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Abstract

We consider an infinite mixture model of Gaussian pro-
cesses that share mixture components between non-
local clusters in data. Meeds and Osindero (2006) use
a single Dirichlet process prior to specify a mixture of
Gaussian processes using an infinite number of experts.
In this paper, we extend this approach to allow for ex-
perts to be shared non-locally across the input domain.
This is accomplished with a hierarchical double Dirich-
let process prior, which builds upon a standard hierar-
chical Dirichlet process by incorporating local parame-
ters that are unique to each cluster while sharing mix-
ture components between them. We evaluate the model
on simulated and real data, showing that sharing Gaus-
sian process components non-locally can yield effective
and useful models for richly clustered non-stationary,
non-linear data.

Introduction
Gaussian processes (GPs) have been successfully used in re-
gression, classification, function approximation and density
estimation (Rasmussen and Williams 2006). They provide
a flexible approach to modeling data by assuming a prior
directly on functions without explicitly parameterizing the
unknown function. The prior specifies general properties of
the function like smoothness and characteristic length-scale,
which are encoded by the choice of the kernel covariance
function and its parameters (GP hyper-parameters). How-
ever, the covariance function is commonly assumed to be
stationary and consequently the function is unable to adapt
to varying levels of smoothness or noise. This can be prob-
lematic in some data-sets such as geophysical data, where
for example flat regions will be more smooth than moun-
tainous areas, or financial time-series, where distinct volatil-
ity regimes can govern the variability of prices.

One way to address nonstationary functions is to consider
complex covariance specifications. For example, Paciorek
and Schervish (2003) present a class of kernel functions
where the smoothness itself is allowed to vary smoothly.
However, this does not account for the possibility of nonsta-
tionary noise or sharp changes in the process, and in general,
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it can be difficult to decide on a covariance function with suf-
ficient flexibility while still ensuring positive definiteness.
Another line of work looks at combining several Gaussian
processes. Gramacy and Lee (2008) use treed partitioning to
divide up the input space and fit different GPs independently
in each region. Rasmussen and Ghahramani (2002), Meeds
and Osindero (2006) similarly use a divide and conquer
strategy inspired by Mixture of Experts architectures. Ras-
mussen and Ghahramani (2002) divide the input space prob-
abilistically by a gating network into regions corresponding
to separate GPs, while Meeds and Osindero (2006) use a
posterior from a mixture distribution as the gating network,
corresponding to a fully generative model instead of a con-
ditional one. Both employ a single Dirichlet process (DP) to
allow for the number of mixture components to grow with
data complexity. By allowing separate GPs to operate on dif-
ferent input areas, non-stationary covariance and noise levels
can be modeled.

However, in these approaches individual GP experts op-
erate locally in the input space. This can lead to unneces-
sary experts when a single GP may be more appropriate to
model data across distant areas in the input space. We ex-
tend the Mixture of Experts model proposed by Meeds and
Osindero (2006) (hereon, DP-MoGP) to allow GPs to be
used non-locally. This is accomplished by using a hierar-
chical double Dirichlet process (HDDP) prior, which incor-
porates cluster specific parameters in a standard hierarchical
Dirichlet process. We use the HDDP to generate local Gaus-
sian parameters that cluster the input space, while sharing
GP mixture components between clusters. We call this the
hierarchical double Dirichlet process mixture of Gaussian
Processes (HDDP-MoGP).

In DP-MoGP each GP roughly dominates an elliptical re-
gion of the input space (single Gaussian), whereas in HDDP-
MoGP a GP covers an infinite mixture of Gaussians over
the input space, allowing much richer shapes while sharing
statistical strength between clusters. For instance, if some
areas of the input have sparse observations, but there is sim-
ilar behavior elsewhere in the input region, it can more reli-
ably identify GP hyperparameters for these sets. An exam-
ple arises in financial time series: as a new regime starts, we
are usually interested in adjusting the model as quickly and
accurately as possible. In addition, it provides an inherent
clustering algorithm. For example, in geophysical data, we
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Figure 1: Bayesian-Net plates for (a) Single DP with indicators zi, (b) HDP with indicators z ji, (c) HDP with indicators t ji,k jt , and (d)
Hierarchical double Dirichlet process (HDDP) with indicators t ji,k jt . Parameters θk ∼ H(λ ) are drawn from the top-level base distribution
(indexed by k). HDDP extends the HDP model by allowing additional table specific parameters, φt ∼ L(ω) to be sampled separately from the
bottom-level base distribution (indexed by t).

can identify regions belonging to similar elevations, and in
financial series, we can establish recurring market regimes.

Sec. 2 presents background material, Sec. 3 and 4 develop
the HDDP-MoGP model. Sec. 5 illustrates experiment re-
sults and we conclude with a discussion in Sec. 6.

Background
Dirichlet Processes
A Dirichlet process (DP), denoted by G0 ∼ DP(γ,H), is a
distribution whose domain itself is a random distribution. H
is an arbitrary base distribution and γ is the concentration
parameter. A draw from a DP returns an output distribu-
tion whose support is a set of discrete samples from the base
distribution. Weights, β , are sampled from a stick-breaking
process (Sethuraman 1994), denoted by β ∼ GEM(γ):

G0(θ) =
∞

∑
k=1

βkδ (θ ,θk), θk ∼ H(λ ),

βk = β
′
k

k−1

∏
l=1

(1−β
′
l ), β

′
k ∼ Beta(1,γ).

(1)

where δ (θ ,θk) is the Kronecker delta function. The DP can
be used as a prior on the parameters of a mixture model of
unknown complexity. To generate observations we sample
θ̄i ∼ G0 and wi ∼ F(θ̄i), usually via sampling an indicator
variable zi ∼ β , which corresponds to the component gener-
ating wi ∼ F(θzi) (Fig. 2a).

The hierarchical Dirichlet process (HDP) (Teh et al. 2006)
extends the DP allowing for sharing of mixture components
among groups of data. The HDP draws group specific dis-
tributions G j ∼ DP(α , G0), j = 1, ...,J from a base distribu-
tion G0, which itself is sampled from a global DP prior ac-
cording to (1). Thus each group is associated with a mixture
model, where a group generally represents different entities
in a collection, for instance documents in a corpus or indi-
viduals in a population. J represents the total number of such

entities. Since G0 is always discrete, there is a strictly pos-
itive probability of the group specific distributions having
overlapping support, thus allowing parameters to be shared
between groups:

G j(θ) =
∞

∑
k=1

π jkδ (θ ,θk), π j ∼ DP(α,β ). (2)

An observation w ji corresponds to a unique global compo-
nent, θk, via an indicator variable z ji ∼ π j and w ji ∼ F(θz ji)
(Fig. 2b). The generative process can be described using
the Chinese restaurant franchise (CRF) analogy (Teh et al.
2006), where each group corresponds to a restaurant in
which customers (observations), w ji, sit at tables (clusters),
t ji. Each table shares a single dish (parameter) θk jt , which
is ordered from a global shared menu G0 (Fig. 1c). We can
analytically integrate G0 and G j to determine the marginals,

p(t ji|t j1, ..., t ji−1,α) ∝ ∑t n jtδ (t ji, t)+αδ (t ji, tnew), (3)

p(k jt |k j1, ..., t jt−1,γ) ∝ ∑k mkδ (k jt ,k)+ γδ (k jt ,knew), (4)

where n jt is the number of customers seated in table t of
restaurant j, and mk is the number of tables assigned to θk.

GPs and Infinite Mixture of GPs
A Gaussian process (GP) describes a distribution over func-
tions (Rasmussen and Williams 2006). For a real pro-
cess f (x),x ∈ RD, we define a mean function m(x) =
E[ f (x)] and a covariance function k(x,x′) = E[( f (x) −
m(x))( f (x′)− m(x′))] and write the Gaussian process as
f (x)∼GP(m(x),k(x,x′)). Thus a GP is a collection of (pos-
sibly infinite) random variables. Consistency is ensured,
since for any finite subset of inputs the marginal distribution
of function values are multivariate normal:

f |X ,θ ∼ N
(
m(X),K(X ,X ′)

∣∣θ), (5)

where X ∈ RN×D, consists of N points stacked in rows,
m(X) ∈ RN , [m(X)]i = m(Xi,:) is the mean function,
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Figure 2: Bayesian-net plates for (a) DP-MoGP, Yk = {yi : zi = k}, and (b) HDDP-MoGP, Yk = {yi : kti = k}. In DP-MoGP, each GP specified
by its hyperparameters, θk, is associated with a single elliptical Gaussian, (µk,Σk) in the input space, whereas in HDDP-MoGP, θk, is drawn
from the top level level DP is associated with several local input Gaussians, (µt ,Σt), which are drawn from the bottom level DP.

K(X ,X ′) ∈ RN×N , [K(X ,X ′)]i j = k(Xi,:,X ′j,:) is the kernel
function, and θ is the set of hyperparameters used in the
mean and covariance functions.

A popular choice is a constant mean and a squared expo-
nential covariance function,

m(x) = c,

k(x,x′) = σ
s exp

{−||x− x′||2
l2

}
+σ

ε
δ (x,x′),

(6)

which sets a prior in terms of average value (c), signal vari-
ance (σ s), length-scale (l) and noise (σ ε ) of the function.
The set θ = {c,σ s, l,σ ε} constitutes the (hyper-)parameters
of the GP.

The specification of the prior is important, because it fixes
the properties of the functions considered for inference. As
discussed earlier, for some datasets, using a stationary set of
hyperparameters may be too restrictive over the entire do-
main. Meeds and Osindero (2006) present an infinite mix-
ture of GP experts to overcome this issue using a genera-
tive probabilistic model and a single Dirichlet process (DP-
MoGP) shown in Fig. ??.

The generative process does not produce i.i.d. data points.
Therefore the generative process is formulated as a joint dis-
tribution over a dataset of a given size.

To generate the data, we first construct a partition of
the N observations into at most N clusters using a Dirich-
let process. This assignment of observations is denoted by
the indicator variables {zi}. For each cluster of points, {zi :
zi = k}, k = 1, ...,K, we sample the input Gaussian (µk,Σk)
from a normal-inverse-Wishart prior with hyperparameters
{S0,ν0,µ0,κ0}. We can then sample locations of the input
points, Xk = {xi : zi = k}. For each cluster we also sample the
set of GP hyperparameters denoted by θ k, where θ k∼H(Λ).
Finally, using the input locations, Xk and the set of GP hy-
perparameters, θ k, for individual clusters we formulate the
GP mean vector and output covariance matrix, and sample
the set of output variables Yk = {yi : zi = k} from the joint
Gaussian distribution given by (5).

Input data are conditionally i.i.d. given cluster k, while
output data are conditionally i.i.d. given the corresponding

cluster of input data. Thus we can write the full joint distri-
bution for N observations, assuming at most N clusters, as
follows:

P({xi},{yi},{zi},{µk,Σk},{θ k}) = P(β |γ)×
N

∏
i=1

P(zi|β ) · · ·

×
N

∏
k=1

[
(1− IXk= /0)P(Yk|Xk,θ k)P(θ k|Λ)P(Xk|µk,Σk) · · ·

P(µk,Σk|S0,ν0,µ0,κ0)+ IXk= /0D0(µk,Σk,θ k)
]
, (7)

where IXk= /0 is the indicator function which has a value of
one when the set Xk is empty and zero otherwise. D0(·) is
a delta function on a dummy set of parameters to ensure
proper normalization. The individual probability distribu-
tions in (7) are given by

β | γ ∼ GEM(γ), zi | β ∼ β ,

Σk ∼ IW(S0,ν0), µk | Σk ∼ N(µ0,Σk/κ0),

Xk | µk,Σk ∼ N(µk,Σk), θ k | Λ∼ H(Λ),

Yk | Xk,θ k ∼ N(m(Xk),K(Xk,X ′k)|θ k).

The input space is partitioned into separate regions using
a DP prior, where each region is dominated by a GP ex-
pert with unique hyperparameter specifications. As a result,
data that require non-stationary covariance functions, multi-
modal outputs, or discontinuities can be modeled.

HDDP-MoGP
A drawback with the DP-MoGP approach is that each GP
expert for cluster k acts locally over an area in the input
space defined by the Gaussian, (µk,Σk). Each cluster will
almost surely have a distinct GP associated to it. Conse-
quently, strong clustering in the input space can lead to sev-
eral GP expert components even if a single GP would do
a good job of modeling the data. In addition, local GP ex-
perts prevent information from being shared across disjoint
regions in the input space.
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Figure 3: A depiction of a Chinese restaurant franchise with pre-
ferred seating. Each restaurant, j, is denoted by a rectangle. Cus-
tomers (w ji’s) are seated at tables (circles) in the restaurants. At
each table two dishes are serverd. One of the dishes is served from
a global menu (θk) which can be served on other tables within the
restaurant or in other restaurants (ex. shaded gray circles all share
the same global dish, θ1). The other dish is custom made for the
table (φ jt ) and is unique to that table-restaurant.

To address these shortcomings, we extend the DP-MoGP
model by using a separate infinite mixture distribution for
the input density of each expert. This allows GP experts to
own complex non-local regions in the input space. In order
to share GP experts over an infinite mixture input distribu-
tion, we incorporate an augmented version of a hierarchical
DP prior, which we describe below.

Hierarchical Double Dirichlet Process
We extend a standard HDP to have local parameters spe-
cific to each cluster in addition to global parameters that are
shared. We call this a hierarchical double DP (HDDP) prior
and is shown in Fig. 1d. Here, each table draws a set of pa-
rameters, θk jt ∼ G j from atoms of the top level base prior,
allowing identical values θ k, as in a standard HDP (see equa-
tion 2). In addition, table specific parameters φt ji ∼ L(ω) are
sampled from another base prior at the bottom level DP. The
local parameters, φt ji , are sampled directly from a continu-
ous prior, thus almost surely having unique values. An ob-
servation w ji corresponds to a unique global component θk
and a local component φ jt , so w ji ∼ F(θk,φ jt).

The generative process can be described as a Chinese
restaurant franchise with preferred seating (see Fig. 3). In
this case, the metaphor of the Chinese restaurant franchise is
extended to allow table specific preferences within a restau-
rant. In addition to ordering from a global menu, which is
shared across restaurants in a franchise, each table requests a
custom dish that is unique to that table-restaurant. A key dif-
ference from a standard CRF description is the ability to dis-
tinguish tables within a restaurant that are served the same
global dish. For instance, in the example depicted in Fig. 3,
restaurant j = 1 has two tables that serve the global dish θ1,

however, because they have unique table specific parame-
ters, φ11 and φ13, these tables can be differentiated. Thus, in
the case of a single restaurant, the HDP prior can be used
to serve the same global dish to different tables. The prior
probability customer w ji sits at a table is given by (3) and
the posterior probability of sitting at a table is weighted by
the joint global and table specific likelihood (for example,
see equations 11 and 12 in the inference procedure).

HDDP-MoGP
We use an HDDP prior for a mixture of Gaussian processes,
which allows GP experts to be shared non-locally across the
input space. We call this the HDDP-MoGP. In the HDDP
prior, GP hyperparameters correspond to globally shared pa-
rameters and input Gaussians correspond to local parameters
specific to each cluster.

Fig. 5 illustrates an example of HDDP-MoGP using the
CRF with preferred seating metaphor. For notational sim-
plicity, we consider the case of a single restaurant, i.e. J = 1,
and therefore drop the j index. One could consider J > 1
when it is desired to detect identical GPs both within a
restaurant and across a collection of restaurants, for exam-
ple volatility regimes in different stocks or identical terrains
in different images. Note, even though we have only one
restaurant, we still require the HDP aspect of the HDDP
prior to allow sharing of global menu items (GP experts,
θk) among different tables (clusters) in the restaurant. In
the example of Fig. 5, we have three tables occupied, which
correspond to three unique input Gaussian distributions, φt ,
t = 1,2,3. Tables t = 1 and t = 3 share GP expert k = 1, spec-
ified by a set of GP hyperparameters, θ1. Fig. 4 depicts a cor-
responding division of the input-space in two-dimensions,
where the shaded regions own the same GP expert, θ1.

More specifically, observations (points) belong to a ta-
ble (cluster). Each table, t, is associated with a local Gaus-
sian in the input space, φt = (µt ,Σt) and a globally shared
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Figure 4: An example allotment of input space in the HDDP-MoGP
model. Each elliptical region represents a two-dimensional Gaus-
sian distribution. The shaded regions are owned by the same GP
expert, illustrating a mixture distribution as the input density.
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Figure 5: An example configuration of input data for HDDP-MoGP model using the CRF with preferred seating metaphor. Points (xi’s) are
seated at tables (circles), which represent input Gaussian clusters. Each table is served a table specific dish, φt , which corresponds to a local
input Gaussian, and a globally shared dish, θk, which corresponds to a GP expert specification. We consider only one restaurant (rectangle).
The HDP mechanism is necessary to ensure that distinct tables can be served the same global GP expert, θk, from the top-level base prior.

GP expert, k, specified by a set of GP hyperparameters,
θ k. We sample GP hyperparameters from the top level DP
and Gausssian distributions from the bottom level DP, in
an HDDP prior. Thus, GP experts are shared among tables,
while each table corresponds to a local input Gaussian. As
a result, we have potentially infinite tables serving the same
GP expert, representing an infinite Gaussian mixture distri-
bution as the input density for each GP expert.

The generative process does not produce i.i.d. data points,
and therefore we describe the process using a joint distribu-
tion over a dataset of a given size (as done for DP-MoGP).
Fig. ?? shows the generative model for HDDP-MoGP. To
construct a complete set of N sample points from the prior
we would perform the following operations:

1. Construct a partition of the N observations into at most
N tables (clusters) using Eq. (3). This assigns a table, ti,
i = 1, ...,N, to each point in the set of observations. Once
all table assignments are determined for the finite set of
samples, we set T = max({ti}), as the number of tables
used.

2. For each table, sample a dish from the global shared
menu using Eq. (4). This assigns an index correspond-
ing to a GP expert, kt , t = 1, ...T , for each table. We set
K = max({kt}) as the number of GP experts.

3. For each table, sample an input Gaussian distribution
(µt ,Σt), t = 1, ...,T from a normal-inverse-Wishart prior
with hyperparameters {S0,ν0,µ0,κ0}.

4. Given the input Gaussian distribution for each table
(µt ,Σt), sample the locations of the input points X t = {xi :
ti = t}.

5. For each GP expert, sample hyperparamters for the GP
expert, θk ∼ H(Λ).

6. For each GP expert, use the set of GP hyperparameters,
θk, and input locations, Xk = {xi : kti = k}, which poten-
tially spans multiple tables, to formulate the GP output
mean vector and covariance matrix. Sample the set of out-
put variables Yk = {yi : kti = k} according to joint Gaus-
sian distribution given by (5).

Input data are conditionally i.i.d. given cluster t, while sets
of output data are conditionally i.i.d. given respective input
data corresponding to clusters that belong to GP expert, k.

The full joint distribution for N points can be expressed as,

P({xi},{yi},{ti},{kt},{µt ,Σt},{θ k},π,β )

= P(β |γ)P(π|α)×
N

∏
i=1

P(ti|π) · · ·

×
N

∏
t=1

[
(1− IX t= /0)P(X

t |µt ,Σt)P(µt ,Σt |S0,ν0,µ0,κ0) · · ·

P(kt |β )+ IX t= /0D0(µt ,Σt)
]
· · ·

×
N

∏
k=1

[
(1− IYk= /0)P(Yk|Xk,θ k)P(θ k|Λ)+ IYk= /0D0(θ k)

]
,

(8)

where we have assumed at most N GP experts, k = 1, ...,N,
and at most N input clusters, t = 1, ...,N, since we do not
know K (total GPs) or T (total tables) beforehand, but at
maximum they can be N of them. IX t= /0 and IYk= /0 are indi-
cator functions and D0(·) is a delta function on a dummy set
of parameters to ensure proper normalization. The individ-
ual distributions in (8) are given by:

β | γ ∼ GEM(γ), kt | β ∼ β ,

π | α ∼ GEM(α), ti | π ∼ π,

Σt ∼ IW(S0,ν0), µt | Σt ∼ N(µ0,Σt/κ0),

X t | µt ,Σt ∼ N(µt ,Σt), θ k | Λ∼ H(Λ),

Yk | Xk,θ k ∼ N(m(Xk),K(Xk),Xk)
′)|θ k).

The HDDP-MoGP model uses an HDDP prior with both
local and shared parameters to define GP experts over an
infinite Gaussian mixture in the input space. We remark, in
the case of a single restaurant, i.e. J = 1, a nested or cou-
pled set of urns (Beal, Ghahramani, and Rasmussen 2002)
can functionally accomplish the role of HDP in the HDDP
prior, though it would not be hierarchical in the Bayesian
sense and the resulting inference procedure would become
awkward (refer to Teh et al. 2006, for further discussion).

Gibbs sampler
We propose a Gibbs sampling algorithm for inference. To
compute the likelihood of xi, given ti = t, and all other in-
puts, X−i = {xι : ι 6= i}, and table assignments, t = {ti}, we



form the set X t−i = {xι : tι = t, ι 6= i}, and obtain a multi-
variate Student-t conditional posterior,

P(xi|X t−i
,S0,ν0,µ0,κ0) = tν̂t (xi; µ̂t , Σ̂t)

, g−i
t (xi),

(9)

n = |X t−i|, ν̂t = ν0 +n−d +1,

µ̂t =
κ0

κ0 +n
µ0 +

n
κ0 +n

X t−i,

S = ∑ι({X t−i}ι −X t−i)({X t−i}ι −X t−i)T ,

Σ̂t =
1

κnν̂t

[
S0 +S+

κ0n
κ0 +n

(X t−i−µ0)(X t−i−µ0)
T
]
.

Here, we analytically marginalized {µt ,Σt}, since xi ∼
N(µt ,Σt) has unknown mean and covariance and we are us-

ing the normal-inverse-Wishart conjugate prior, (µt ,Σt) ∼
NIW(S0,ν0,µ0,κ0) (Gelman et al. 2003).

For the likelihood of the output yi, given ti = t, all other
inputs, X−i, and outputs, Y−i = {yι : ι 6= i}, table assign-
ments, t, and table-dish assignments, k = {kt}, we form the
sets X−i

kt
= {xι : ktι = kt , ι 6= i}, Y−i

kt
= {yι : ktι = kt , ι 6= i},

and obtain a Normal conditional posterior,

P(yi|xi,X−i
kt
,Y−i

kt
,θ kt ) = N

(
yi| f̄∗,cov( f∗)

)
, f−i

kt
(yi),

(10)

f̄∗ = m(xi)+ · · ·
K(xi,X−i

kt
)[K(X−i

kt
,X−i

kt
)]−1(Y−i

kt
−m(X−i

kt
)),

cov( f∗) = K(xi,xi)−·· ·
K(xi,X−i

kt
)[K(X−i

kt
,X−i

kt
)]−1K(X−i

kt
,xi).

This corresponds to the operation of conditioning the joint
Gaussian prior for the GP, see Eq. (5), on the observations,
i.e. the GP prediction formula (Rasmussen and Williams
2006). Note, all m(·) and K(·, ·) evaluations are conditioned
on θ kt , which we have omitted for notational clarity.

Now, we can obtain the conditional posterior for ti, given
the remainder of the variables, by combining the conditional
prior (3), with the likelihood of generating (xi,yi),

p(ti|t−i,k) ∝

{
n−i

t g−i
t (xi) · f−i

kt
(yi) if ti exists,

α p
(
xi,yi|ti = tnew, t,k

)
if ti = tnew,

(11)

where t = {ti}, k = {kt} and the superscript indicates that we
exclude the variable with that index. Note, the posterior of
a table assignment is weighted by table specific likelihood
g−i

t (xi). The likelihood of ti = tnew is obtained by summing
out ktnew ,

p(xi,yi|ti = tnew, t−i,k) =

g−i
tnew(xi)

[
K

∑
k=1

mk

m+ γ
f−i
k (yi)+

γ

m+ γ
f−i
knew(yi)

]
.

(12)

Thus for a new table (input Gaussian), ti = tnew, obtained
from (11), we determine its dish (GP hyperparameters),
ktnew , from (12) according to,

p(ktnew |t,k−tnew
) ∝

{
mk f−i

k (yi) if k exists,
γ f−i

knew(yi) if k = knew.

Similarly, the conditional posterior for kt is obtained from
(4) with likelihood f−t

k (Yt), Yt = {yi : ti = t},

p(kt = k|t,k−t) ∝

{
mk f−t

k (Yt) if kt exists,
γ f−t

knew(Yt) if kt = knew.

For GP hyperparameters, θ k, we do not have an analyti-
cal posterior, and thus resort to a hybrid MCMC algorithm
as described in Rasmussen (1996) and Neal (1997). Alter-
natively, we can optimize the marginal likelihood of the
GP using gradient descent as described in Rasmussen and
Williams (2006) and use the obtained estimate as a sample
from the posterior, generally leading to faster mixing rates.

Experiments
Simulated Data
We test the HDDP-MoGP model on simulated data shown
in Fig. 6a. It is a two GP mixture with six Gaussian input
regions, described in Fig. 6e. GP mean and covariance func-
tions are given by (6), with c = 0, σ s = 1 fixed. The in-
put Gaussians are shown at the bottom of Fig. 6a, where the
shading indicates the GP. At the top, we also indicate which
GP is used to sample each point.

Fig. 6b-d show results using a single GP, DP-MoGP, and
HDDP-MoGP models, respectively. We use the following
priors for the GP hyperparameters (see Rasmussen 1996, for
discussion),

l−1 ∼ Ga
(

a
2
,

a
2µl

)
, log(σ s2)∼ N(−1,1),

log(σ ε 2
)∼ N(−3,32), c∼ N(0, std(Y )) .

(13)

Here, length-scale, l, has an inverse Gamma distribution
with E(l−1) = µl and small a produces vague priors. We
use a = 1 and µl = 1 as recommended.

Fig. 6f plots the median (black), 10th and 90th percentiles
(gray) of the Hamming distance between the estimated and
true labels at each iteration of Gibbs sampling. These are
obtained from ten different initializations during HDDP-
MoGP training. We observe the Hamming distance stabi-
lizes fairly quickly at about the 30th iteration. Fig. 6g-h il-
lustrate the two GP components learned. The estimated pa-
rameters are shown in Fig. 6e, indicating that HDDP-MoGP
successfully recovers the generating model. In comparison,
we observe the single GP does not adjust for varying length-
scale or noise, as expected. DP-MoGP, on the other hand,
discovers too many GPs—five main clusters and several
smaller ones. DP-MoGP cannot identify common GP com-
ponents that are non-local, and in addition, as some input ar-
eas have fewer points, it struggles to reliably estimate the GP
specification, for example, missing the fourth input Gaus-
sian cluster altogether. We find that HDDP-MoGP improves
identifiability by sharing statistical strength between non-
local regions in the input space. Specifically, it is the hyper-
parameters of the GPs that are learned and shared by several
regions. Generally evidence in separate regions have little
effect on the belief about the placement of the underlying
curve in other regions because of their distance. However,
here the goal is to discover regions of similar smoothness
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GP 1 2 0.1 1.95 0.10
GP 2 5 0.5 5.20 0.47

µt Σt µ̂t Σ̂t

GP 1 20 5 24.5 10.1
GP 2 37 5 36.8 5.7
GP 1 55 5 55.1 5.4
GP 2 70 2 69.9 2.4
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Figure 6: Comparing single GP, DP-MoGP and HDDP-MoGP on (a) simulated data generated using two GPs and six input Gaussians.
(b),(c),(d) show the learned models. Where applicable, input Gaussians are shown at the bottom and labels at top, differentiated by
shade/displacement. (b) Single GP does not adapt to non-stationarity, (c) DP-MoGP fails to identify GPs correctly, while (d) HDDP-MoGP
benefits from sharing GP hyperparameters across distant regions to recover the model. (e) shows the parameters learned using HDDP-MoGP
and (f) shows convergence by measuring Hamming distance between true and estimated labels. (g), (h) show the individual GPs obtained
from HDDP-MoGP covering non-local input regions.

or noise regimes, so even if regions are far from each other,
evidence about the hyperparameters of the GP in one region
will have impact in other regions where the same GP domi-
nates.

VIX Index
VIX index is a widely followed index, calculated by the
Chicago Board Options Exchange from S&P 500 index
option prices. It is considered a proxy of expected future
volatility of the stock market, which is ascribed to have a
mean reverting behaviour. However, it has proven to be chal-
lenging to model because both the mean and rate of rever-

sion are non-stationary. Thus we consider the use of HDDP-
MoGP to model non-stationary characteristics of the VIX
Index.

We use (6) for GP mean and covariance functions, at-
tempting to capture a smooth varying latent value of volatil-
ity. Fig. 7a shows the input Gaussians obtained using
HDDP-MoGP with (13) as priors. The model identifies three
GP regimes listed in Fig. 7b. The first GP, k = 1, corresponds
to a regular market environment, with average volatility of
18.2%. The second GP, k = 2, represents a more uncertain
environment, with average volatility at 28.3% and larger
noise. This regime covers periods that include the Asian Cri-
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c 18.2 28.3 42.1
σ s 5.2 6.1 17.1
l 5.7 3.5 2.1
σ ε 1.3 2.7 6.4

(b)

Model MSE LL σ
2

Single GP 18.6 -2.1 3.6
DP-MoGP 18.9 -1.0 11.2
HDDP-MoGP 16.5 -0.8 10.4

(c)

Figure 7: (a) Top: VIX Index, Bottom: Input Gaussians for each GP learned using HDDP-MoGP. (b) Show hyperparameters for each GP.
(c) Compares prediction quality using a rolling window. HDDP-MoGP results in the lowest mean square error and highest log likelihood.
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Figure 8: Two recurring market behaviors in asynchronous high-frequency tick data learned using the HDDP-MoGP model. (a) shows tick
data superimposed with HDDP-MoGP model. (b), (c) show individual GPs. (b) GP 1 captures sharp price movements reflecting quick buy-
in/sell-off periods, while (c) GP 2 corresponds to business-as-usual with a relatively smooth price evolution.

sis of 1997, Dot-com bust and 9/11 of 2001 and the Euro-
debt crisis of early 2010. Finally, the third GP, k = 3, re-
flects extremely unusual market conditions, with large aver-
age volatility and noise, occurring for a short while only in
the Fall of 2008 as the collapse of Lehman Brothers nearly
brought markets to a halt.

We also compare the predictive performance of HDDP-
MoGP, DP-MoGP and single GP, using a rolling window ap-
proach. Mean squared error (MSE), average log likelihood
(LL) and average prediction uncertainty (σ̄2) for each model
are shown in Fig. 7c. The single GP tends to be overly cau-
tious in regular market environments, while not sufficiently
accounting for highly volatile periods, resulting in higher
error and lower likelihood. DP-MoGP improves likelihood,
but still has a high MSE, since it cannot determine shifting
regimes quickly and accurately enough. HDDP-MoGP ob-
tains the highest likelihood with the lowest MSE as it can
reuse regimes seen in the past.

High-Frequency Tick
We use HDDP-MoGP to model high-frequency tick data for
RIM stock over a period of a day. Tick data arrives asyn-
chronously with unequal time lapses. High-frequency data
consists of short bursts of heightened activity followed by
periods of relative inactivity. We consider using the HDDP-
MoGP to identify these behaviors from price action data di-
rectly. Standard econometric approaches require preprocess-
ing the data, for example by sampling at a fixed frequency,
which can result in loss of information.

We use (6) for the GP functions and normalize prices to
zero mean and unit standard deviation (c = 0, σ s = 1). Re-
sults using HDDP-MoGP are shown in Fig. 8. The model
discovers two GP components. In the first one (k = 1),
length scale is l1 = 23.2 and noise σ ε

1 = 0.02. The second
(k = 2), has length scale l2 = 183.5 and noise σ ε

2 = 0.06.
The second GP is relatively smooth and distributed widely,
reflecting business-as-usual price behavior. We occasionally
see the emergence of the first GP, which marks much more
sharp and directed price movements, suggesting quick sell-
off or buy-in activity. We see that HDDP-MoGP can iden-
tify recurring classes of market behavior, unlike single GP
or DP-MoGP, and without any preprocessing of the data.

Discussion
We have presented an infinite mixture model of GPs that
share mixture components non-locally across the input
domain through a hierarchical double Dirichlet process
(HDDP-MoGP). An hierarchical double Dirichlet process
(HDDP) extends a standard HDP by incorporating local
parameters for each cluster in addition to globally shared
parameters. The HDDP-MoGP model inherits the strengths
of a Dirichlet process mixture of GPs (Meeds and Osindero
2006), but defines GPs over complex clusters in the input
space formed by an infinite mixture of Gaussians. Experi-
ments show the model improves identifiability by sharing
data between non-local input regions and can be useful
for clustering similar regions in the data. An interesting
direction for future work is to consider other forms of input
distributions, for instance hidden Markov models.
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