sub-graph
with only sum-nodes and sum-factors (GA).

− Identify all “AB” factors that share the same sub-set of
sum-nodes in its scope, and form a set F ′

AB with these
factors.

− For “AB” tree Ti select the “AB” factor fAB
i from the

set F ′
AB and construct the tree T ′

AAB with this “AB”

factor and all connected components of GA, which in-
clude sum-nodes from the scope of this factor.

− Select “AB” factors fAB ∈ FAB\F ′
AB and construct

trees with each of these factors and remaining sum-
nodes and sum-factors from GA\T ′

AAB .

− Add not-covered trees or separate sum-nodes from GA

to obtain a spanning forest in the sub-graph GA.

− Check if any two “AB” factors in the resulting “AB”
tree are connected by a sum-node or share the same
tree of GA. If such factors exist, then remove one of
them from the “AB” tree and add it back to the set
F ′
AB .

− Build the next “AB” tree {Ti+1} by selecting the “AB”
factor fi+1 from F ′

AB and performing the steps above.
Continue building“AB”trees until all “A”,“AB”factors
are covered.



− Compute the weight for each “AB” tree as: ρT = 1
N
,

where N is the total number of “AB” trees.

− Compute the“A”,“AB”factors weights: ρf =
∑

T :f∈FT ρT ,

f ∈ FA, FAB

However, in order to compute the upper bound with the
mixed-product algorithm, we additionally need to apply the
TTRW approximation to the generalized free energy (equa-
tion 5), which also requires the entropy of “B” nodes to be
valid and provably concave [6]. Therefore, we further pro-
pose a new method for computing the weights of “B” factors,
which provides a provably concave and valid approximation
for the entropy of “B” nodes.

Rules for computing“B”factors decomposition weights

In order to guarantee the convergence of the TTRW mixed-
product algorithm to the globally optimal upper bound, it
is critical to ensure the convexity of the variational objec-
tive function, which requires the entropy of “B” nodes to be
concave and the weights of “B” factors to satisfy convexity
and validity constraints. In order to address this problem,
we designed a new method for computing the weights of “B”
factors (ρf , f ∈ FB), based on (1) applying the concave
approximation to the entropy of “B” nodes (with certain
double counting numbers) of the TTRW variational prob-
lem (HTTRW

B ) [20], [19], and (2) ensuring that the resulting
factor weights ρfB satisfy a constraint on valid counting of
variable and factor nodes [9].
In order to construct a concave approximation of entropy

HTTRW
B , we introduce its concave decomposition based on

the method of using double counting numbers, which sat-
isfy certain convexity constraints [20]. The double counting
numbers cf , ci define a linear combination of entropies over
individual variables and factor nodes:

H(x) =
∑
f

cfHf (xf ) +
∑
i

ciHi(xi) (9)

where the double counting numbers cf , ci satisfy the con-
vexity constraint if there are exist the non-negative numbers
cff , cii, cif such that:

cf = cff +
∑

i:i∈N(f) cif

ci = cii −
∑

f :i∈N(f) cif

cif ≥ 0, cff ≥ 0, cii ≥ 0

In order to obtain a concave entropy form, which we can
further use to derive conditions for the concavity of the
HTTRW

B , we replace cf , ci with the expressions from the
convexity constraints in the entropy decomposition (equa-
tion 9):

H =
∑

f,i:i∈N(f)

cif (Hf −Hi) +
∑
f

cffHf +
∑
i

ciiHi (10)

Now we can prove that the entropy HTTRW
B is concave

with any ρfj > 0, by transforming it into a special form
which corresponds to the concave entropy form (expression 10)
with cii = 1, cff = 0, cif = ρfj > 0:

HTTRW
B =

∑
i∈B

Hi +
∑

fj∈FB

∑
i:i∈N(fj)

ρfj
(
Hfj (xfj )−Hi(xi)

)
Thus, we identified that the double counting numbers in

the concave decomposition of the entropy HTTRW
B satisfy

convexity constraints with any non-negative ρfj . However,

this concave entropy HTTRW
B is valid only if the double

counting numbers ensure a “valid counting” of factor and
variable nodes [9]: {ci = (1 −

∑
f :i∈N(f) cf ), cf = 1}. We

apply this requirement to the cf , ci in the concave decompo-
sition of HTTRW

B , and obtain that the counting of variables
is always valid with our counting numbers, while the count-
ing of factors is valid only when

∑
i:i∈N(f) ρf = 1:

cif = ρfj , cff = 0, cii = 1 :

cf =
∑

i:i∈N(f) ρf = 1

ci = 1−
∑

f :i∈N(f) ρf = 1−
∑

f :i∈N(f) cf

Further, we use this factor counting constraint to derive the
rule for computing such weights of “B” factors which guar-
antee the concavity of the “B” nodes and convexity of the
generalized TTRW objective function:

cf =
∑

i:i∈N(f)

ρf = 1 ⇒ ρf =
1

df
, df =

∑
i:i∈N(f)

1

, where df is the number of variables in scope of factor f .
Indeed, for any factor f , the equality holds and ρf ∈ (0, 1]
since each factor includes at minimum one variable. There-
fore, this method for computing“B” factors weights provides
a valid and provably concave entropy HTTRW

B , and can be
effectively used for optimizing the TTRW free energy by the
mixed-product algorithm on general factor graphs. Thus,
our new methods allow to compute valid weights for all
factors, and guarantee tractability of the mixed-product al-
gorithm and its convergence to the globally optimal upper
bound of a marginal-MAP problem for general cyclic factor
graphs with cycles.

5. EXPERIMENTAL RESULTS
We evaluated our methods using several POMDP bench-

mark problems and compared their performance to the SamIam
Bayesian solver. The Table in Figure 3 compares the log
probability (positive affine transformation of the discounted
rewards) of the policy found by exact marginal-MAP to the
Bethe approximation and the TTRW upper bound. The
planning horizon h for each problem is written in paren-
theses besides the name of each problem. The experimen-
tal analysis demonstrates that the truncated Bethe free en-
ergy provides a high quality approximation even for planning
problems with complex cyclic factor graphs. The four graphs
demonstrate convergence of approximate (blue) and upper
bound (red) algorithms to exact value (black) of lnPr(VT =
true|η) as the number of iterations of message passing in-
creases. Additionally, the experimental results reveal that
for some problems (tiger, chain) we can maintain fairly tight
upper bounds on the optimal value function, obtained by our
variational inference algorithms.

6. CONCLUSION
We demonstrated that the original task of optimizing POMDP

controllers can be casted as a problem of marginal-MAP in-
ference in a novel single-DBN model, which can be solved
by a variational hybrid “mixed-product” algorithm to obtain
an approximate solution and its upper bound. The proposed
approach is evaluated on several POMDP benchmark prob-
lems and the performance of the implemented variational
algorithms is compared to SamIam Bayesian solver. Our
future work is to optimize the weights to achieve better ac-
curacy and to scale the algorithms to problems with larger



Figure 3: Performance of the variational algorithms is evaluated on several POMDP benchmark problems

planning horizons. Additionally, further research is being
conducted on extending the proposed single-DBN inference
model to Dec-POMDP planning in multiagent settings.
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