
Supplementary Material

Deep Homogeneous Mixture Models:
Representation, Separation, and Approximation

A Tensor Background

For any natural number d, we denote [d] := {1, . . . , d}. Let Vi, i ∈ [d], be k-dimensional vector
spaces over the real field R, then the tensor product V1 ⊗ · · · ⊗ Vd is the canonical vector space
that linearizes multilinear maps over the product space V1 × · · · × Vd. Perhaps the simplest way to
construct the tensor product is to first formally define rank-1 tensors as:

{v1 ⊗ · · · ⊗ vd : vi ∈ Vi, i ∈ [d]}, (11)
and then take the linear span of rank-1 tensors. For each T ∈ V1 ⊗ · · · ⊗ Vd, we define its rank as

rank(T ) := min{r : T =

r∑
γ=1

vγ1 ⊗ · · · ⊗ vγd , v
γ
i ∈ Vi, i ∈ [d], γ ∈ [r]}. (12)

Sometimes we further restrict each factor vγi to some subset Ui ⊆ Vi, leading to a “larger” notion
of rank. For instance, when Vi ≡ Rk, the above definition is called the CP-rank and if we take
Ui = Rk+, then we get the refined notion of nonnegative rank, denoted as rank+. Obviously,
rank+ ≥ rank (whenever the former is defined).

Usually we can identify a d-order tensor T ∈ V1 ⊗ · · · ⊗ Vd with a multi-dimensional array

T = [Ti1,...,id ]ij∈[ki],j∈[d] ∈
⊗
i

Rki ' Rk1×···×kd , (13)

once some bases have been chosen for each Vi. We can extend an inner product to the tensor product
space: provided that some inner product 〈·, ·〉i has been specified on each Vi, we first define the inner
product for rank-1 tensors:

〈u1 ⊗ · · · ⊗ ud,v1 ⊗ · · · ⊗ vd〉 :=

d∏
i=1

〈ui,vi〉i, (14)

and then extend multi-linearly.

We give an explicit description of TMM [26] here. For simplicity, let us assume d = bL for some
integers b and L. Then, every d-order tensor T can be represented recursively as

φ`,tγ =

r`−1∑
j=1

w`,t,γj

b⊗
s=1

φ
`−1,b(t−1)+s
j , ` ∈ [L− 1], γ ∈ [r`], t ∈ [bL−`], (15)

T = φL,11 =

rL−1∑
j=1

wL,1,1j

b⊗
s=1

φL−1,s
j , (16)

where φ0,i
γ ∈ Vi for all γ ∈ [r0]. Note that the tensor T is completely determined by

{φ0,i
γ : γ ∈ [r0], i ∈ [d]}

⋃
{w`,t,γ ∈ Rr`−1 : ` ∈ [L− 1], γ ∈ [r`], t ∈ [bL−`]} ∪ {wL,1,1 ∈ RrL−1},

(17)
where the former are the base vectors at the bottom level and the latter are the coefficient vectors at
each intermediate level. Note that the representation (15)-(16) is not 1-1 (hence some redundancy).
Let TMMb

r (with default TMMr := TMM2
r) be the class of tensors that can be represented as in

(15)-(16).

A simple counting argument reveals that the coefficient tensors in TMMb
r have d−b

b−1r
2 + r entries. It

is clear that TMMb
r ⊆ TMMb

r+1, and TMMb
1 is exactly the set of rank-1 tensors. As shown in [13],

every tensor of rank r can be represented in TMMb
r. Similarly, every tensor of nonnegative rank r can

be represented in TMMb
r, with all base vectors and coefficient vectors in (17) nonnegative. Moreover,

we can normalize the base vectors φ0,i
γ so that they have unit `1 norm.
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Figure 5: Left: A dimension-partition tree in HTF+. The superscripts indicate the number of bases.
Middle: The equivalent S3PN. The leaf f ij is the j-th basis of vector space Vi. Right: An “equivalent
LTM.” The superscripts indicate the number of values each hidden variable can take. The two
densities of X3 are equal, i.e. f3

1 = f3
2 (hence X3 does not actually depend on H1).

B More results on comparing different models

This appendix section provides more details to compliment section 4. We provide additional details
and examples to support the arguments that we made in section 4.

B.1 Converting an LTM to S3PN

Given an LTM, we can build a corresponding S3PN as follows: starting from the root of the LTM,
for each hidden variable H that takes k possible values {1, . . . , k} and that has r children nodes
{V1, . . . , Vr}, we create a sum node SH with k children product nodes {PH,1, . . .PH,k}, each of
which has r children sum nodes {SV1

, . . . ,SVr}. We set the weight from the sum node SH to its i-th
child product node PH,i as Pr(H = i|π(H) = j), if SH connects to the j-th child product node of
the parent hidden variable π(H) (for the root, the parent is empty). If the child Vt is a hidden variable,
we continue the construction similarly, while if Vt = Xi is an observed variable, then we replace the
sum node SVt with the density f ij(xi), assuming SVt is connected to the j-th child product node of
the parent hidden variable H . Algorithm 1 summarizes this construction, and Figure 1 illustrates the
idea using a simple latent class model (LCM) [21].

In Algorithm 1, we describe a procedure to convert a latent tree model (LTM) as described in (2) to a
self-similar SPN (S3PN). In Figure 6 we give another example to illustrate Algorithm 1.

Figure 6: Left shows a latent tree model with three binary hidden variables H = {h1, h2, h3} and
four observed variables X = {X1, X2, X3, X4}. The second figure shows the equivalent SPN
representing the latent tree. The blue edges imply that the hidden variable takes value 0 and the violet
edges mean it takes value 1. Only a subset of leaf distributions are explicitly shown in the figure.

In Figure 6, we consider a latent tree graphical model forming a balanced binary tree with three
binary hidden variables H = {h1, h2, h3} and four observed variables X = {X1, X2, X3, X4}. The
tree has 3 levels and is rooted at h1. The algorithm proceeds by going through each level one at a
time. In the first iteration, it encounters the root node h1 and creates a corresponding sum node in the
SPN. It then creates two (equal to all possible states of h1) product nodes as children to this sum node.
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The edge on the left (blue in the figure) denotes the edge when h1 = 0 and has weight Pr(h1 = 0)
and the edge on the right (violet) denotes edge when h1 = 1 and has weight Pr(h1 = 1). In the next
iteration, the algorithm proceeds to level 2 which has two hidden variables h2 and h3. The algorithm
processes these one at a time. First, it takes h2 and creates two sum nodes corresponding to h2, one
child each for each product node in the previous layer. Next, for two product nodes are created and
an edge is created between each of these product nodes and each of the sum node created before
corresponding to h2. The same procedure is then repeated for h3. Finally, for each observed variable,
a leaf distribution Pr(X|πX) is induced.

Algorithm 1 Converting an LTM into an S3PN

1: Input : A latent tree model with L levels and (X,H)
2: Output : An equivalent S3PN
3: for l← L to 1 do
4: Hl := {all nodes in current level from left to right order}
5: while Hl 6= ∅ do
6: h = Pop(Hl)
7: if h ∈ X then
8: for j ← 1 to |πh| do
9: create a leaf vj with distribution Pr(h|πh = j)

10: add an edge (vj , p
l−1
j )

11: end for
12: else
13: if πh 6= ∅ then
14: create |πh| sum nodes i.e. Slh := {sl1, sl2, · · · sl|πh|}
15: for j ← 1 to |πh| do
16: add an edge (slj , p

l−1
j )

17: end for
18: create |h| product nodes i.e. P lh := {pl1, pl2, · · · , plh}
19: for i← 1 to |πh| do
20: for j ← 1 to |h| do
21: create an edge (sli, p

l
j) with weight wi,j = Pr(h = j|πh = i)

22: end for
23: end for
24: else
25: create one sum node sh
26: create h product nodes i.e. Ph := {p1, p2, · · · , ph}
27: for i← 1 to |h| do
28: add an edge (sh, pi) with weight Pr(h = i)
29: end for
30: end if
31: end if
32: end while
33: end for
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B.2 dHTF ( HTF

Figure 7 shows the difference between HTF and dHTF. As is clear from the figure, dHTF allows
for only local connections and can be thought of as having pointwise multiplication between bases
densities. HTF is more general and can allow for cross connections.
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Figure 7: Top : A general HTF representation. The network has cross connections and calculates all
possible multiplications. Bottom : A dHTF with same bases functions. The representation allows for
local connections.
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B.3 Example for TMM as an LTM and S3PN

In fig. 8, we give a representation for fig. 2 without redundancy. The figure shows that a TMM can be
represented by an LTM and hence an S3PN.
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Figure 8: Left: A dimension-partition tree in HTF. The superscripts indicate the number of bases,
which should remain constant on each level. Middle: The equivalent S3PN. The leaf f ij is the j-th
basis of vector space Vi. Right: An equivalent TMM. The superscripts indicate the number of values
each hidden variable can take (again, remaining constant on each level).

B.4 Example for TMM ( LTM

In fig. 9 we give an S3PN that is equivalent to an LTM but not a TMM. It is evident from the figure
that the LTM consists of hidden variables at the same level with different number of possible states.
This arrangement, however, is not allowed in TMM.

{1, 2, 3, 4}1

{1, 2}2

{1}2 {2}2

{3, 4}2

{3}3 {4}3

+

×

+

×

f1
1 f2

1

×

f1
2 f2

2

+

×

f3
1 f4

1

×

f3
2 f4

2

×

f3
3 f4

3

×

+

×

f1
1 f2

1

×

f1
2 f2

2

+

×

f3
1 f4

1

×

f3
2 f4

2

×

f3
3 f4

3

H2
1

H2
2

X1 X2

H3
3

X3 X4

Figure 9: Left: A dimension-partition tree in HTF+. The superscripts indicate the number of bases.
Middle: The equivalent S3PN. The leaf f ij is the j-th basis of vector space Vi. Right: An equivalent
LTM. The superscripts indicate the number of values each hidden variable can take.

A compact representation of fig. 9 without redundancy is given in fig. 10.
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Figure 10: Left: A dimension-partition tree in HTF+. The superscripts indicate the number of bases.
Middle: The equivalent S3PN. The leaf f ij is the j-th basis of vector space Vi. Right: An equivalent
LTM. The superscripts indicate the number of values each hidden variable can take.
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B.5 TTM/HMM as LTM and S3PN

In fig. 11, we give an example of a Tensor Train Model (TTM) which is know to be equivalent to an
HMM. We show an equivalent representation of the TTM/HMM into an LTM and therefore an S3PN.
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Figure 11: Left: A dimension-partition tree in tensor-train. The superscripts indicate the number of
bases, which should remain constant for siblings. Middle: The equivalent S3PN. The leaf f ij is the
j-th basis of vector space Vi. Right: An equivalent HMM. The superscripts indicate the number of
values each hidden variable can take.
Figure 12 shows a simpler example to convert a TTM/HMM to an LTM and S3PN with no redundancy.
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Figure 12: Left: A dimension-partition tree in HTF+. The superscripts indicate the number of
bases. Middle: The equivalent S3PN. The leaf f ij is the j-th basis of vector space Vi. Right: An
“equivalent LTM.” The superscripts indicate the number of values each hidden variable can take. The
two densities of X3 are equal, i.e. f3

1 = f3
2 (hence X3 does not actually depend on H1).
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B.6 Example for LTM ( S3PN

In ?? we give an example of an S3PN whose resulting latent model has cycles and hence cannot be
represented as an LTM without increasing the size of the Latent tree exponentially w.r.t. to the size of
the latent model.

B.7 Example for S3PN ( SPN

In fig. 13, we give an example of an SPN that is not equivalent to S3PN. It is evident from the example
that the subtrees rooted at the first sum node have different variable partitions and hence the resulting
SPN is not sn S3PN. The figure on the right shows that converting this SPN to an S3PN will result in
an increase in the size of the network.
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Figure 13: Left: An SPN but which is not an S3PN. The leaf f ij is the j-th basis of vector space Vi.
Right: The equivalent S3PN requires an increase in the size of the network.

C Proofs

Theorem C.1. Any SPN can be rearranged to have alternating layers of sum and product nodes
without any change in the size of the resultant standard SPN from the original SPN.

Proof. It is straightforward to show that consecutive combination of either sum nodes or product
nodes can be merged/collapsed into one layer of the corresponding nodes. This can be seen as follows:
consider a sum node v that has m sum nodes as children and denote the set as ch(v) := {vi}mi=1.
Then, the expression fv evaluated at v is

fv(x) =

m∑
i=1

αvifvi(x) (18)

However, since each vi ∀i ∈ [m] is also a sum node; denote the children of vi by the set ch(vi) :=
{v̂i,j}tij=1 for each i ∈ [m]. Thus,

fvi(x) =

ti∑
j=1

βv̂i,jfv̂i,j (19)

Therefore, fv(x) can be now be re-written as

fv(x) =

m∑
i=1

αvi

ti∑
j=1

βv̂i,jfv̂i,j (20)

=

m∑
i=1

ti∑
j=1

αviβv̂i,jfv̂i,j (21)

(22)
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Define a 1− 1 mapping between the tuple (i, j) i ∈ [m], j ∈ [ti] and [K] where K =
∑m
i=1 ti such

that k = j +
∑i−1
l=1 tl, k ∈ [K]. Then, we can re-write the above as

fv(x) =

K∑
k=1

γkfv̂K (23)

where γk = αviβv̂i,j and fv̂k = fv̂i,j . This shows that two consecutive layers of sum node can be
collapsed into one layer of sum layer while preserving the same size of the network. Similarly, it can
be shown for consecutive layers of product nodes.

Now, we give the procedure to convert any SPN into an SPN with alternating layers of sums and
products. Perform a top-down pass starting at the root node (W.l.o.g. assume the root node is a sum
node). For every children of the root node, if it is a sum node, merge the node into the root node.
This ensures that after this step the top layer and the next layer are alternating (including leaf nodes).
Proceeding similarly for every node in the network ensures the final network has alternating layers
throughout. This completes the proof.

Theorem 4.1. If a shallow SPN T, with leaf (input) nodes from G, represents the density mixtureW ,
then T has at least rank+(W) many product nodes. Conversely, there always exists a shallow SPN
that representsW using rank+(W) product nodes and 1 sum node.

Proof. Suppose the shallow SPN T represents the (homogeneous) mixture densityW . If the hidden
layer is all sum nodes, then the output node must be a product node. The claim trivially holds in this
case. If the hidden layer is r product nodes, then the output node is a sum node, with weight zγ to the
γ-th product node. The output of the SPN T, when expanded at the root, is in the following form:

T(x) =

r∑
γ=1

zγ

d∏
i=1

gγi (xi) =

r∑
γ=1

zγ〈w(γ)
1 ⊗ · · · ⊗w

(γ)
d , ~f1(x1)⊗ · · · ⊗ ~fd(xd)〉 (24)

= 〈
r∑

γ=1

zγw
(γ)
1 ⊗ · · · ⊗w

(γ)
d , ~f1(x1)⊗ · · · ⊗ ~fd(xd)〉 (25)

= 〈W, ~f1(x1)⊗ · · · ⊗ ~fd(xd)〉. (26)

Thus,W =
∑r
γ=1 zγ ·w

(γ)
1 ⊗ · · · ⊗w

(γ)
d , i.e., rank+(W) ≤ r.

Conversely, let r = rank+(W) with the decompositionW =
∑r
γ=1 w

(γ)
1 ⊗ · · · ⊗w

(γ)
d . Note that

each w
(γ)
i is nonzero, as otherwise we would be able to reduce the rank. We construct a shallow SPN

T to representW as follows: On the first layer we have r product nodes, with the γ-th one computing∏d
i=1 g

(γ)
i (xi), where

g
(γ)
i (xi) =

k∑
j=1

w̄
(γ)
ij fi,j(xi), w̄

(γ)
ij =

w
(γ)
ij

‖w(γ)
i ‖1

. (27)

Note that ‖w(γ)
i ‖1 :=

∑k
j=1 w

(γ)
ij > 0 hence the above is well-defined. Then, we add a sum node on

top of all product nodes, with weight ‖w(γ)‖1 :=
∏d
i=1 ‖w

(γ)
i ‖1 > 0 for the γ-th product node. The

output of the constructed shallow SPN is:

f(x) =

r∑
γ=1

‖w(γ)‖1
d∏
i=1

g
(γ)
i (xi) =

r∑
γ=1

d∏
i=1

k∑
j=1

w
(γ)
ij fi,j(xi) (28)

=

r∑
γ=1

〈w(γ)
1 ⊗ · · · ⊗w

(γ)
d , ~f1(x1)⊗ · · · ⊗ ~fd(xd)〉 = 〈W, ~f1(x1)⊗ · · · ⊗ ~fd(xd)〉. (29)

The proof is now complete.

Theorem 4.2. If a shallow SPN T, with leaf nodes from F , represents the density mixtureW , then
either T has at least nnz(W) product nodes or rank+(W) = 1. Conversely, there always exists a
shallow SPN that representsW using nnz(W) product nodes and 1 sum node.
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Proof. Suppose T has a hidden layer of sum nodes. Because T is standard, the product output is then
a mixture density of the following form:

T(x) =

d∏
i=1

k∑
j=1

wijfi,j(xi) = 〈w1 ⊗ · · · ⊗wd, ~f1 ⊗ · · · ⊗ ~fd〉 = 〈W, ~f1 ⊗ · · · ⊗ ~fd〉. (30)

Thus,W = w1 ⊗ · · · ⊗wd has nonnegative rank 1. On the other hand, if T has a hidden layer of
product nodes, then the output of the standard SPN T, when expanded at the root sum node, is in the
following form:

T(x) =

k∑
j1=1

· · ·
k∑

jd=1

zj1,...,jd

d∏
i=1

fi,ji(xi) = 〈W, ~f1(x1)⊗ · · · ⊗ ~fd(xd)〉. (31)

Thus,W = Z , in particular nnz(W) = nnz(Z), but the latter is exactly the number of product nodes
in T.

The converse part follows by reversing the above argument.

Theorem 4.3. Let an LTM T have d observed variables X = {X1, . . . , Xd} with parents Hi taking
ri values respectively. Assuming the CPTs of T are sampled from a continuous distribution, then
almost surely, the tensor representationW for T has rank at least

max
1≤m≤d/2

max
{S1,...,Sm,S̄1,...,S̄m}⊆X

m∏
i=1

min{ri, r̄i, ki, k̄i}, (3)

where ki (k̄i) is the number of (linearly independent) component densities that Si (S̄i) has, and Si
(S̄i) are non-siblings.

Proof. We present our proof using the equivalence between LTM and dHTF.

Recall that an HTF consists of a dimension-partition tree (DPT) T whose leaf nodes {i}, i ∈ [d]
represent d vector spaces with bases {vi1, . . . ,viri} respectively. At each internal node β with bβ
children nodes β1, . . . , βbβ , we have rβ coefficient tensors wβ,`[β] ∈ Rrβ1×···×rβbβ , `[β] ∈ [rβ ], and
rα denotes the number of bases at node α. Any tensorW living in the space at the root D of T can
thus be represented using rD coefficients {c`[D] : `[D] ∈ [rD]} in the following way (c.f. Eq (11.26)
of [13] for the special case when the DPT is binary):

W =

ri∑
`[i]=1
i∈[d]

 rα∑
`[α]=1
α∈T\L

c`[D]

∏
β∈T\L

w
β,`[β]
`[β1],...,`[βbβ ]

 d⊗
i=1

vi`[i]. (32)

For a dHTF, the coefficient tensors wβ,`[β]
`[β1],...,`[βbβ ] are diagonal, so in the summation above we can

only consider sibling nodes once as a group. The key observation is that the right-hand side of (32) is
a sum of many rank-1 tensors, henceW is likely to have a large rank.

Let {Si, S̄i : i = 1, . . . ,m} ⊆ X := {X1, . . . , Xd}, where Si’s are non-siblings and S̄i’s are also
non-siblings. Set ti = min{rir̄i, ki, k̄i}. For each Si, set its parent say Hi’s (diagonal) coefficient
tensor as follows:

w
Hi,`[Hi]
`[Si]

=

{
1, if `[Hi] = `[Si] = `[S̄i] ≤ ti
0, otherwise

. (33)

Similarly for each S̄i. For any remaining internal node β, set its (diagonal) coefficient tensor as:

w
β,`[β]
`[β1] =

{
1, if `[β] = 1

0, otherwise
. (34)

Under the above specification, we have

W ∝
t1∑
j1=1

· · ·
tm∑
jm=1

[
⊗mi=1v

Si
ji

]
︸ ︷︷ ︸
aj1,...,jm

⊗[
⊗mi=1v

S̄i
ji

]
︸ ︷︷ ︸
bj1,...,jm

. (35)
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Since {aj1,...,jm} and {bj1,...,jm} are linearly independent, respectively, through matricization we
know rank(W) ≥

∏
i ti. This shows that there exist coefficient tensors w so that rank(W) ≥

∏
i ti.

To extend our conclusion from a special realization above to the generic case, let us note that the
determinant of any submatrix of any matricization ofW is a polynomial function of the coefficient
tensors w. We have shown above this polynomial is not always zero, but then it follows immediately
that the zero set of this polynomial has measure zero [4], i.e., for a generic realization of the coefficient
tensors, we have rank(W) ≥

∏
i ti.

We constructed an explicit homogeneous mixture in the above proof whose rank is exponential. A
similar construction, in the discrete setting, is given below [18]:
Example C.2. Let xi ∈ {0, 1}∀i, k = 2 and d = 2m. Choose for all ∀i the basis (unnormalized)
densities fi,1(xi) = 1(xi = 1) and fi,2(xi) = 1(xi = 0) (wrt some non-degenerate counting
measure on {0, 1}). Consider the (unnormalized) multivariate density F on {0, 1}d (wrt the product
counting measure):

F (x) =

{
1, if xi = xi+m for all 1 ≤ i ≤ m
0, otherwise

. (36)

Clearly, F is a density mixture with input nodes from F and the associated tensor W satisfies
rank+(W) > 1. Hence, a standard shallow SPN needs at least nnz(W) = 2d/2 product nodes to
represent F , with input nodes from F . The density mixture F is the so-called EQUAL function in [18],
whose Theorem 24 follows immediately from our Theorem 4.2 since nnz(W) ≥ rank(W ) for any
matricization W ofW .

We note that F is also a density mixture with input nodes from G (elements of which are themselves
mixtures of fi,1 and fi,2), and rank+(W) ≥ rank(W ) = nnz(W) = 2d/2 ≥ rank+(W). Thus, any
standard shallow SPN with input nodes from G still requires 2d/2 product nodes to represent the
EQUAL function. In other words, an SPN with an input layer from F , a layer of sum nodes, a layer of
product nodes, and a single sum node as output, would still require 2d/2 product nodes in order to
represent the EQUAL function. This distinction between input nodes from F and input nodes from G,
to our best knowledge, has not been noted before.
Theorem 5.1. Fix ε > 0 and tensorW ∈ Rk1×···×kd . Then, for some (small) constant c > 0,

ε-rank∞(W) ≤ c‖W‖tr
ε2 , (5)

where ‖W‖tr is the tensor trace norm. A similar result holds for ε-rank∞+ (W). The dependence on ε
is tight up to a log factor.

Proof. Note that the `∞ norm is dominated by the `2 norm, so ε-rank2 ≥ ε-rank∞. Thus, givenW ,
we consider the approximation problem:

min
‖Z‖tr≤‖W‖tr

‖Z −W‖22. (37)

Obviously, the minimum is 0. Moreover, if we run the generalized conditional gradient of [12] with
initialization Z0 = 0, then after t iterations, we have

‖Zt −W‖22 ≤
c‖W‖tr

t
, rank(Zt) ≤ t, (38)

where c is some small universal constant. Here we are exploiting the property that each iteration of
the conditional gradient algorithm only increments the rank by at most 1. Setting c‖W‖tr/t = ε2

gives us

‖Zt −W‖∞ ≤ ‖Zt −W‖2 ≤ ε, rank(Zt) ≤
c‖W‖tr
ε2

, (39)

whence follows ε-rank∞(W) ≤ O(‖W‖tr/ε2).

The proof for the nonnegative rank is completely similar.

The inverse-square dependence on ε in Theorem 5.1 is almost tight, as shown below:
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Theorem C.3 ([1, Theorem 2.1]). Let W be a kd/2 × kd/2 matrix with |wi,i| = 1 ∀i and |wi,j | ≤
ε ∀i 6= j, where k−d/4 ≤ ε ≤ 1

2 . Then, for some absolute positive constant c,

rank(W ) ≥ cd log k

ε2 log( 1
ε )

(40)

The above theorem, through un-matricization, clearly implies that there exist tensors W with
ε-rank∞(W) lower bounded by cd log k

ε2 log(
1
ε )

, when ε is not too small.

A few remarks with regard to Theorem 5.1 are in order. We note first that our proof actually gives
the same upper bound for the epsilon-rank under any `p norm where p ∈ [2,∞]. Using the norm
inequality ‖W‖1 ≤ kd/2‖W‖2, we then immediately have from Theorem 5.1 that

ε-rank1(W) ≤ c‖W‖trkd

ε2
. (41)

Note however that there is still a factor of kd/4 gap between the upper and lower bounds in The-
orem D.2. It might be possible to optimize the lower bound in Theorem D.2 through different
matricizations.

There are at least two issues with Theorem 5.1. First, if we use it to naively bound the L1 norm
difference of the underlying densities, i.e.,

‖g − h‖1 =

∫
|〈W − Z, ~f1(x1)⊗ · · · ⊗ ~fd(xd)〉|dµ(x) ≤ kd‖W − Z‖∞, (42)

the big constant kd would pop out in the worse case. More disturbingly, in a practical application, we
usually do not have access toW (which is too large to maintain directly anyways), hence it is not
clear how to attain the bound in Theorem 5.1 algorithmically.

D `1 norm based ε-rank

In this section, we fix the norm ‖ · ‖ to be the usual `1 norm in definition (4), and we use the notation
ε-rank1

+ or ε-rank1 to signify this convention. Our next result provides a new lower bound on the
ε-rank, based on matricization.

Theorem D.1. Fix ε > 0 and letW ∈ Rk1×···×kd . Then,

ε-rank1
+(W) ≥ ε-rank1(W) ≥ min{i ≥ 0 : ε ≥ ‖W‖tr −

i∑
j=1

σi(W )}, (43)

where W is any matricization of the tensorW , ‖ · ‖tr is the matrix trace norm (i.e. sum of singular
values), and σi(W ) denotes the i-th largest singular value of W .

Proof. Since the nonnegative rank is lower bounded by the rank, which is in turn lower bounded by
the rank of any matricization, we clearly have

ε-rank1
+(W) ≥ ε-rank1(W) ≥ ε-rank1(W ), (44)

where W is an arbitrary matricization ofW (note that matricization does not change the `1 norm).
Moreover, for matrices, ‖ · ‖∞ ≤ ‖ · ‖sp (i.e., maximum singular value) hence ‖ · ‖1 ≥ ‖ · ‖tr, thanks
to duality. Therefore,

ε-rank1(W ) = min
‖∆‖1≤ε

rank(W + ∆) ≥ min
‖∆‖tr≤ε

rank(W + ∆) = min
‖W−Z‖tr≤ε

rank(Z). (45)

Using say [47, Theorem 1], we know that at the minimum we can choose Z to have the same singular
vectors as W . It is clear then that Z should match the singular values of W , from the biggest to
smallest, until the trace norm difference between Z and W falls under ε.
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The only prior work to Theorem D.1 that we are aware of is [18, Lemma 28], which only deals with
the identity matrix W = I and is loose by a factor of 2. [18] went on to construct a density function
based on the EQUAL function (where W = I , c.f. Example C.2) that cannot be approximated by a
polynomially-sized standard shallow SPN, up to some exponentially small ε. This existence result is
then strengthened by [7], who showed that under the HR model, for almost every random tensorW ,
there exists some ε (potentially depending onW), such that any polynomially-sized standard shallow
SPN cannot approximate W under ε. Based on Theorem D.1, we now present a complementary
result.

Theorem D.2. Fix any ε > 0, and sample each entry of the tensorW ∈ Rk1×···×kd independently
and identically from a standard Gaussian distribution, then with high probability,

ε-rank1(W) ≥ O(kd/2 − εkd/4). (46)

Proof. Consider the reshaped matrix W ∈ Rkd/2×kd/2 of the tensorW . Clearly, each entry of W is
again an iid sample from the standard Gaussian distribution. As shown in [42], the smallest singular
value ofW is Θ(k−d/4), with high probability. Let r = ε-rank1(W), then according to Theorem D.1,
we have

ε ≥
kd/2∑
j=r+1

σi(W ) ≥ (kd/2 − r)k−d/4. (47)

Rearranging we obtain the claimed lower bound.

The failure probability in Theorem D.2 depends on d only mildly: up to a small constant it approaches
0 at the rate ck

d/2

for some constant 0 < c < 1. Moreover, the standard Gaussian distribution can be
replaced with any subgaussian distribution, or more generally any distribution with a bounded 4-th
moment. To see the significance of Theorem D.2, let us note first that we can fix ε beforehand so
there is no dependence on the tensorW . Secondly, Theorem D.2 implies that with high probability,
for any mixture density f , even if we contend with a constant approximation accuracy ε = O(1), a
standard shallow SPN T would still need O(kd/2) many product nodes.

E More Related Works

The first attempts at rigorously analyzing the effect of depth in a network was in relation to the
computational complexity of boolean circuits. A classical result is due to [43] who showed that for
every integer I , there are boolean functions computed by a circuit with alternating AND and OR
gates of polynomial size and depth I; but if the depth is reduced to I − 1, an exponential sized circuit
would be required. A similar result was proven later by [37]. Another body of work in similar spirit
was by [46; 30] proving that solving the k-bit parity task by a circuit of depth 2 requires exponentially
many gates. A more recent result is due to [34] proving that bounded-depth boolean circuits cannot
distinguish some non-uniform input distributions from the uniform distribution. This work by [34]
solved a longstanding conjecture in the field.

Classical results for analyzing the expressiveness of neural networks involved results on universal
approximation by [35; 31; 38], and by [32] who studied the networks VC dimension. Although, these
early results provided general theoretical insights, they were restricted to shallow networks. Recently,
several studies have been undertaken to understand the effect of depth on the expressive capacity of a
deep network [41; 36; 45; 40; 39]. Most of these works provide separation results between the class
of functions that can be efficiently represented by a deep network and those by shallow networks.
However, one major limitation of these works is they consider pathological hand-coded network
weights that exhibit these extremal properties by design. It is not evident if these class of networks
and the hypothesis function class they encode resemble networks and functions used in practice.
Therefore, fundamental questions about the expressive power of depth for neural networks used in
practice is still not well understood.

Directly relevant to our contributions in this manuscript are recent works in analysing the effect
of depths in Arithmetic Circuits [9], Convolutional Arithmetic Circuits [7] and particularly in Sum-
Product Networks [24]. The first theoretical results for depth efficiency of SPNs was by [10]. They
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constructed two families of functions - F which formed a full binary tree - and - G which consisted of
n nodes in every layer with each node being connected to n− 1 nodes in the previous layer - using an
SPN with alternating sum and product layers. Their results establish that any n-dimensional function
f ∈ F can be computed by an SPN of polynomial size but would require a shallow SPN Ω(2

√
n)

hidden units to exactly represent f . They further show that for each d ≥ 4 there exists a function
gd ∈ G that can be computed by an SPN of depth d and size O(nd) but would require Ω(nd) sized
shallow SPN to compute. However, this work has several limitations. Firstly, the separation results
provided are restricted to depth 3 networks and networks in the family G and F ; it is not clear if a
similar separation result holds for intermediate depths. Secondly, as the authors themselves state,
it does not comment on any separation results when a deep SPN is only to be approximated by a
shallow SPN. Thirdly, the specific families of functions F and G considered by [10] are not shown to
be a relevant and universal hypothesis class that occurs in practice. Lastly, the SPNs considered in
this work are not valid SPNs i.e. they do not encode a probability density function. Furthermore, the
analysis is limited to only discrete variables with indicator leaf functions.

[18] extended the work in [10] by proving that there exist functions that can be efficiently computed
by a depth d valid SPN but would require super-polynomially size for a depth d−1 SPN. In particular,
they considered the EQUAL function on an array of Boolean variables x = (x1, x2, .., xn) defined as
follows : let A = {1, 2, 3, .., n/2} and B = (n/2 + 1, n/2 + 2, ..., n) be the index partition. Then,
EQUAL : {0, 1}n → {0, 1} where EQUAL(x) = 1 when xA = xB (i.e. the first half of the input is
equal to the second half) and 0 otherwise. They proved that a valid shallow SPN would require 2

n
2

units in the hidden layer to exactly represent EQUAL(x) while an SPN of depth 4 would require O(n)
size. Further, they also proved that a shallow SPN would still require 2n/2−2 nodes in the hidden layer
to approximate EQUAL(x)5. However, [18] also restricted their analysis in the paper to only Boolean
variables primarily because they used previous works from circuit complexity on arithmetic circuits
to derive their results. Further, for the separation results, they constructed an example restricted to
Boolean variables and indicator functions in the leaves; the proof does not generalize to valid SPNs
with arbitrary density functions. Most importantly, they use very specific hand-crafted functions to
prove separation results both for exact and approximate representation with no information on how
frequently these functions occur in practice. Therefore, it might be the case that expect for a few
hand-crafted pathological example, a shallow SPN can efficiently represent all functions derived from
a deep SPN.

Recently, [7] proposed a deep network which they called convolutional arithmetic circuits that
incorporates locality, sharing and pooling. They went on to show that this network corresponded to
the Hierarchical Tucker Tensor decomposition [13]. Their main theoretical result showed that except
for a negligible set of measure zero, all functions that can be represented by a deep convolutional
arithmetic circuits of polynomial size, require an exponential sized shallow network to be realized
exactly or approximated. The hypothesis class they considered was universal. However, a major
limitation of their main result is that it is an existence result. That is, they say, for any deep
convolutional arithmetic circuit, there exists an ε such that no shallow network of polynomial size
can approximate the deep network within this ε distance. However, they do not provide any explicit
relation with ε for the approximation. In other words, according to this analysis, this ε which requires
an exponentially sized shallow network to approximate a deep network may be infinitesimally small.
Therefore, a natural question to ask is : what is the ε-dependency of the size of a shallow network
approximating a deep network within some ε distance?

F Detailed Experiments

We perform experiments on both synthetic and real world data to reinforce our theoretical findings.
In appendix F.1, we present experiments on synthetic data to demonstrate the expressive power of
an SPN and the algorithm proposed in (7)-(8) which we call SPN-CG. Next, we present two sets of
experiments on real world datasets - in appendix F.2, we present results for image classification under
missing data. In ??, we compare the performance of SPN-CG to structure learning techniques for
SPNs on seven real world datasets used previously as benchmarks.

5We direct the reader to [18] for further details on the exact definition of approximation used and the proof.
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F.1 Synthetic data

In the first experiment, we generated 2000 samples from a 4 component and two dimensional GMM
with full covariance matrices for each component. We estimate this GMM using SPN-CG. In each
iteration, we add an additional SPN from TMM2,2 and learn its parameters and the mixing weights.
We use SGD with weight decay to learn the parameters in each iteration. This experiment helps us
to demonstrate that an SPN with univariate leaf distributions (thereby resulting in a mixture model
with factored distributions) can estimate a GMM with full covariance matrix. Figure 14 shows the
convergence of the model to the true negative log-likelihood on a held-out test set as a function of
number of iterations.

Figure 14: (Left) Convergence to true negative log-likelihood using SPN-CG (Right) Surface plots
for covariance matrices of the components

F.2 Image Classification under Missing Data

In this section, we demonstrate the efficacy of generative models like deep mixture models learned
using SPN-CG for image classification under missing data. We show that deep mixture models for
which marginalization is tractable lend themselves naturally for problems under the missing data
regime. We perform experiments on MNIST [15] for digit classification and small NORB [16] for 3D
object recognition. We keep the same settings for the experiment as described in [26] i.e. we test on
two settings of MAR missing distributions - (i) an i.i.d. mask with a fixed probability of missing each
pixel, and (ii) a mask obtained by the union of rectangles of a certain size, each positioned uniformly
at random in the image.

Our major aim with these experiments is to test our conditional gradient algorithm for high-
dimensional real world settings. Therefore, we directly adapt the experiments as presented in
[26]. Specifically, we adapt the code for the proposed HT-TMM for SPN-CG by following the
details as given in [26]. In each iteration of our algorithm, we add an SPN structure exactly similar
to HT-TMM. Therefore, the first iteration of our algorithm (i.e. SPN-CG1) amounts to a structure
similar to HT-TMM while additional iterations increase the network capacity. For each iteration, we
train the network by using AdamSGD variant of optimization for parameters with a base learning
rate of 0.03 and β1 = β2 = 0.9. For each added network structure, we train the model for 22,000
iterations for MNIST and 40,000 for NORB.

We compare our results to the following methods :

1. Data Imputation Methods : Data imputation methods are a common technique to handle
missing data using discriminative classifiers. The algorithm proceeds by completing missing
values via some heuristic and passing the results to a classifier trained on uncorrupted
data. In our approach, we use a ConvNet for prediction. We tested on the following data
imputation methods in our manuscript :

• Zero data imputation : completing all missing values with zeros.
• Mean data imputation : completing all missing values with the mean value over

the dataset
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Figure 15: Performance of SPN-CG on missing data (a) MNIST data with i.i.d missing pixels (b)
MNIST data with rectangles of missing pixels (c) NORB dataset with i.i.d. missing pixels (d) NORB
dataset with rectangles of missing pixels

• Generative Stochastic Networks [33]

• Non-linear Independent Components Estimation (NICE) [11]

• Diffusion Probabilistic Models (DPM) [44]

2. LearnSPN [24]: We used the original code to learn the structure augmented with the class
variable and learn the joint probability distribution using CCCP.

For all the algorithms except LearnSPN, we used the modified version of the code as suggested
by [26]. Most of the code can be publicly accessed at : https://github.com/HUJI-Deep/
Generative-ConvACs. We used the original code as suggested by the authors for LearnSPN. For
our algorithm, due to time constraints, we could only perform three iterations for both NORB and
MNIST dataset. We present the results for these three iterations denoted in the results as SPN-CG1,
SPN-CG2 and, SPN-CG3 in this manuscript (see fig. 15a - fig. 15d). Our implementation for SPN-CG
is available at : https://git.uwaterloo.ca/l4mou/SPN

The results show that SPN-CG performs well in the regime of missing data for both MNIST and
NORB. Furthermore, other generative models including SPN with structure learning perform com-
parably only when a few pixels are missing but perform very poorly as compared to deep mixture
models as larger amounts of data is missing suggesting that the structure of deep mixture models
is advantageous. These experiments on MNIST and NORB help us conclude that deep mixture
models learned using SPN-CG outperform other methods on image classification with missing pixels.
Our results compliment the results in [26] where such experiments with state of the art results were
presented.
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