
Learning Lexical Semantic Relations using
Lexical Analogies — Extended Abstract

Andy Chiu, Pascal Poupart, and Chrysanne DiMarco

David R. Cheriton School of Computer Science
University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

{pachiu,ppoupart,cdimarco}@uwaterloo.ca

1 Introduction

Linguistic ontologies, most notably WordNet [1], have been shown to be a valu-
able resource for a variety of natural language processing applications. Presently,
linguistic ontologies are largely constructed by hand, which is both difficult and
expensive. A central problem that demands an automated solution is the discov-
ery and incorporation of lexical semantic relations, or semantic relations between
concepts. Lexical semantic relations are the fundamental building blocks that al-
low words to be associated with each other and linked together to form cohesive
text. Despite their importance, lexical semantic relations are severely underrep-
resented in current linguistic ontologies. As Morris and Hirst [2] point out, cur-
rent linguistic ontologies only capture what they call classical relations — basi-
cally, WordNet relations such as hyponymy, hypernymy, troponymy, meronymy,
antonymy, and synonymy. However, the majority of lexical semantic relations
found in real-world text are in fact non-classical — for example, positive-qualities
(humbleness and kindness), cause-of (alcohol and drunk), and founder-of (Gate
and Microsoft) [2]. Manually populating linguistic ontologies with all instances
of classical and non-classical relations is impractical as there are simply too
many of them and there are as yet no systematic methods for even recognizing
non-classical relations in an arbitrary text. Clearly, automation is needed.

In this research, we tackle the problem of automated learning of lexical se-
mantic relations from text. We present an iterative algorithm in Sect. 2 that
expands a small set of sample relation instances to a much larger set by mak-
ing use of a dictionary of lexical analogies. In Sect. 3, we demonstrate a system
that generates this dictionary automatically from text. The system builds lexical
analogies by computing the similarities of the semantic relations between words,
which we characterize by their dependency structures. The actual computation
of similarity is carried out using a Vector Space Model augmented with Singular
Value Decomposition. We give some promising preliminary experimental results
in Sect. 4, and conclude with an outline of future work in Sect. 5.

2 Learning Semantic Relations Using Lexical Analogies

We refer to the semantic relation between a pair of words as the underlying
relation of the word-pair. A lexical analogy A = W1 : W2 :: W3 : W4 is two

word-pairs (W1,W2) and (W3,W4) whose underlying relations are identical or
similar, for example, abbreviation:word::abstract:report. (W1,W2) is called a lexi-
cal analogue of (W3,W4), and vice versa. We use the term analogousness to refer
to their degree of similarity. Clearly, since similarity is subjective, analogousness
is an application-dependent measure.

We propose that lexical analogies are the key for the systematic learning
of lexical semantic relations. Suppose we are given that the semantic relation
between W1 and W2 is R, and that (W1,W2) is a lexical analogue of (W3,W4).
Then we can infer with high probability that the semantic relation between W3

and W4 is likely also R. Once we know this, we can apply the same inference to
conclude that all lexical analogues of (W3,W4) are also likely to be related by R.
This process continues until we run out of lexical analogies. Essentially, we are
using lexical analogies as bridges through which relations can spread from one
word-pair to another. This insight leads to our iterative algorithm of learning
lexical semantic relations using lexical analogies.

Table 1 illustrates our algorithm in pseudo-code. The algorithm requires three
inputs: a dictionary of lexical analogies A in which the lexical analogues of many
word-pairs are listed, a set L = {L1, ..., Lk} of lexical semantic relations of inter-
est, and a set ELi

for each Li that contains a small number of sample instances
of the relation Li. An example of the input is L={part-of } and EL1={(finger,
hand),(beak, bird)}.

1. for each Li in L
2. repeat

3. pick a random subset S of ELi with |S| ≥ 2
4. for each element in S, obtain its set of analogues from A
5. take the intersection T of all the above sets

6. add all elements in T to ELi

7. until all possible subsets have been tried

Table 1. Algorithm for Learning Lexical Semantic Relations

The result of our algorithm is that each ELi
is rapidly expanded from a small

set of samples to a large set of instances by iteratively incorporating the lexical
analogues of the samples. Clearly, the key to our algorithm is the dictionary
of lexical analogies. In the next section, we present a system that builds this
dictionary automatically by generating lexical analogies from text.

3 Generating Lexical Analogies from Text

The core of our analogy generation system is based on the use of a dependency
grammar [3]. A dependency grammar specifies how words in a sentence are re-
lated and grouped, much like the familiar phrase structure grammar. However,
instead of relating each word to the phrase to which it belongs, a dependency

grammar relates each word to the word it depends on syntactically. A depen-
dency parse of a sentence produces a list of dependencies. For each dependency,
the depending word is called the dependent, and the word depended on is called
the governor. Each word can have multiple or no dependents, but must have
exactly one governor, except for one word in the sentence called the head word
which has no governor. A dependency tree organizes a dependency list by making
each dependent a child of its governor, and the head word the root. A depen-
dency path is an undirected path through a dependency tree, and a dependency
pattern is a path with both ends replaced by slots. Fig. 1 shows the dependency
structures for the sentence “the council approved the new budget”.

Fig. 1. Dependency Structures of “the council approved the new budget”

Our lexical analogy generation system is called GELATI, an abbreviation
for GEneration of Lexical Analogies from Text Information. Fig. 2 shows an
overview of GELATI.

Fig. 2. Overview of GELATI

The input to GELATI is a corpus of text documents, which must be large
enough for lexical analogies to occur repeatedly. The input first goes through
a preprocessing stage, during which each input file is segmented into sentences
and parsed into dependency tress. We use MxTerminator (Ratnaparkhi [4]) for
segmentation, and Minipar (Lin [5]) for dependency parsing. Minipar also addi-
tionally performs word stemming and simple compound-noun recognition.

3.1 Extractors and Filters

The next components in GELATI’s pipeline are the word-pair and the feature
extractors. The word-pair extractor extracts a list of semantically related word-
pairs from the input data. These word-pairs serve as the building blocks from
which analogies are drawn. After extracting the word-pairs, ideally the next
step would be to identify their underlying relations so their analogousness can
be computed. Unfortunately, given just plain text data, such identification is
extremely difficult. Therefore, GELATI instead uses the feature extractor to
extract syntactic and semantic features about each word-pair, then uses these
features as an indication to characterize the word-pair’s underlying relation.

In our implementation of GELATI, we chose to merge the two extractors into
one that performs extraction based on dependency patterns. The combined ex-
tractor is grounded in the hypothesis that highly syntactically related words also
tend to be semantically related, and thus we can use the dependency structure
of a sentence to approximate the semantic relations of its words. The extrac-
tor takes each dependency tree from the preprocessor and generates all possible
dependency patterns from the tree. Each pattern is then tested against a set
of constraints. If the pattern passes all constraints, the words that were in the
pattern’s slots are extracted as a word-pair, and the pattern itself is extracted
as a feature for the word-pair. The constraints are (1) the pattern must span
exactly three words; (2) both slots of the pattern must be nouns; and (3) the
word between the slots must be a verb. These constraints are partially inspired
by Lin’s [6] work on discovering inference rules, and partially by the fact that
they correspond to the most prominent construct in English to relate two words,
namely the noun-verb-noun construct.

Continuing the example from Fig. 1, the extractor would extract the word-
pair (council, budget), as well as the dependency pattern “ ← approved →

”, which becomes a feature of the word-pair.
Once all word-pairs and features have been extracted, they are filtered through

two filtering components so that only the most relevant ones remain. The rea-
son that filtering is done globally after extraction, instead of locally within each
extraction component, is because the final result of extraction can provide im-
portant information for filtering. For example, suppose there is a feature that
occurs with every word-pair. Clearly this feature is much too general to provide
useful information for characterizing word-pairs, and hence should be filtered
out. Such information, however, is only available after both extractors complete.

Currently GELATI uses a simple filtering scheme parameterized by four pa-
rameters, Kwpmin , Kwpmin , Kwpmax , Kfmin , and Kfmax . A word-pair is filtered
out if it has less than Kwpmin or more than Kwpmax features, and a feature is fil-
tered out if it is associated with less than Kfmin

or more than Kfmax
word-pairs.

The optimal values for these parameters are determined through experiments.

3.2 Analogy Generator

The final component in GELATI’s pipeline is the analogy generator, which pro-
duces a list of lexical analogies by associating word-pairs with high analogousness

as evidenced by their features. GELATI uses a Vector Space Model to perform
this computation. Specifically, GELATI creates an F -dimensional vector for each
word-pair, where F is the number of total features extracted. The ith dimension
corresponds to the ith feature, and is set to 1 if that feature is associated with
this word-pair, or 0 otherwise. Once the vectors are computed, the analogousness
between any two word-pairs is simply the cosine measure of their vectors.

This straightforward implementation, however, fails to take into account the
influence of other word-pairs in the extracted set. Consider, for example, three
word-pairs WP1, WP2, and WP3, such that WP1 and WP2 share many common
features, as do WP2 and WP3. Clearly, in this case WP1 and WP2 are likely
an analogy, as are WP2 and WP3. However, this implies that the underlying
relation of all three word-pairs are similar, and hence WP1 and WP3 would also
have a good chance of being an analogy regardless of how many features they
share. This transitivity between word-pairs can be extended through any number
of word-pairs, and a similar transitivity also applies to features. Consequently,
the analogousness between any two word-pairs is ultimately influenced by all
other word-pairs and features. The analogy generator must therefore consider
the entire set of word-pairs and features together, instead of relying on just
pair-wise comparisons.

We may observe that this is the same problem as a well-documented problem
in Information Retrieval (IR), namely, relevant documents may not necessarily
share many common words. A particular successful solution in the IR community
is Latent Semantic Analysis (LSA) [7]. The intuition is that if the vector space is
compressed into an optimal reduced dimension, the influence of other elements
will be magnified so that elements that are truly relevant will be pushed closer
together. This idea of dimension reduction has been shown to be useful in IR as
well as a number of other applications including analogy comparison [8]. Hence
we also adopt this technique. Specifically, the analogy generator first builds a
large word-pair-by-feature matrix by concatenating the feature vectors of all
word-pairs. It then applies Singular Value Decomposition to reduce the matrix to
an empirically-determined optimal dimension of Kdim. Once SVD is completed,
the generator uses the reduced vectors as the new feature vectors, and computes
cosine measures as before.

4 Preliminary Experimental Result

Table 2 shows a small subset of lexical analogies generated by GELATI in a
preliminary experimental run. The input for this experiment consists of about 1
gigabyte of text data from the TREC dataset 1. The parameters were: Kwpmin

=
50, Kwpmax

= ∞, Kfmin
= 10, Kfmax

= 100, and Kdim = 400. A total of
8148 word-pairs and 10470 features was extracted. 3384 lexical analogies were
generated, of which an estimated 40–60% are valid.

1 http://trec.nist.gov/

Analogy Extracted Underlying Relation

gorbachev:moscow::bush:washington head-of
hostage:release::troops:withdrawal safely-returns
legislature:law::city council:ordinance makes-and-revises
increase:rise::drop:decline synonym
prosecutor:evidence::investigator:information collects
article:newspaper::story:magazine publication-in
problem:business::drought:farmer causes-trouble-for
judge:request::court:claim approves

Table 2. Extracted Lexical Analogies

5 Conclusion and Future Work

In this research we are developing methods that use machine learning techniques
to systematically discover and learn lexical analogies and lexical semantic rela-
tions from text. There are a number of future research issues that we are planning
to explore. First, we will implement the relation-learning algorithm outlined in
Sect. 2 and investigate whether the initial sample set can be built automatically
so as to fully automate the algorithm. Second, we will extend GELATI with
alternative extractors and analogy generators. In particular, we plan to build
extractors that can take advantage of hyperlinks, which often suggest strong
semantic relatedness. We are also experimenting with a Bayesian alternative to
SVD that allows dimension reduction to occur in a more principled manner.

References

1. Christiane Fellbaum, ed., WordNet — An electronic lexical database. MIT Press
(1998)

2. Jane Morris and Graeme Hirst. Non-classical lexical semantic relations. In Proceed-
ings of HTL-NAACL Workshop on Computational Lexical Semantics (2004)

3. Lucien Tesnière. Éléments de syntaxe structurale. Paris: Librairie C. Klincksieck
(1959)

4. Jeffrey C. Reynar and Adwait Ratnaparkhi. A maximum entropy approach to iden-
tifying sentence boundaries. In Proceedings of the 5th Conference on Applied Natural
Language Processing, pp 16–19 (1997)

5. Dekang Lin. Principle-based parsing without overgeneration. In Proceedings of the
31st Annual Meeting on ACL, pp 112–120 (1993)

6. Dekang Lin and Patrick Pantel. Discovery of inference rules for question answering.
Natural Language Engineering, 7(4):343–360 (2001)

7. Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and
Richard Harshman. Indexing by latent semantic analysis. Journal of the American
Society for Information Science, 41:391–407 (1990)

8. Peter Turney. Measuring semantic similarity by latent relational analysis. In Pro-
ceedings of IJCAI’2005, pp 1136–1141 (2005)

