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Abstract

At their core, many unsupervised learning models provide a compact representation
of homogeneous density mixtures, but their similarities and differences are not
always clearly understood. In this work, we formally establish the relationships
among latent tree graphical models (including special cases such as hidden Markov
models and tensorial mixture models), hierarchical tensor formats and sum-product
networks. Based on this connection, we then give a unified treatment of expo-
nential separation in exact representation size between deep mixture architectures
and shallow ones. In contrast, for approximate representation, we show that the
conditional gradient algorithm can approximate any homogeneous mixture within
ε accuracy by combining O(1/ε2) “shallow” architectures, where the hidden con-
stant may decrease (exponentially) with respect to the depth. Our experiments on
both synthetic and real datasets confirm the benefits of depth in density estimation.

1 Introduction
Multivariate density estimation, a widely studied problem in statistics and machine learning [28],
is becoming even more relevant nowadays due to the availability of huge amounts of unlabeled
data in various applications. Many unsupervised and semi-supervised learning algorithms either
implicitly (e.g. generative adversarial networks) or explicitly estimate (some functional of) the
underlying density function. In this work, we study the problem of density estimation with an explicit
representation through finite mixture models (FMMs) [19], which have endured thorough scientific
scrutiny over decades. The popularity of FMMs is largely due to their simplicity, interpretability,
and universality, in the sense that, given sufficiently many components (satisfying mild conditions),
FMMs can approximate any distribution to an arbitrary level of accuracy [22].

Many familiar unsupervised models in machine learning, at their core, provide a compact represen-
tation of homogeneous density mixtures. This list includes (but is not limited to) hidden Markov
models (HMM), the recently proposed tensorial mixture models (TMM) [26], latent tree graphi-
cal models (LTM)[21], hierarchical tensor formats (HTF) [13], and sum-product networks (SPN)
[9; 24]. However, despite all being a certain form of FMM, the precise relationships among these
models are not always well-understood. Our first contribution fills this gap: we prove (roughly) that
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{HMM,TMM} ⊆ LTM ⊆ HTF ⊆ SPN . Moreover, converting from a lower to an upper class
can be achieved in linear time and without any increase in size. Our results not only clarify the
similarities and subtle differences between these widely-used models, but also pave the way for a
unified treatment of many properties of such models, using tools from linear algebra.

We next investigate the consequence of converting a deep mixture model into a shallow one. We first
prove that the (nonnegative) tensor rank exactly characterizes the minimum size of a shallow SPN
(or LTM or HTF due to equivalence) that represents a given homogeneous mixture. Then, we show
that a generic “deep” SPN (with depth at least 2) can be exactly represented by a shallow SPN only
when the latter contains exponentially many product nodes. Our result extends significantly those in
[7; 26; 10; 18; 8] in various aspects, but most saliently from the restrictive full binary tree [7; 26] to
any rooted tree. As a consequence, our results imply that a generic HMM (whose underlying tree
is “completely” unbalanced) cannot be exactly represented by any polynomially-sized shallow SPN,
which, to our best knowledge, has not been shown before.

From a practical point of view, exact representations are an overkill: it suffices to approximate a
given density mixture with reasonable accuracy. Our third contribution demonstrates that under the
`∞ metric, we can approximate any homogeneous density mixture within ε accuracy by combining
O(1/ε2) shallow SPNs. However, our proof requires the knowledge of the target density hence is not
practical. Instead, borrowing a classic idea from [17] we show that minimizing the KL divergence
using the conditional gradient algorithm can also approximate any homogeneous mixture within ε
accuracy by combining O(1/ε2) base SPNs, where the hidden constant decreases exponentially wrt
the depth of the base SPNs. Each iteration of the conditional gradient algorithm amounts to learning a
base SPN hence can be efficiently implemented. We conduct thorough experiments on both synthetic
and real datasets and confirm the benefits of depth in density estimation.

We proceed as follows: In §2 we introduce homogeneous density mixtures. In §3 we articulate the
relationships among various popular mixture models. §4 examines the exponential separation in exact
representation size between deep and shallow models while §5 turns into approximate representations.
We report our experiments in §6 and finally we conclude in §7. All proofs are deferred to Appendix C.

2 Density Estimation using Mixture Models
In this section, we introduce our main problem: how to estimate a multivariate density through an
explicit, finite homogeneous mixture. To set up the stage, let x = (x1, . . . , xd), with xi ∈ Xi where
each Xi is a Borel (measurable) subset of the Euclidean space Ei. We equip a Borel measure µi
on Xi. All our subsequent measure-theoretic definitions are w.r.t. the Borel σ-field of Xi and the
measure µi. Let X = X1 × · · · ×Xd and µ = µ1 × · · · × µd be the product space and product
measure, respectively. For each i ∈ [d] := {1, . . . , d}, let Fi be a class of density functions (w.r.t.
µi) of the variable xi, and let Gi = conv(Fi) be its convex hull. The function class Fi is essentially
our basis of densities for the variable xi. Our setting here follows that in [18] and includes both
continuous and discrete distributions.

We are interested in constructing a finite density mixture [19], using component densities from the
basis class F =

⋃d
i=1 Fi. We assume that our finite mixture f is “homogeneous,” i.e.

f(x) =

k1∑
j1=1

k2∑
j2=1

· · ·
kd∑
jd=1

Wj1,j2,...,jd

d∏
i=1

f iji(xi) = 〈W, ~f1(x1)⊗ · · · ⊗ ~fd(xd)〉, (1)

where ~f i := (f i1, . . . , f
i
ki

) ∈ Fkii ,W ∈
⊗

iR
ki
+ ' R

k1×···×kd
+ is a d-order density tensor (nonnega-

tive and sum to 1), and 〈·, ·〉 is the standard inner product on the tensor product space. We refer to the
excellent book [13] and Appendix A for some basic definitions about tensors. By dropping linearly
dependent densities in each Fi we can assume w.l.o.g. the tensor representationW is unique.

There are a number of reasons for restricting to homogeneous mixtures: Firstly, this is the most
common choice for estimating a multivariate density function [28]. Secondly, we can always apply the
usual “homogenization” trick, i.e., by enlarging the function class Fi and appending the (improper)
density 1 to eachFi. Thirdly, homogeneous densities are “universal” if each classFi is, c.f. Appendix
A of [26]. In other words, any joint density can be approximated arbitrarily well by a homogeneous
density, provided that each marginal class Fi can approximate any marginal density arbitrarily well
and the size (i.e. ki) tends to ∞. See Appendix F.1 for some empirical verifications, where we
show that convex combinations of relatively few isotropic Gaussians can approximate mixtures of
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Gaussians of full covariance matrices surprisingly well. Lastly, as we argue below, many known
models in machine learning are simply compact representations of homogeneous mixtures.

3 Compact Representation of Homogeneous Mixtures

We now recall a few unsupervised learning models in machine learning and show that they have a
compact representation of homogeneous mixtures at their core. We prove the precise relationship
amongst them. Our results clarify the similarity and difference of these recent developments, and pave
the way for a unified treatment of depth separation (Section 4) and model approximation (Section 5).

Sum-Product Networks (SPN) [9; 24; 18] An SPN T is a rooted tree whose leaves are density
functions f ij(xi) over each of the variables x1, . . . , xd and whose internal nodes are either a sum node
or a product node. Each edge (u, v) emanating from a sum node u has an associated nonnegative
weightwuv . The value Tv at a product node v is the product of the values of its children,

∏
u∈ch(v) Tu.

The value Tu at a sum node u is the weighted sum of the values of its children,
∑
v∈ch(u) wuvTv.

The value of an SPN T is the expression evaluated at the root node, which we denote as T(x). The
scope of a node v in an SPN is the set of all variables that appear in the leaves of the sub-SPN rooted
at v. We only consider decomposable and complete SPNs, i.e., the children of each sum node must
have the same scope and the children of each product node must have disjoint scopes. The main
advantage of a decomposable and complete SPN over a generic graphical model is that joint, marginal
and conditional queries can be answered by two network evaluations and hence, exact inference takes
linear time with respect to the size of the network [9; 24; 18]. In comparison, inference in Bayesian
Networks and Markov Networks may take exponential time in terms of the size of the network.
W.l.o.g. we can rearrange an SPN to have alternating sum and product layers (see Theorem C.1).

The latent variable semantics [23] as well as SPNs representing a mixture model over its leaf densities
[24] is well-known. It is also informally known that many tractable graphical models can be treated as
SPNs, but precise characterizations are scarce (see [29] which relates SPNs with Bayesian Networks).

Self-similar SPNs (S3PN) We call an SPN self-similar, if at every sum node, the sub-tree rooted at
each of its (product node) children is the same, except the weights at corresponding sum nodes and
the densities (but not the variables) at corresponding leaf nodes may differ. This special class of SPNs
is exactly equivalent to some recently proposed unsupervised learning models, as we show below.

Hierarchical Tensor Format (HTF) [13] We showed in (1) that a homogeneous mixture can be
identified with a tensorW , whose explicit storage can, however, be quite challenging since its size is∏d
i=1 ki. HTF [13] aims at representing tensors compactly, hence can also be used for representing

homogeneous mixtures. An HTF consists of a dimension-partition rooted tree (DPT) T, d vector
spaces Vi with bases1 Fi at the d leaf nodes, and at most d − 1 internal nodes which are certain
subspaces of the tensor product of vector spaces at disjoint children nodes. Note that the dimension of
the tensor product U⊗ V is the product of the dimensions of U and V. The key in HTF is to truncate
each tensor product with a (much smaller) subspace, hence keeping the total storage manageable.
Moreover, at each internal node v with k children nodes {vi}, instead of storing its r bases directly,
we store r coefficient tensors {wv,γj1,...,jk : γ ∈ [r]} such that, recursively, the γ-th basis at node v is∑

j1
· · ·
∑
jk
wv,γj1,...,jkvj1 ⊗ · · · ⊗ vjk , where {vji} consists of the bases at the i-th child node vi. To

our best knowledge, HTFs have not been recognized as SPNs previously, although they have been
used in a spectral method for latent variable models [27].

To turn an HTF into an SPN, more precisely an S3PN, we start from the root of the dimension-partition
tree T. For each internal node v with say r bases and say k children nodes {vi}, each of which has
ri bases themselves, we create three layers in the corresponding S3PN: in the first layer we have r
sum nodes {Svγ}, each of which is (fully) connected, with respective weights wv,γj1,...,jk , to the second
layer of

∏k
i=1 ri product nodes {Pvj1,...,jk}, and finally the third layer consists of

∑k
i=1 ri sum nodes

{Sviji }. The product node Pvj1,...,jk is connected to k sum nodes {Sv1j1 , . . . ,S
vk
jk
}. Note that the weights

wv,γj1,...,jk need not be positive or sum to 1 in HTF, although for representing a homogeneous mixture
we can make this choice and we call this subclass HTF+. Clearly, our construction is reversible hence
we can turn an S3PN into an equivalent HTF+ as well. The construction takes linear time and there is

1More generally frames, in particular, the elements need not be linearly independent.
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Figure 1: Left: A simple latent class model (special case of LTM). The superscript 2 indicates the
number of values the hidden variable H can take. Middle: The equivalent S3PN, where f ij(xi) =
p(Xi = xi|H = j) is from the density class Fi. Right: The dimension-partition tree in an equivalent
HTF+. The superscript indicates the number of bases, which should be the same for sibling nodes.

no increase of representation size. See Figs.1,5 for simple illustrations2. In summary, HTF is exactly
S3PN with arbitrary weights.

Diagonal HTF (dHTF) [13] For later reference, let us call the subclass of HTFs whose coefficient
tensors wv,γj1,...,jk (that define bases recursively at internal nodes of the DPT, see above) are diagonal
for all v and γ as dHTF, i.e., siblings in the DPT must have the same number of bases (ri ≡ r)
and wv,γj1,...,jk 6= 0 only when j1 = . . . = jk. In neural network terminology, dHTFs are “locally
connected.” Compared to the fully connected HTF, dHTFs significantly reduce the representation
size (at the expense of expressiveness, see Figure 7). For instance, the

∏k
i=1 ri = rk product nodes

in the above conversion from HTF to S3PN are reduced to merely r product nodes.
Latent Tree Models (LTM) [21; 27; 5] An LTM is a rooted tree graphical model with observed
variablesXi on the leaves and hidden variablesHj on the internal nodes. Note that we allow observed
variables Xi to be either continuous or discrete but the hidden variables Hj can take only finitely
many values. Using conditional independence, the joint density of observed variables is given as

f(x1, . . . , xd) =
∑
h1
· · ·
∑
ht
W(h1, . . . , ht)

∏d
i=1 f

i
hπi

(xi), (2)

where Hπi is the parent of Xi. From (2) it is clear that an LTM is a homogeneous density mixture,
whose tensor representation is given by the joint densityW of the hidden variables. What is less
known3 is that LTMs are a special subclass of self-similar SPNs. It may appear that the size of
S3PN is larger than that of an equivalent LTM, but this is because S3PN also encodes the conditional
probability tables (CPT) into its structure whereas LTMs require other means to store CPTs. Note
also that to evaluate an LTM, one usually needs to run a separately designed algorithm (such as
message passing), while in S3PN we evaluate the leaf densities and propagate in linear time to the
root. In summary, LTM is a subclass of S3PN with CPTs encoded as edge weights and with inference
simplified as network propagation. More precisely, LTM is exactly dHTF+, since conditioned on the
parent, all children nodes must depend on the same realization. An algorithm for converting LTMs
into equivalent S3PNs, along with more examples (Figs. 1-6), can be found in Appendix B.1.

Tensorial Mixture Models (TMM) [26; 7; 6] TMM [26] is a recently proposed subclass of dHTF+
where nodes on the same level of the dimension-partition tree must have the same number of bases.
Clearly, TMM is a strict subclass of LTM since the latter only requires sibling nodes in the DPT to
have the same number of bases. We note that TMM, as defined in [26], also assumes the DPT to be
binary and balanced, i.e. each internal node has exactly two children, although this condition can be
easily relaxed. See Figure 2 and its reduced form in Appendix B.3 for a simple example. Further, in
Appendix B.4, we give an example of an LTM that is not a TMM.

Hidden Markov Models (HMM) [3; 25] HMM is a strict subclass of LTM. [14] recently observed
that HMM is equivalent to the tensor-train format, a special subclass of dHTF+ where the DPT is
binary and completely “imbalanced.” See Appendix B.5 for a simple example. In some sense, TMM
and HMM are the two opposite extremes within dHTF+ (or equivalently LTM).

Further, in Appendix B.6 we give an example of an S3PN that is not an LTM, and in Appendix B.7,
we give an example of an SPN that is not an S3PN, leading to the following summary:
Theorem 3.1. {TMM, HMM} ⊆ LTM = dHTF+ ⊆ HTF+ = S3PN ⊆ SPN, in the sense that we can
convert in linear time from a lower representation class to an upper one, without any increase in size.

2All of our illustrations of S3PN in the main text are drawn with some redundant leaves, for the sake of
making the self-similar property apparent. See Appendix B for the reduced (but equivalent) counterparts.

3As an evidence, we note that the recent survey [21] on LTMs did not mention SPNs at all.
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Figure 2: Left: A dimension-partition tree in HTF. The superscripts indicate the number of bases,
which should remain constant on each level. Middle: The equivalent S3PN. The leaf f ij is the j-th
basis of vector space Vi. Right: An equivalent TMM. The superscripts indicate the number of values
each hidden variable can take (again, remaining constant on each level).

It is important to point out one subtlety here: any (complete and decomposable) SPN, if expanded at
the root, is a homogeneous mixture (c.f. (1)). Hence, any SPN is even equivalent to an LCM (i.e. an
LTM with one hidden variable taking many values, like in Figure 1), at the expense of potentially
increasing the size (significantly). Thus, the containment in Theorem 3.1 should be understood under
the premise of not increasing the representation size. It would be interesting to understand if the
containment is strict if only polynomial increase in size is allowed. We provide more comparing
examples in Appendix B for different models, and in the next section we discuss the (huge) size
consequence from converting a certain upper representation class to some lower one.

4 Depth Separation
In the previous section, we established relationships among different representation schemes for
homogeneous density mixtures. In this section, we prove an exponential separation in size when
converting one representation to another and extend the results in [10; 18; 7; 26]. The key is to exploit
the equivalence to HTF, which allows us to bound the model size using linear algebra.

We call a (complete and decomposable) SPN shallow if it has only one sum node, followed by
a layer of product nodes. Using the equivalence in Section 3, we know a shallow SPN (trivially
self-similar) is equivalent to an LCM (a latent tree model with one hidden node taking as many values
as the number of product nodes), or an HTF+ whose DPT has depth 1 (c.f. Figure 1). Recall that
rank+(W) denotes the nonnegative rank of a tensor and nnz(W) is the number of nonzeros (c.f.
Appendix A). The leaf nodes in SPN (LTM) or the leaf bases in HTF are either from F (union of
linearly independent component densities) or G (the convex hull), see the definitions in Section 2.

Our first result characterizes the model capacity of shallow SPNs (LCMs):

Theorem 4.1. If a shallow SPN T, with leaf (input) nodes from G, represents the density mixtureW ,
then T has at least rank+(W) many product nodes. Conversely, there always exists a shallow SPN
that representsW using rank+(W) product nodes and 1 sum node.

In other words, the nonnegative rank characterizes the smallest size of shallow SPNs (LCMs) that
represent the density mixtureW . Similarly, we can prove the following result when the leaf nodes
are from F instead of the convex hull G.

Theorem 4.2. If a shallow SPN T, with leaf nodes from F , represents the density mixtureW , then
either T has at least nnz(W) product nodes or rank+(W) = 1. Conversely, there always exists a
shallow SPN that representsW using nnz(W) product nodes and 1 sum node.

Note that we always have rank(W) ≤ rank+(W) ≤ nnz(W), thus the lower bound in Theorem 4.2
is stronger than that in Theorem 4.1. This is not surprising, because an SPN with leaf nodes from G
is the same as an SPN with leaf nodes from F and with an additional layer of sum nodes appended at
the bottom (to perform the convex hull operation). This difference already indicates that an additional
layer of sum nodes at the bottom can strictly increase the expressive power of SPNs. This distinction
between leaf nodes from F or from G, to our best knowledge, has not been noted before.

The significance of Theorem 4.1 and Theorem 4.2 is that they give exact characterizations of the
model size of shallow SPNs, and they pave the way for comparing more interesting models. For
convenience, we state our next result in terms of LTMs, but the consequence for dHTFs or SPNs
should be clear, thanks to the equivalence in Theorem 3.1.
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Theorem 4.3. Let an LTM T have d observed variables X = {X1, . . . , Xd} with parents Hi taking
ri values respectively. Assuming the CPTs of T are sampled from a continuous distribution, then
almost surely, the tensor representationW for T has rank at least

max
1≤m≤d/2

max
{S1,...,Sm,S̄1,...,S̄m}⊆X

m∏
i=1

min{ri, r̄i, ki, k̄i}, (3)

where ki (k̄i) is the number of (linearly independent) component densities that Si (S̄i) has, and Si
(S̄i) are non-siblings.

Corollary 4.4. In addition to the setting in Theorem 4.3, if each observed variable Xi has b sibling
observed variables and ri ≡ r ≤ k ≡ ki, then the tensor representationW has rank at least rbd/bc.

Corollary 4.5. In addition to the setting in Theorem 4.3, if each observed variable Xi has no sibling
observed variables and ri ≡ r ≤ k ≡ ki, then the tensor representationW has rank at least rbd/2c.

Combining Corollary 4.4 with Theorem 4.2 we conclude that an LTM T with d observed variables
Xi where every b of them share the same hidden parent node is equivalent to an LCM T′ where the
hidden node must take at least rbd/bc many values. Note that T has Θ(d/b) hidden variables, each
of them taking r values, thus the total size of the CPTs of T is Θ(rd/b) while the total size of that
of T′ is rbd/bc, an exponential blow-up. By combining Corollary 4.5 with Theorem 4.2 a similar
conclusion can be made for converting an HMM into a LCM. Of course, interpretation using SPNs is
also readily available: Almost all depth-L S3PNs (L ≥ 2) with weights sampled from a continuous
distribution can be written as a shallow SPN with necessarily exponentially many product nodes.

To our best knowledge, [10] was the first to construct a polynomial that, while representable by a
polynomially-sized depth-log d SPN, would require exponentially many product nodes if represented
by a shallow SPN. However, the deep SPN given in [10, Figure 1] is not complete. Recently, [7]
proved that the existence result of [10] is in fact generic. However, the results of [7] and subsequent
work [26] are limited to full binary trees. In contrast, our general Theorem 4.3 holds for any tree, and
we allow non-sibling nodes to take different number of values. As a result, we are able to handle
HMMs, the opposite extreme of TMM. Another important point we want to emphasize is that the
exponential separation from a shallow (i.e. depth-1) tree can be achieved by increasing the depth by
merely 1, as opposed to the depth-log d constructions in [10; 26].

We end this section by making another observation about Theorem 4.3: It also allows us to compare
the model size of LTMs T1 and T2 where say T1, after removing its rootR, is a subtree of T2. Indeed,
in this case we need only define the children nodes of R as “observed” variables. Then, T1 becomes
an LCM and T2 serves as T in Theorem 4.3, with observed variables as the children nodes of R. This
essentially extends [7, Theorem 3] from a full binary tree to any tree and allowing non-sibling nodes
to take different number of values.

5 Approximate Representation
In the previous section, we proved that homogeneous mixtures representable by “deep” architectures
(such as SPN or LTM) of polynomial size cannot be exactly represented by a shallow one with
sub-exponential size. In this section, we address a more intricate and relevant question: What if we
are only interested in an approximate representation?

To formulate the problem, let g and h be two homogeneous mixtures with tensor representationW
and Z , respectively. We consider the distance dist(g, h) := ‖W −Z‖ for some norm ‖ · ‖ specified
later. Using the characterization in Theorem 4.1 we formulate our approximation problem as follows.
Let ∆ be a perturbation tensor with ‖∆‖ ≤ ε. What is the minimum value for rank+(W + ∆), i.e.
the size of a shallow SPN? This motivates the following definition adapted from [1]:

ε-rank+(W) = min
{

rank+(W + ∆) : ‖∆‖ ≤ ε
}

= min
{

rank+(Z) : ‖Z −W‖ ≤ ε
}
. (4)

In other words, ε-rank+ is precisely the minimum size of a shallow SPN (LCM) that approximates
a specified mixture W with accuracy ε. We can similarly define ε-rank, where we replace the
nonnegative rank with the usual rank in (4). Note that the notion of ε-rank depends on the norm ‖ · ‖.

`∞-norm Let the norm in the definition (4) be the usual `∞ norm, and we signify this choice with
the notation ε-rank∞. In this setting, we can prove the following nearly-tight bound on the ε-rank.
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Theorem 5.1. Fix ε > 0 and tensorW ∈ Rk1×···×kd . Then, for some (small) constant c > 0,

ε-rank∞(W) ≤ c‖W‖tr
ε2 , (5)

where ‖W‖tr is the tensor trace norm. A similar result holds for ε-rank∞+ (W). The dependence on ε
is tight up to a log factor.

Note that the representative tensorW for a homogeneous density mixture f is nonnegative and sums
to 1, in which case ‖W‖tr ≤ ‖W‖1 = 1. Thus, very surprisingly, Theorem 5.1 confirms that any
deep SPN (or any LTM or HTF+) can be approximated by some shallow SPN with accuracy ε under
the `∞ metric and with at most c/ε2 many product nodes. Of course, this does not contradict with
the impossibility results in [7] and [18], because the accuracy ε there is exponentially small.

Theorem 5.1 remains mostly of theoretical interest, though, because (i) a straightforward application
of Theorem 5.1 leads to a disappointing bound on the total variational distance between the two
homogeneous mixtures f and g, due to scaling by the big constant

∏
i ki; (ii) in practical applications

we do not have access toW so the constructive algorithm in our proof does not apply.

KL divergence In contrast to the above `∞ approximation, we now give an efficient algorithm to
approximate a homogeneous density mixture h, using a classic idea of [17]. We propose to estimate
h by minimizing the KL divergence over the convex hull4 of a hypothesis class H:

min
Wg∈conv(H)

KL(h‖g), (6)

where KL(h‖g) :=
∫
h(x) log h(x)

g(x) dµ(x), and Wg is the representative tensor for the mixture g.
Following [17], we apply the conditional gradient algorithm [12] to solve (6): Given gt−1, we find

(ηt, ft)← arg min
η∈[0,1],Wf∈H

KL(h‖(1− η)gt−1 + ηf), gt ← (1− ηt)gt−1 + ηtft. (7)

One can also simply set ηt = 2
2+t , as is common in practice. Note that (7) can be approximately

solved based on an iid sample x1, . . . ,xn hence is practical:

max
η∈[0,1],Wf∈H

∑n

i=1
log[(1− η)gt−1(xi) + ηf(xi)]. (8)

Using basically the same argument as in [17], the above algorithm enjoys the following guarantee:

KL(h‖gt) ≤ chδ/t, (9)

where δ = sup{log 〈W,
~f1⊗···⊗~fd〉

〈Z, ~f1⊗···⊗~fd〉
:W,Z ∈ H,x ∈ X}, and

ch = min{p ≥ 0 :Wh =
∑p
i=1 λiWi,Wi ∈ H,λ ≥ 0,1>λ = 1} (10)

is essentially the rank of the mixture h (with tensor representationWh) w.r.t. the class H.

The important conclusion we draw from the above bound (9) is as follows: First, the constant ch is no
larger than

∏
i ki if H is any of the classes in Theorem 3.1 (since we only consider finite homogeneous

mixtures h). Second, if the target density h is a small number of combinations of densities in H, then
ch is small and we can approximate h using the algorithm (7) efficiently. Third, ch can be vastly
different for different hypothesis classes H, as shown in Section 4. For instance, if h is a generic
TMM and H is the shallow class LCM, then ch is exponential in d, whereas if H is the class TMM,
then ch can be as small as 1. There is a trade-off though, since solving (8) for a simpler class (such as
LCM) is easier than a deeper one (such as TMM). We will verify this trade-off in our experiments.

6 Experiments

We perform experiments on both synthetic and real world data to reinforce our theoretical findings.
Firstly, we present experiments on synthetic data to demonstrate the expressive power of an SPN and
the algorithm proposed in (7)-(8) which we call SPN-CG. Next, we present two sets of experiments
on real world datasets and present results for image classification under missing data.
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Figure 3: Depth efficiency and performance of SPN-CG

Synthetic data Firstly, in appendix F.1 we confirm that a Gaussian mixture model (GMM) with
full covariance matrices can be well approximated by a homogeneous mixture model represented by
an SPN learned using SPN-CG. Secondly, we generate 20,000 samples from a 16 dimensional GMM
under three different settings - (i) 8 component GMM with full covariance matrices, (ii) 8 component
GMM with diagonal covariance matrices and, (iii) GMMs represented by a deep SPN with 4 layers
- and estimate each using SPN-CG. We consider layers, L ∈ {1, 2, 3, 4} where L = 1 corresponds
to a shallow network and L = 4 corresponds to a network in TMM (a full binary tree). For each
L, at every iteration of SPN-CG we add a network with L layers. In Figure 3, we plot the number
of iterations and the total running time until convergence w.r.t. the depth for each setting described
above. We make the following observations: As the depth (layer) increases, the number of iterations
decreases sharply, since adding a deeper network effectively is the same as adding exponentially
many shallower networks (confirming Section 4). Moreover, although learning a deeper network in
each iteration is more expensive than learning a shallower network, the sharp decrease in iterations
full compensates this overhead and leads to a much reduced total running time. The advantage in
using deeper networks is more pronounced when the data is indeed generated from a deep model.

Image Classification under Missing Data by Marginalization A natural setting to test the ef-
fectiveness of generative models like deep SPNs is for classification in the regime of missing data.
Generative models can cope with missing data naturally through marginalizing the missing values,
effectively learning all possible completions for classification. As stated earlier, SPNs are attractive
because inference, marginalization and evaluating conditionals is tractable and amounts to one pass
through the network. This is in stark contrast with discriminative models that often rely on either data
imputation techniques (which result in sub-optimal classification) or by assuming the distribution of
missing values is same during train and test time; an assumption that is often not valid in practice.

We perform experiments on MNIST [15] for digit classification and small NORB [16] for 3D object
recognition under the MAR (missing at random) regime as described in [26] (Section 3). We
experiment with two missing distributions- (i) an i.i.d. mask with a fixed probability of missing each
pixel, and (ii) a mask obtained by the union of rectangles of a certain size, each positioned uniformly
at random in the image. Concretely, let P (X,Y) be the joint distribution over the images (X ∈ Rd)
and labels Y ∈ [M ]. Further, let Z be a random binary vector conditioned on X = x with distribution
Q(Z|X = x). To generate images with missing pixels, we sample z ∈ {0, 1}d and consider the
vector x � z. A pixel xi, i ∈ [d] is considered missing if zi = 0 in which case the corresponding
coordinate in x� z holds ∗ and it holds xi if zi = 1. In the MAR setting that we consider for our
experiments, Q(Z = z|X = x) is a function of both z and x but is independent of changes to xi
if zi = 0 i.e. Z is independent of missing pixels. As described in [26], the optimal classification
rule in the MAR regime is h∗(x� z) = P (Y = y|w(x, z)) where w(x, z) is the realization when X
coincides with x on coordinates i for which zi = 1.

Our major goal with these experiments is to test our algorithm SPN-CG for high-dimensional real
world settings and show the efficacy of learning SPNs by increasing their expressiveness iteratively.
Therefore, we directly adapt the experiments as presented in [26]. Specifically, we adapt the code
of HT-TMM for our SPN-CG by following the details in [26]. In each iteration of our algorithm,
we add an SPN structure exactly similar to HT-TMM. Therefore, the first iteration of our algorithm
(i.e. SPN-CG1) amounts to a structure similar to HT-TMM while additional iterations increase the
network capacity. For each iteration, we train the network using an AdamSGD variant with a base
learning rate of 0.03 and momentum parameters β1 = β2 = 0.9. For each added network structure,
we train the model for 22,000 iterations for MNIST and 40,000 for NORB.

4This is similar in spirit to [20; 2] which learn mixture of trees, but the algorithms are quite different.
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Figure 4: Performance of SPN-CG for missing data on MNIST and NORB

Due to space limit Figure 4 only presents results comparing our model with (i) data imputation
techniques that complete missing pixels with zeros or NICE [11], a generative model suited for
inpainting, and finally using a ConvNet for prediction, (ii) an SPN with structure learned using data
as proposed in [24] augmented with a class variable to maximize joint probability, and (iii) shallow
networks to demonstrate the benefits of depth. A more comprehensive figure showing comparisons
with several other algorithms is given in appendix F.2, along with details.

SPN-CG1 and SPN-CG3 in Figure 4 stand for one and three iterations of our algorithm respectively.
The results show that SPN-CG performs well in all regimes of missing data for both MNIST
and NORB. Furthermore, other generative models including SPN with structure learning perform
comparably only when a few pixels are missing but perform very poorly as compared to SPN-CG
when larger amounts of data is missing. Our results here complement those in [26] where these
experiments were first reported with state of the art results.

7 Conclusion
We have formally established the relationships among some popular unsupervised learning models,
such as latent tree graphical models, hierarchical tensor formats and sum-product networks, based
on which we further provided a unified treatment of exponential separation in exact representation
size between deep architectures and shallow ones. Surprisingly, for approximate representation, the
conditional gradient algorithm can approximate any homogeneous mixture within accuracy ε by
combining O(1/ε2) shallow models, where the hidden constant may decrease exponentially wrt the
depth. Experiments on both synthetic and real datasets confirmed our theoretical findings.
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