
Learning Functions on Multiple Sets using Multi-Set Transformers

Kira A. Selby1,2 Ahmad Rashid1,2,3 Ivan Kobyzev3 Mehdi Rezagholizadeh3 Pascal Poupart1,2

1Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
2Vector Institute , Toronto, Ontario, Canada

3Huawei Noah’s Ark Lab, Montreal, Quebec, Canada

Abstract

We propose a general deep architecture for learning
functions on multiple permutation-invariant sets.
We also show how to generalize this architecture
to sets of elements of any dimension by dimension
equivariance. We demonstrate that our architecture
is a universal approximator of these functions, and
show superior results to existing methods on a va-
riety of tasks including counting tasks, alignment
tasks, distinguishability tasks and statistical dis-
tance measurements. This last task is quite impor-
tant in Machine Learning. Although our approach
is quite general, we demonstrate that it can gener-
ate approximate estimates of KL divergence and
mutual information that are more accurate than
previous techniques that are specifically designed
to approximate those statistical distances.

1 INTRODUCTION

Typical deep learning algorithms are constrained to operate
on either fixed-dimensional vectors or ordered sequences of
such vectors. This is a limiting assumption which prevents
the application of neural methods to many problems, par-
ticularly those involving sets. While some investigation has
now been done into the problem of applying deep learning
to functions on sets [Lee et al., 2019, Zaheer et al., 2017],
these works all focus on the problem of learning a function
on a single input set to either a corresponding set of outputs
or a single fixed-dimensional output. Very little work has
been done on functions of multiple sets.

This work seeks to fill that gap. We propose a general archi-
tecture to learn functions on multiple permutation invariant
sets based on previous works by Zaheer et al. [2017] and
Lee et al. [2019].1 We demonstrate that this architecture is a
universal approximator of partially-permutation-invariant
functions, based on the work of Yun et al. [2019]. We demon-

strate how this architecture vastly outperforms existing ap-
proaches and several baselines on a variety of tasks, as well
as discuss how this can be applied to the special case of
learning distance functions between two sets. This latter
application allows this model to be trained as an effective
estimator of quantities such as KL divergence and Mutual In-
formation, which are highly relevant for many applications
within machine learning. Furthermore, we demonstrate how
to obtain an architecture that generalizes with the dimen-
sionality of the data by making the computation equivariant
with respect to the input dimensions.

2 RELATED WORK

Our method is based on the work of Zaheer et al. [2017],
who originally drew attention to the problem of using neural
networks to approximate functions on permutation-invariant
sets. We draw particularly from the work of Lee et al. [2019],
who extended this work to use transformer-based models on
sets.

Gui et al. [2021] also address the idea of designing neural
networks to learn functions between multiple permutation-
invariant sets. Their work, however, focuses on graph em-
beddings as a primary application, and does not consider
estimating distances or divergences. Their method also relies
on a more simplistic architecture that has been criticized in
Wagstaff et al. [2019a], whereas our proposed architecture
has a number of theoretical and empirical advantages.

3 METHOD

3.1 BACKGROUND

Consider first the problem of learning a function upon a
single set X = {x1, ..., xn} in Rd. As discussed in the

1https://github.com/krylea/
partial-invariance

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

ar
X

iv
:2

20
6.

15
44

4v
1

 [
cs

.L
G

]
 3

0
Ju

n
20

22

mailto:<kaselby@uwaterloo.ca>?Subject=Multi-Set Transformers (UAI)
https://github.com/krylea/partial-invariance
https://github.com/krylea/partial-invariance

work of Zaheer et al. [2017], this general problem takes
on one of two forms: the permutation-equivariant and -
invariant cases. In the permutation-equivariant case, the
function takes the form f : 2R

d → 2R
d′

, and must obey
the restriction that permutations of the inputs correspond to
identical permutations of the outputs - i.e. for a permutation
π,

f(π(X)) = π(f(X))

In the permutation-invariant case, the function takes the
form f : 2R

d → Rd′ , and must obey the restriction that
permutations of the inputs correspond to no change in the
output - i.e.

f(π(X)) = f(X)

Zaheer et al. [2017] proposed an architecture to learn such
functions that we will refer to as the sum-decomposition
architecture (following Wagstaff et al. [2019a]). This archi-
tecture proposes to learn permutation-invariant functions
using the model:

f(X) = ρ

(∑
x∈X

φ(x)

)
(1)

Each member of the set x is encoded into a latent representa-
tion φ(x), which are then summed and decoded to produce
an output. While this architecture is adequate for some pur-
poses, it is also very simple, and has difficulty modeling
interactions between multiple elements in the set. In par-
ticular, Wagstaff et al. [2019b] proved in their paper that
sum-decomposable architectures such as this require each
element to be mapped to a latent vector with latent size at
least as large as the maximum number of elements in the
input set in order to be universal approximators of func-
tions on sets. Practically speaking, this is a major restriction
when working with large sets, because this introduces a hard
maximum on the size of the input set for a given latent size.

Lee et al. [2019] improved on this architecture in their paper,
proposing an architecture they referred to as ‘Set Transform-
ers’. Based on their architecture, we can present a general
model for attention-based models on sets as follows. Let
MHA(X,Y) be the standard multiheaded attention opera-
tion defined in Vaswani et al. [2017] with queries X and
keys/values Y . We define a single transformer block by:

ATTN(X) = LN(X + MHA(X,X))

T (X) = LN(ATTN(X) + FF(ATTN(X)))
(2)

wherein LN is the Layer Norm operation [Ba et al., 2016],
and FF is a 2-layer feedforward network with ReLU activa-
tion applied independently to each element in the set. Note
that this transformer block lacks positional encodings, and
is thus a permutation-equivariant operation.

In order to create a general set transformer model, we can
stack multiple of these blocks followed by a pooling opera-

tion Γ and a decoder ρ to obtain:

f(X) = ρ

(
Γ
X

Tl(Tl−1(...T1(X))

)
(3)

The Set Transformer architecture bears some similarities
to another model proposed by Santoro et al. [2017]. They
propose a simpler permutation-invariant architecture called
"relation networks", which follow the model:

f(X) = ρ

∑
xi∈X

∑
xj∈X

θ(xi, xj)

 (4)

wherein ρ is again a decoder, and θ is a feedforward pairwise
encoder which encodes the relationship between each pair
of elements in X .

In general, we can consider all three of these architectures to
consist of an equivariant encoder φ on the set X , followed
by a pooling operation Γ and decoder ρ:

f(X) = ρ

(
Γ
X

φ(X,X)

)
(5)

In both the Set Transformer and Relation Network case,
φ(X,X) can be written as

φ(X,X) = Λ
X

θ(X,X) (6)

where θ(X,X) is a pairwise encoder that computes an en-
coding of each pair (xi, xj), then Λ is a form of pooling
operation that reduces this N ×N encoding matrix into a
single vector for each element in X . For the base relation
network architecture, θ is simply a feedforward neural net,
and both pooling operations take the form of sums. For the
set transformer architecture, φ(X,X) is the multiheaded
self-attention operator, with θ(X,X) being the dot product
of the transformed queries and keys and Λ consisting of a
softmax and matrix multiplication by the transformed value
matrix. The pooling operator Γ is given by the pooling-by-
multiheaded-attention (PMA) operator defined in Lee et al.
[2019].

3.2 MULTIPLE SETS

We propose to extend these methods to the case of multiple
permutation invariant sets - which we refer to as the case of
partial permutation invariance. We say a function f : 2R

d×
2R

d → Rd′ is partially permutation invariant if ∀π1, π2 it
obeys the property:

f(π1(X), π2(Y)) = f(X,Y)

Similarly, we say a function f : 2R
d × 2R

d → 2R
d × 2R

d

is
partially permutation equivariant if it obeys the property:

f(π1(X), π2(Y)) = (π1(fX(X,Y)), π2(fY (X,Y)))

Figure 1: Diagram of the Multi-Set Transformer and Multi-Set Attention Block

Gui et al. [2021] propose a similar definition in their work,
where they define a partially permutation invariant model:

f(X1, ..., Xm) = ρ

(∑
x∈X1

φ1(x), ...,
∑
x∈Xm

φm(x)

)
(7)

As mentioned previously, this sum-decomposition architec-
ture has a number of limitations, and instead we choose to
follow the method of Lee et al. [2019]. This architecture is
also advantageous for other reasons related specifically to
the modelling of distance functions. Models such as trans-
formers which explicitly model the relationship between
pairs of elements in a set carry a useful inductive bias for
learning distance functions. Consider the case of computing
the Wasserstein distance, wherein computing the ground
distance (e.g. euclidean distance) between every pair of ele-
ments of the sets is a necessary step. Similarly for quantities
such as KL divergence, methods such as the algorithm of
Wang et al. [2009] often rely on nearest-neighbour distances
as a useful proxy for the concentration of the distribution.

3.3 OUR MODEL

We choose to instead begin from the model presented in
Equation 5. In order to generalize this, let us now consider
applying these architectures to the case where the single
input X is now replaced by X

⊔
Y - the concatenation of

the two inputs X and Y . When the encoder acts upon this
input, φ(X,X) is replaced by:

φ(X
⊔
Y,X

⊔
Y) = Λ

X
⊔
Y

(
θ(X,X) θ(X,Y)
θ(Y,X) θ(Y, Y)

)
(8)

Instead of having a single encoder learn these four relation-
ships, we can split θ into four separate pair encoders: θXX ,
θXY , θY X , and θY Y . Rather than pooling over the entirety

of the joint set X
⊔
Y , we pool over only the first input:

φxx(X,X) = Λ
X

θxx(X,X)

φxy(X,Y) = Λ
X

θxy(X,Y)

φyx(Y,X) = Λ
Y

θyx(Y,X)

φyy(Y, Y) = Λ
Y

θyy(Y, Y)

In this manner, each encoder learns the relationships be-
tween one of the four pairs of sets separately. This informa-
tion can then be recombined to produce output encodings:

φx(X,Y) = gx(φxx(X,X), φxy(X,Y))

φy(X,Y) = gy(φyx(Y,X), φyy(Y, Y))

Equation 5 then becomes

f(X,Y) = ρ

(
Γ
X

φx(X,Y),Γ
Y

φy(X,Y)

)
(9)

This structure satisfies the property of partial permutation
equivariance, and allows the model to retain the benefits of
explicitly representing relationships between each pair of
elements and each pair of sets. This general model can now
be used to extend any single-set model defined by Equation
5 - including both Set Transformers and Relation Networks.

3.4 MULTI-SET TRANSFORMER

The primary architecture we consider is the multi-set trans-
former architecture, which follows from constructing the
model defined in Equation 9 with transformer encoders as
φ. We define the multi-set attention block MSAB(X,Y) =
(ZX , ZY) where

ZX = X + gx(Txx(X,X), Txy(X,Y)) (10)
ZY = Y + gy(Tyx(Y,X), Tyy(Y, Y)) (11)

(a) d = 2 (b) d = 10 (c) d = 20

Figure 2: Plot of absolute error in predicted mutual information for correlated Gaussian data with 2d, 10d and 20d marginals
for our model and baselines.

and where Tab(A,B) is a transformer block as defined in
Eq. 2, and the functions g are 1-layer feedforward networks
with ReLU activations which are applied to the element-
wise concatenation of the outputs of the two transformer
blocks. These MSABs can now be treated like regular trans-
former blocks and stacked to form a deep encoder. Figure 1
illustrates our model with MSABs. We can then define a
multi-set analogue of Eq. 3:

f(X,Y) = ρ

(
Γ
X

φx(X,Y),Γ
Y

φy(X,Y)

)
(12)

φ is an encoder formed of stacked MSABs, which produces
outputs of ZX and ZY . These outputs are then pooled over
X and Y independently, concatenated, then passed into a
feedforward decoder to produce the final output. See Section
A of the supplementary material for a detailed discussion of
how our multi-set attention model is derived from a single-
set attention block.

3.5 VARIABLE-DIMENSION ENCODERS

Another application of permutation-invariance that will be
particularly useful when discussing distance functions is
invariance to the input dimension itself. Applying the princi-
ples of permutation invariance to the input dimension itself,
we can arrive at a formulation where the model is in fact
invariant to the input dimension, and can accept inputs of
any size. A traditional machine learning pipeline in - for
example - NLP might learn an embedding scheme in which
different dimensions encode different semantic represen-
tations of the input sequence, and should thus be treated
differently from one another. In order to compute a func-
tion such as the Wasserstein distance or KL divergence on
a diverse array of distributions, however, each dimension
must be treated symmetrically. In the setting of statistical
distances, this representation of the input dimension carries
an inductive bias that is useful for the model, and generally
leads to improved performance.

Zaheer et al. [2017] propose a simplistic form of this in
their original paper. They demonstrate that a linear layer
with a weight matrix that takes the form Θ = λI + γ11T

is equivariant with respect to the input dimension. This
essentially corresponds to a neural network that computes:

yi = λxi + γ
∑
i

xi

Each output is thus computed from a constant multiple of
the corresponding input added to a multiple of the sum of all
inputs. This has some unfortunate properties, however, since
it is constrained to an output size that is exactly equal to the
input size at every layer. The solution to this is to introduce
multiple channels. Instead of mapping each input dimension
to a single output dimension, each input dimension can be
mapped to a multichannel output. Multiple encoder layers
can thus be stacked, each acting only on this multichannel
representation of the input dimensions, and treating the
input dimension itself as a batch dimension. Then, after
these encoder layers are applied, a pooling operation can
be introduced over the input dimension to obtain a fixed
dimensional output. This procedure allows inputs of any
size to be mapped to a fixed dimension encoding.

In accordance with this, we propose an analogous multi-
channel transformer block, wherein the weight matrices are
applied similarly as multichannel transformations which
treat the input dimension as a batch dimension. A standard
multiheaded attention block receives inputs X,Y ∈ Rn×d
and computes:

MHA(X,Y) = σ
(
(XWQ)(YWK)T

)
YWVWO (13)

Our multichannel attention block instead is a function from
Rn×d×nc × Rm×d×nc to Rn×d×nc which computes:

A = σ

(
d∑
i=1

(X:,iWQ)(Y:,iWK)T

)
MHA(X,Y):,i = AY:,iWVWO

Our multichannel transformer architecture consists of an
initial projection from a single input channel up to k input

channels, followed by nb multichannel transformer blocks,
followed by a max pooling over the input dimension d.
This is also compatible with the Multi-Set Attention Block
architecture, in which case the multichannel transformer
blocks are replaced by multichannel MSABs, with a max
pooling at the end as before.

4 THEORETICAL ANALYSIS

We demonstrate that our proposed multi-set transformer
architecture is a universal approximator on partially per-
mutation equivariant functions, and that combined with a
pooling layer it is also a universal approximator of partially
permutation invariant functions.

First, some preliminaries. We will follow the notation in Yun
et al. [2019], for their Theorem 2 forms a foundation for the
theorem we will state shortly. Let FPE be the class of all
continuous permutation-equivariant functions with compact
support from Rd×n to Rd×n. Given f, g : Rd×n → Rd×n
and 1 ≤ p ≤ ∞, let

dp(f, g) =

(∫
‖f(X)− g(X)‖ppdX

)1/p

(14)

Let th,m,r : Rd×n → Rd×n denote a transformer block with
an attention layer with h heads of size m and a feedforward
layer with r hidden nodes. Then, let T h,m,r define the class
of functions g : Rd×n → Rd×n such that g consists of a
composition of transformer blocks of the form th,m,r. We
can now restate Theorem 2 from Yun et al. [2019], which is
given by:

Theorem 4.1. Let 1 ≤ p ≤ ∞ and ε > 0, then for any
given f ∈ FPE there exists a transformer network g ∈
T 2,1,4 such that dp(f, g) ≤ ε. [Yun et al., 2019]

To extend this to the case of partial permutation equivari-
ance, we must now modify these definitions slightly. Let
FPPE be the class of all continuous partially-permutation-
equivariant functions on two sets with compact support from
Rd×n × Rd×m to Rd×n × Rd×m. Let ch,m,r : Rd×n ×
Rd×m → Rd×n × Rd×m denote a multi-set attention block
with attention layers with h heads of sizem and feedforward
layers with r hidden nodes, and let T h,m,rC define the class
of functions g : Rd×n×Rd×m → Rd×n×Rd×m such that
g consists of a composition of MSABs of the form ch,m,r.
Our theorem now states:

Theorem 4.2. Let 1 ≤ p ≤ ∞ and ε > 0, then for any
given f ∈ FPPE there exists a multi-set transformer net-
work g ∈ T 2,2,4

C such that dp(f, g) ≤ ε.

A proof of Theorem 4.2 is given in Section C of the supple-
mentary material. If we define FPPI to be the class of all
continuous partially-permutation-invariant functions on two

sets with compact support from Rd×n × Rd×m to Rd, this
now directly leads to the corollary:

Corollary 4.3. Let 1 ≤ p ≤ ∞ and ε > 0, then for
any given f ∈ FPPI there exists a function f(X,Y) =
max g(X,Y) such that dp(f, g) ≤ ε, wherein g ∈ T 2,2,4

C is
a multi-set transformer network.

Observe that this corollary follows directly from Theorem
4.2, since for any function f ∈ FPPI we can construct
g ∈ FPPE such that g(X,Y):,j = f(X,Y) ∀j (i.e., a
set of outputs where each entry simply contains f(X,Y)).
f thus obeys the equation f(X,Y) = maxj g(X,Y):,j .
Therefore, any function in f ∈ FPPI can be expressed as a
pooling function applied to a function g ∈ FPPE and f can
thus be approximated by a multi-set transformer network by
simply approximating g as per Theorem 4.2.

5 EXPERIMENTS

In order to evaluate the model, we consider several tasks,
including a number of simple image-based set tasks as well
as the aforementioned distance functions. We compare our
model against the PINE model proposed in [Gui et al., 2021],
as well as a number of single-set models. For those base-
lines, we take a single-set architecture such as Deep Sets
(Single-Set RFF), Relation Networks (Single-Set RN) or
Set Transformers (Single-Set Transformer), compute pooled
representations for each of X and Y , then concatenate these
representations and pass them into a feedforward decoder.
Finally, we also compare to a simple transformer baseline
wherein a Set Transformer is applied to the union X

⊔
Y

(Union Transformer).

We also consider several variants and ablations of our model.
The two variants of our model include Multi-Set Trans-
former and Multi-Set RN (Relation Networks). In the lat-
ter, transformer blocks are replaced by relation network
blocks for the four encoders, with max pooling operations
for both Λ and Γ. Then, we also consider several abla-
tions of our model. First, we consider a variant where
gx(Txx(X,X), Txy(X,Y)) = Txx(X,X) + Txy(X,Y)
(referred to as Sum-Merge). Second, we consider modifica-
tions to the four-block encoder structure itself by removing
TXX and TY Y - leaving only the cross terms TXY and TY X
(referred as Cross-Only). Finally, the single set transformer
baseline (Single-Set Transformer) can itself be considered
an ablation of our model with the cross-set blocks removed
instead of the same-set blocks. For all experiments we per-
form three trials and report the average and standard devia-
tion.

Hyperparameter settings for all experiments and other de-
tails can be found in Section B of the supplementary mate-
rial.

d=2 d=4 d=8 d=16

Baselines

KNN 0.2047 0.5662 4.0584 28.0382
PINE 0.1737 ± 0.0003 0.4958 ± 0.0011 2.0804 ± 0.0004 10.534 ± 0.0109
Single-Set RFF 0.1219 ± 0.0114 0.4400 ± 0.0159 1.7770 ± 0.0119 8.0078 ± 0.1636
Single-Set RN 0.1555 ± 0.0007 0.5264 ± 0.0019 2.1425 ± 0.0032 9.5963 ± 1.6214
Single-Set ST 0.0732 ± 0.0032 0.2601 ± 0.0043 1.6885 ± 0.0337 7.5911 ± 0.2125
Union Transformer 0.1747 ± 0.0004 0.4990 ± 0.0006 2.2665 ± 0.0006 9.7316 ± 0.0457

Our Model

Multi-Set Transformer 0.0731 ± 0.0011 0.1903 ± 0.0082 0.9212 ± 0.0186 11.105 ± 0.0717
Multi-Set RN 0.1061 ± 0.0020 0.3926 ± 0.0144 1.5170 ± 0.0430 7.4002 ± 0.1263
Cross-Only 0.0792 ± 0.0019 0.1968 ± 0.0014 0.9926 ± 0.0351 5.4214 ± 0.1694
Sum-Merge 0.0699 ± 0.0008 0.1953 ± 0.0047 0.9320 ± 0.0138 10.5080 ± 0.0662
Multi-Set-Transformer-Equi 0.0726 ± 0.0017 0.1917 ± 0.0020 0.8002 ± 0.0222 4.7000 ± 0.2966

Table 1: Mean absolute error of models trained on Gaussian mixture data for estimating KL divergence.

5.1 STATISTICAL DISTANCES

One particular application of partially-permutation-invariant
models that is worth highlighting is their ability to learn to
approximate statistical distances between distributions such
as the KL divergence or mutual information. Both Mutual In-
formation and the KL divergence are useful metrics that are
widely used in a variety of settings within machine learning,
and both are very difficult to estimate for any but the sim-
plest distributions. We consider both our proposed model,
as well as the dimension-equivariant model discussed in
Sect. 3.5.

5.1.1 KL Divergence

Training the estimator to learn the KL divergence has unique
challenges, as calculating the ground truth requires the log
likelihood for both the source and target distributions. In
order to train our model to learn the KL divergence between
a general class of distributions, we need to find a class of
models that are effective universal approximators and also
admit a tractable log likelihood. The most obvious class
of models fitting this criteria is that of Gaussian mixture
models. We generate Gaussian mixtures with a uniformly
random number of components (between 1 and 10) and
mixture weights sampled from a uniform Dirichlet distri-
bution. The means of each Gaussian are generated from a
uniform distribution, and the covariance matrices are gen-
erated by multiplying a correlation matrix sampled from
a Lewandowski-Kurowicka-Joe (LKJ) distribution (with
ν = 5) by a vector of covariances distributed according to a
log-normal distribution (with µ0 = 0, σ0 = 0.3).

Each training example consists of a random number of
points X ∼ pX and a random number of points Y ∼ pY
(with NX , NY ∈ [100, 150]). The ground truth is estimated
by a Monte Carlo estimate of the true KL divergence using

the closed-form log likelihoods, with the generated points
X as the samples. We normalize the generated data by com-
puting the mean and covariance across both X and Y , then
applying a whitening transformation

[X ′;Y ′] = Σ
−1/2
XY ([X;Y]− µXY) (15)

under which the KL divergence is invariant.

We compare our model (with and without dimension-
equivariance) against the aforementioned baselines, as
well as the k-nearest-neighbours estimator of Wang et al.
[2009]. Table 1 shows the mean average error of each
model on Gaussian mixture data, averaged over 3 runs. Our
model has the lowest error on all dimensions considered.
The dimension-equivariant model performed approximately
equal to the standard transformer model in low dimension,
but performed significantly better in high dimension.

Convergence was a significant issue with the GMM data in
higher dimensions, since as the dimensionality increased the
true KL divergence of the generated distributions would of-
ten explode. This effect was especially notable when the con-
centration parameter of the LKJ distribution was small, but
always occurs once the dimensionality gets large enough.

5.1.2 Mutual Information

We also show the effectiveness of our method for estimat-
ing mutual information. Following previous work [Belghazi
et al., 2018, Kraskov et al., 2004], we use Gaussians with
componentwise correlations ρ ∈ (−1, 1), with standardized
Gaussian marginals. Training examples are generated in a
similar fashion as in the KL case, with a ρ sampled uni-
formly from the interval (−1, 1), then a random number
of samples between 100 and 150 drawn from the resulting
distribution for each of X and Y. We plot the performance
of our model for varying values of ρ compared to both the

Omniglot MNIST

Model Acc L1 Acc L1

Baselines

Pine 0.6618 ± 0.0133 0.8237 ±0.0056 0.4682 ±0.0039 1.2438 ±0.0413
Single-Set RFF 0.6310 ±0.0021 0.8915 ±0.0424 0.4421 ±0.0122 1.3633 ±0.0282
Single-Set RN 0.6724 ± 0.0059 0.8110 ± 0.0094 0.5369 ± 0.0977 1.0971 ± 0.2182
Single-Set Transformer 0.7242 ± 0.0031 0.7329 ± 0.0056 0.9123 ± 0.0338 0.4664 ± 0.0622
Union Transformer 0.6296 ± 0.0009 0.8680 ± 0.0094 0.5339 ± 0.0034 1.1110 ± 0.0055

Our Models

Multi-Set Transformer 0.8538 ± 0.0077 0.5431 ± 0.0115 0.9746 ± 0.0038 0.3136 ± 0.0124
Multi-Set RN 0.8699 ± 0.0048 0.5166 ± 0.0076 0.9782 ± 0.0104 0.3184 ± 0.0564
Cross-Only 0.8189 ± 0.0342 0.5929 ± 0.0516 0.9723 ± 0.0015 0.3128 ± 0.0109
Sum-Merge 0.8544 ± 0.0071 0.5416 ± 0.0080 0.9784 ± 0.0011 0.2600 ± 0.0151

Table 2: Average accuracy and L1 error of each model on the MNIST and Omniglot counting tasks across 3 runs (higher is
better for accuracy and lower for L1).

Kraskov et al. [2004] and MINE [Belghazi et al., 2018] base-
lines in 2, 10 and 20 dimensions (see Fig. 2). Our model
performs somewhat worse than the other methods shown in
the 2-dimensional case, but is almost indistinguishable from
the ground truth in the 10 and 20-dimensional cases. Note
also that while methods such as MINE must be trained on a
particular dataset in order to predict its mutual information,
our method need only be trained once, and can then be used
for inference on any similar dataset wthout retraining.

5.2 IMAGE TASKS

We begin by looking at a selection of tasks similar to those
considered by Lee et al. [2019] and Zaheer et al. [2017].
We study the model’s ability to perform a number of simple
set-based operations between sets of images. When working
with image or text data, each example was first individually
encoded as a fixed-size vector using an appropriate image
or text encoder, then passed through the set based model.

5.2.1 Counting Unique Images

For the first task, the models were given input sets consist-
ing of images of characters. The task was to identify the
number of unique characters that were shared between the
two input sets of a variable number of images drawn from
the MNIST and Omniglot [Lake et al., 2015] datasets (6-10
images for Omniglot, 10-30 images for MNIST). For this
task, we used simple CNN encoders that were pretrained on
the input datasets as classifiers for a short number of steps,
then trained end to end with the set-based model. We found
that our models convincingly outperformed the alternatives
- achieving almost 98% accuracy on the MNIST task and
83-85% accuracy on the Omniglot task (see Table 2). In
each case, our models outperformed the baselines by con-
siderable margins. The RN-based model outperformed the

transformer model by a margin of about 1.5% on the Om-
niglot task, and they performed equivalently on the MNIST
task. The ablations performed largely similarly to the base
model, with degraded performance only in the case of the
Cross-Only model on the Omniglot dataset.

5.2.2 Alignment

While the first task was purely synthetic, this second task
is representative of a general class of applications for this
model - predicting alignment between two sets. The first
example of this we chose was image captioning on the
MSCOCO dataset. The models were given a set of 8-15
images and a set of captions of the same size, and tasked
to predict the probability that the two sets were aligned
- i.e. that the given set of captions consisted of captions
for the given set of images. For this task, we used the pre-
trained models BERT and ResNet-101 as encoders for the
text and images respectively. For the second example, we
chose to use cross-lingual embeddings. Lample et al. [2018]
show that there is a geometric relationship between learned
FastText embeddings across languages. As such, the model
should be able to predict the alignment between sets of
embeddings in one language and sets of embeddings in an-
other. We show the model a set of 10-30 embeddings in
English and another set of the same size of embeddings in
French. The model is tasked to predict whether or not the
embeddings in the two sets correspond to the same words.

Results on these tasks are shown in Table 3. Our model
performed the highest across both tasks. Interestingly, the
Single-Set Transformer and Union Transformer models per-
formed quite well on the CoCo task (though not as well
as our model), but were significantly worse on the Fast-
Text task. No other baseline aside from the Single-Set RN
model performed notably better than chance. Given that the

Model CoCo FastText

Baselines

PINE 0.4977 ±0.0068 0.4977 ± 0.0024
Single-Set RFF 0.4964 ±0.0004 0.4974 ± 0.0028
Single-Set RN 0.7745 ±0.0365 0.7858 ± 0.0134
Single-Set Transformer 0.9064 ±0.0040 0.7698 ± 0.0114
Union Transformer 0.9285 ±0.0015 0.7319 ± 0.0163

Our Model

Multi-Set Transformer 0.9265 ±0.0128 0.8221 ± 0.0018
Multi-Set RN 0.9349 ±0.0189 0.7625 ± 0.0090
Cross-Only 0.9186 ±0.0119 0.8097 ± 0.0070
Sum-Merge 0.9303 ±0.0178 0.8160 ± 0.0092

Table 3: Average accuracy and standard deviation of each
model across 3 runs on the alignment tasks.

unaligned sets consisted of entirely disjoint images and cap-
tions (i.e., no images and captions overlapped), it’s possible
that learning whether the net sum of all embedded vectors
in each set were aligned might be sufficient, and the model
might not need to directly compare individual elements
across sets. This might explain the high performance of the
Single-Set Transformer and Union Transformer models -
though interestingly, this did not hold true for the FastText
task (perhaps due to the fact that the FastText task appeared
to be more difficult).

5.2.3 Distinguishability

The last task in this category was distinguishability. Given
two sets of samples, the models would be asked to predict
whether the two input sets were drawn from the same under-
lying distribution. We again considered two examples for
this task: a synthetic dataset, and a dataset of real-world im-
ages. For the synthetic data, we sampled sets from randomly
generated 8-dimensional Gaussian mixtures (Gaussian mix-
ture parameters were generated in the same fashion as the
data in Section 5.1.1). For the second example, we used
Meta-Dataset [Triantafillou et al., 2019]2, a dataset consist-
ing of 12 other image datasets, each with many subclasses.
In each case, each training example consisted of a batch
of two sets of 10-30 data points. The data points would
be drawn from the same distribution (the same Gaussian
mixture for the synthetic data, or the same class from the
same parent dataset for Meta-Dataset) with probability 1/2,
and generated from different distributions with probability
1/2. The model was tasked to predict the probability of the
sets being drawn from the same distribution. For the meta-
dataset task, images were first encoded using a CNN trained
along with the network.

Results are shown in Table 4. The Multi-Set Transformer

2Pytorch implementation taken from Boudiaf et al. [2021]

Model Synthetic Meta-Dataset

Baselines

PINE 0.5012 ± 0.0020 0.5048 ± 0.0028
Single-Set RFF 0.5005 ± 0.0018 0.7831 ± 0.0069
Single-Set RN 0.4997 ± 0.0013 0.7981 ± 0.0642
Single-Set Transformer 0.6039 ± 0.0178 0.8811 ± 0.0092
Union Transformer 0.5908 ± 0.0057 0.7432 ± 0.0163

Our Models

Multi-Set Transformer 0.7289 ± 0.0353 0.8922 ± 0.0142
Multi-Set RN 0.7350 ± 0.0094 0.8679 ± 0.0111
Cross-Only 0.6353 ± 0.0191 0.9043 ± 0.0093
Sum-Merge 0.6292 ± 0.0101 0.8683 ± 0.0073

Table 4: Average accuracy and standard deviation of each
model across 3 runs on the distinguishability tasks.

and Relation Network models performed by far the best on
the synthetic task. On the image task, the Single-Set Trans-
former again performed very well, though not as well as the
multi-set transformer model. We hypothesize this might be
because the distinguishability task relies on recognizing the
distribution from which the set is drawn, which is a task that
might be possible to do by simply reducing each input set
to a single vector and then comparing the resulting vectors.

5.3 ANALYSIS

Overall, we considered two different variants of our model
(RN-based and transformer-based), as well as several ab-
lations of the transformer model. The base multi-set trans-
former model performed consistently well across every task,
with either the highest accuracy or close to the highest
accuracy. The relation-network variant of the model per-
formed slightly better on a number of tasks, but significantly
worse on many others. This variant of the model also had
significant issues with memory usage, and often required
very small batch sizes in order to fit on GPUs. Each of the
single-set transformer, cross-only, and sum-merge models
can be considered ablations of the multi-set transformer ar-
chitecture. The cross-only model performed competitively
or slightly better on some tasks, but similar to the RN model,
it performed worse by notable margins on others. It’s pos-
sible that the TXX and TY Y blocks - which computed the
internal relationships between elements in X and Y - were
simply not needed for certain tasks, but very helpful for oth-
ers. The sum-merge model generally performed comparably
to the base model, and degraded performance by notable
margins only in the case of the distinguishability tasks. This
is not entirely unexpected, given that it is the most minor
of the ablations, and represents only a small change to the
structure of the model.

5.4 SCALING

One important consideration when using set-based architec-
tures is how the architectures will scale to large set sizes.
Given input sets of size n and m and with model dimension
d (assuming that dhidden is of approximately the same order
as dlatent), Table 5 shows the scaling properties of each
model with the set sizes and latent dimension. The PINE
and Single-Set RFF architectures are the fastest, scaling
linearly with set size. All other models contain terms that
are quadratic with set size, as they need to compare each
element in one set to each element in another set (or the
same set). Of these models, the transformer-based models
(i.e. Single-Set Transformer, Union Transformer, Multi-Set
Transformer, Cross-Only and Sum-Merge) all require ap-
proximately (n + m)d2 + (n + m)2d operations (though
some need only nmd or (n2 +m2)d due to omitting same-
set terms or cross-set terms, the effect is still a net quadratic
scaling with set size). The relation network models have the
worst scaling properties, as they scale quadratically with the
product of both set size and latent dimension. These scaling
properties will remain the same if these architectures were
generalized to K > 2 sets, with n+m simply replaced by
the total size of the union of all input sets.

While the PINE and Single-Set RFF architectures have the
best scaling properties, they also demonstrate by far the
worst performance, achieving results no better than chance
on many of the image tasks. All of the transformer models
share approximately the same scaling properties, scaling
quadratically with the set sizes n and m. This is a well-
known property of transformer-based models, and a site of
active research. Many previous works have proposed ways
to reduce this quadratic dependency, and find approxima-
tions that allow these models to require only linear time
(Wang et al. [2020], Choromanski et al. [2021],Kitaev et al.
[2019], etc...). All of our proposed transformer models are
compatible with any of these approaches, though we leave
such explorations for future work. The Relation Network
models are the most troublesome, as they scale quadratically
with the product of both the model dimension and the set
size. While these models do perform very well on some
of the tasks discussed, they perform poorly on others, and
overall the Multi-Set Transformer models exhibit both better
scaling properties and more consistent performance across
tasks.

6 DISCUSSION AND CONCLUSION

The Multi-Set Transformer model we define performs well
at estimating a variety of distance/divergence measures be-
tween sets of samples, even for quantities that are notori-
ously difficult to estimate. It clearly outperforms existing
multi-set and single-set architectures, and beats existing
knn-based estimators in the settings we analyzed. In an

Model Ops. Scaling

PINE O
(
(n+m)d2

)
Single-Set RFF O

(
(n+m)d2

)
Single-Set RN O

(
(n2 +m2)d2

)
Single-Set Transformer O

(
(n+m)d2 + (n2 +m2)d

)
Union Transformer O

(
(n+m)d2 + (n+m)2d

)
Multi-Set Transformer O

(
(n+m)d2 + (n+m)2d

)
Multi-Set RN O

(
(n+m)2d2

)
Cross-Only O

(
(n+m)d2 + nmd

)
Sum-Merge O

(
(n+m)d2 + (n+m)2d

)
Table 5: Scaling of the number of operations required for
each model with set sizes n,m and dimension d.

ideal case, the model could be pretrained once and then
applied as an estimator for, e.g., KL divergence in a diverse
array of settings. This is one of our primary areas of focus
going forward.

Since this model is a universal approximator for partially
permutation equivariant functions, its applications are far
broader than simply that of training estimators for diver-
gences between distributions. We showcase a number of
simple applications with image data, but these are merely
meant to be representative of larger classes of applications.
The applications in terms of distinguishability, for exam-
ple, are highly reminiscent of GANs [Goodfellow et al.,
2014], and the FastText task from the alignment section
bears some similarities to existing work in which GANs
are used [Lample et al., 2018], where our model might lead
to improvements. Our model could also be used to train
bespoke distance functions that could be trained end to end
as part of a particular task. We hope to show these more di-
verse applications in greater detail in future work, as well as
exploring better ways to train estimators that will generalize
broadly, and looking at other quantities of interest such as
Wasserstein Distance or f-divergences.

Author Contributions

Kira A. Selby and Pascal Poupart conceived the original idea.
Kira A. Selby wrote the code, performed the experiments
and wrote the paper. Ivan Kobyzev, Ahmad Rashid, Mehdi
Rezagholizadeh and Pascal Poupart provided feedback and
proofreading.

Acknowledgements

This research was funded by Huawei Canada and the
National Sciences and Engineering Research Council of
Canada. Resources used in preparing this research at the
University of Waterloo were provided by the province of
Ontario and the government of Canada through CIFAR and
companies sponsoring the Vector Institute.

References

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.
Layer normalization. stat, 1050:21, 2016.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajesh-
war, Sherjil Ozair, Yoshua Bengio, Aaron Courville, and
Devon Hjelm. Mutual information neural estimation. In
International conference on machine learning, pages 531–
540. PMLR, 2018.

Malik Boudiaf, Ziko Imtiaz Masud, Jérôme Rony, Jose
Dolz, Ismail Ben Ayed, and Pablo Piantanida. Mutual-
information based few-shot classification, 2021.

Krzysztof Marcin Choromanski, Valerii Likhosherstov,
David Dohan, Xingyou Song, Andreea Gane, Tamas Sar-
los, Peter Hawkins, Jared Quincy Davis, Afroz Mohiud-
din, Lukasz Kaiser, David Benjamin Belanger, Lucy J
Colwell, and Adrian Weller. Rethinking attention with
performers. In International Conference on Learning
Representations, 2021. URL https://openreview.
net/forum?id=Ua6zuk0WRH.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. Ad-
vances in neural information processing systems, 27,
2014.

Shupeng Gui, Xiangliang Zhang, Pan Zhong, Shuang Qiu,
Mingrui Wu, Jieping Ye, Zhengdao Wang, and Ji Liu.
Pine: Universal deep embedding for graph nodes via par-
tial permutation invariant set functions. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 44
(2):770–782, 2021.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Re-
former: The efficient transformer. In International Con-
ference on Learning Representations, 2019.

Alexander Kraskov, Harald Stoegbauer, and Peter Grass-
berger. Estimating mutual information. Physical Re-
view E, 69(6):066138, Jun 2004. ISSN 1539-3755, 1550-
2376. doi: 10.1103/PhysRevE.69.066138. arXiv: cond-
mat/0305641.

Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B.
Tenenbaum. Human-level concept learning through
probabilistic program induction. Science, 350
(6266):1332–1338, 2015. doi: 10.1126/science.
aab3050. URL https://www.science.org/
doi/abs/10.1126/science.aab3050.

Guillaume Lample, Alexis Conneau, Marc’Aurelio Ranzato,
Ludovic Denoyer, and Hervé Jégou. Word translation
without parallel data. In International Conference on
Learning Representations, 2018.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek,
Seungjin Choi, and Yee Whye Teh. Set transformer:
A framework for attention-based permutation-invariant
neural networks. In International conference on machine
learning, pages 3744–3753. PMLR, 2019.

Adam Santoro, David Raposo, David G Barrett, Mateusz
Malinowski, Razvan Pascanu, Peter Battaglia, and Tim-
othy Lillicrap. A simple neural network module for re-
lational reasoning. Advances in neural information pro-
cessing systems, 30, 2017.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal
Lamblin, Utku Evci, Kelvin Xu, Ross Goroshin, Car-
les Gelada, Kevin Swersky, Pierre-Antoine Manzagol,
et al. Meta-dataset: A dataset of datasets for learning to
learn from few examples. In International Conference on
Learning Representations, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and
Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

Edward Wagstaff, Fabian Fuchs, Martin Engelcke, Ing-
mar Posner, and Michael A. Osborne. On the limi-
tations of representing functions on sets. In Interna-
tional Conference on Machine Learning, page 6487–6494.
PMLR, May 2019a. URL http://proceedings.
mlr.press/v97/wagstaff19a.html.

Edward Wagstaff, Fabian Fuchs, Martin Engelcke, Ingmar
Posner, and Michael A. Osborne. On the limitations
of representing functions on sets. In Kamalika Chaud-
huri and Ruslan Salakhutdinov, editors, Proceedings of
the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning
Research, pages 6487–6494. PMLR, 09–15 Jun 2019b.
URL https://proceedings.mlr.press/v97/
wagstaff19a.html.

Qing Wang, Sanjeev R. Kulkarni, and Sergio Verdu. Di-
vergence estimation for multidimensional densities via
k-nearest-neighbor distances. IEEE Transactions on In-
formation Theory, 55(5):2392–2405, 2009. doi: 10.1109/
TIT.2009.2016060.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and
Hao Ma. Linformer: Self-attention with linear complexity.
CoRR, abs/2006.04768, 2020. URL https://arxiv.
org/abs/2006.04768.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat,
Sashank Reddi, and Sanjiv Kumar. Are transformers uni-
versal approximators of sequence-to-sequence functions?
In International Conference on Learning Representations,
2019.

https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=Ua6zuk0WRH
https://www.science.org/doi/abs/10.1126/science.aab3050
https://www.science.org/doi/abs/10.1126/science.aab3050
http://proceedings.mlr.press/v97/wagstaff19a.html
http://proceedings.mlr.press/v97/wagstaff19a.html
https://proceedings.mlr.press/v97/wagstaff19a.html
https://proceedings.mlr.press/v97/wagstaff19a.html
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2006.04768

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barn-
abas Poczos, Russ R Salakhutdinov, and Alexander J
Smola. Deep sets. Advances in neural information pro-
cessing systems, 30, 2017.

A ATTENTION DERIVATION

A typical self-attention block with the set X ∈ Rn×d as the input queries and keys/values obeys the following equation:

Z = MHA(X,X)

=
[
σ
(
(XWQ)(XWK)T

)
(XWV)

]
WO

= σ
(
X(WQW

T
K)XT

)
XWVWO

If we now consider the joint set X
⊔
Y ∈ Rn+m×d and perform self-attention on that, we find the following:(

ZX
ZY

)
= ATTN

((
X
Y

)
,

(
X
Y

))
=

[
σ

((
XWQ

YWQ

)(
XWK

YWK

)T)(
X
Y

)
WV

]
WO

=

(
Axx Axy
Ayx Ayy

)(
X
Y

)
WVWO

wherein (
Axx Axy
Ayx Ayy

)
= σ

((
X(WQW

T
K)XT X(WQW

T
K)Y T

Y (WQW
T
K)XT Y (WQW

T
K)Y T

))
Then, we find that

ZX = AxxXWVWO +AxyYWVWO

ZY = AyxXWVWO +AyyYWVWO

This function remains entirely equivariant with respect to the order of the elements in the joint set X
⊔
Y - there is no

distinction between elements in X and elements in Y .

Suppose, however, that we were to let the softmax for Aαβ be computed only over the elements of the set α, and let the
parameter matrices be different for each of the 4 terms. Then, we find

ZX = σ(X(WQ,xxW
T
K,xx)XT)XWV,xxWO,xx

+ σ(X(WQ,xyW
T
K,xy)Y T)YWV,xyWO,xy

ZY = σ(Y (WQ,yxW
T
K,yx)XT)XWV,yxWO,yx

+ σ(Y (WQ,yxW
T
K,yy)Y T)YWV,yyWO,yy

These are just four separate attention blocks! Now we can simply write

ZX = MHAxx(X,X) + MHAxy(X,Y)

ZY = MHAyx(Y,X) + MHAyy(Y, Y)

Since the attention function is equivariant with respect to the first input and invariant with respect to the second, this meets
the conditions for partial equivariance. To make this slightly more general, we can now write

ZX = gx (MHAxx(X,X),MHAxy(X,Y))

ZY = gy (MHAyx(Y,X),MHAyy(Y, Y))

where the function g acts on each vector in the output set independently.

B EXPERIMENT DETAILS

The base architecture used in all experiments was the architecture shown in Figure 1, with the MSAB blocks replaced as
appropriate for each baseline. The only exception was the PINE model, which followed the architecture described in their
paper.

In all cases (except where noted otherwise), we used architectures with 4 blocks, 4 attention heads (for the transformer
models), and 1-layer feedforward decoders. We used Pooling by Multiheaded Attention (PMA) (see Lee et al. [2019]) as the
pooling layer for the overall network, and max pooling within each relation network block. We used layer norm around each
encoder block, as well as within the transformer blocks as per usual. Each block used the same latent and hidden size, and
linear projection layers were added at the beginning of the network to project the inputs to the correct dimension if needed.

For the KL and MI experiments, we trained for 100,000 batches of size 64 with a learning rate of 1e-4. The models used a
latent size of 16 per input dimension and feedforward size of 32 per input dimension. The dimension-equivariant model was
trained across data of multiple dimensions (1-3 for d = 2, 3-5 for d = 4, 7-9 for d = 8 and 14-18 for d = 16). Sets were
generated as described in sections 5.1.1 and 5.1.2.

For the Counting experiments, we trained with a batch size of 64 using a latent size of 128 and hidden size of 256. We
used a single projection layer as a decoder, with no hidden layers. For MNIST, we used a convolutional encoder with 3x3
convolutional layers of 32 and 64 filters, each followed by a max pool, with a linear projection to the latent size of 128 at
the end. This encoder was pretrained for 1000 batches, then the network and encoder were trained end to end for 10,000
batches with a learning rate of 3e-4. Sets were randomly sampled with set size randomly selected in [10, 30]. For Omniglot,
the convolutional encoder used one 7x7 conv with stride 2 and 32 filters, followed by three blocks of two 3x3 convs each
with 32, 64 and 128 filters respectively. Each block was followed by a max pool, and a final linear projection to size 128
was again added at the end. This was pretrained for 300 batches, then the network itself was trained end to end for 10,000
batches with a learning rate of 1e-4. Loss was calculated by mean-squared error. Sets were randomly sampled with set size
randomly selected in [6, 10].

The CoCo experiments again used convolutional encoders to obtain fixed size representations of each image, and used
transformer encoders to do the same for the captions. This time, the pretrained ResNet-101 model was used as the image
encoder, with BERT used as the text encoder. The model was trained for 2500 batches of batch size 48 with learning rate
1e-5, using a latent size of 512 and hidden size of 1024. The set size was increased gradually according to a schedule
during training, beginning at sets with size randomly selected in [1, 5] for 1250 batches, [3, 10] for 625 batches and [8, 15]
for 625 batches. Standard image preprocessing techniques were applied, with each image rescaled to 256x256, center
cropped to size 224, then normalized according to the method expected by PyTorch’s pretrained ResNet models (see
https://pytorch.org/vision/stable/models.html). The FastText experiments used common crawl FastText vectors for English
and French 3, with ground truth translations taken from MUSE 4. The model was trained for 3125 batches of batch size 128
with learning rate 1e-5, using a latent size of 512 and hidden size of 1024. The set size was increased gradually according to
a schedule during training, beginning at sets with size randomly selected in [1, 5] for 1250 batches, [3, 10] for 625 batches,
[8, 15] for 625 batches and [10, 30] for 625 batches.

Meta-Dataset experiments used the same convolutional encoder architecture as the Omniglot experiments, though without
pretraining. Images were preprocessed in the standard fashion performed by the Pytorch Meta-Dataset library. The model
was trained for 7500 batches of batch size 64 with set size randomly selected in [10, 30] and learning rate 1e-5, using a latent
size of 512 and hidden size of 1024. The synthetic experiments for distinguishability were trained for 7500 batches of batch
size 256 with set size randomly selected in [10, 30] and learning rate 1e-5, using a latent size of 8 and hidden size of 16.

3https://fasttext.cc/docs/en/crawl-vectors.html
4https://github.com/facebookresearch/MUSE#ground-truth-bilingual-dictionaries

C PROOF OF THEOREM 4.2

Our proof will closely follow the work of Yun et al. [2019]. In their work, they define the following theorem:

Theorem 2 [Yun et al., 2019]. Let 1 ≤ p ≤ ∞ and ε > 0, then for any given f ∈ FPE there exists a transformer network
g ∈ T 2,1,4 such that dp(f, g) ≤ ε.

The proof of this theorem follows several stages, enumerated here:

1. Approximate FPE by piecewise constant functions on the grid of resolution δ, denoted Gδ = 0, δ, ..., 1− δd×n.

2. Approximate FPE by modified transformers, with hardmax replacing softmax.

Proposition 4 [Yun et al., 2019]. For each f ∈ FPE and 1 ≤ p <∞, ∃g ∈ T 2,1,1
such that dp(f, g) = O(δd/p)

3. Approximate the class of modified transformers T 2,1,1
with T 2,1,4

Each of these steps leads to a certain error under dp, with step 1 and 3 contributing an error of order ε/3 and step 2
contributing an error of order O(δd/p). This leads to a total error of less than order ε, so long as δ is chosen to be sufficiently
small. Of these steps, we will focus our attention on step 2, as the others remain unchanged. The key is to prove our own
version of proposition 4 [Yun et al., 2019]. The proof of this proposition itself follows the following steps:

1. GivenX ∈ Rd×n, quantizeX toL(x) ∈ G+
δ , whereGδ is the [0, 1]d×n grid with resolution δ andG+

δ = Gδ∪{−δ−nd}.
2. Implement a contextual mapping q(X) such that all elements of q(L), q(L′) are distinct if L,L′ are not permutations

of each other. This essentially maps each (xi, X) to a unique representation.

3. Since each (xi, X) is mapped to a unique representation, we can use feedforward networks to approximate any desired
decoder to approximate any equivariant function on X .

The critical part of this proof comes in Lemma 6 from Yun et al:

Lemma 6 [Yun et al., 2019]. Let G̃δ = {L ∈ Gδ| L:,i 6= L:,j ∀i 6= j}. Let n ≥ 2 and δ−1 ≥ 2. Then, there exists a
function q(L) of the form q(L) = uT gc(L) where u ∈ Rd, and gc(L) : Rd×n → Rd×n is a function composed of δ−d + 1
self-attention layers using the σH operator, such that q(L) has the following properties:

1. For any L ∈ G̃δ , all entries of q(L) are distinct

2. For any L,L′ ∈ G̃δ , if L is not a permutation of L′ then all entries of q(L) and q(L′) are distinct

3. For any L ∈ G̃δ , all entries of q(L) are in [tl, tr]

4. For any L ∈ G+
δ \ G̃δ , all entries of q(L) are not in [tl, tr]

For our purposes, we will keep the structure of this proof, and change it by substituting our own version of this lemma:

Lemma 6’. Let G̃δ = {L ∈ Gδ| L:,i 6= L:,j ∀i 6= j}. Let n ≥ 2 and δ−1 ≥ 2. Then, there exists a function q(LX , LY) on
LX , LY ∈ G+

δ ;LX 6= LY consisting of 2δ−d + 4 MSAB layers and constants tXl , t
X
r , t

Y
l , t

Y
r such that

1. For any LX , LY ∈ Gδ , all entries of q(LX , LY) are distinct

2. For any LX , LY , L′X , L′Y ∈ Gδ, if L′X is not a permutation of LX and L′Y is not a permutation of LY then all
entries of q(LX , LY) and q(L′X , L′Y) are distinct

3. For any LX , LY ∈ G̃δ , all entries of qX(LX , LY) are in [tXl , t
X
r]

4. For any LX , LY ∈ G̃δ , all entries of qY (LX , LY) are in [tYl , t
Y
r]

5. For any LX ∈ G+
δ \ G̃δ , LY ∈ G

+
δ , all entries of q(LX , LY) are not in [tl, tr]

6. For any LY ∈ G+
δ \ G̃δ , LX ∈ G

+
δ , all entries of q(LX , LY) are not in [tl, tr]

Once our version of Lemma 6 is established, we then make a slight modification of Yun et al’s Lemma 7. This lemma states:

Lemma 7 [Yun et al., 2019]. Let gc : Rd×n → Rd×n be the function defined in Lemma 6 [Yun et al., 2019]. Then, there
exists a function gv : Rd×n → Rd×n composed of O(n(1

δ)dn/n!) column-wise feedforward layers (r = 1) such that gv is
defined by a function gcol : Rd → Rd,

gv(Z) = [gcol(Z:,1), ..., gcol(Z:,n)]

where ∀j = 1, ..., n

gcol(gc(L):,j) =

{
(AL):,j L ∈ G̃δ
0d L ∈ G+

δ \ G̃δ

Our modified version states

Lemma 7’. Let gc : Rd×n × Rd×n → Rd×n × Rd×n be the function defined in Lemma 6’. Then, there exists a function
gv : Rd×n × Rd×n → Rd×n × Rd×n composed of O(n(1

δ)dn/n!) column-wise feedforward layers (r = 1) such that gv is
defined by a function gcol : Rd → Rd,

gv(Z) = [gcol(Z:,1), ..., gcol(Z:,n)]

where ∀i = 1, ..., n, j = 1, ...m

gcol(gc(L):,j) =

{
(AL):,j L ∈ G̃δ
0d L ∈ G+

δ \ G̃δ

The construction of q(LX , LY), and the proofs of Lemma 6’ and 7’ will follow in the subsequent sections.

C.1 CONSTRUCTION OF THE CONTEXTUAL MAPPING

The construction of this function proceeds as follows. First, note that a multi-set attention block can implement functions
consisting of multiple feedforward or attention blocks successively by using the skip connections to ignore the other
component when needed. It can also implement a function consisting of multiple blocks successively applied to a single
one of the input sets by simply letting the action of the block on the other set be the identity. The multi-set attention
block can also implement a layer which simply performs the attention computation e.g. ATTNXX(X,X) by letting
gX(fXX , fXY) = fXX . As such, multi-set attention blocks can reproduce any function on either X or Y implemented by
regular transformer blocks - such as the constructions defined in Yun et al. [2019].

Let gc(L) be the iterated selective shift network defined in Yun et al. [2019], consisting of n selective shift operations
followed by a final global shift layer. This results in the mapping

uT gc(L) = ˜̀
j + δ−(n+1)d ˜̀

n

where ˜̀j is the j-th output of the selective shift layers, sorted in ascending order. We will now construct our own analogous
network, gc(LX , LY). Let gs(L) be the selective shift portion of gc(L). Then, we let the first δ−d blocks implement gs(LX)
onLX alone while performing the identity operation onLY (TXY , TY X = 0 for this component). The next δ−d blocks do the
same thing on LY , while performing the identity on LX . The next block then applies a modified global shift to each set with
attention component δ(n+1)dψ(·; 0) - the same global shift as in Yun et al. [2019]. This shift is applied with attention over X,
and a scaled version is also applied with attention over Y - i.e. shifting LX by δ−(n+1)d maxk u

TLX:,k and δd maxk u
TLY:,k

(and the same in reverse for LY). This can be implemented by a single MSAB block with TXX = TY Y = δ−(n+1)dψ(·; 0)
and TXY = TY X = δdψ(·; 0). This comprises our gc(LX , LY) block, and results in an output of

qX(LX , LY)j = uT gXc (LX , LY):,j = ˜̀X
j + δ−(n+1)d ˜̀X

n + δ(m+1)d ˜̀Y
m

qY (LX , LY)j = uT gYc (LX , LY):,j = ˜̀Y
j + δ−(n+1)d ˜̀Y

m + δ(n+1)d ˜̀X
n

C.2 PROOF OF LEMMA 6’

The proof of Lemma 6’ proceeds much as the proof of Lemma 6 [Yun et al., 2019]. We must now check that all conditions
are satisfied.

C.2.1 Property 2

For the second property, let us begin by considering the case where LX , L′X are not permutations of each other. Then,
analogous to Yun et al., we have that

uT gXc (LX , LY):,j ∈ [δ−(n+1)d ˜̀X
n + δ(m+1)d ˜̀Y

m, δ
−(n+1)d ˜̀X

n + δ(m+1)d ˜̀Y
m + δ−(n+1)d+1 − δ−nd+1)

As in Yun et al., LX , L′X ∈ G̃δ which are not permutations of each other must result in ˜̀Xn , ˜̀′Xn differing by at least δ.
By Lemma 10, distinct LY , L′Y can lead to ˜̀Ym, ˜̀′Ym differing by a value strictly less than δ−(m+1)d+1. The smallest net
change this can result in is δ−(n+1)d · δ − δ(m+1)d · δ−(m+1)d+1 = δ−(n+1)d+1 − δ. Since this is larger than the width of
the original interval and the intervals are open on at least one end, the intervals must thus be disjoint, and thus if LX and
L′X are distinct, QX and Q′X must be distinct. Now, consider the case where LX , L′X ∈ G̃δ are permutations of each
other, but LY , L′Y ∈ G̃δ are not. In this case, since ˜̀Ym, ˜̀′Ym must differ by at least δ, QX and Q′X must again be distinct.
Since |˜̀Ym − ˜̀′Ym | < δ−(m+1)d+1, the resulting change in QX must be strictly less than δ. Since ˜̀Xj , ˜̀Xk must be separated
by at least δ for j 6= k, QXj 6= Q′Xk for any j 6= k. Thus, all entries of QX and Q′X must be distinct in this case as well.
These results apply symmetrically for QY and Q′Y , and thus this proves Property 2.

Note that if LX , L′X are not permutations of each other then uT gXc (LX , LY), uT gXc (L′X , L′Y) must be sep-
arated from each other by at least δ, whereas if LX , L′X are permutations of each other, but LY , L′Y are
not, uT gXc (LX , LY), uT gXc (L′X , L′Y) must be separated by at least δm+2. In general then, all entries of
uT gXc (LX , LY), uT gXc (L′X , L′Y) must be separated from each other by at least δm+2 (and conversely with δn+2 for
Y).

C.2.2 Properties 3-4

By the same procedure as Yun et al (in B.5.1), we can see that qX(LX , LY) obeys

(δ−2nd+1 + δ2d+1)(δ−d − 1) ≤ uT gXc (LX , LY) < (δ−(2n+1)d+1 + δd+1)(δ−d − 1)

if LX , LY ∈ G̃δ . Thus, ∀LX , LY ∈ G̃δ qX(LX , LY) ∈ [tl, tr] where

tXl = (δ−2nd+1 + δ2d+1)(δ−d − 1)

tXr = (δ−(2n+1)d+1 + δd+1)(δ−d − 1)

The same holds for qY (LX , LY) with

tYl = (δ−2md+1 + δ2d+1)(δ−d − 1)

tYr = (δ−(2m+1)d+1 + δd+1)(δ−d − 1)

C.2.3 Property 1

Within QX and QY , all entries must be distinct since ˜̀1 < ... < ˜̀n. Suppose n 6= m. Consider the bounds tXl , t
X
r from

the previous section. Without loss of generality, suppose m < n. If m = n − k then we have tYr = (δ−(2n+1−2k)d+1 +
δd+1)(δ−d − 1) < tXl and thus QX and QY belong to disjoint intervals.

If n = m, then we can apply a similar argument as we did in proving Property 2, and argue that ˜̀Xn , ˜̀Yn which are not
permutations must differ by at least δ. This results in intervals shifted from each other by at least δ−(n+1)d+1 − δd+1, which
will always be larger than δ−(n+1)d+1 − δ−nd+1, which is the width of the intervals. Thus, in this case too QX and QY

must be distinct, and Property 1 is proven.

C.2.4 Properties 5-6 - Case 1

Take LY ∈ G+
δ and LX ∈ Gδ \ G̃δ. This corresponds to an LX with duplicate columns but within the region of compact

support. In this case, ˜̀X
n ≤ δ−(n−1)d+1(δ−d − 1)− δ(δ−d − 1)2

Then,

uT gXc (LX , LY):,j = ˜̀X
j + δ−(n+1)d ˜̀X

n + δ(m+1)d ˜̀Y
m

≤ (δ−(n+1)d + 1)(δ−(n−1)d+1(δ−d − 1)− δ(δ−d − 1)2) + δ(m+1)d(δ−md+1(δ−d − 1)− δ(δ−d − 1)2))

< δ−2nd+1(δ−d − 1) + δ−(n−1)d+1(δ−d − 1)− δ−(n+1)d+1(δ−d − 1)2 + δd+1(δ−d − 1)

< δ−2nd+1(δ−d − 1) + δ−(n−1)d+1(δ−d − 1)(1 + δnd − δ−2d(δ−d − 1))

< δ−2nd+1(δ−d − 1) < tXl

since δ−d ≥ 2. Thus, QX falls strictly outside [tXl , t
X
r], proving Property 6 for the case when LY ∈ G+

δ and LX ∈ Gδ \ G̃δ .
The same applies in reverse for Property 7.

C.2.5 Properties 5-6 - Case 2

Take LY ∈ G+
δ and LX ∈ G+

δ \ Gδ. This corresponds to an LX that contains at least one element outside the region of
compact support. This leads to columns of LX containing negative values. Note first that for a column LX:,j containing−δ−nd,
`Xj = ˜̀X

j as the selective shift operation does not alter it. From Yun et al, we have that ˜̀Xj ≤ −δ−nd + δ−d+1 − 1 < 0, and
that the last layer shifts negative values by δ−(n+1)d mink ˜̀Xk . After this shift is applied and our additional attention-based
shift is applied,

uT gXc (LX , LY):,j ≤ (−δ−nd + δ−d+1 − 1)(1 + δ−(n+1)d) + δ(m+1)d ˜̀Y
m

≤ (−δ−nd + δ−d+1 − 1)(1 + δ−(n+1)d) + δ(m+1)dδ−(m+1)d+1

≤ −δ−(2n+1)d + δ−(n+2)d+1 + δ < 0 < tXl

where we use that ˜̀Ym ≤ δ−(m+1)d+1 and δ−1 ≥ 2. Thus, any negative column is mapped to a value outside of [tXl , t
X
r].

Note that this holds for any LY , including an LY ∈ G+
δ \Gδ .

In the case where all columns are negative, the argument proceeds exactly as in Yun et al, and all elements are straight-
forwardly less than zero as shown above. In the case where only some columns are negative, the negative columns are
mapped to negative values as before, and the positive columns satisfy uT gXc (LX , LY):,i ≥ δ−(2n+2)d+1 before we apply
our attention shift layer. If maxk ˜̀Yk > 0, then uT gXc (LX , LY):,i ≥ δ(− (2n+ 2)d+ 1 still holds. If not, all entries of ˜̀Yk
must be negative, which means maxk ˜̀Yk = −δ−md(δ−d − 1). We then have

uT gXc (LX , LY):,i ≥ δ−(2n+2)d+1 − δd(δ−d − 1) > tXr (16)

and thus Property 5 is proved for all cases (and symmetrically for Property 6).

C.3 PROOF OF LEMMA 7’

This proof very closely follows the proof shown in Yun et al, with a few small changes. The first layer used to map all invalid
entries to strictly negative numbers becomes

Z 7→ Z − (M − 1)1n+m(φX(uTZX) + φY (uTZY)) (17)

where M is the maximum value of the image of gc(G+
δ , G

+
δ) and

φX(t) =

{
0 t ∈ [tXl , t

X
r]

1 t /∈ [tXl , t
X
r]

φY (t) =

{
0 t ∈ [tYl , t

Y
r]

1 t /∈ [tYl , t
Y
r]

This layer is applied to both X and Y , and ensures that if either X or Y contain invalid elements, the entirety of both sets
are mapped to negative values. The next d layers, which map all negative entries to the zero matrix, remain unchanged and
are applied again to both X and Y .

The remaining layers must now map gXc (LX , LY) to AXL and gYc (LX , LY) to AYL . In a similar fashion to Yun et al, we add
O
(
(n+m)(1/δ)d(n+m)/(n!m!)

)
feedforward layers, each of which maps one value of uT gXc (LX , LY) or uT gYc (LX , LY)

to the correct output while leaving the others unaffected. For a given value of uT gXc (L̄X , L̄Y):,j these layers take the form:

ZX 7→ ZX +
(
(AXL̄):,j − gXc (L̄X , L̄Y):,j

)
φX
(
uTZX − uT gXc (L̄X , L̄Y):,j1Tn

)
ZY 7→ ZY +

(
(AYL̄):,j − gYc (L̄X , L̄Y):,j

)
φY
(
uTZY − uT gYc (L̄X , L̄Y):,j1Tm

)
wherein

φX(t) =

{
0 t < −δm+2/2 or t ≥ δm+2/2

1 − δm+2/2 ≤ t < δm+2/2
φY (t) =

{
0 t < −δn+2/2 or t ≥ δn+2/2

1 − δn+2/2 ≤ t < δn+2/2

If Z = gc(L
X , LY) where LX is not a permutation of L̄X and LY is not a permutation of L̄Y , then

φX
(
uTZ − uT gXc (L̄X , L̄Y):,j1Tn

)
= 0 and Z is unchanged. If on the other hand LX is a permutation of L̄X and

LY is a permutation of L̄Y , with L̄X:,j = LX:,i, then φX
(
uTZX − uT gXc (L̄X , L̄Y):,j1Tn

)
= (e(i))T and gXc (LX , LY) is

mapped to (AXL):,i. Thus, this layer maps gXc (LX , LY):,j to the correct output for the specific inputs L̄X , L̄Y (or permuta-
tions thereof), and does not affect any other inputs. By stacking O

(
(n+m)(1/δ)d(n+m)/(n!m!)

)
of these layers together,

we achieve the correct output for any possible inputs LX , LY .

	1 Introduction
	2 Related Work
	3 Method
	3.1 Background
	3.2 Multiple Sets
	3.3 Our Model
	3.4 Multi-Set Transformer
	3.5 Variable-Dimension Encoders

	4 Theoretical Analysis
	5 Experiments
	5.1 Statistical Distances
	5.1.1 KL Divergence
	5.1.2 Mutual Information

	5.2 Image Tasks
	5.2.1 Counting Unique Images
	5.2.2 Alignment
	5.2.3 Distinguishability

	5.3 Analysis
	5.4 Scaling

	6 Discussion and Conclusion
	A Attention Derivation
	B Experiment Details
	C Proof of Theorem 4.2
	C.1 Construction of the Contextual Mapping
	C.2 Proof of Lemma 6'
	C.2.1 Property 2
	C.2.2 Properties 3-4
	C.2.3 Property 1
	C.2.4 Properties 5-6 - Case 1
	C.2.5 Properties 5-6 - Case 2

	C.3 Proof of Lemma 7'

