
Self-Adaptive Hierarchical Sentence Model

Han Zhao† Zhengdong Lu§ and Pascal Poupart†
†David R. Cheriton School of Computer Science, University of Waterloo, ON, Canada

§Noah’s Ark Lab, Huawei Technologies, Shatin, HongKong
†{han.zhao, ppoupart}@uwaterloo.ca, §lu.zhengdong@huawei.com

Abstract

The ability to accurately model a sentence at vary-
ing stages (e.g., word-phrase-sentence) plays a
central role in natural language processing. As
an effort towards this goal we propose a self-
adaptive hierarchical sentence model (AdaSent).
AdaSent effectively forms a hierarchy of represen-
tations from words to phrases and then to sentences
through recursive gated local composition of adja-
cent segments. We design a competitive mecha-
nism (through gating networks) to allow the rep-
resentations of the same sentence to be engaged
in a particular learning task (e.g., classification),
therefore effectively mitigating the gradient vanish-
ing problem persistent in other recursive models.
Both qualitative and quantitative analysis shows
that AdaSent can automatically form and select the
representations suitable for the task at hand dur-
ing training, yielding superior classification per-
formance over competitor models on 5 benchmark
data sets.

1 Introduction
The goal of sentence modeling is to represent the meaning of
a sentence so that it can be used as input for other tasks. Pre-
viously, this task was often cast as semantic parsing, which
aims to find a logical form that can describe the sentence.
With recent advances in distributed representations and deep
neural networks, it is now common practice to find a vectorial
representation of sentences, which turns out to be quite effec-
tive for tasks of classification [Kim, 2014], machine transla-
tion [Cho et al., 2014; Bahdanau et al., 2015], and semantic
matching [Hu et al., 2014].

Perhaps the simplest method in this direction is the con-
tinuous Bag-of-Words (cBoW), where the representations
of sentences are obtained by global pooling (e.g, average-
pooling or max-pooling) over their word-vectors. The word-
vectors, also known as word-embedding, can be determined
in either supervised or unsupervised fashion. cBoW, although
effective at capturing the topics of sentences, does not con-
sider the sequential nature of words, and therefore has diffi-
culty capturing the structure of sentences. There has been a

surge of sentence models with the order of words incorpo-
rated, mostly based on neural networks of various forms, in-
cluding recursive neural networks [Socher et al., 2010; 2012;
2013], recurrent neural network [Irsoy and Cardie, 2014;
Lai et al., 2015], and convolution neural network [Kalchbren-
ner et al., 2014; Kim, 2014]. These works apply levels of non-
linear transformations to model interactions between words
and the structure of these interactions can also be learned on
the fly through gated networks [Cho et al., 2014]. However
these models output a fixed length continuous vector that does
not retain intermediate information obtained during the com-
position process, which may be valuable depending on the
task at hand.

In this paper, we propose a self-adaptive hierarchical sen-
tence model (AdaSent). Instead of maintaining a fixed-
length continuous vectorial representation, our model forms
a multi-scale hierarchical representation. AdaSent is inspired
from the gated recursive convolutional neural network (gr-
Conv) [Cho et al., 2014] in the sense that the information flow
forms a pyramid with a directed acyclic graph structure where
local words are gradually composed to form intermediate rep-
resentations of phrases. Unlike cBoW, recurrent and recur-
sive neural networks with fixed structures, the gated nature of
AdaSent allows the information flow to vary with each task
(i.e., no need for a pre-defined parse tree). Unlike grConv,
which outputs a fixed-length representation of the sentence at
the top of the pyramid, AdaSent uses the intermediate repre-
sentations at each level of the pyramid to form a multiscale
summarization. A convex combination of the representations
at each level is used to adaptively give more weight to some
levels depending on the sentence and the task. Fig. 1 illus-
trates the architecture of AdaSent and compares it to cBoW,
recurrent neural networks and recursive neural networks.

Our contributions can be summarized as follows. First,
we propose a novel architecture for short sequence modeling
which explores a new direction to use a hierarchical multi-
scale representation rather than a flat, fixed-length represen-
tation. Second, we qualitatively show that our model is able
to automatically learn the representation which is suitable for
the task at hand through proper training. Third, we conduct
extensive empirical studies on 5 benchmark data sets to quan-
titatively show the superiority of our model over previous ap-
proaches.

x1

the

x2

cat

x3

sat

x4

on

x5

the

x6

mat

H

Gating Network

Classifier

Figure 1: The overall diagram of AdaSent (better viewed in
color). Flows with green and blue colors act as special cases
for recurrent neural networks and recursive neural networks
respectively (see more details in Sec. 3.2). Each level of
the pyramid is pooled and the whole pyramid reduces into
a hierarchy H, which is then fed to a gating network and a
classifier to form an ensemble.

2 Background
Let x1:T denote the input sequence with length T . Each token
xt ∈ x1:T is a V dimensional one-hot binary vector to encode
the ith word, where V is the size of the vocabulary. We use
U ∈ Rd×V to denote the word embedding matrix, in which
the jth column is the d-dimensional distributed representation
of the jth word in the vocabulary. Hence the word vectors for
the sequence x1:T is obtained by h0

1:T = Ux1:T .
In the cBoW sentence model, the representation h̄ for x1:T

is obtained by global pooling, either average pooling (Eq. 1)
or max pooling (Eq. 2), over all the word vectors:

h̄ =
1

T

T∑
t=1

h0t =
U

T

T∑
t=1

xt (1)

h̄j = max
t∈1:T

h0t j , j = 1, . . . , d (2)

It is clear that cBoW is insensitive to the ordering of words
and also the length of a sentence, hence it is likely for two dif-
ferent sentences with different semantic meanings to be em-
bedded into the same vector representation.

Recurrent neural networks [Elman, 1990] are a class of
neural networks where recurrent connections between in-
put units and hidden units are formed through time. The
sequential nature of recurrent neural networks makes them
applicable to various sequential generation tasks, e.g., lan-
guage modeling [Mikolov et al., 2010] and machine transla-
tion [Bahdanau et al., 2015; Cho et al., 2014].

Given a sequence of word vectors h0
1:T , the hidden layer

vector ht at time step t is computed from a non-linear trans-
formation of the current input vector h0t and the hidden vector
at the previous time step ht−1. Let W be the input-hidden
connection matrix, H be the recurrent hidden-hidden con-
nection matrix and b be the bias vector. Let f(·) be the
component-wise non-linear transformation function. The dy-
namics of recurrent neural networks can be described by the
following equations:{

h0 = 0
ht = f(Wh0t +Hht−1 + b)

(3)

The sentence representation h̄ is then the hidden vector ob-
tained at the last time step, hT , which summarizes all the past
words. The composition dynamics in recurrent neural net-
works can be described by a chain as in Fig. 2a.

h0 h1

x1

the

h2

x2

cat

h3

x3

sat

h4

x4

on

h5

x5

the

h6

x5

mat

H

WU

H

WU

H

WU

H

WU

H

WU

H

WU

(a) Composition process in a recurrent neural network.

x1

the

x2

cat

x3

sat

x4

on

x5

the

x5

mat

WLU WRU

WR

WLU
WLU

WR

WLU WRU

WL

WR

(b) Composition process in a recursive neural network.

Figure 2: Composition dynamics in recurrent and recursive
neural networks. The one-hot binary encoding of word se-
quences is first multiplied by the word embedding matrix U
to obtain the word vectors before entering the network.

Recursive neural networks build on the idea of compos-
ing along a pre-defined binary parsing tree. The leaves of
the parsing tree correspond to words, which are initialized
by their word vectors. Non-linear transformations are recur-
sively applied bottom-up to generate the hidden representa-
tion of a parent node given the hidden representations of its
two children. The composition dynamics in a recursive neu-
ral network can be described as h = f(WLhl +WRhr + b),
where h is the hidden representation for a parent node in the
parsing tree and hl, hr are the hidden representations for the
left and right child of the parent node, respectively. WL, WR

are left and right recursive connection matrices. Like in re-
current neural networks, all the parameters in recursive neu-
ral networks are shared globally. The representation for the
whole sentence is then the hidden vector obtained at the root
of the binary parsing tree. An example is shown in Fig. 2b.

Although the composition process is nonlinear in recur-
sive neural network, it is pre-defined by a given binary pars-
ing tree. Gated recursive convolutional neural network (gr-
Conv) [Cho et al., 2014] extends recursive neural network
through a gating mechanism to allow it to learn the structure
of recursive composition on the fly. If we consider the compo-
sition structure in a recurrent neural network as a linear chain
and the composition structure in a recursive neural network as
a binary tree, then the composition structure in a grConv can
be described as a pyramid, where word representations are lo-
cally combined until we reach the top of the pyramid, which
gives us the global representation of a whole sentence. We
refer interested readers to [Cho et al., 2014] for more details
about grConv.

3 Self-Adaptive Hierarchical Sentence Model
AdaSent is inspired and built based on grConv. AdaSent dif-
fers from grConv and other neural sentence models that try to
obtain a fixed-length vector representation by forming a hi-
erarchy of abstractions of the input sentence and by feeding
the hierarchy as a multi-scale summarization into the follow-
ing classifier, combined with a gating network to decide the
weight of each level in the final consensus, as illustrated in
Fig. 1.

3.1 Structure
The structure of AdaSent is a directed acyclic graph as shown
in Fig. 3. For an input sequence of length T , AdaSent is a
pyramid of T levels. Let the bottom level be the first level and
the top level be the T th level. Define the scope of each unit in
the first layer to be the corresponding word, i.e., scope(h1j) =

{xj},∀j ∈ 1 : T and for any t ≥ 2, define scope(htj) =

scope(ht−1j) ∪ scope(ht−1j+1). Then the tth level in AdaSent
contains a layer of T −t+1 units where each unit has a scope
of size t. More specifically, the scope of htj is {xj:j+t−1}.
Intuitively, for the sub-pyramid rooted at htj , we can interpret
htj as a top level summarization of the phrase xj:j+t−1 in the
original sentence. For example, h34 in Fig. 3 can be viewed as
a summarization of the phrase on the mat.

x1

the

x2

cat

x3

sat

x4

on

x5

the

x6

mat

H

Figure 3: Composition dynamics in AdaSent. The jth unit on
the tth level is an intermediate hidden representation of the
phrase xj:j+t−1 in the original sentence. All the units on the
tth level are then pooled to obtain the tth level representation
in the hierarchyH.

In general, units at the tth level are intermediate hidden
representations of all the consecutive phrases of length t in
the original sentence (see the scopes of units at the 3rd level
in Fig. 3 for an example). There are two extreme cases in
AdaSent: the first level contains word vectors and the top
level is a global summarization of the whole sentence.

Before the pre-trained word vectors enter into the first level
of the pyramid, we apply a linear transformation to map word
vectors from Rd to RD with D ≥ d. That way we can allow
phrases and sentences to be in a space of higher dimension
than words for their richer structures. More specifically, the
hidden representation h1

1:T at the first level of the pyramid is

h1
1:T = U ′h0

1:T = U ′Ux1:T (4)

where U ′ ∈ RD×d is the linear transformation matrix in
AdaSent and U ∈ Rd×V is the word-embedding matrix

trained with a large unlabeled corpus. Equivalently, one can
view Ũ , U ′U ∈ RD×V as a new word-embedding ma-
trix tailored for AdaSent. This factorization of the word-
embedding matrix also helps to reduce the effective number
of parameters in our model when d� D.

3.2 Local Composition and Level Pooling
The recursive local composition in the pyramid works in the
following way

htj = ωlh
t−1
j + ωrh

t−1
j+1 + ωch̃

t
j (5)

h̃tj = f(WLh
t−1
j +WRh

t−1
j+1 + bW) (6)

where j ranges from 1 to T − t + 1 and t ranges from 2 to
T . WL,WR ∈ RD×D are the hidden-hidden combination
matrices, dubbed recurrent matrices, and bW ∈ RD is a bias
vector. ωl, ωr and ωc are the gating coefficients which sat-
isfy ωl, ωr, ωc ≥ 0 and ωl + ωr + ωc = 1. Eq. 6 provides
a way to compose the hidden representation of a phrase of
length t from the hidden representation of its left t− 1 prefix
and its right t − 1 suffix. The composition in Eq. 6 includes
a non-linear transformation, which allows a flexible hidden
representation to be formed. The fundamental assumption
behind the structure of AdaSent is then encoded in Eq. 5: the
semantic meaning of a phrase of length t is a convex com-
bination of the semantic meanings of its t − 1 prefix, t − 1
suffix and the composition of these two. For example, we ex-
pect the meaning of the phrase the cat to be expressed by
the word cat since the is only a definite article, which does
not have a direct meaning. On the other hand, we also hope
the meaning of the phrase not happy to consider both the
functionality of not and also the meaning of happy. We
design the local composition in AdaSent to make it flexible
enough to catch the above variations in language while let-
ting the gating mechanism (the way to obtain ωl, ωr and ωc)
adaptively decide the most appropriate composition from the
current context.

Technically, when computing htj , ωl, ωc and ωr are
parametrized functions of ht−1j and ht−1j+1 such that they can
decide whether to compose these two children by a non-linear
transformation or simply to forward the children’s represen-
tations for future composition. For the purpose of illustration,
we use the softmax function to implement the gating mech-
anism during the local composition in Eq. 7. But note that we
are not limited to a specific choice of gating mechanism. One
can adopt more complex systems, e.g., MLP, to implement
the local gating mechanism as long as the output of the sys-
tem is a multinomial distribution over 3 categories.(

wl

wr

wc

)
= softmax(GLh

t−1
j +GRh

t−1
j+1 + bG) (7)

GL, GR ∈ R3×D and bG ∈ R3 are shared globally inside the
pyramid. The softmax function over a vector is defined as:

softmax(v) =
1∑l

i=1 exp(vi)

exp(v1)
...

exp(vl)

 , v ∈ Rl

(8)

Local compositions are recursively applied until we reach the
top of the pyramid.

It is worth noting that the recursive local composition in
AdaSent implicitly forms a weighted model average such that
each unit at layer t corresponds to a convex combination of
all possible sub-structures along which the composition pro-
cess is applied over the phrase of length t. This implicit
weighted model averaging makes AdaSent more robust to lo-
cal noises and deteriorations than recurrent nets and recur-
sive nets where the composition structure is unique and rigid.
Fig. 4 shows an example when t = 3.

)= !2
l (+ +!11

l !11
r !11

c

!2
r+ ()+ +!12

l !12
r !12

c

+ !2
c

on the mat on the mat on the mat on the mat

on the mat on the mat on the mat

on the mat

Figure 4: The hidden vector obtained at the top can be de-
composed into a convex combination of all possible hidden
vectors composed along the corresponding sub-structures.

Once the pyramid has been built, we apply a pooling op-
eration, either average pooling or max pooling, to the tth
level, t ∈ 1 : T , of the pyramid to obtain a summariza-
tion of all consecutive phrases of length t in the original sen-
tence, denoted by h̄t (see an example illustrated in Fig. 3 for
the global level pooling applied to the 3rd level in the pyra-
mid). It is straightforward to verify that h̄1 corresponds to
the representation returned by applying cBoW to the whole
sentence. [(h̄1)T , · · · , (h̄T)T]T then forms the hierarchy in
which lower level summarization in the hierarchy pays more
attention to local words or short phrases while higher level
summarization focuses more on the global interaction of dif-
ferent parts in the sentence.

3.3 Gating Network

Suppose we are interested in a classification problem, one can
easily extend our approach to other problems of interests. Let
g(·) be a discriminative classifier that takes h̄t ∈ RD as input
and outputs the probabilities for different classes. Let w(·) be
a gating network that takes h̄t ∈ RD, t = 1, . . . , T as input
and outputs a belief score 0 ≤ γt ≤ 1. Intuitively, the belief
score γt depicts how confident the tth level summarization in
the hierarchy is suitable to be used as a proper representation
of the current input instance for the task at hand. We require
γt ≥ 0,∀t and

∑T
t=1 γt = 1.

Let C denote the categorical random variable correspond-
ing to the class label. The consensus of the whole system is
reached by taking a mixture of decisions made by levels of

summarizations from the hierarchy:

p(C = c|x1:T) =

T∑
t=1

p(C = c|Hx = t) · p(Hx = t|x1:T)

=

T∑
t=1

g(h̄t) · w(h̄t) (9)

where each g(·) is the classifier and w(·) corresponds to the
gating network in Fig. 1.

3.4 Back Propagation through Structure
We use back propagation through structure (BPTS) [Goller
and Kuchler, 1996] to compute the partial derivatives of the
objective function with respect to the model parameters. Let
L(·) be our scalar objective function. The goal is to derive the
partial derivative of Lwith respect to the model parameters in
AdaSent, i.e., two recurrent matrices, WL, WR and two local
composition matrices GL, GR (and their corresponding bias
vectors):

∂L
∂WL

=

T∑
t=1

T−t+1∑
j=1

∂L
∂htj

∂htj
∂WL

,
∂L
∂WR

=

T∑
t=1

T−t+1∑
j=1

∂L
∂htj

∂htj
∂WR

(10)
The same analysis can be applied to compute ∂L

∂GL
and ∂L

∂GR
.

Taking into account the DAG structure of AdaSent, we can
compute ∂L

∂ht
j

recursively in the following way:

∂L
∂htj

=
∂L
∂ht+1

j

∂ht+1
j

∂htj
+

∂L
∂ht+1

j−1

∂ht+1
j−1

∂htj
(11)

Now consider the left and right local BP formulations:

∂ht+1
j−1

∂htj
= ωrI + ωcdiag(f ′)WR (12)

∂ht+1
j

∂htj
= ωlI + ωcdiag(f ′)WL (13)

where I is the identity matrix and diag(f ′) is a diagonal
matrix spanned by the vector f ′, which is the derivative of
f(·) with respect to its input. The identity matrix in Eq. 12
and Eq. 13 plays the same role as the linear unit recurrent
connection in the memory block of LSTM [Hochreiter and
Schmidhuber, 1997] to allow the constant error carousel to
effectively prevent the gradient vanishing problem that com-
monly exists in recurrent neural nets and recursive neural
nets. Also, the local composition weights ωl, ωr and ωc in
Eq. 12 and Eq. 13 have the same effect as the forgetting gate
in LSTM [Gers et al., 2000] by allowing more flexible credit
assignments during the back propagation process.

4 Experiments
In this section, we study the empirical performance of
AdaSent on 5 benchmark data sets for sentence and short
phrase classification and then compare it to other competi-
tor models. We also visualize the representation of the input
sequence learned by AdaSent by projecting it in a 2 dimen-
sional space using PCA to qualitatively study why AdaSent
works for short sequence modeling.

4.1 Experimental Setting
Statistics about the data sets used in this paper are listed in
Table 1. We describe each data set in detail below:

1. MR. Movie reviews [Pang and Lee, 2005]1 data set
where each instance is a sentence. The objective is to
classify each review by its overall sentiment polarity, ei-
ther positive or negative.

2. CR. Annotated customer reviews of 14 products ob-
tained from Amazon [Hu and Liu, 2004]2. The task is
to classify each customer review into positive and nega-
tive categories.

3. SUBJ. Subjectivity data set where the goal is to clas-
sify each instance (snippet) as being subjective or objec-
tive [Pang and Lee, 2004].

4. MPQA. Phrase level opinion polarity detection subtask
of the MPQA data set [Wiebe et al., 2005]3.

5. TREC. Question data set, in which the goal is to clas-
sify an instance (question) into 6 different types [Li and
Roth, 2002]4.

Data N dist(+,-) K |w| test
MR 10662 (0.5, 0.5) 2 18 CV
CR 3788 (0.64, 0.36) 2 17 CV

SUBJ 10000 (0.5, 0.5) 2 21 CV
MPQA 10099 (0.31, 0.69) 2 3 CV
TREC 5952 (0.1,0.2,0.2,0.1,0.2,0.2) 6 10 500

Table 1: Statistics of the five data sets used in this paper. N
counts the number of instances and dist lists the class dis-
tribution in the data set. K represents the number of target
classes. |w| measures the average number of words in each
instance. test is the size of the test set. For datasets which
do not provide an explicit split of train/test, we use 10-fold
cross-validation (CV) instead.

We compare AdaSent with different methods listed below on
the five data sets.

1. NB-SVM and MNB. Naive Bayes SVM and Multino-
mial Naive Bayes with uni and bigram features [Wang
and Manning, 2012].

2. RAE and MV-RecNN. Recursive autoencoder [Socher
et al., 2011] and Matrix-vector recursive neural net-
work [Socher et al., 2012]. In these two models, words
are gradually composed into phrases and sentence along
a binary parse tree.

3. CNN [Kim, 2014] and DCNN [Kalchbrenner et al.,
2014]. Convolutional neural network for sentence mod-
eling. In DCNN, the author applies dynamic k-max
pooling over time to generalize the original max pool-
ing in traditional CNN.

4. P.V.. Paragraph Vector [Le and Mikolov, 2014] is an
unsupervised model to learn distributed representations
of words and paragraphs. We use the public implemen-

1https://www.cs.cornell.edu/people/pabo/movie-review-data/
2http://www.cs.uic.edu/∼liub/FBS/sentiment-analysis.html
3http://mpqa.cs.pitt.edu/
4http://cogcomp.cs.illinois.edu/Data/QA/QC/

tation of P.V.5 and use logistic regression on top of the
pre-trained paragraph vectors for prediction.

5. cBoW. Continuous Bag-of-Words model. As discussed
above, we use average pooling or max pooling as the
global pooling mechanism to compose a phrase/sentence
vector from a set of word vectors.

6. RNN, BRNN. Recurrent neural networks and bidirec-
tional recurrent neural networks [Schuster and Paliwal,
1997]. For bidirectional recurrent neural networks, the
reader is referred to [Lai et al., 2015] for more details.

7. GrConv. Gated recursive convolutional neural net-
work [Cho et al., 2014] shares the pyramid structure
with AdaSent and uses the top node in the pyramid as a
fixed length vector representation of the whole sentence.

4.2 Training
The difficulty of training recurrent neural networks is largely
due to the notorious gradient exploding and gradient vanish-
ing problem [Bengio et al., 1994; Pascanu et al., 2013]. As
analyzed and discussed before, the DAG structure combined
with the local gating composition mechanism of AdaSent nat-
urally help to avoid the gradient vanishing problem. However,
the gradient exploding problem still exists as we observe in
our experiments. In this section, we discuss our implemen-
tation details to mitigate the gradient exploding problem and
we give some practical tricks to improve the performance in
the experiments.

Regularization of Recurrent Matrix
The root of the gradient exploding problem in recurrent neu-
ral networks and other related models lies in the large spectral
norm of the recurrent matrix as shown in Eq. 12 and Eq. 13.
Suppose the spectral norm of WL and WR � 1, then the
recursive application of Eq. 12 and Eq. 13 in the back prop-
agation process will cause the norm of the gradient vector to
explode. To alleviate this problem, we propose to penalize
the Frobenius norm of the recurrent matrix, which acts as a
surrogate (upper bound) of the corresponding spectral norm,
since 1) it is computationally expensive to compute the exact
value of spectral norm and 2) it is hard to establish a direct
connection between the spectral norm and the model param-
eters to incorporate it into our objective function. Let L(·, ·)
be our objective function to minimize. For example, when L
is the negative log-likelihood in the classification setting, our
optimization can be formulated as

minimize
1

N

N∑
i=1

L(xi, yi) + λ
(
||WL||2F + ||WR||2F

)
(14)

where xi is the training sequence and yi is the label. The
value of the regularization coefficient λ is problem depen-
dent. In our experiments, typical values of λ range from
0.01 to 5× 10−5. For all our experiments, we use minibatch
AdaGrad [Duchi et al., 2011] with the norm-clipping tech-
nique [Pascanu et al., 2013] to optimize the objective function
in Eq. 14.

5https://github.com/mesnilgr/iclr15

Implementation Details
Throughout our experiments, we use a 50-dimensional word
embedding trained using word2vec [Mikolov et al., 2013]
on the Wikipedia corpus (∼1B words). The vocabulary size
is about 300,000. For all the tasks, we fine-tune the word
embeddings during training to improve the performance [Col-
lobert et al., 2011]. We use the hyperbolic tangent function as
the activation function in the composition process as the rec-
tified linear units [Nair and Hinton, 2010] are more prone to
the gradient exploding problem in recurrent neural networks
and its related variants. We use an MLP to implement the
classifier on top of the hierarchy and use a softmax function
to implement the gating network. We also tried using MLP to
implement the gating network, but this does not improve the
performance significantly.

4.3 Experiment Results

Model MR CR SUBJ MPQA TREC
NB-SVM 79.4 81.8 93.2 86.3 -
MNB 79.0 80.0 93.6 86.3 -
RAE 77.7 - - 86.4 -
MV-RecNN 79.0 - - - -
CNN 81.5 85.0 93.4 89.6 93.6
DCNN - - - - 93.0
P.V. 74.8 78.1 90.5 74.2 91.8
cBoW 77.2 79.9 91.3 86.4 87.3
RNN 77.2 82.3 93.7 90.1 90.2
BRNN 82.3 82.6 94.2 90.3 91.0
GrConv 76.3 81.3 89.5 84.5 88.4
AdaSent 83.1 86.3 95.5 93.3 92.4

Table 2: Classification accuracy of AdaSent compared with
other models. For NB-SVM, MNB, RAE, MV-RecNN, CNN
and DCNN, we use the results reported in the corresponding
paper. We use the public implementation of P.V. and we im-
plement other methods.

The classification accuracy of AdaSent compared with
other models is shown in Table 2. AdaSent consistently out-
performs P.V., cBoW, RNN, BRNN and GrConv by a large
margin while achieving comparable results to the state-of-
the-art and using much fewer parameters: the number of pa-
rameters in our models range from 10K to 100K while in
CNN the number of parameters is about 400K6. AdaSent out-
performs all the other models on the MPQA data set, which
consists of short phrases (the average length of each instance
in MPQA is 3). We attribute the success of AdaSent on
MPQA to its power in modeling short phrases since long
range dependencies are hard to detect and represent.

Compared with BRNN, the level-wise global pooling in
AdaSent helps to explicitly model phrases of different lengths
while in BRNN the summarization process is more sensitive
to a small range of nearby words. Hence, AdaSent consis-
tently outperforms BRNN on all data sets. Also, AdaSent
significantly outperforms GrConv on all the data sets, which

6The state-of-the-art accuracy on TREC is 95.0 achieved
by [Silva et al., 2011] using SVM with 60 hand-coded features.

indicates that the variable length multi-scale representation is
key to its success. As a comparison, GrConv does not perform
well because it fails to keep the intermediate representations.
More results on using GrConv as a fixed-length sequence en-
coder for machine translation and related tasks can be found
in [Cho et al., 2014]. cBoW is quite effective on some tasks
(e.g., SUBJ). We think this is due to the language regularities
encoded in the word vectors and also the characteristics of the
data itself. It is surprising that P.V. performs worse than other
methods on the MPQA data set. This may be due to the fact
that the average length of instances in MPQA is small, which
limits the number of context windows when training P.V..

Model MR CR SUBJ
P.V. 71.11± 0.80 71.22± 1.04 90.22± 0.21
cBoW 72.74± 1.03 71.86± 2.00 90.58± 0.52
RNN 74.39± 1.70 73.81± 3.52 89.97± 2.88
BRNN 75.25± 1.33 76.72± 2.78 90.93± 1.00
GrConv 71.64± 2.09 71.52± 4.18 86.53± 1.33
AdaSent 79.84± 1.26 83.61± 1.60 92.19± 1.19

Model MPQA TREC
P.V. 67.93± 0.57 86.30± 1.10
cBoW 84.04± 1.20 85.16± 1.76
RNN 84.52± 1.17 84.24± 2.61
BRNN 85.36± 1.13 86.28± 0.90
GrConv 82.00± 0.88 82.04± 2.23
AdaSent 90.42± 0.71 91.10± 1.04

Table 3: Model variance.

We also report model variance of P.V., cBoW, RNN,
BRNN, GrConv and AdaSent in Table 3 by running each of
the models on every data set 10 times using different settings
of hyper-parameters and random initializations. We report the
mean classification accuracy and also the standard deviation
of the 10 runs on each of the data set. Again, AdaSent consis-
tently outperforms all the other competitor models on all the
data sets.

To study how the multi-scale hierarchy is combined by
AdaSent in the final consensus, for each data set, we sam-
ple two sentences with a pre-specified length and compute
their corresponding belief scores. We visualize the belief
scores of 10 sentences by a matrix shown in Fig. 5. As
illustrated in Fig. 5, the distribution of belief scores varies
among different input sentences and also different data sets.
The gating network is trained to adaptively select the most
appropriate representation in the hierarchy by giving it the
largest belief score. We also give a concrete example from
MR to show both the predictions computed from each level
and their corresponding belief scores given by the gating net-
work in Fig. 6. The first row in Fig. 6 shows the belief scores
Pr(Hx = t|x1:T),∀t and the second row shows the proba-
bility Pr(y = 1|Hx = t),∀t predicted from each level in the
hierarchy. In this example, although the classifier predicts in-
correctly for higher level representations, the gating network
assigns the first level with the largest belief score, leading to
a correct final consensus. The flexibility of multiscale repre-
sentation combined with a gating network allows AdaSent to
generalize GrConv in the sense that GrConv corresponds to
the case where the belief score at the root node is 1.0.

Figure 5: Each row corresponds to the belief score of a sen-
tence of length 12 sampled from one of the data sets. From
top to bottom, the 10 sentences are sampled from MR, CR,
SUBJ, MPQA and TREC respectively.

Figure 6: Sentence: If the movie were all comedy it might
work better but it has an ambition to say something about its
subjects but not willingness.

To show that AdaSent is able to automatically learn the
appropriate representation for the task at hand, we visualize
the first two principal components (obtained by PCA) of the
vector with the largest weight in the hierarchicy for each sen-
tence in the dataset. Fig. 7 shows the projected features from
AdaSent (left column) and cBoW (right column) for SUBJ
(1st row), MPQA (2nd row) and TREC (3rd row). During
training, the model implicitly learns a data representation that
enables better prediction. This property of AdaSent is very
interesting since we do not explicitly add any separation con-
straint into our objective function to achieve this.

5 Conclusion
In this paper, we propose AdaSent as a new hierarchical se-
quence modeling approach. AdaSent explores a new direc-
tion to represent a sequence by a multi-scale hierarchy instead
of a flat, fixed-length, continuous vector representation. The
analysis and the empirical results demonstrate the effective-
ness and robustness of AdaSent in short sequence modeling.
Qualitative results show that AdaSent can learn to represent
input sequences depending on the task at hand.

Figure 7: Different colors and patterns correspond to different
objective classes. The first, second and third rows correspond
to SUBJ, MPQA and TREC respectively and the left and right
columns correspond to AdaSent and cBoW respectively.

Acknowledgments
This work was done when the first and third authors were
respectively an intern and a visiting scholar at Noah’s Ark
Lab, Huawei Technology, Hong Kong. Han Zhao thanks Tao
Cai and Baotian Hu at Noah’s Ark Lab for their technical
support and helpful discussions. This work is supported in
part by China National 973 project 2014CB340301.

References
[Bahdanau et al., 2015] Dzmitry Bahdanau, Kyunghyun

Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. Proc. Int.
Conference on Learning Representations, 2015.

[Bengio et al., 1994] Yoshua Bengio, Patrice Simard, and
Paolo Frasconi. Learning long-term dependencies with
gradient descent is difficult. Neural Networks, 1994.

[Cho et al., 2014] Kyunghyun Cho, Bart van Merriënboer,
Dzmitry Bahdanau, and Yoshua Bengio. On the proper-
ties of neural machine translation: Encoder-decoder ap-
proaches. Eighth Workshop on Syntax, Semantics and
Structure in Statistical Translation, 2014.

[Collobert et al., 2011] Ronan Collobert, Jason Weston,
Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. Natural language processing (almost) from
scratch. Journal of Machine Learning Research, 2011.

[Duchi et al., 2011] John Duchi, Elad Hazan, and Yoram
Singer. Adaptive subgradient methods for online learning

and stochastic optimization. Journal of Machine Learning
Research, 2011.

[Elman, 1990] Jeffrey L Elman. Finding structure in time.
Cognitive science, 1990.

[Gers et al., 2000] Felix A Gers, Jürgen Schmidhuber, and
Fred Cummins. Learning to forget: Continual prediction
with lstm. Neural computation, 2000.

[Goller and Kuchler, 1996] Christoph Goller and Andreas
Kuchler. Learning task-dependent distributed represen-
tations by backpropagation through structure. In Neural
Networks, 1996.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long short-term memory. Neural
computation, 1997.

[Hu and Liu, 2004] Minqing Hu and Bing Liu. Mining and
summarizing customer reviews. In Proc. ACM SIGKDD
int. conference on Knowledge discovery and data mining,
2004.

[Hu et al., 2014] Baotian Hu, Zhengdong Lu, Hang Li, and
Qingcai Chen. Convolutional neural network architectures
for matching natural language sentences. In Advances in
Neural Information Processing Systems, 2014.

[Irsoy and Cardie, 2014] Ozan Irsoy and Claire Cardie. Deep
recursive neural networks for compositionality in lan-
guage. In Advances in Neural Information Processing Sys-
tems, 2014.

[Kalchbrenner et al., 2014] Nal Kalchbrenner, Edward
Grefenstette, and Phil Blunsom. A convolutional neural
network for modelling sentences. Proc. Annual Meeting
of the Association for Computational Linguistics, 2014.

[Kim, 2014] Yoon Kim. Convolutional neural networks for
sentence classification. Proc. Conference on Empirical
Methods in Natural Language Processing, 2014.

[Lai et al., 2015] Siwei Lai, Liheng Xu, Kang Liu, and Jun
Zhao. Recurrent convolutional neural networks for text
classification. In Proc. Conference of the Association for
the Advancement of Artificial Intelligence (AAAI), 2015.

[Le and Mikolov, 2014] Quoc V Le and Tomas Mikolov.
Distributed representations of sentences and documents.
Proc. Int. Conference on Machine learning, 2014.

[Li and Roth, 2002] Xin Li and Dan Roth. Learning ques-
tion classifiers. In Proc. Int. conference on Computational
linguistics-Volume 1, 2002.

[Mikolov et al., 2010] Tomas Mikolov, Martin Karafiát,
Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. Re-
current neural network based language model. In INTER-
SPEECH, Annual Conference of the International Speech
Communication Association, 2010.

[Mikolov et al., 2013] Tomas Mikolov, Ilya Sutskever, Kai
Chen, Greg S Corrado, and Jeff Dean. Distributed rep-
resentations of words and phrases and their composition-
ality. In Advances in Neural Information Processing Sys-
tems, 2013.

[Nair and Hinton, 2010] Vinod Nair and Geoffrey E Hinton.
Rectified linear units improve restricted boltzmann ma-
chines. In Proc. Int. Conference on Machine Learning,
pages 807–814, 2010.

[Pang and Lee, 2004] Bo Pang and Lillian Lee. A senti-
mental education: Sentiment analysis using subjectivity
summarization based on minimum cuts. In Proc. Annual
Meeting of the Association for Computational Linguistics,
2004.

[Pang and Lee, 2005] Bo Pang and Lillian Lee. Seeing stars:
Exploiting class relationships for sentiment categorization
with respect to rating scales. In Proc. Annual Meeting of
the Association for Computational Linguistics, 2005.

[Pascanu et al., 2013] Razvan Pascanu, Tomas Mikolov, and
Yoshua Bengio. On the difficulty of training recurrent neu-
ral networks. In Proc. Int. Conference on Machine learn-
ing, 2013.

[Schuster and Paliwal, 1997] Mike Schuster and Kuldip K
Paliwal. Bidirectional recurrent neural networks. Signal
Processing, 1997.

[Silva et al., 2011] Joao Silva, Luı́sa Coheur, Ana Cristina
Mendes, and Andreas Wichert. From symbolic to sub-
symbolic information in question classification. Artificial
Intelligence Review, 2011.

[Socher et al., 2010] Richard Socher, Christopher D Man-
ning, and Andrew Y Ng. Learning continuous phrase
representations and syntactic parsing with recursive neural
networks. In NIPS-2010 Deep Learning and Unsupervised
Feature Learning Workshop, 2010.

[Socher et al., 2011] Richard Socher, Jeffrey Pennington,
Eric H Huang, Andrew Y Ng, and Christopher D Man-
ning. Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Proc. Conference on Em-
pirical Methods in Natural Language Processing, 2011.

[Socher et al., 2012] Richard Socher, Brody Huval, Christo-
pher D Manning, and Andrew Y Ng. Semantic composi-
tionality through recursive matrix-vector spaces. In Proc.
Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language
Learning, 2012.

[Socher et al., 2013] Richard Socher, Alex Perelygin, Jean Y
Wu, Jason Chuang, Christopher D Manning, Andrew Y
Ng, and Christopher Potts. Recursive deep models for
semantic compositionality over a sentiment treebank. In
Proc. Conference on Empirical Methods in Natural Lan-
guage Processing, 2013.

[Wang and Manning, 2012] Sida Wang and Christopher D
Manning. Baselines and bigrams: Simple, good sentiment
and topic classification. In Proc. Annual Meeting of the
Association for Computational Linguistics: Short Papers,
2012.

[Wiebe et al., 2005] Janyce Wiebe, Theresa Wilson, and
Claire Cardie. Annotating expressions of opinions and
emotions in language. Language resources and evalua-
tion, 2005.

