
Generative Mixture of Networks
Ershad Banijamali1 Ali Ghodsi2 Pascal Popuart1

1School of Computer Science, University of Waterloo
2Department of Statistics and Actuarial Science, University of Waterloo
{sbanijam , aghodsib , ppoupart}@uwaterloo.ca

Abstract—A generative model based on training deep archi-
tectures is proposed. The model consists of K networks that are
trained together to learn the underlying distribution of a given
data set. The process starts with dividing the input data into
K clusters and feeding each of them into a separate network.
After few iterations of training networks separately, we use an
EM-like algorithm to train the networks together and update
the clusters of the data. We call this model Mixture of Networks.
The provided model is a platform that can be used for any deep
structure and be trained by any conventional objective function
for distribution modeling. As the components of the model
are neural networks, it has high capability in characterizing
complicated data distributions as well as clustering data. We
apply the algorithm on MNIST hand-written digits and Yale
face datasets. We also demonstrate the clustering ability of the
model using some real-world and toy examples.

INTRODUCTION

Deep architectures have shown excellent performance in
various tasks of learning including, but not limited to, classi-
fication and regression, dimension reduction, object detection,
and voice recognition. In this work, we focus on another task,
which is building a generative model. Generative models are
used to characterize the underlying distribution of the data and
then randomly generate samples according to their estimation
of the distribution. Recently, use of deep architectures in the
area of generative models is very popular among researchers.

Related Works

A fundamental work on deep generative models has been
done by Hinton et al. [14], where they introduced a fast
algorithm for unsupervised training of deep belief networks
(DBNs), which are deep graphical models. In a recent work by
Salakhutdinov [23], a comprehensive review over this model
is presented. Built upon this model, Lee et al. [17] pre-
sented a similar network with convolutional layers. They intro-
duced probabilistic max-pooling technique and constructed a
translation-invariant model. In [22], another generative model
based on DBNs was presented, which was used for image
feature extraction. Unsupervised deep representation learning
techniques have been used in [2] to build a generative model
that can exploit high-level features to generate high-quality
samples.

Two important and recent classes of deep generative models
are generative adversarial networks (GANs) [10] and vari-
ational auto-encoders (VAE) [16]. GANs are trained based
on solving a minimax problem to generate samples that are
not distinguishable from the samples in the training sets.
Based on the variational inference concept, VAEs are designed

for fast training and having explicit expression for posterior
probability of the latent variable. Many recent advancements
in the area of deep generative models are based on these two
models [20, 3, 5, 25].

Different types of neural networks have been used to work
as a generative model for different applications. In [11], in-
spired by a human vision system, Recurrent Neural Networks
(RNNs) are trained for generating images. [4] proposed a
method for training Convolutional Neural Networks (CNNs)
for this purpose. In [6], authors trained a deep neural network
in a supervised way to be able to generate images of different
objects given their names, locations, and angles of view.

In almost all of these works, the probability distribution of
the output of the networks do not have a well-structured form.
So, we have limited ability to extend these models and build
a mixture model based on them. In mixture of expert models
[30, 27], we have networks as the component of a mixture
of discreminative models, where we assume some specific
probability distribution on the output of the networks (i.e.
Gaussian). However, such assumption for generative models,
where the output of the network is very high-dimensional, is
not practical.

Contribution

In this work, we introduce an algorithm for training mixture
of generative models, which consists of deep networks as
its components. Instead of using the whole training dataset
to train one single network, our model is based on training
multiple smaller networks by clusters of data. By smaller
networks, we mean networks with fewer number of nodes in
hidden layers, compared to a network trained by the whole
dataset. All the above-mentioned models can be components
of this work to build a generative mixture model. The proposed
method works under the assumption that components of a
mixture model do not provide a closed form expression for
the probability distribution of their output. We provide an
algorithm which is inspired by expectation maximization (EM)
to overcome this challenge.

There are multiple advantages for the proposed algorithm
compared to its predecessors, including:

• The accuracy of the output samples is higher, as each
network is trained only with similar data points.

• After training the model, users can decide the category
of data they want to generate, instead of randomly gen-
erating samples.

• The model, like other mixture models, can be used as a
clustering method.

In the next section, the general idea of mixture models
is shortly overviewed. Then, we describe the steps of the
algorithm in detail. At last, the performance of the proposed
algorithm is evaluated, both as a clustering and a generative
model.

BACKGROUND: MIXTURE MODELS AND EM

Mixture models are used to estimate the probability distri-
bution of a given sample set where the overall distribution con-
sists of several components. For the case of parametric mixture
model, distribution of components are presumed to have some
parametric form. Let θ denote the parameter set of a mixture
model that has K components, i.e. θ = {θ1, θ2, ..., θK},
where θj represents the parameters of jth component. For
example, if the components are assumed to be Gaussian, then
θj = {µj ,Σj}. A popular way to estimate θj’s is using the
Expectation Maximization (EM) algorithm. In the expectation
(E) step of the EM algorithm, the membership probability of
each data point is calculated for all components. In fact, it is
the posterior probability over the mixture components. Let mij

be the probability of being a member of the jth component
given the ith data point, xi, i.e.:

mij = P (j|xi, θj) (1)

In the Maximization (M) step of the EM, the parameters of
each component are updated using the membership proba-
bilities. Each point contributes to updating the component
parameters based on its component membership probability.
To optimize the parameters, the E-step and M-step are consec-
utively taken until the algorithm converges to a local optimum
or the maximum number of iterations is reached.

MIXTURE OF NETWORKS

Inspired by the mixture models, we propose a combined
generative and clustering algorithm. The learning process is
completely unsupervised. Components of our model are con-
structed by networks. Neural networks have shown strong ca-
pabilities in estimating the distribution of complicated datasets.
In fact, there is no constraint on the form of the distribution
for components, e.g. Gaussian, Poisson, etc. Therefore, there
is no parameter θj for the components to describe the distri-
bution explicitly. Instead, the parameters of our model are the
weights in the networks that introduce an implicit probability
distribution at the output of the networks. We denote the set
of weights of the jth network by wj .

We train multiple networks using the training data set.
Similar to the EM algorithm, updating the network weights
is based on membership probabilities. This means that we
would like the points with high membership probability to
an specific network to play significant role in further training
that network. Therefore, the effect of different data points for
updating the parameters of each network will be different.
Each network tries to characterize one part of a multi-modal
distribution function of the training data. In this section, we

describe a mechanism that involves two steps of training and
takes this problem into account.

Steps of the training

Step 1: The process starts with clustering the training set
into K partitions using a simple and hard-decision clustering
algorithm, e.g. k-means. By hard-decision, we mean the al-
gorithm will assign data point xi to exactly one cluster with
probability one and to the rest of the clusters with probability
zero. The knee method [24] can be used to determine the
number of clusters. Suppose X is the training set with N data
points X = {x1,x2, ...,xN} in RD, and X j represents the
jth cluster in this set, X = {X 1;X 2; ...;XK}. The clustering
algorithm will divide the distribution of the training data into
K parts. Each of these parts contains similar data points and
has a smoother behavior compared to the original distribution
of the whole data set.

Each cluster of the data is used to train one network, i.e. the
jth network is trained by the jth cluster. Therefore, there will
be K networks. The structures of the networks, i.e. the number
of layers and number of neurons in each layer, are identical.
But, as we train networks with different subsets of the training
set, parameters of the networks will be different. The ultimate
goal for the networks is to minimize their defined cost function
by adjusting their parameters. The cost function is a measure
of dissimilarity between the training set and generated sample
sets of a network. Let us denote the cost function for the jth
network by Cj . w∗j is the optimum value for the jth network’s
parameters if and only if:

w∗j = arg min
wj

Cj(Xj , Y (wj)) (2)

where Y (wj) is the set of samples generated by jth network.
Mini-batch stochastic gradient descent (SGD) is used for
training to find a local optimum for wj .

Algorithm 1 Training jth network by hard-decision clusters

- Initialize the network parameter wj randomly
for t = 1 to T1 do

- Divide Xj randomly into b mini batches of size B.
for i = 1 to b do

- Choose the ith mini batch of Xj

- Generate B output samples by the jth network using
random input
- Update the network parameters

wj ← wj − α
∂Cj
∂wj

(3)

end for
end for

Algorithm 1 describes the steps of the training of jth
network using the jth cluster. The input of the network is a p-
dimensional vector whose elements are drawn independently
from a uniform distribution. The parameters of the networks
are initialized randomly. Parameter α in (3) is the learning rate.
The training process is done for T1 epochs of each cluster.

Let ŵj denote the parameters of network j after this step of
training.

Step 2: After step 1, the output of the networks tends to
be similar to their input datasets, which are clusters of the
training set. Now, we propose an iterative model that works
like the mixture models. It involves a process in which we
further train the networks and cluster the training data set
together. Clustering in this step is soft-decision, i.e. point i
belongs to cluster j with membership probability mij ∈ [0, 1].
Training the networks is also affected by these probabilities
and different points will contribute differently in updating the
parameters of the networks. However, instead of making any
assumption on the distribution of the model’s components, we
propose an updating algorithm that is based on the output of
trained networks in previous iterations. This means that if a
data point is similar to the current outputs of one network,
then it will have a high level of contribution in updating the
parameters of that network in the next iteration. Note that in
step 2 of the algorithm, the whole training set is used to train
each network.

To calculate the membership probabilities, we should have
the probability distribution function for each component or
network. As we did not impose such constraint on our model,
we use kernel similarity between the data points and the
generated samples of each network. In order to do this
measurement, we generate S samples by each of the networks.
Y j = Y (ŵj) = {yj

1,y
j
2, ...,y

j
S} represents the set of samples

generated by jth network. Let `ij denote similarity of data
point xi to the samples in Y j . Then:

`ij = p(xi|ŵj) =
1

S

S∑
r=1

k(xi,y
j
r) (4)

The kernel that we use here is Gaussian.
The membership probability also needs the prior probability

over each component, which is denoted by πj . The initial
value of πj in step 2 is: πj = |Xj |/N . Here, the membership
probability is interpreted as the probability that network j has
produced data point xi, and is given by:

mij =
`ijπj

K∑
k=1

`ikπk

(5)

Note that we should have
∑K

r=1mir = 1. Value of the prior
probabilities after the first iteration in this step is updated by:
πj = (

∑N
i=1mij)/N . Similar to the EM algorithm, we want

the effect of point xi in updating parameters of network j
(ŵj) to be proportional to mij . To do so, we multiply the
membership probabilities to the learning rate of the SGD
algorithm. If a membership is high, then the learning rate
will be high and the effect of that point will be high. If the
membership probability is low and near zero, the learning rate
will be near zero and the algorithm will not update the network
parameters based on that point.

Lets call `i = {`i1, `i2, ..., `iK} the likelihood vector
assigned to the ith data point. Suppose that likelihood of

all points for all networks are stored in an N × K matrix
L . Each row of this matrix is corresponding to one point
in the training set. Using the above procedure, this matrix
is updated iteratively (after using each epoch to update all
networks parameters). The initial value of likelihood matrix is
obtained by generating S samples using each of the trained
networks in the step 1.

In order to accelerate the learning process, we use mini-
batch SGD here, as well. We need to define mini-batch
membership. The membership of mini-batch bi of size B for
the jth network is defined as mbi,j = P (j|ŵj , {xr ∈ bi})
and:

mbi,j =
p({xr ∈ bi}|ŵj)πj

K∑
k=1

p({xr ∈ bi}|ŵk)πk

=

πj
∏

xr∈bi
`rj

K∑
k=1

πk
∏

xr∈bi
`rk

(6)

For training the network j using bi, the learning rate is multi-
plied to mbi,j . According to (6), mbi,j contains the effect of
B points together. However, these B points do not necessarily
have similar likelihood vectors. So, the multiplication in (6)
can mix the effect of important and non-important points for
training an specific network. To solve this issue we should
somehow put points which are important for training a network
together. A systematic solution is to rearrange the rows of the
likelihood matrix L at each iteration of the step 2, such that
the first N1 rows have the maximum likelihood in their first
columns, the next N2 rows have the maximum likelihood in
their second columns, and so on. In fact:

Nj = |{xi|`ij ≥ `ik , ∀k 6= j}| (7)

and obviously
∑K

k=1Nk = N . The process is similar to the
bootstrap sampling. The corresponding data points to the rows
of L are also rearranged in the same way.

Algorithm 2 Training networks using soft-decision clusters

- Initialize likelihood matrix L based on the clusters in
Step 1
for t = 1 to T2 do

- Rearrange data set X
- Divide X into bNB c mini-batches of size B.
- Compute the mini-batch memberships.
for j = 1 to K do

Choose jth network
for i = 1 to bNB c do

- Choose ith mini-batch of X
- Generate B samples by jth network
- Update the network parameters

ŵj ← ŵj −mbi,j × β
∂Cj
∂ŵj

(8)

end for
end for
- Update the likelihood matrix L

end for

Algorithm 2 summarizes the described procedure in the
step 2. Rearranging data set X in this algorithm refers to the
procedure stated above. Note that dividing the data into mini-
batches is not random in the step 2. The whole process of this
step is done for T2 epochs or iterations.

After this step, the training process is finished. Now we
have a hyper-network consists of K small networks with sim-
ilar structures but different parameters. To generate samples
randomly using the hyper-network, one of the networks is
randomly chosen based on the priors. That is, the jth network
is chosen by probability πj . To generate a sample from a
specific cluster, the corresponding network should be picked
manually. Then using a random input, the selected network
generates the desired sample.

A feature that distinguishes this model from the previous
unsupervised generative models is its capability to generate
a specific type of sample. For example, if the networks are
trained over a set of face images with different expressions,
then it can be used to generate a face in a special category
(age, expression, illumination, and etc.), e.g. ”a laughing old
man”, instead of generating samples randomly and waiting for
our desired output. This can have many applications including
automatic visualization of text.

Maximum Mean Discrepancy as the cost function

The proposed structure in this paper can be trained by any
conventional objective function at the output (for example the
objective in [6]). However, here we use the maximum mean
discrepancy (MMD), introduced by Gretton et al. [12], because
of its simplicity and effectiveness. MMD was also used in
two recent works [7, 19]. Therefore, the model parameters
are learned based on minimizing the distance between the
distribution of the samples generated by the network and
samples from the training set, using MMD.

Suppose x has distribution p and y has distribution q. Let
F be a class of functions. The squared population MMD is:

MMD2(F , p, q) =
[

sup
f∈F

(
Ex[f(x)]−Ey[f(y)]

)]2
. (9)

If F is a class of functions in the unit ball in a universal
Reproducing Kernel Hilbert-Space (RKHS), then MMD is zero
if and only if p = q [13]. In this case, MMD can also be written
in the form of a continuous kernel in that RKHS.

However, in our applications, the underlying pdf of the
sample sets are unknown. Suppose we have two sample
sets X = {x1,x2, ...,xM} and Y = {y1,y2, ...,yN}. The
unbiased empirical estimation of the squared MMD, according
to [13], for these two sets is given as:

MMD2(F ,X ,Y)= 1
M(M−1)

M∑
i=1

M∑
j 6=i

k(xi,xj)

+ 1
N(N−1)

N∑
i=1

N∑
j 6=i

k(yi,yj)− 2
MN

M∑
i=1

N∑
j=1

k(xi,yj)

(10)

We will use Gaussian kernel here too.

Making the Algorithm Faster and More Effective

Our results show that the batch membership can be very
small for most of the batches. So, for each step of training of
the networks, we only use the batches that have membership
probability more than a threshold (in our experiments 0.001)
and do not use the rest of the batches that have negligible
batch memberships. This way, the training process will be
much faster.

In [21], authors have shown that the power of kernel-based
methods, such as MMD, for two-sample test problem drops
polynomially with increasing dimensions. This suggests that
a dimension reduction is helpful as a data pre-processing
step for high-dimension datasets. Using an autoencoder is a
solution here. We train an autoencoder separately using the
complete training dataset. The networks in this scenario should
be trained using a low-dimensional version of data. At the
output of the generative networks, the decoder part of the
autoencoder is used to map the data back into the original
space. The hard-decision clustering in the first step of our
algorithm can be either performed on the original data or its
low-dimensional version.

EXPERIMENT RESULTS

To highlight the clustering capability of the proposed algo-
rithm, we first apply it on synthetic toy datasets and real-world
datasets. Then, we apply the algorithm on two real-world
datasets: MNIST hand-written digits dataset and the Yale Face
Database. In all of these experiments, the components of
the model are fully-connected networks with multiple layers.
Input to the networks is a random vector with elements
drawn independently from uniform distribution in [−1, 1]. The
number of layers, number of hidden units in each layer, and
the dimension of random input depend on the dataset. The
activation function for all hidden layers is ReLU and sigmoid
for the output layer. All hyper parameters of the model are
set by validation. For each dataset, we keep a portion of
data points only for validation. This portion is not used for
training. The validation set is also used to prevent overfitting.
We continue the training until the average log-likelihood of
the validation set is saturated.

Performance as a clustering model

Toy datasets: In this section, we use three small toy datasets
to visualize the clustering performance of the algorithm. We
call these datasets two-moon, moon-circle, and two-circle. The
first two datasets have 4000 data points and the last one
has 4500 data points. All datasets have two dimensions. The
datasets are first divided into two parts using k-means and
then fed to the model. The model has two networks. We
used similar structure for the networks for all datasets. The
networks has 3 hidden layers with 32, 128, and 32 hidden
units. The input to the network is 2-dimensional. For all of
the experiments T1 = 30, T2 = 200, and B = 100.

Fig. 1 shows the results of these experiments. As we can see,
the algorithm could learn the model parameters to identify the
natural clusters. This shows that the algorithm can successfully

(a)

(b)

(c)

Fig. 1: (a), (b), and (c) represent three different datasets. The
left figure shows the initial clustering by k-means and the right
figure shows the final clusters using the proposed method as
well as the contour of membership probability and its isolines.

characterize the distribution of data clusters. Conventional
mixture models, such as Gaussian mixture model, obviously
fail to identify these clusters for two-moon and moon-circle.
Clustering algorithms based on similarity matrices, such as
spectral clustering, could have also identified clusters, but they
do not possess the generative aspect of our model. Besides,
these algorithms usually include an eigen-decomposition step,
which is very computationally expensive when it comes to
clustering large datasets.

Real-world datasets: Here, we also evaluate the clustering
performance of the algorithm for some real-world datasets
based on clustering purity (CP). CP is defined for a labeled
dataset as a measure of matching between classes and clusters.
If {C1, C2, ..., CL} are L classes of a dataset X of size
N , then a clustering algorithm, A, which divides X into K
clusters {X1, X2, ..., XK} has CP(A, X) as:

CP(A, X) =
1

N

K∑
j=1

max
i
|Ci ∩Xj |. (11)

Note that, for our algorithm, we specify the final clusters by
assigning each point to the cluster with highest membership
probability.

Table I shows the results of clustering for four different
datasets. 1) COIL-20: 32× 32 images of 20 different objects
from different angels. Dataset has 72 images in each class.
2) Reuters-10K: Reuters dataset [9], contains 810000 English
news stories in different categories. We followed the same
procedure in [29] to obtain 10000 samples from this set in 4
categories. 3) USPS: This dataset contains 16× 16 images of
hand-written digits. 4) Isolet: This is from UCI repository and
contains the spoken alphabet letter from different individuals.
Other statistics of the datasets are mentioned in the table.
Number of clusters for these experiments are chosen to be
equal to number of classes.

We compared the performance of the algorithm with 4
other algorithms. k-means, which is used as the initial clus-
tering for our method as well. The other three algorithms
are based on spectral clustering. NCut is the classic spectral
clustering, which assigns cluster labels to the data points by
running k-means on the eigenvectors of the Laplacian matrix
of dataset graph. Local linear approach for data clustering
(LLC) [28], assigns cluster labels to each data point based
on linear combination of the kernel similarity between that
point and its neighbors. Finally, local discriminant models
and global integration (LDMGI) [31], which introduces a
novel method for the learning Laplacian matrix by employing
manifold structure and local discriminant information. LDMGI
is designed specially for image clustering and has shown very
good performance for clustering. We run experiments 10 times
to obtain the results in the table. As we can see, the proposed
algorithm achieves the best or near-best results for different
datasets. The structure of each individual network is also
mentioned in this table.

TABLE I: Comparison of clustering purity (%) for different datasets. The bold numbers show the best results among these algorithms.
d = dimensionality of the original space, n = dataset size, p = dimensionality of the low-dimensional dataset using autoencoder, L = # of
classes

Dataset d n p L k-means NCut LLC LDMGI Mix. of Nets Networks Structure

COIL-20 1024 1440 32 20 62.3±3.1 68.4±5.3 67.5±5.1 75.3±4.9 77.6±3.1 10-16-256-256-512-32
Reuters-10K 2000 10000 128 4 53.1±2.8 59.3±4.2 57.1±3.9 43.2±3.7 63.1±4.2 12-64-256-512-512-128
USPS 256 9298 32 10 64.9±3.6 73.4±6.3 70.1±3.9 80.5±5.6 78.3±3.7 10-16-256-256-512-32
Isolet 7797 617 32 26 63.7±2.8 65.7±3.4 69.3±2.7 68.8±3.6 71.3±3.0 12-32-256-256-512-32

Performance as a generative model

MNIST dataset: Samples of MNIST set are 28×28 images
of hand-written digits. The dataset consists of 60000 training
samples and 10000 test samples. We use 5000 samples in the
training set for validation and the rest for training the networks.

We first train an autoencoder, which maps the original data
to a 32-dimension space. Although, the knee method suggested
12 clusters here, we divided the training set into 10 clusters
using k-means to see if we can capture each class by a single
network. So, we will have 10 networks to be trained. The
networks have 4 hidden layers with 64, 256, 256, and 512
units. Input of the networks is 12-dimensional. Each network
is first trained by Algorithm 1 using its corresponding cluster
for 30 epochs (T1 = 30). Then using Algorithm 2, the data
points membership probabilities and network parameters are
updated up to T2 = 200 iterations. Batch size for both steps
is 100. We use weight decay as regularization to improve the
generalization of the model.

We repeated the whole process of training ten times. Using
k-means, the initial value of CP on the low dimensional
version of the data is 59.2 ± 3.1. After applying our method
CP goes up to 80.3±4.2, which is close to the state-of-the-art
clustering methods on MNIST according to [29].

Fig. 2 shows the samples generated by our model. An
evaluation measure that is commonly used for generative

TABLE II: Average log-likelihood using Parzen window for Differ-
ent generative models on MNIST dataset DBN: Deep Belief Network,
Stacked CAE: Stacked Contractive Auto-Encoder, Deep GSN: Deep
Generative Stochastic Network [1], GAN: Generative Adversarial
Network, GMMN+AE: Generative Moment Matching Network with
Autoencoder, Mixture of Networks: Our model.

MODEL AVERAGE LOG-LIKELIHOOD

DBN 138 ± 2
STACKED CAE 121 ± 1.6
DEEP GSN 214 ± 1.1
GAN 225 ± 2
GMMN+AE 282 ± 2
MIXTURE OF NETWORKS 308 ± 2.8

models is the average log-likelihood of the test set, also known
as Parzen estimation. We generated 10000 samples randomly
by the model and fit a Gaussian Parzen Window. We report
our model’s average log-likelihood of the test set for MNIST
as 308 ± 2.8. Table II shows a comparison between different
methods in terms of average log-likelihood. However, based on
[26], this evaluation for generative models can be misleading.
In fact, it has been shown that samples generated by a naive
methods may achieve higher log-likelihood, even compared to
the training data of the generative model.

Fig. 2: (a) Top: Samples generated randomly by the hyper-network using the cluster priors. The right most column shows
samples from the training set which are nearest-neighbors of their adjacent images in the low-dimension space. This column
is added to show that the generated samples are not merely a copy of the training samples. Bottom: Examples of digits of
different classes that are mis-clustered by k-means and NCut but mixture of networks clustered them correctly. (b) For each
of these 10 sub-images only one networks has been chosen to generate data. For each sub-image we generate two data points
with different shapes (top-left corner and bottom-right corner) using two different random inputs. By traversing on an straight
line in the latent space we obtain the other data points in the sub-image. As we can see, this shows that the model learns a
proper mapping between the latent space and the data space. (c) Digits is each row are generated using one network. Digits
in each of the last two columns are generated by giving identical input to different networks.

Face dataset: The other training set we used is the Cropped
Extended Yale Face Database B [18, 8]. The dataset contains
2414 near frontal images of 38 individuals under different
illuminations. The size of each image is 32 × 32. We use
214 data points for validation and the rest for training. Using
autoencoder dimension is reduced from 1024 to 128. We
employ k-means to partition the low-dimension data into
four clusters. This number is actually suggested by the knee
stability method. Then, Algorithms 1 and 2 are applied to
the four networks, consecutively. The networks have 4 hidden
layers with 32, 128, 256, and 512 units. For this dataset, the
random input is 10-dimensional. T1 = 10 (networks learn the
underlying manifold for this data fast) and T2 = 100. The mini
batches in both steps of the algorithm contain 120 samples.

Results of the simulations are demonstrated in Fig. 3.
Networks produce images in different categories. Categories
of data captured by clusters are based on lighting of the images
(front lighting, sides lighting, and no lighting). We can also see
the smooth changes in the faces when we pick one network
and traverse in the latent space. This shows that the networks
have learned a proper mapping between the latent space and
the real image space.

Fig. 3: Top: Samples generated by the hyper-network using
cluster priors. The right most column shows samples from the
training set which are nearest-neighbors of their adjacent im-
ages in the low-dimension space. Bottom: Images generated by
networks corresponding to each cluster. Each row is generated
by one network. We can see the difference in the generated
images which comes from different illuminations. The inputs
to the networks for generating each of the last two columns
are identical for all networks.

CONCLUSION AND FUTURE WORK

We proposed an algorithm for developing a generative
model using deep architectures. The algorithm has shown
advantages compared to the previous generative models, which
allows generating and clustering with high accuracy. The
efficiency of applying the algorithm on MNIST hand-written
digits and the Yale Face Database has been examined, and
results support our idea.

It will be specially interesting if a small subset of data is
labeled, or when a user has clusters a small portion of data for
us and we want to cluster the rest of the data accordingly. In
this situation the accuracy of clustering and, consequently, the
generative model will increase significantly. One application
of this setting is when a hand-written text corpus is given to
the model. If we label a small portion of the characters of
the corpus and force the algorithm to follow the same rule for
clustering the rest of the data, then we can build networks that
can mimic handwriting. A related work can be found in [15].
Another direction can be employing the Convolutional Neural
Networks, which have shown great performance in vision
tasks, instead of fully-connected networks. Then, combining
the result by a natural language processing (NLP) model can
be interesting. We can convert human language (text or voice)
into picture, automatically.

REFERENCES

[1] Y. Bengio, E. Laufer, G. Alain, and J. Yosinski. Deep
generative stochastic networks trainable by backprop. In
Proceedings of The 31st International Conference on
Machine Learning, pages 226–234, 2014.

[2] Y. Bengio, G. Mesnil, Y. Dauphin, and S. Rifai. Better
mixing via deep representations. In Proceedings of
The 30th International Conference on Machine Learning,
pages 552–560, 2013.

[3] X. Chen, Y. Duan, R. Houthooft, J. Schulman,
I. Sutskever, and P. Abbeel. Infogan: Interpretable repre-
sentation learning by information maximizing generative
adversarial nets. In Advances In Neural Information
Processing Systems, pages 2172–2180, 2016.

[4] J. Dai, Y. Lu, and Y.-N. Wu. Generative model-
ing of convolutional neural networks. arXiv preprint
arXiv:1412.6296, 2014.

[5] E. L. Denton, S. Chintala, R. Fergus, et al. Deep
generative image models using a laplacian pyramid of
adversarial networks. In Advances in neural information
processing systems, pages 1486–1494, 2015.

[6] A. Dosovitskiy, J. Tobias Springenberg, and T. Brox.
Learning to generate chairs with convolutional neural
networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1538–
1546, 2015.

[7] G. K. Dziugaite, D. M. Roy, and Z. Ghahramani. Train-
ing generative neural networks via maximum mean dis-
crepancy optimization. arXiv preprint arXiv:1505.03906,
2015.

[8] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman.
From few to many: Illumination cone models for face
recognition under variable lighting and pose. Pattern
Analysis and Machine Intelligence, IEEE Transactions
on, 23(6):643–660, 2001.

[9] Y. Y. R. T. G. GLewis, David D and F. Li. A new
benchmark collection for text categorization research.
The Journal of Machine Learning Research, 2004.

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial nets. In Advances in Neural
Information Processing Systems, pages 2672–2680, 2014.

[11] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and
D. Wierstra. Draw: A recurrent neural network for image
generation. In Proceedings of The 32nd International
Conference on Machine Learning, pages 1462–1471,
2015.

[12] A. Gretton, K. M. Borgwardt, M. Rasch, B. Schölkopf,
and A. J. Smola. A kernel method for the two-sample-
problem. In Advances in neural information processing
systems, pages 513–520, 2006.

[13] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf,
and A. Smola. A kernel two-sample test. The Journal of
Machine Learning Research, 13(1):723–773, 2012.

[14] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning
algorithm for deep belief nets. Neural computation,
18(7):1527–1554, 2006.

[15] D. P. Kingma, S. Mohamed, D. J. Rezende, and
M. Welling. Semi-supervised learning with deep gen-
erative models. In Advances in Neural Information
Processing Systems, pages 3581–3589, 2014.

[16] D. P. Kingma and M. Welling. Auto-encoding variational
bayes. In ICLR, 2014.

[17] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convo-
lutional deep belief networks for scalable unsupervised
learning of hierarchical representations. In Proceedings
of the 26th Annual International Conference on Machine
Learning, pages 609–616. ACM, 2009.

[18] K.-C. Lee, J. Ho, and D. J. Kriegman. Acquiring linear
subspaces for face recognition under variable lighting.
Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, 27(5):684–698, 2005.

[19] Y. Li, K. Swersky, and R. Zemel. Generative moment
matching networks. In Proceedings of the 32nd Inter-
national Conference on Machine Learning (ICML-15),
pages 1718–1727, 2015.

[20] A. Radford, L. Metz, and S. Chintala. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. In ICLR, 2016.

[21] A. Ramdas, S. J. Reddi, B. Póczos, A. Singh, and
L. Wasserman. On the decreasing power of kernel
and distance based nonparametric hypothesis tests in
high dimensions. In Twenty-Ninth AAAI Conference on
Artificial Intelligence, 2015.

[22] M. A. Ranzato, J. Susskind, V. Mnih, and G. Hinton. On
deep generative models with applications to recognition.

In Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, pages 2857–2864. IEEE,
2011.

[23] R. Salakhutdinov. Learning deep generative models.
Annual Review of Statistics and Its Application, 2:361–
385, 2015.

[24] S. Salvador and P. Chan. Determining the number of
clusters/segments in hierarchical clustering/segmentation
algorithms. In Tools with Artificial Intelligence, 2004.
ICTAI 2004. 16th IEEE International Conference on,
pages 576–584. IEEE, 2004.

[25] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby,
and O. Winther. Ladder variational autoencoders. In
Advances In Neural Information Processing Systems,
pages 3738–3746, 2016.

[26] L. Theis, A. v. d. Oord, and M. Bethge. A note on
the evaluation of generative models. arXiv preprint
arXiv:1511.01844, 2015.

[27] S. Waterhouse, D. MacKay, T. Robinson, et al. Bayesian
methods for mixtures of experts. In Advances In Neural
Information Processing Systems, 1996.

[28] M. Wu and B. Schlkopf. A local learning approach for
clustering. In in Proc. NIPS, pages 1529–1536, 2006.

[29] J. Xie, R. Girshick, and A. Farhadi. Unsupervised deep
embedding for clustering analysis. In Proceedings of
the 33rd International Conference on Machine Learning,
2016.

[30] L. Xu, M. Jordan, and G. Hinton. An alternative
model for mxtures of experts. In Advances In Neural
Information Processing Systems, pages 633–640, 1995.

[31] Y. Yang, D. Xu, F. Nie, S. Yan, and Y. Zhuang. Image
clustering using local discriminant models and global
integration. IEEE Transactions on Image Processing,
19:2761–2773, 2010.

