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Abstract

This paper presents a general decision theoretic model
of interactions between users and cognitive assistive
technologies for various tasks of importance to the el-
derly population. The model is a partially observable
Markov decision process (POMDP) whose goal is to
work in conjunction with a user towards the comple-
tion of a given activity or task. This requires the model
to monitor and assist the user, to maintain indicators of
overall user health, and to adapt to changes. The key
strengths of the POMDP model are that it is able to
deal with uncertainty, it is easy to specify, it can be ap-
plied to different tasks with little modification, and it is
able to learn and adapt to changing tasks and situations.
This paper describes the model, gives a general learn-
ing method which enables the model to be learned from
partially labeled data, and shows how the model can be
applied within our research program on technologies for
wellness. In particular, we show how the model is used
in three tasks: assisted handwashing, health and safety
monitoring, and wheelchair mobility. The paper gives
an overview of ongoing work into each of these areas,
and discusses future directions.

Introduction
A growing area of activity in health technology is support
systems for older adults, possibly with cognitive or physical
disabilities, who want to continue to live independently in
their own homes i.e. age-in-place. Such systems are typi-
cally engineered for a certain task to provide guidance, as-
sistance, or emergency response (Mihailidis & Fernie 2002;
LoPresti, Mihailidis, & Kirsch 2004). However, this ap-
proach is labour intensive, and the resulting systems tend to
have no capacity to adapt over time or to different users or
tasks. In this paper, we discuss an approach to this problem:
a ubiquitous modeling technique that can adapt to users over
time. The idea is to have a single model and learning tech-
nique that can be easily applied to different tasks, without
the need to re-engineer the model.

A typical task requiring assistance consists of four prin-
cipal elements. We discuss these elements here in the con-
text of the handwashing task for cognitively disabled people,
who typically require assistance from a human caregiver to
wash their hands. An example of this is shown in Figure 1,
which shows key frames from about 15 seconds of a video
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"I want you to use some soap now"

Figure 1: Example sequence in which a user is prompted to
put soap on their hands.

of a user washing their hands, assisted by a human caregiver.
First, the task state is a characterisation of the high-level
state of the user, and is related to the goals in the task. For
example, handwashing can be described by task states that
describe whether the hands are wet or dry, dirty, soapy or
clean. In Figure 1, the user’s hands are dirty and wet at frame
1331, but become soapy and wet by frame 1745. Second, the
behavior of the user is the course of action the user takes to
change the task state. Common behaviors during handwash-
ing may be things like rinsing hands or using soap, as in
Figure 1. Third, the caregiver’s action is what the caregiver
does to help the user through the task. During handwash-
ing, these actions are typically verbal prompts or reminders
such as the “I want you to use some soap now” in Figure 1.
However, as we will show, actions can include more general
dialogue iterations, calls to other response systems, or phys-
ical control of related systems. The fourth element, the users
attitude, is the cognitive state of the user, such as their level
of responsiveness, attention, frustration with the system, and
overall level of health. The user’s expeditious reaction to the
prompt in Figure 1, for example, might give us an indication
that they are responsive, and are attending to the prompting
system. Over a longer time period, the user’s overall level
of health may change. For example, their medical condition
might take a turn for the worse, requiring attention from a
professional. Such a change may be noticeable in their re-
sponses and behaviors.

Our goal is then to design a model of the interactions be-
tween these four elements, and to optimize an automated
caregiving strategy by maximising (over the actions) some



notion of utility over the possible outcomes. The model must
be able to deal with uncertainty in the effects of actions and
in sensor measurements, it must be able to tailor to specific
individuals and circumstances, it must be able to trade off
various objective criteria (e.g., task completion, caregiver
burden, user frustration and independence), and it must be
relatively easy to specify. A partially observable Markov de-
cision process (POMDP), a decision theoretic model which
has recently received much attention in the AI community,
fulfills these constraints.

The general POMDP we present models the task and the
attitude as consequences of the behavior of the user, which
is a reaction to the actions of the caregiver. We claim that
the task will tend to be simple to specify, and can be defined
by a non-specialised person, while the attitude will require
expert knowledge, but will tend to generalise across tasks.
On the other hand, the behaviors will be much more diffi-
cult to specify. The standard approach to specifying models
of behaviors occurs in two phases. In the first phase, expert
knowledge is used to define the behaviors that will occur,
and a supervised classifier is trained to recognise these stati-
cally defined behaviors. In the second phase, a model of the
relationship between the behaviors (as given by the learned
classifier) and the task is learned. The problem with this
approach is the need to specify behaviors a priori. This is
a labor-intensive task requiring expert knowledge. Further,
different individuals perform the same behaviors in differ-
ent ways, exhibit different behaviors to perform the same
task, and change their behaviors over time, usually as a re-
sult of their changing state of health. These considerations
make it very difficult in many cases to define a single set
of recognisable behaviors. This aspect is emphasised in the
rehabilitation literature extensively (LoPresti, Mihailidis, &
Kirsch 2004). Finally, users require assistance for very dif-
ferent aspects of a task, and so recognising all possible be-
haviors may be very wasteful. Our approach is to discover
the behaviors that are being exhibited, and to learn their re-
lationship to the task simultaneously (Hoey & Little 2004).
This learning method has the dual advantage of not requir-
ing extensive a priori knowledge and training, and of being
capable of adapting to different users in different situations.

The paper first describes related work, then describes a
general POMDP model, including the observation function
and the methods for specifying, learning, and solving the
POMDP. We will then discuss the application of this gen-
eral model in our own research program on technologies for
wellness, where we focus on the development of systems
that can assist older adults in a variety of contexts – specif-
ically, completion of activities of daily living (ADL), health
and safety monitoring, and improved mobility.

Related Work
Cognitive Assistive technologies have been the subject of
much research outside the artificial intelligence community,
and are reviewed in (LoPresti, Mihailidis, & Kirsch 2004).
Most relevant to our work, a system for monitoring hand-
washing using a ceiling-mounted camera was demonstrated
in (Mihailidis, Barbenel, & Fernie 2004). The user was re-
quired to wear a patterned bracelet, the location of which

was determined by a pattern recognition algorithm. The re-
sulting location was then input to a neural network for the
recognition of predefined behaviors. This system was in-
vasive and was not learned from data. A POMDP model
for a scheduling system for the care of the elderly was de-
scribed in (Rudary, Singh, & Pollack 2004). Their work is
part of the Autominder project, which also includes design
of a robotic nursing assistant that uses a POMDP for navi-
gation purposes (Montemerlo et al. 2002). POMDPs have
recently been applied to dialogue management in care facil-
ities (Roy, Gordon, & Thrun 2003).

There has been significant progress in learning patterns
of activity from a person’s positional data. These include
data mining techniques for discovering sequences of activi-
ties from discrete data (Guralnik & Haigh 2002), and learn-
ing the parameters of a hierarchical hidden Markov model
to explain GPS data of outdoor transportation patterns (Liao
et al. 2004). We are learning a similar model, but explic-
itly add system actions and model video sequences directly
instead of only positional data. Other researchers use super-
vised techniques to build models of meeting dynamics (Ryb-
ski & Veloso 2004), office activity (Nguyen et al. 2003), and
other in-home activities (Hamid, Huang, & Essa 2003).

Our previous work, (Hoey & Little 2004; Hoey et al.
2005), showed how to learn the parameters of a fully observ-
able Markov decision process, while discovering models of
behaviors. We have also applied some preliminary versions
of the systems presented here to handwashing (Boger et al.
2005b), emergency response (Mihailidis et al. 2005) and fall
detection (Lee & Mihailidis 2005).

General Model
A discrete-time POMDP consists of: a finite set S of states;
a finite set A of actions; a stochastic transition model Pr :
S × A → ∆(S), with Pr(t|s, a) denoting the probability
of moving from state s to t when action a is taken; a fi-
nite observation set O; a stochastic observation model with
Pr(o|s) denoting the probability of making observation o
while the system is in state s; and a reward assigning reward
R(s, a, t) to state transition s to t induced by action a. Fig-
ure 2(a) shows the POMDP as a Bayesian network. Given a
specific POMDP, our goal is to find a policy that maximizes
the expected discounted sum of rewards attained by the sys-
tem. Since the system state is not known with certainty, a
policy maps either belief states (i.e., distributions over S)
or action-observation histories into choices of actions. We
will not delve into details of POMDP solution methods, but
note that current research has enabled the approximate so-
lution of very large POMDPs (Poupart & Boutilier 2004;
Hoey & Poupart 2005), and we are confident that our current
work will allow us to solve the POMDPs we are presenting
in this paper. We refer to (Lovejoy 1991) for an overview of
POMDP concepts and algorithms.

Figure 2(b) shows the same model, except that the state,
S, has been factored into three sets of variables: task (Sh),
attitude (Sp) and behavior (Sb). Here we describe each of
these sets, as well as the actions of the system, A, and the
observations from which the state of the model is inferred.
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Figure 2: (a) Two time slices of general POMDP. The state,
S, is modified by action A, and produces observation O. (b)
Two slices of factored POMDP for modeling user behavior
during interaction with cognitive assistive technology.

Task, Sb: A characterisation of the domain in which the
task is taking place in terms of a set of high-level vari-
ables. These will typically describe the physical state of
items in the task, such as the cleanliness of hands during
handwashing, or the location of a user in a mobility aid.
These variables need to be specified for each task, but they
characterise the world at a sufficiently high level to make
this accessible to a wide variety of non-technical people.

Attitude, Sp: variables describe the cognitive state of the
user. This may include the level of dementia and the
current responsiveness, or perhaps the level of frustration
the user is experiencing with the system itself. The at-
titude variables essentially describe internal properties of
the user that generalise across tasks, and would be spec-
ified by experts for the general system, and then carried
over and possibly adapted for each task through learning.

Behavior, Sb: The task states and the user’s attitude are
changed by the user’s behavior, Sb. The user’s behavior
evolves depending on the previous states of the attitude
and the task as well as the system’s action, A. The behav-
iors are probably the most difficult to manually specify,
and so are learned by the system from data.

Action, A: The actions of system modify the behavior, atti-
tude, and the task. These actions could be verbal prompts,
calls to human caregivers or other response systems, or
physical changes to the environment.

Observations, O: Task and behavior variables generate ob-
servations, Oh and Ob, respectively. We will assume here
that these observations are generated from non-invasive
sensors, such as cameras (in which case the observations
are video streams), microphones (audio streams), or envi-
ronmental switches such as thermostats.

Jointly, S = {Sb, Sp, Sh} is known as the state.
The transition function here, Pr(St|St−1, At) =
Pr(Sbt, Spt, Sht|Sbt−1, Spt−1

, Sht−1, At), is written as a
product of three terms, as follows. Pr(Sbt|St−1, At) gives
the expected behavior of the user given the previous state
and the system action. Pr(Spt|Sbt, Spt−1

, Sht−1, At) gives

the expected user state given the current behavior, the
previous attitude and task states and the system action.
Pr(Sht|Sht−1Sbt) gives the expected task state given the
current behavior and the previous task state. Notice that the
only conditional independencies introduced here are in this
last distribution: the task state is independent of the attitude,
Sp, and the action, A. The idea is that changes in the task
states are caused by the behaviors of the user, independently
of the user’s attitude or the system’s actions. The action, A,
only affects the behavior and attitude of the user, which in
turn may cause changes to the task.

The observations O = {Ob, Oh} are generated by the task
and behavior variables, Sh and Sb, respectively, through
some observation functions Pr(Oh|Sh) and Pr(Ob|Sb).
These distributions can be of many different types, depend-
ing on what the observations are. In general, however, the
time scales at which observations occur will be of much
shorter duration than those at which task or attitude change.
Observations of behaviors will typically be frames from
some video camera (at 30Hz), or some segments of an audio
stream (at 10kHz), whereas the task states will only change
every few seconds. For example, during handwashing, a typ-
ical behavior may be “putting soap on hands”, which may
take a few seconds to perform, and result in 30 video frame
observations (e.g. Figure 1), but only cause a single change
of the task state: the hands become “soapy”. Thus, the ob-
servation functions may introduce some hierarchical struc-
ture into the model.

Specifying, Learning, and Solving POMDPs
There are three steps to obtaining a working POMDP-based
system: specification, learning and solving. The POMDP
is first specified by defining a set of task and attitude vari-
ables, the observation space (what the sensors will be re-
porting to the system), a set of actions the system can take, a
reward function, and the conditional dependencies in the as-
sociated Bayesian network (Figure 2). The transition func-
tion Pr(St+1|St, A) and the observation function Pr(O|S)
are then learned from data, and the resulting POMDP is
then solved to yield a policy of action, mapping observa-
tions to actions. Ideally, these last two steps are combined
in one, and the system learns both the model and the pol-
icy online as it interacts with users, known as reinforcement
learning (RL). However, online learning requires a great deal
of exploration for the system to discover how the domain
works, so that it can exploit its knowledge (and reach goals,
etc.). This exploration can be very costly, especially in a
clinical setting with cognitively or physically disabled users.
Bayesian reinforcement learning optimises the tradeoff be-
tween exploration and exploitation by including the model
parameters as part of the state that is being estimated dur-
ing online inference (Dearden, Friedman, & Russell 1998).
The intuition is that the system should include its learning
task as one of its goals (along with the goals defined by the
domain itself). In a principled way, Bayesian RL also al-
lows incorporation of prior knowledge to reduce the need
for exploration. We integrate this prior knowledge in three
stages. First, we elicit a reward function (either manually
or automatically) from users, experts and caregiving profes-



sionals. Second, we elicit a partial transition function that
describes the dynamics of the attitude variables from data.
This information will be gathered from experts (e.g. psy-
chologists) who know how the cognitive states of a target
population change in situations of interest. Third, we learn
a prior model offline from a set of training data gathered us-
ing an existing automated system or a human caregiver (dis-
cussed below). Finally, we solve the model using an offline
dynamic programming technique (Hoey & Poupart 2005),
to yield an initial policy of action. Bayesian reinforcement
learning can then be used to adjust this model for each task
and each user. In the following, we only describe the of-
fline learning of the prior model, which is designed to yield
a model sufficient for deployment in a clinical setting. We
do not discuss the subsequent application of Bayesian RL
further in this paper.

Our method first gathers a corpus of training data using
an existing automated system, or using a human caregiver.
The training data is then be partially labeled for the task
variables by non-experts. Finally, the model is learned us-
ing the expectation-maximization (EM) algorithm (Bengio
& Frasconi 1996), which finds the model parameters that
maximize the posterior density of all observations and the
model. Denote the set of observations in the training set O,
the caregiver’s prompts A, and task states Sh. The learning
problem is to find the set of parameters Θ

∗ that maximizes
Pr(O,Sh,A,Θ), subject to constraints on the parameters,
which involves integrating over all possible user behaviors
Sb and attitudes Sp The EM algorithm eases this maximiza-
tion by writing it

arg max
Θ

[

∑

Sb,Sp

Pr(SbSp|OShΘ
′) log Pr(OS|Θ)

+ log Pr(Θ)

]

The “E” step of the EM algorithm is to compute
the expectation over the hidden behaviors and attitude,
Pr(SbSp|OShΘ

′), given Θ
′, a current guess of the param-

eter values. The “M” step is then to perform the maximiza-
tion which, in this case, can be computed analytically by tak-
ing derivatives with respect to each parameter, setting them
to zero and solving for the parameters (Bengio & Frasconi
1996). One of the most interesting aspects of this learning
method is that it discovers classes of behaviors that occur in
the data (Hoey & Little 2004).

Activity Models

We will demonstrate how to apply the POMDP model to
three tasks: prompting assistance during handwashing for
people with Alzheimer’s, emergency response for the el-
derly, and wheelchair control for the cognitively disabled.
For each task, we introduce the domain, and then give an
overview of the task and attitude variables, and of the system
actions. We then describe the observations and observation
functions, the transition dynamics, and the reward function.
Finally, we describe some of our current work.

Handwashing
Older adults living with cognitive disabilities (such as
Alzheimer’s disease or other forms of dementia) have dif-
ficulty completing activities of daily living (ADLs), and are
usually assisted by a human caregiver who prompts them
when necessary. Assistive technology will allow this el-
derly population to age-in-place by non-invasively monitor-
ing users in their homes during ADL, providing guidance or
assistance when necessary (LoPresti, Mihailidis, & Kirsch
2004). In the handwashing ADL, the user needs to get his
hands clean by progressing through stages that include us-
ing soap, turning the water on and off, rinsing and drying
his hands. A caregiver monitors the progress of the user,
issuing reminders or prompts at appropriate times.

Task The handwashing task can be described by three pri-
mary task variables: hands clean, which can be {dirty,
soapy, clean}, hands wet, which can be {wet, dry}, and
water flow, which can be {on, off}. We assume the hands
start dirty and dry, and the goal is to get them clean and
dry, which can only happen if they become soapy and wet
at some intermediate time. The water starts off and must
be off for task completion. Only the water flow has a cor-
responding observation (e.g. a water flow switch) from
which it can be observed. Other task variables are in-
volved with timing issues (such as how much time the
system has waited for, how many prompts have been is-
sued with no response, etc), and with issues related to the
user’s current performance (such as how many times they
have regressed in the task). See (Boger et al. 2005b) for
details.

Attitude The attitude of the user can play a critical role in
their ability to respond to prompts. We use two variables
for handwashing: attentiveness, describing how likely
they are to attend to the an audio prompt, and respon-
siveness, describing how likely they are to respond to a
prompt if they hear it.

Actions The system actions are the possible reminders that
can be given to the user in the form of audible cues, corre-
sponding to the canonical steps of handwashing: turn on
water, wet hands, use soap, dry hands and turn off water.
The prompts can be issued at three levels of specificity.
There is also one null action where the system waits (to
give more independence to the user), and one action of
calling for human assistance. This last action is important
for such a system: it must know when its limitations have
been reached. The goal is to reduce burden on caregivers,
not to replace caregivers entirely. Audio cues have been
found to be sufficient to decrease caregiver burden in pre-
vious studies (Mihailidis, Barbenel, & Fernie 2004).

Observations The user’s behaviors are inferred from
videos taken from an overhead camera. These behaviors
have a temporal extent over multiple video frames and
require a hierarchical observation function. The behav-
iors are learned from data, but typically correspond to the
usual activities in handwashing, such as using the soap, or
reaching for the towel (Hoey et al. 2005).

Dynamics The transition dynamics encode the progression



of the handwashing task. For example, hands become
clean if they are soapy and the user performs a behavior
of rinsing. The probability of an appropriate user behavior
as a response to prompts increases with prompt specificity
and with user responsiveness.

Reward The reward function gives a positive reward for
task completion, small negative rewards for each prompt
(encoding the preference of users to complete tasks on
their own), and a large negative reward for calling a hu-
man caregiver.

We have experimented with two simplified versions of
this POMDP. The first version uses a simplified set of vari-
ables (ignoring attitude and timing issues), and shows how
models of behaviors could be learned from data, and how
they could be subsequently used to monitor user progress
in the task (Hoey et al. 2005). The second version of
this POMDP uses an a-priori specification of the model
parameters and a simplified observation function (Boger et
al. 2005a; 2005b). Observations of hand positions are de-
rived from video frames using skin color analysis (Mihai-
lidis, Carmichael, & Boger 2004), and behaviors are defined
as the most likely location of the hands over each tempo-
ral sequence. Despite the size and complexity of the model
(over 50 million states), we were able to solve the POMDP,
producing (approximately) sequentially optimal policies for
ADL prompting. Clinical trials have been completed with
a fully observable version of this model. More trials are
planned to validate the full POMDP. Figure 3 shows an ex-
ample in which a person with dementia is prompted by the
fully observable version of the POMDP model during a clin-
ical trial.

Health Monitoring and Emergency Response
Aging-in-place is difficult for adults who live alone, pos-
sibly in rural areas where assistance may not be readily
available (Mynatt, Essa, & Rogers 2000; Mihailidis & Fer-
nie 2002). For example, they may have a heart attack or
stroke, fall, or become somehow incapacitated without the
ability to call for help. In addition to these spontaneous ad-
verse events, there may also be a gradual decline in overall
health status, both physical and cognitive, that further places
older adults at risk. There are currently several attempts
to address these issues and support aging-in-place through
the use of technological solutions, the most common be-
ing emergency response systems and health monitoring de-
vices. The most common emergency response system (ERS)
is the telephone-based personal emergency response system
(PERS), which consists of the subscriber wearing a small
help button as a necklace or wristband, and a home commu-
nicator that is connected to a residential phone line. In the
event of an emergency, the subscriber presses the help button
and is connected to a live emergency response centre, which
arranges for appropriate help, such as calling paramedics or
the person’s family. Remote health monitoring devices have
also been developed that measure and track various phys-
iological parameters, such as pulse, skin temperature, and
blood pressures (Asada et al. 2003).

However, these systems are invasive: they require the user

to wear the device at all times and/or to manually take the re-
quired measurements. Many of the PERS and physiological-
based monitoring systems are inappropriate, obtrusive and
difficult for an older adult to operate for various reasons (e.g.
require effort from the user, long training periods, etc.), and
they become ineffective during more serious emergency sit-
uations (e.g. the person has a stroke). As a result, new sys-
tems are being developed that do not require manual interac-
tion from the user, and that use non-physiological measures
to determine health (Lee & Mihailidis 2005). Here we show
how the POMDP model we have discussed can be used to
model the health monitoring and emergency response tasks.

The concept is to have cameras, microphones and speak-
ers installed throughout a home, monitoring the user’s ac-
tivities during the day (for health monitoring) and provid-
ing assistance or emergency response when needed. In this
case, there are two inputs: video and audio, which relate to
visually observable behaviors of the user and their speech
acts, respectively. This POMDP combines elements of hu-
man activity modeling (Wren et al. 1997; Oliver, Horvitz,
& Garg 2002) and dialogue management (Roy, Gordon, &
Thrun 2003; Williams, Poupart, & Young 2005).

Task Task variables include descriptors of the person’s lo-
cation, the time of day, the frequency of visits to different
locations, and whether they have fallen or not.

Attitude Attitude variables here can include overall level of
health (such as fatigue, recurrence of disease symptoms,
etc), responsiveness to prompts, current alertness level.

Actions Possible actions are questions or speech acts (dia-
logue), or calls to neighbors, caregivers, or paramedics.

Observation There are two behavior variables: the visu-
ally observable actions, such as motion (from room to
room or within a room) and unusual events (falls), and
the audible actions, such as speech acts or other noises.
The visual and audio behaviors of a user are related to the
observations of video (from cameras) and audio (from mi-
crophones) through separate observation functions. Video
observations are processed using adaptive background
subtraction and blob analysis (Wren et al. 1997). Au-
dio observations are processed using the Sphinx open-
source speech recognition engine (Walker et al. 2004),
which gives the ability to assess the observation proba-
bility Pr(o|s), where o is the audio stream and s are the
speech tokens, which correspond to the behaviors, Sb in
our model. Since the speech recognition engine uses hid-
den Markov models, this will implicitly be a hierarchi-
cal observation function. The information from the visual
modality has also been used to help the speech recogni-
tion using a microphone array and a beam-forming algo-
rithm. This allows sources of noise to be attenuated, so
that the audio signal comes mainly from the area in which
a person was observed to have fallen.

Dynamics The model encodes two distinct, but related,
functions. First, the monitoring of the overall level of
health of the person is done by the dynamics of the at-
titude and task variables. For example, if the frequency
of visits to a particular location (e.g. the bathroom) sud-
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Figure 4: Example fall detection. (a) original image showing
known regions (b) silhouette extracted using adaptive back-
ground subtraction (c) segmented image showing fall and
regions. The size, shape and location of the person in (c)
signals a fall.

denly increases, this may be an indication of the onset or
recurrence of a health condition, and the transition func-
tion will assign a higher probability to this condition as
a result of the observations of increased bathroom trips.
Similarly, the presence of the person in an unusual loca-
tion at some time of the day may also be an indication
of a changing state of health. The responses to changes
in these attitude variables may be to schedule a visit to
a doctor, or to call a family member. The second func-
tion of the system is emergency response in the case of a
fall. In this case, it is not the attitude variables that are
important, but the task variables directly. The system’s
response will be to initiate a dialogue with the person to
uncover more information, followed by possible calls to
emergency response teams.
For both of these functions of the system, speech acts will
be used to carry on dialogues in cases where the system
attempts to uncover additional information from the user,
such as whether they need help, etc. This requires some
form of dialogue management encoded in the dynamics,
which is an active area of research in POMDP model-
ing (Roy, Gordon, & Thrun 2003; Zhang et al. 2001;
Williams, Poupart, & Young 2005).

Reward Rewards are given for calling for help if undesir-
able situations are encountered (e.g. unrecoverable falls,
decline in health levels, etc.)

A preliminary version of this system has been imple-

mented (Mihailidis et al. 2005) and is currently being tested.
An example of the fall detection component is shown in Fig-
ure 4. In this preliminary work, we simply engineer a policy
of action without specifying the POMDP model, so there is
no learning. Further, the health monitoring and emergency
response systems are implemented separately. Our current
work is to combine these into a single POMDP model which
can be learned from data.

Wheelchair Mobility

Many older adults face various impairments and disabili-
ties that result in their mobility being compromised. Fur-
thermore, many of these people lack the strength to man-
ually propel themselves, and require powered wheelchairs.
However, powered wheelchairs are not appropriate for older
adults with a cognitive impairment, such as dementia or
Alzheimer’s disease, as they do not have the cognitive ca-
pacity required to effectively and safely manoeuvre the
wheelchair. In addition, their sometimes aggressive and un-
predictable behavior makes wheelchair use unsafe for both
themselves and others sharing the environment. As a result,
many care institutions (e.g. hospitals, long-term care facil-
ities, etc.) have implemented policies that restrict driving
for reasons of safety, especially for residents with cognitive
impairment.

Reduced mobility results in reduced quality of life. The
combination of social isolation, limited life space and
choice, learned dependence (e.g. requiring someone to push
a manual wheelchair), frustration, and limited autonomy
likely contributes to symptoms of depression and exacerba-
tion of cognitive impairment and undesirable behaviors. It
should also be noted that this chain reaction of symptoms re-
sulting from reduced mobility are also observed in other user
groups beyond older adults (e.g. disabled children, adults
with traumatic brain injury, etc.), thus broadening the scope
of these problems and requirements from potential solutions.

In this case, our POMDP model implements a mixed ini-
tiative controller for the powered wheelchair. Such ideas
have been explored before (Yanco 1998; Nuttin et al. 2001).
The idea is to let the user control their wheelchair indepen-
dently until potentially dangerous situations arise, at which
point the system will attempt to modify or stop the user’s



controls. The system can also act in a more passive way, is-
suing verbal prompts or reminders if unusual or detrimental
activities are noticed.

Task The wheelchair control problem can be characterised
using a map of the environment in which the wheelchair
operates, and maintaining the location and velocity of the
wheelchair within the map. The map we use is an oc-
cupancy grid (Moravec & Elfes 1985; Murray & Little
1998), which estimates the presence of an obstacle at each
2D location {x, y} in the reference frame of the (mov-
ing) wheelchair or in a global reference frame. Other task
states may also include different aspects of the user’s situ-
ation, such as their schedule, much like in the health mon-
itoring POMDP described above.

Attitude The cognitive state of the user will have a sig-
nificant impact on their ability to control a powered
wheelchair, and so we will include user alertness. User
frustration (with the wheelchair control) could also be in-
cluded here.

Actions The actions of the system will be to modify the user
actions (their behaviors), such as restricting movement in
a certain direction, or modifying the user’s control signal.
Actions will also include audio prompts or alerts, since re-
stricted movement on its own can cause confusion which
can be mitigated by appropriate verbal cues.

Observation The behaviors of the user are their driving ac-
tions on the wheelchair (use of the control joystick, for
example). They are inferred from the joystick outputs
(control to the wheelchair motors). The map and location
variables are estimated simultaneously from stereo vision
measurements (Murray & Little 1998; Elinas 2005).

Dynamics The transition function characterises the effects
of user and system controls on the map, location and ve-
locity. The dynamics, when used to compute a policy, will
give rise to implicit safety envelopes and times to collision
in terms of the actions of the system and user. For exam-
ple, if an obstacle suddenly appears in front of a moving
wheelchair, the system can predict that the only action to
avoid a collision is a hard braking one. The dynamics can
also encode the larger scale patterns of a person’s move-
ment, such as their schedule, etc, as in the health monitor-
ing case described above.

Reward The reward function will assign a large penalty for
the wheelchair coming into contact with any occupied cell
in the map, but a positive reward for the wheelchair re-
sponding to the user’s command (e.g. from a joystick).
The control policy will therefore optimise satisfaction of
user’s needs for mobility (their control commands) with
the requirements for safety in the wheelchair’s location.
Other rewards can be given for keeping the user on a
schedule, for example.

We have implemented a preliminary version this system
that uses local occupancy grid maps and a very simple colli-
sion detection/avoidance system1. The wheelchair and sen-

1This work is in collaboration with the Robot Partners group at
the University of British Columbia.

(a) (b)

(c) (d)

Figure 5: Wheelchair collision avoidance (a) Nimble
RocketTM wheelchair and BumblebeeTM stereo vision
camera (inset) (b) wheelchair camera view (c) occupancy
grid map - the wheelchair is at the bottom center - white,
black and gray cells are unoccupied, occupied and unknown
(d) stereo image - brighter is closer .

sor, and an example of a collision detection is shown in
Figure 52. Again, we have simply engineered a policy for
this case, but our current work is focussed on implement-
ing the system as POMDP and using it to derive policies of
action. Methods for global mapping and Monte-Carlo local-
isation (Elinas 2005) are also being investigated.

Conclusion and Future Work

We have described a general model for cognitive assistive
technologies interacting with users. The model deals with
uncertainty in action outcomes and in sensor measurements
in a principled way, is able to learn and adapt over time
to users and tasks, and avoids the need for extensive re-
engineering for new tasks by defining a framework for mod-
eling assistive technology. We showed three examples of the
model’s application to technologies for wellness. Our cur-
rent work is involved with the implementation and testing of
versions of the models we have described above.

A direction of interest is the combination of the models
we have presented above in a single, hierarchical frame-
work. Hierarchical POMDPs have already been described
in the literature (Theocharous, Murphy, & Kaelbling 2004),
and we believe that similar concepts can be applied here.
For example, while the health monitoring POMDP will take
care of the gross movements of a user through their home, it
can hand over control to the handwashing assistant POMDP
when the user enters the washroom, or to the wheelchair
controller when the user climbs into their mobility device.

2Also see www.cs.toronto.edu/∼jhoey/wheel
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