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Abstract

Latent Dirichlet Allocation (LDA) is a very popular model for topic modeling as
well as many other problems with latent groups. It is both simple and effective.
When the number of topics (or latent groups) is unknown, the Hierarchical Dirich-
let Process (HDP) provides an elegant non-parametric extension; however, it is a
complex model and it is difficult to incorporate prior knowledge since the distri-
bution over topics is implicit. We propose two new models that extend LDA in a
simple and intuitive fashion by directly expressing a distribution over the number
of topics. We also propose a new online Bayesian moment matching technique to
learn the parameters and the number of topics of those models based on stream-
ing data. The approach achieves higher log-likelihood than batch and online HDP
with fixed hyperparameters on several corpora. The code is publicly available at
https://github.com/whsu/bmm.

1 Introduction

Latent Dirichlet Allocation (LDA) [3] recently emerged as the dominant framework for topic mod-
eling as well as many other applications with latent groups. The Hierarchical Dirichlet Process
(HDP) [18] provides an elegant extension to LDA when the number of topics (latent groups) is
unknown. The non-parametric nature of HDPs is quite attractive since HDPs effectively allow an
unbounded number of topics to be inferred from the data. There is also a rich mathematical theory
underlying HDPs as well as attractive metaphors (e.g., stick breaking process, Chinese restaurant
franchise) to ease the understanding by those less comfortable with non-parametric statistics [18].
That being said, HDPs are not perfect. They do not expose an explicit distribution over the topics
that could allow practitioners to incorporate prior knowledge and to inspect the model’s posterior
confidence in different number of topics. Furthermore, the implicit distribution over the number of
topics is restricted to a regime where the number of topics grows logarithmically with the amount of
data in expectation [18]. For instance, this growth rate is insufficient for applications that exhibit a
power law distribution [6] – a generalization of the HDP known as the hierarchical Pitman-Yor pro-
cess [21] is often used instead. Existing inference algorithms for HDPs (e.g., Gibbs sampling [18],
variational inference [19, 24, 23, 4, 17]) are also fairly complex. As a result, practitioners often stick
with LDA and estimate the number of topics by repeatedly evaluating different number of topics by
cross-validation; however, this is an expensive procedure.

We propose two new models that extend LDA in a simple and intuitive fashion by directly expressing
a distribution over the number of topics under the assumption that an upper bound on the number of
topics is available. When the amount of data is finite, this assumption is perfectly fine since there
cannot be more topics than the amount of data. Otherwise, domain experts can often define a suitable
range for the number of topics and if they plan to inspect the resulting topics, they cannot inspect
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an unbounded number of topics. We also propose a novel Bayesian moment matching algorithm
to compute a posterior distribution over the model parameters and the number of topics. Bayesian
learning naturally lends itself to online learning for streaming data since the posterior is updated
sequentially after each data point and there is no need to go over the data more than once. The main
issue is that the posterior becomes intractable. We approximate the posterior after each observed
word by a tractable distribution that matches some moments of the exact posterior (hence the name
Bayesian Moment Matching). The approach compares favorably to online HDP on several topic
modeling tasks.

2 Related work

Setting the number of topics to use can be treated as a model selection problem. One solution is to
train a topic model multiple times, each time with a different number of topics, and choose the num-
ber of topics that minimizes some cost function on a heldout test set. More recently nonparametric
Bayesian methods have been used to bypass the model selection problem. Hierarchical Dirichlet
process (HDP) [18] is the natural extension of LDA in this direction. With HDP, the number of top-
ics is learned from data as part of the inference procedure. Gibbs sampling [7, 15] and Variational
Bayes [3, 20] are by far the most popular inference techniques for LDA. They have been extended
to HDP [18, 19, 17]. With the rise of streaming data, online variants of Variational Bayes have also
been developed for LDA [8] and HDP [24, 23, 4]. The first online variational technique [24] used
a truncation that effectively bounds the number of topics while subsequent techniques [23, 4] avoid
any fixed truncation to fully exploit the non-parametric nature of HDP. These online variational tech-
niques perform stochastic gradient ascent on mini-batches, which reduces their data efficiency, but
improves computational efficiency.

We propose two new models that are simpler than HDP and express a distribution directly on the
number of topics. We extend online Bayesian moment matching (originally designed for LDA with
a fixed number of topics [14]) to learn the number of topics. This technique avoids mini-batches. It
approximates Bayesian learning by Assumed Density Filtering [13], which can be thought as a single
forward iteration of Expectation Propagation [12]. Note that Bayesian moment matching is different
from frequentist moment matching techniques such as spectral learning [1, 2, 9, 11]. In BMM, we
compute a posterior over the parameters of the model and approximate the posterior with a simpler
distribution that matches some moments of the exact posterior. In spectral learning, moments of the
empirical distribution of the data are used to find parameters that yield the same moments in the
model. This is usually achieved by a spectral (or tensor) decomposition of the empirical moments,
hence the name spectral learning. Although both BMM and spectral learning use the method of
moments, they match different moments in different distributions resulting in completely different
algorithms. While stochastic gradient descent can be used to compute tensor decompositions in an
online fashion [5, 10], no online variant of spectral learning has been developed to infer the number
of topics in LDA.

3 Models

We investigate the problem of online clustering of grouped discrete observations. Using terminology
from text processing, we will call each observation a word and each group a document. The observed
data set is then a corpus of N words, {wn}Nn=1, along with the IDs, {dn}Nn=1, of the documents to
which these words belong. We will let D denote the number of documents and V the number of
distinct words in the vocabulary. Figure 1 shows the generative models we are considering.

The basic model is LDA, in which the number of the topics T is fixed. We propose two extensions to
the basic model where the parameter T is unknown and inferred from data, with the assumption that
T ranges from 1 to K. Each ~θ specifies the topic distribution of a document, while each ~φ specifies
the word distribution of a topic. In the rest of the paper, we will use Θ to denote the collection of all
~θ’s and Φ the collection of all ~φ’s in the model.

2



~αd ~βt

~θd ~φt

dn tn wn

D T

N

~γ ~αd ~βt

T ~θd ~φt

dn tn wn

D K

N

~γ ~αk,d ~βt

T ~θk,d ~φt

dn tn wn

D K K

N

Figure 1: Graphical representations of basic model with fixed number of topics (left), degenerate
Dirichlet model (middle), and triangular Dirichlet model (right)

3.1 Degenerate Dirichlet model

The generative process of the degenerate Dirichlet model (DDM), as shown in the middle in Figure 1,
works by first sampling the hyperparameters ~γ, {~αd}Dd=1, and {~βt}Kt=1. The parameters T , {~θd}Dd=1,
and {~φt}Kt=1 are then sampled from the following conditional distributions:

P (T |~γ) = Discrete(T ;~γ)

P (~θd|~αd, T ) = Dir(~θd; ~αd, T )

P (~φt|~βt) = Dir(~φt; ~βt)

where Dir(~θd; ~αd, T ) denotes a degenerate Dirichlet distribution Dir(~θd; ~α′
d) with

α′
d,t =

{
αd,t for t ≤ T
0 for t > T

and Discrete(T ;~γ) is the general discrete distribution with probability P (T = k) = γk for
k = 1, . . . ,K. Finally, the N observations are generated by first sampling the topic indicators
tn according to the distribution P (tn|dn,Θ) = θdn,tn . Note that since ~θdn

is sampled from a de-
generate Dirichlet, we have θdn,tn = 0 for tn > T . Given tn, the words are then sampled according
to the categorical distribution P (wn|tn,Φ) = φtn,wn

.

3.2 Triangular Dirichlet model

The triangular Dirichlet model (TDM), shown on the right in Figure 1, works in a similar way except
the document-topic distribution Θ is represented by a three-dimensional array that is also indexed
by the number of topics T in addition to the document ID d and the topic ID t. Given T and d, the
topic t is drawn according to the probability P (t|d,Θ, T ) = θT,d,t for 1 ≤ t ≤ T . The array Θ
therefore has a triangular shape in the first and third dimension. Again, we place a Dirichlet prior on
each ~θk,d: P (~θk,d|~αk,d) = Dir(~θk,d; ~αk,d). In this case, however, ~θk,d has no dependence on T .

4 Bayesian update by moment matching

Let Pn(Θ,Φ, T ) denote the joint posterior probability of Θ, Φ, and T after seeing the first n obser-
vations. Then1

Pn(Θ,Φ, T ) = P (Θ,Φ, T |w1:n)

=
1

cn

K∑
tn=1

P (tn|Θ, T )P (wn|Φ, tn)Pn−1(Θ,Φ, T ) (1)

where cn = P (wn|w1:n−1).

From (1) we can see that after seeing each new observation wn, the number of terms in the posterior
is increased by a factor of K, resulting in an exponential complexity for exact Bayesian update.
Therefore, we will instead approximate Pn by a different distribution, whose parameters will be
estimated by moment matching.

1In the derivations that follow, the dependence on the document IDs {dn}Dn=1 and the hyperparameters ~γ,
α, and β is implicit and not shown.
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4.1 Approximating distribution

To make the inference tractable, we approximate Pn using a factorized distribution: Pn(Θ,Φ, T ) =
fΘ(Θ)fΦ(Φ)fT (T ).

For TDM, we choose the factorized distribution to have the exact same form as the prior distribution,
i.e.,

fΘ(Θ) =

K∏
k=1

D∏
d=1

Dir(~θk,d; ~αk,d) (2)

fΦ(Φ) =
K∏
t=1

Dir(~φt; ~βt) (3)

fT (T ) = Discrete(T ;~γ) (4)

For DDM, we use the same fΦ and fT , but rather than choosing fΘ as degenerate Dirichlets again,
we instead approximate the posterior over Θ using proper Dirichlet distributions to decouple Θ from
T :

fΘ(Θ) =

D∏
d=1

Dir(~θd; ~αd) (5)

4.2 Moment matching

Let x be a random variable with distribution p(x). The i-th moment of x about zero is defined as the
expectation of xi over p, and we denote it by Mxi(p):

Mxi(p) = Ep

[
xi
]

(6)

For a K-dimensional Dirichlet distribution Dir(x1, . . . , xK ; τ1, . . . , τK), we can uniquely solve for
the parameters τ1, . . . , τK if we have K − 1 first moments, Mx1

, . . . ,MxK−1
, and one second

moment, Mx2
1
. Given the moments, we can determine the Dirichlet parameters as

τk = Mxk

Mx1
−Mx2

1

Mx2
1
−M2

x1

(7)

for k = 1, . . . ,K. Therefore, we can compute the parameters for fΘ and fΦ using (7): for αd,
replace τk with αd,k and xk with θd,k; and for βt, replace τk with βt,k and xk with φt,k.

The parameters for Discrete(T ;~γ) are estimated directly as

γk = E[δT,k] (8)

where δ denotes the the Kronecker delta

δi,j =

{
1 if i = j
0 if i 6= j

. (9)

4.3 Moment computation

From (7) and (8), we see that to approximate Pn by moment matching, we need to compute the first
and second moments of Θ and Φ as well as the expectation E[δT,k] with respect to Pn. They can be
calculated using the Bayesian update equation (1).

To keep the notation uncluttered, let S~x,:m denote the sum of the first m elements in a vector ~x and
S~x the sum of all elements in ~x. We can then compute the moments of DDM as follows:

cn =

K∑
T=1

γT

T∑
tn=1

αdn,tn

S~αdn ,:T

βtn,wn

S~βtn

(10)

EPn [δT,k] =
1

cn
γk

k∑
tn=1

αdn,tn

S~αdn ,:k

βtn,wn

S~βtn

(11)
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Mθd,t (Pn) =
1

cn

K∑
T=t

γT

T∑
tn=1

αdn,tn

S~αdn ,:T

βtn,wn

S~βtn

αd,t + δd,dn
δt,tn

S~αd,:T + δd,dn

(12)

Mθ2
d,t

(Pn) =
1

cn

K∑
T=t

γT

T∑
tn=1

αdn,tn

S~αdn ,:T

βtn,wn

S~βtn

αd,t + δd,dn
δt,tn

S~αd,:T + δd,dn

αd,t + 1 + δd,dn
δt,tn

S~αd,:T + 1 + δd,dn

(13)

Mφt,w
(Pn) =

1

cn

K∑
T=1

γT

T∑
tn=1

αdn,tn

S~αdn ,:T

βtn,wn

S~βtn

βt,w + δt,tnδw,wn

S~βt
+ δt,tn

(14)

Mφ2
t,w

(Pn) =
1

cn

K∑
T=1

γT

T∑
tn=1

αdn,tn

S~αdn ,:T

βtn,wn

S~βtn

βt,w + δt,tnδw,wn

S~βt
+ δt,tn

βt,w + 1 + δt,tnδw,wn

S~βt
+ 1 + δt,tn

(15)

For TDM, the moments are computed similarly except that T is used to index into α rather than to
take partial sums. The equations are included in the supplement.

4.4 Parameter update

For TDM, the approximating distribution for the posterior has the exact same form as the prior;
therefore, the parameters we compute for Pn in the n-th update can be used directly as the parameters
for the prior in the (n+ 1)-th update.

However, for DDM, the prior for Θ consists of degenerate Dirichlet distributions conditionally de-
pendent on T , whereas the approximating distribution for the posterior is a fully factorized distri-
bution with proper Dirichlets. Therefore, we have to make a further approximation to match the
parameters of the two distributions.

When Pn is being used as the prior in the (n + 1)-th update, we use the same α that was obtained
by moment matching during the n-th update, but it now has a different meaning. During the n-th
update, α is computed as parameters of proper Dirichlet distributions, but in the next update, it is
used as parameters of a weighted sum of degenerate Dirichlet distributions. As a result, the DDM
has a natural bias towards smaller number of topics.

4.5 Algorithm summary

In summary, starting from a prior distribution, the algorithm successively updates the posterior by
first computing the exact moments according to the Bayesian update equation (1), and then updat-
ing the parameters by matching the moments with those of an approximating distribution. In the
case of TDM, the approximating distribution has the same form as the prior, whereas a simplified
distribution is used for DDM. Algorithm 1 summarizes the procedure for the two models.

Algorithm 1 Online Bayesian moment matching algorithm
1: Initialize α, β, and ~γ.
2: for n = 1, . . . , N do
3: Read the n-th observation (dn, wn).
4: Compute moments according to (10)–(15) for DDM or equations in supplement for TDM.
5: Update α, β, and ~γ according to (7) and (8) with appropriate substitutions.
6: end for

5 Experiments

In this section, we discuss our experiments on a synthetic dataset and three real text corpora. The
TDM and DDM implementations are available at https://github.com/whsu/bmm. For both
models we initialized the hyperparameters to be αd,t = 1 and βt,w = 1√

V
for all d, t, and w. The

reason that βt,w was not initialized to 1 was to encourage the algorithm to find topics with more
concentrated word distributions.
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Figure 2: Number of topics discovered by the DDM and TDM on synthetic datasets using (a) uni-
form prior and (b) exponentially decreasing prior on T . The results are averaged over 100 randomly
generated datasets for each actual T . Error bars show plus/minus one standard deviation. Gray line
indicates the true number of topics that generated the datasets.

5.1 Synthetic data

We first ran some tests on synthetic data to see how well the models estimate the number of topics.
For this experiment, the actual number of topics T was varied from 1 to 10, and for each value of T ,
we generated 100 random datasets with D = 100, V = 200, and N =100,000. Each random dataset
was created by first sampling Θ from Dir(~αd|0.05) and Φ from Dir(~βt|0.1). The observations were
then sampled from Θ and Φ.

We set K = 20 and used the uniform prior P (T ) = 1
K for T = 1, . . . ,K. The estimated number

of topics is shown in Figure 2(a). Both models were able to discover more topics as the actual
number of topics increases. They tend to overestimate the number of topics because the initial value
βt,w = 1√

V
encourages topics with smaller number of words.

However, in both models, the modeler has direct control over the number of topics. If there is
reason to believe the data come from a smaller number of topics, the modeler can change the prior
distribution on T accordingly as is typical in a Bayesian framework.

For this example, we also tested on an exponentially decreasing prior P (T ) ∝ e−T for T =
1, . . . ,K. The results are shown in Figure 2(b). In this case, TDM shows a slight decrease than
with a uniform prior, whereas DDM produces an estimate that is close to the true number of topics.

5.2 Text modeling

We compare the two proposed models by using them to model the distributions of three real text
corpora containing Reuters news articles, NIPS conference proceedings, and Yelp reviews. We also
include online HDP (oHDP) in the comparisons, as well as the basic moment matching (basic MM)
algorithm with different values of T . For online HDP, we used the gensim 0.10.3 [16] implemen-
tation with the default parameters except for the top-level truncation, which we set equal to the
maximum number of topics we used for DDM and TDM. Because DDM and TDM do not estimate
a global alpha as oHDP, for oHDP we include the results with both uniform alpha (oHDP unif) and
alpha that is learned (oHDP alpha).

We followed a similar experimental setup as in [22, 4]. Each dataset was divided into a training set
Dtrain and a test set Dtest based on document IDs. The words in the test set were further split into
two subsets W1 and W2, where W1 contains the words in the first half of each document in the
test set, and W2 contains the second half. The evaluation metric used is the per-word log likelihood
L = log p(W2|W1,Dtrain)

|W2| where |W2| denotes the total number of tokens in W2.

For each experiment we also report the number of topics inferred by DDM, TDM. We do not report
this number for online HDP because it is not returned by the implementation.
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Figure 3: Text modeling on Reuters-21578: (a) Per-word test log likelihood and (b) Number of
topics found as a function of number of observations.

5.2.1 Reuters-21578

The Reuters-21578 corpus contains 21,578 Reuters news articles in 1987. For this dataset,
we divided the data into training and test sets according to the LEWISSPLIT attribute that
is available as part of the distribution at http://www.daviddlewis.com/resources/
testcollections/reuters21578/. The text was passed through a stemmer, and stopwords
and words appearing in five or fewer documents were removed. This resulted in a total of 1,307,468
tokens and a vocabulary of 7,720 distinct words. We chose K to be 100 for both models with
uniform prior P (T ) = 1

K . Figure 3(a) shows the experimental results.

DDM discovered 39 topics while TDM found 36, and they both achieved similar per-word log
likelihood as the best models with fixed T showing that they were able to automatically determine
the number of topics necessary to model the data.

While both models found the a similar number of topics in the end, they progressed to the final values
in different ways. Fig. 3(b) shows the number of topics found by the two models as a function of
number of observations. DDM shows a logarithmically increasing trend as more words are observed,
whereas TDM follows a more irregular progression.

5.2.2 NIPS

We also tested the two models on 2,742 articles from the NIPS conference for the years 1988–2004.
We used the raw text versions available at http://cs.nyu.edu/˜roweis/data.html
(1988–1999) and http://ai.stanford.edu/˜gal/data.html (2000–2004). The first set
was used as the training set and the second as the test set. The corpus was again passed through a
stemmer, and stopwords and words appearing no more than 50 times were removed. After prepro-
cessing we are left with 2,207,106 total words and a vocabulary of 4,383 unique words.

For this dataset we used K = 400 with the exponentially decreasing prior. DDM discovered 54
topics, and TDM found 89 topics. Figure 4(a) shows the per-word log likelihood on the test set.

In this experiment, both DDM and TDM obtained closed to the optimal likelihood compared to basic
MM.

5.2.3 Yelp

In our third experiment, we tested the models on a subset of the Yelp Academic Dataset (http:
//www.yelp.com/dataset_challenge). We took the 129,524 reviews in the dataset that
were given to businesses in the Food category. The reviews were randomly split so that 70% were
used for training and 30% for testing.

Similar preprocessing was performed. The corpus was passed through a stemmer, and stopwords
and words appearing no more than 50 times were removed. After preprocessing the corpus contains
a total of 5,317,041 words and a vocabulary of 5,640 distinct words.
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Figure 4: Per-word test log likelihood of (a) NIPS and (b) Yelp.

For this dataset, we tested with K=100 using the exponentially decreasing prior on T . Figure 4(b)
shows the per-word log likelihood on the test set. DDM found the optimal number of topics while
both models achieved close to best likelihood on the test set compared to basic MM.

5.2.4 Comparison with online HDP

Because DDM and TDM do not estimate the global alpha, in the experiments we compute the test
likelihood using a uniform alpha. If we also use a uniform alpha for online HDP, DDM and TDM
achieve higher test likelihood. However, online HDP is able to learn the global alpha, which results
in higher likelihood. This is a shortcoming of our models, and we are exploring ways to estimate
the global alpha.

5.3 Additional experimental results

Additional experimental results may be found in the supplement, including running time of the ex-
periments and samples of topics discovered in the Reuters and NIPS corpora, as well as experiments
on using the models as dimensionality reduction preprocessors in text classification.

6 Conclusions

In this paper we proposed two topic models that can be used when the number of topics is not known.
Unlike nonparametric Bayesian models, the proposed models provide explicit control over the prior
for the number of topics. We then presented an online learning algorithm based on Bayesian moment
matching, and experiments showed that reasonable topics could be recovered using the proposed
models. Additional experiments on text classification and visual inspection of the inferred topics
show that the clusters discovered were indeed semantically meaningful.

One unsolved problem is that the proposed models do not estimate the global alpha, resulting in
lower test likelihood compared to online HDP, which is able to estimate alpha. Developing a robust
way to estimate alpha will be the next step to improve the models.
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