Diachronic Embedding for Temporal Knowledge Graph Completion

Rishab Goel*, Seyed Mehran Kazemi”, Marcus Brubaker, Pascal Poupart
Borealis Al
{rishab.goal,mehran.kazemi, marcus.brubaker, pascal.poupart}@borealisai.com

Abstract

Knowledge graphs (KGs) typically contain temporal facts in-
dicating relationships among entities at different times. Due
to their incompleteness, several approaches have been pro-
posed to infer new facts for a KG based on the existing ones—
a problem known as KG completion. KG embedding ap-
proaches have proved effective for KG completion, however,
they have been developed mostly for static KGs. Developing
temporal KG embedding models is an increasingly important
problem. In this paper, we build novel models for temporal
KG completion through equipping static models with a di-
achronic entity embedding function which provides the char-
acteristics of entities at any point in time. This is in contrast to
the existing temporal KG embedding approaches where only
static entity features are provided. The proposed embedding
function is model-agnostic and can be potentially combined
with any static model. We prove that combining it with Sim-
plE, arecent model for static KG embedding, results in a fully
expressive model for temporal KG completion. Our experi-
ments indicate the superiority of our proposal compared to
existing baselines.

Introduction

Knowledge graphs (KGs) are directed graphs where nodes
represent entities and (labeled) edges represent the types
of relationships among entities. Each edge in a KG corre-
sponds to a fact and can be represented as a tuple such as
(Mary, Liked, God Father) where Mary and God Father are
called the head and tail entities respectively and Liked is a
relation. An important problem, known as KG completion,
is to infer new facts from a KG based on the existing ones.
This problem has been extensively studied for static KGs
(see (Nickel et al. 2016) for a summary). KG embedding ap-
proaches have offered state-of-the-art results for KG com-
pletion on several benchmarks. These approaches map each
entity and each relation type to a hidden representation and
compute a score for each tuple by applying a score function
to these representations. Different approaches differ in how
they map the entities and relation types to hidden represen-
tations and in their score functions.

*Equal contribution.
Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To capture the temporal aspect of the facts, KG edges
are typically associated with a timestamp or time interval;
e.g., (Mary, Liked, God Father, 1995). However, KG em-
bedding approaches have been mostly designed for static
KGs ignoring the temporal aspect. Recent work has shown
a substantial boost in performance by extending these ap-
proaches to utilize time (Dasgupta, Ray, and Talukdar 2018;
Ma, Tresp, and Daxberger 2018; Garcia-Durdn, Dumancié,
and Niepert 2018). The proposed extensions are mainly
through computing a hidden representation for each times-
tamp and extending the score functions to utilize timestamp
representations as well as entity and relation representations.

In this paper, we develop models for temporal KG com-
pletion (TKGC) based on an intuitive assumption: to provide
ascore for, e.g., (Mary, Liked, God Father, 1995), one needs
to know Mary’s and God Father’s features on 1995; provid-
ing a score based on their current features may be mislead-
ing. That is because Mary’s personality and the sentiment
towards God Father may have been quite different on 1995
as compared to now. Consequently, learning a static repre-
sentation for each entity — as is done by existing approaches
— may be sub-optimal as such a representation only captures
the entity features at the current time, or an aggregation of
entity features during time.

To provide entity features at any given time, we define
entity embedding as a function which takes an entity and a
timestamp as input and provides a hidden representation for
the entity at that time. Inspired by diachronic word embed-
dings, we call our proposed embedding diachronic embed-
ding (DE). DE is model-agnostic: any static KG embedding
model can be potentially extended to TKGC by leveraging
DE. We prove that combining DE with SimplE (Kazemi and
Poole 2018b) results in a fully expressive model for TKGC.
To the best of our knowledge, this is the first TKGC model
with a proof of fully expressiveness. We show the merit of
our model on subsets of ICEWS (Boschee et al. 2015) and
GDELT (Leetaru and Schrodt 2013) datasets.

Background and Notation

Notation: Lower-case letters denote scalars, bold lower-
case letters denote vectors, and bold upper-case letters de-
note matrices. z[n| represents the n™ element of a vec-

tor 2, ||z|| represents its norm, and 2" represents its trans-
pose. 21 ® zo represents a vector z € R%142 guch that
z[(n — 1) x do + m] = z1[n] * z2]m] (i.e. the flattened
vector of the tensor/outer product of the two vectors). For
k vectors 21, ...,z of the same length d, (z1,...,2;) =

Zi:l (z1[n]*- - -*2zx[n]) represents the sum of the element-
wise product of the elements of the &k vectors.

Temporal Knowledge Graph (Completion): Let VV be a
finite set of entities, R be a finite set of relation types, and
T be a finite set of timestamps. Let W C V x R x V X
T represent the set of all temporal tuples (v, r, u, t) that are
facts (i.e. true in a world), where v,u € V,r € R,andt € T.
Let W€ be the complement of WW. A temporal knowledge
graph (KG) G is a subset of W (i.e. G C W)!. Temporal KG
completion (TKGC) is the problem of inferring W from G.

Relation Properties: A relation r is symmetric if
(v,r,u,t) € W <= (u,r,v,t) € W and anti-symmetric
if (v,r,u,t) € W < (u,r,v,t) € W° A rela-
tion r; is the inverse of another relation r; if (v,r;,u,t) €
W <<= (urj,v,t) € W.r; entails r; if (v,r;,u,t) €
W= (v,rj,u,t) € W.

KG Embedding: Formally, we define an entity embed-
ding as follows.

Definition 1. An entity embedding, EEMB : V — 1), is a
function that maps every entity v € V to a hidden repre-
sentation in ¢) where 1) is the class of non-empty tuples of
vectors and/or matrices.

A relation embedding (REMB : R — 1)) is defined simi-
larly. We refer to the hidden representation of an entity (re-
lation) as the embedding of the entity (relation). A KG em-
bedding model defines two things: 1- the EEMB and REMB
functions, 2- a score function which takes EEMB and REMB as
input and provides a score for a given tuple. The parameters
of hidden representations are learned from data.

Existing Approaches

In this section, we describe the existing approaches for static
and temporal KG completion that will be used in the rest
of the paper. For further detail on temporal KG completion
approaches, we refer the reader to a recent survey (Kazemi
et al. 2019). We represent the score for a tuple by ¢(.).

TransE (static) (Bordes et al. 2013): In TransE,
EEMB(v) = (2z,) for every v. € V where z, € R,
REMB(r) = (z,) for every r € R where 2, € R?, and
P(v,r,u) = —|lzy + 2r — z4||.

DistMult (static) (Yang et al. 2015): Same EEMB and
REMB as TransE but defining ¢(v, r,u) = (2y, 2, 2,).

Tucker (static) (Tucker 1966): Same EEMB and REMB as
TransE but defining ¢(v,r,u) = (w,2, ® 2z, ® z,) where

weR isa weight vector shared for all tuples.

'In this paper, we mainly study temporal KGs where each fact
has a single timestamp. The models we develop, however, can be
extended to facts with time intervals through the approach intro-
duced in Dasgupta, Ray, and Talukdar (2018). We leave a more so-
phisticated way of handling time intervals or dealing with missing
temporal information as future work.

RESCAL (static) (Nickel, Tresp, and Kriegel 2011):
Same EEMB as TransE but defining REMB(r) = (Z,) for every
r € R where Z, € R?*?, and defining ¢(v,r,u) = 2] Z,z,.

CP (static) (Hitchcock 1927): Same REMB as TransE but
defining EEMB(v) = (2, 2,) for every v € V where 2,2z, €
R<. Z, is used when v is the head and %, is used when v is
the tail. In CP, ¢(v, r, u) = (Z,, 2,, Z,). DistMult is a special
case of CP where 2z, = 2z, forevery v € V.

SimplE (static) (Kazemi and Poole 2018b): Noticing an
information flow issue between the two vectors 2, and 2z, of
an entity v in CP, SimplE takes advantage of the inverse of
the relations to address this issue. SimplE defines REMB(r) =
(Z;,%,) for every r € R, where Z, is used as in CP and z, €
R? is considered the embedding of r—L, the inverse of r. In
SimplE, ¢(v, r, u) is defined as the average of two CP scores:
1- (Z,,Z,,2,) corresponding to the score for (v, r,u) and 2-
(Z4,%,%,) corresponding to the score for (u,r=1,v).

TTransE (temporal) (Jiang et al. 2016): An extension of
TransE by adding one more embedding function mapping
timestamps to hidden representations: TEMB(t) = (2;) for
every t € T where z; € RY In TTransE, ¢(v,r,u,t) =
—||z2v + 2 + 2t — 24

HyTE (temporal) (Dasgupta, Ray, and Talukdar
2018): Same EEMB, REMB and TEMB as TTransE but defin-
ing p(v,r,u,t) = —||Z, + 2, — 2, || where z, = 2, — 2] 2,2
for x € {v,r,u}. Intuitively, HyTE first projects the head,
relation, and tail embeddings to the space of the timestamp
and then applies TransE on the projected embeddings.

ConT (temporal) (Ma, Tresp, and Daxberger 2018):
Ma, Tresp, and Daxberger extend several static KG embed-
ding models to TKGC. Their best performing model, ConT,
is an extension of Tucker defining TEMB(t) = (z:) for every

t € T where 2; € R and changing the score function to
o(v,r,u,t) = (2, 2y ® 2, @ 2,,). Intuitively, ConT replaces
the vector w in Tucker with timestamp embeddings z:.

TA-DistMult (temporal) (Garcia-Duran, Dumancic,
and Niepert 2018): An extension of DistMult where each
character ¢ in the timestamps is mapped to a vector
(CEMB(c) = z.) where 2. € RZ. Then, for a tuple (v, r, u,t),
a temporal relation is created by considering r and the char-
acters in t as a sequence and an embedding z, ; is computed
for this temporal relation by feeding the embedding vectors
for each element in the sequence to an LSTM and taking its
final output. Finally, the score function of DistMult is em-
ployed: ¢(v,r,u,t) = (2y,2+,2,) (TransE was employed
as well but DistMult performed better).

Diachronic Embedding

According to Definition 1, an entity embedding function
takes an entity as input and provides a hidden representa-
tion as output. We propose an alternative entity embedding
function which, besides entity, takes time as input as well.
Inspired by diachronic word embeddings, we call such an
embedding function a diachronic entity embedding. Below
is a formal definition of a diachronic entity embedding.

Definition 2. A diachronic entity embedding, DEEMB
(V,T) — 1, is a function that maps every pair (v, t), where

v € Vandt € T, to a hidden representation in) where ¥ is
the class of non-empty tuples of vectors and/or matrices.

One may take their favorite static KG embedding score
function and make it temporal by replacing their entity em-
beddings with diachronic entity embeddings. The choice
of the DEEMB function can be different for various tempo-
ral KGs depending on their properties. Here, we propose a
DEEMB function which performs well on our benchmarks.
We give the definition for models where the output of the
DEEMB function is a tuple of vectors but it can be generalized
to other cases as well. Let 2! € R be a vector in DEEMB(v, t)
(i.e. DEEMB(v,t) = (..., 2L, ...)). We define 2!, as follows:

2R

] = {av[n}a(wv[n]t—i-bv[n]), if 1<n<qd

- lavnl, if vd <n <d.

where a, € R? and w,,b, € R are (entity-specific) vec-
tors with learnable parameters and o is an activation func-
tion. Intuitively, entities may have some features that change
over time and some features that remain fixed. The first yd
elements of the vector in Equation (1) capture temporal fea-
tures and the other (1 —+)d elements capture static features.
0 <~ < 1is a hyper-parameter controlling the percentage
of temporal features. While in Equation (1) static features
can be potentially obtained from the temporal ones if the
optimizer sets some elements of w, to zero, explicitly mod-
eling static features helps reduce the number of learnable
parameters and avoid overfitting to temporal signals (see ab-
lation studies).

Intuitively, by learning w,s and b, s, the model learns how
to turn entity features on and off at different points in time so
accurate temporal predictions can be made about them at any
time. a,s control the importance of the features. We mainly
use sine as the activation function for Equation (1) because
one sine function can model several on and off states. Our
experiments explore other activation functions as well and
provide more intuition.

Model-Agnosticism: The proposals in existing tempo-
ral KG embedding models can only extend one (or a few)
static models to temporal KGs. As an example, it is not
trivial how RESCAL can be extended to temporal KGs us-
ing the proposal in (Garcia-Durdn, Dumanci¢, and Niepert
2018) (except for the naive approach of expecting the
LSTM to output large Z, matrices) or in (Jiang et al. 2016;
Dasgupta, Ray, and Talukdar 2018). Same goes for models
other than RESCAL where the relation embeddings contain
matrices (see, e.g., (Nguyen et al. 2016; Socher et al. 2013;
Lin et al. 2015)). Using our proposal, one may construct
temporal versions of TransE, DistMult, SimplE, Tucker,
RESCAL, or other models by replacing their EEMB function
with DEEMB in Equation (1). We refer to the resulting mod-
els as DE-TransE, DE-DistMult, DE-SimplE and so forth,
where DE is short for Diachronic Embedding.

Learning: The facts in a KG G are split into train,
validation, and test sets. Model parameters are learned us-
ing stochastic gradient descent with mini-batches. Let B C
train be a mini-batch. For each fact f = (v,r,u,t) € B,
we generate two queries: 1- (v,r,?,t) and 2- (?,r,u,t).
For the first query, we generate a candidate answer set Cy

which contains v and n (hereafter referred to as negative ra-
tio) other entities selected randomly from V. For the second
query, we generate a similar candidate answer set Cy . Then
we minimize the cross entropy loss which has been used and
shown good results for both static and temporal KG com-
pletion (see, e.g., (Kadlec, Bajgar, and Kleindienst 2017;
Garcia-Duran, Dumanci¢, and Niepert 2018)):

exp(¢(v,r,u,t))
L——
(f—<v,rz,u:,t>e3 2wec,, XP(O(v;r, v, 1))
+ exp(qb(v, r,u, t)))
Svec,, exp(d(V,r,u,t))
Expressivity

Expressivity is an important property and has been the sub-
ject of study in several recent works on static (knowledge)
graphs (Trouillon et al. 2017; Kazemi and Poole 2018b;
Xu et al. 2019; Fatemi, Ravanbakhsh, and Poole 2019). If
a model is not expressive enough, it is doomed to underfit-
ting for some applications. A desired property of a model is
fully expressiveness:

Definition 3. A model with parameters 6 is fully expressive
if given any world with true tuples WV and false tuples W€,
there exists an assignment for # that correctly classifies the
tuples in WV and W¢.

For static KG completion, several models have been
proved to be fully expressive. For TKGC, however, a proof
of fully expressiveness does not yet exist for the proposed
models. The following theorem establishes the fully expres-
siveness of DE-SimplE.

Theorem 1 (Expressivity). DE-SimplE is fully expressive
for temporal knowledge graph completion.

Proof. The embedding functions of SimplE map each en-

tity to two vectors and each relation also to two vectors. For

every entity v; € V), let DEEMB(v;,t) = (Z\fi,E\t,i) where, ac-

cording to Equation (1) with sine activations, thi € R% and
2,, € R? are defined as follows:

7] = {a [n] sin(@y, [n]t + by, [n]), i n < vd.

2
a,,[n], if n > ~d. @

i ay,[n]sin(,, [n)t +by,[n]), if n<d
In} = {Tz\,i [n], if n > ~d. ®)

where @,, € R and ,,, l_):,l € R are used when v; is the
head and a,, € R? and w,,,b,, € R?? are used when v; is
the tail of a relation. We provide the proof for a specific case
of DE-SimplE where the elements of Z's are all temporal

and the elements of E\f s are all non-temporal. This specific
case can be achieved by setting v = d, and w,[n] = 0 and

7)\, [n] = % forallv € Vand forall 1 < n < d.If this specific
case of DE-SimplE is fully expressive, so is DE-SimplE. In
this specific case, é’f,i and Ef,i can be re-written as follows:

Z! [n] = @, [n] sin(@,, [n]t + by, [n]) (4)

%, [n] = @y, [n] (5)

Recall that in SimplE, REMB(r;) = (Z,,,2,,) for every re-
lation r; € R. To further simplify the proof, following
(Kazemi and Poole 2018b), we only show how the embed-
ding values can be set such that (E:'\,ti,é}j,if\fk> becomes a
positive number if (v;,rj, vk, t) € W and a negative num-
ber if (v;,rj, vk, t) € We. Extending the proof to the case

ot o ~—t>

where the score contains both components ((Z,,, Z;,%,,

and (E\fk) 2y, ,E;)) can be done by doubling the size of the
embedding vectors and following a similar procedure as the
one explained below for the second half of the vectors.

Assume d = |R|-|V|-|T|- L where L € N is a nat-
ural number. These vectors can be viewed as |R| blocks of
size [V|-|T|- L. For the j" relation r;, let Z,, be zero every-
where except on the j" block where it is 1 everywhere. With
such a value assignment to E,J.s, to find the score for a fact
(Vi, rj,VE, t), only the j™ block of each embedding vector is
important. Let us now focus on the 5" block.

The size of the j™ block (similar to all other blocks) is
[V| - |T]| - L and it can be viewed as |V| sub-blocks of size
|T| - L. For the i entity v;, let the values of @,, be zero
in all sub-blocks except the i" sub-block. With such a value
assignment, to find the score for a fact (v;, r;, vi, t), only the
i™ sub-block of the j™ block is important. Note that this sub-
block is unique for each tuple (v;, r;). Let us now focus on
the 7™ sub-block of the j™ block.

The size of the i sub-block of the j™ block is 7| - L and
it can be viewed as || sub-sub-blocks of size L. According
to the Fourier sine series, with a large enough L, we can set
the values for @,,, @,,, and l_):,i in a way that the sum of the
elements of é’ji for the p sub-sub-block becomes 1 when
t = t, (where t, is the p™ timestamp in 7)) and 0 when ¢
is a timestamp other than t,,. Note that this sub-sub-block is
unique for each tuple (v;,r;,t,).

Having the above value assignments, if (v;,r;, vk, t,) €
W, we set all the values in the p™ sub-sub-block of the ™
sub-block of the 5™ block of a,, to 1. With this assignment,
<2Vti,5rj,§\fk> =Tlatt = t, If (vi,rj,v,t,) € W, we
set all the values for the p™ sub-sub-block of the i sub-
block of the j® block of @,, to —1. With this assignment,
(Z,,%,,2,) = —latt =t,. O

i’ Vi

Time Complexity

Extending a static model to temporal KGs through our di-
achronic embedding does not change its time complexity.
Therefore, making a single prediction in DE-TransE, DE-
DistMult and DE-SimplE has a time complexity of O(d)
where d is the size of the embeddings. As for the existing
approaches, TTransE and HyTE also have a time complex-
ity of O(d). ConT has a time complexity of O(d?®) due to its
timestamp embeddings and TA-DistMult has a time com-
plexity of O(d?) due to the internal LSTM operations.

Domain Knowledge

For several static KG embedding models, it has been shown
how certain types of domain knowledge (if exists) can be

incorporated into the embeddings through parameter shar-
ing (aka tying) and how it helps improve model perfor-
mance (see, e.g., (Kazemi and Poole 2018b; Sun et al. 2019;
Minervini et al. 2017; Fatemi, Ravanbakhsh, and Poole
2019)). Incorporating domain knowledge for these static
models can be ported to their temporal version when they
are extended to temporal KGs through our diachronic em-
beddings. As a proof of concept, we show how incorporat-
ing domain knowledge into SimplE can be ported to DE-
SimplE. We chose SimplE for our proof of concept as sev-
eral types of domain knowledge can be incorporated into it.

Consider r; € R with REMB(r;) = (2,,,%:,) (according to
SimplE). If r; is known to be symmetric or anti-symmetric,
this knowledge can be incorporated into the embeddings by
tying Z,, to Z,, or negation of z,, respectively. If r; is known
to be the inverse of r;, this knowledge can be incorporated
into the embeddings by tying 2, to z,, and 2, to 2,,.

Proposition 1. Symmetry, anti-symmetry, and inversion can
be incorporated into DE-SimplE in the same way as SimplE.

If r; is known to entail r;, Fatemi, Ravanbakhsh, and
Poole (2019) prove that if entity embeddings are constrained
to be non-negative, then this knowledge can be incorporated
by tying 2, to Z, +5rj andz,; to 2, —I—}_Srj where grj and Erj
are vectors with non-negative elements. We give a similar
result for DE-SimplE.

Proposition 2. By constraining a,s in Equation (1) to be
non-negative for all v € V and o to be an activation func-
tion with a non-negative range (such as ReLU, sigmoid, or
squared exponential), entailment can be incorporated into
DE-SimplE in the same way as SimplE.

Compared to the result in (Fatemi, Ravanbakhsh, and
Poole 2019), the only added constraint for DE-SimplE is
that the activation function in Equation (1) is also con-
strained to have a non-negative range. The proofs of Propo-
sitions 1 and 2 can be found in our extended version at:
https://arxiv.org/abs/1907.03143.

Experiments & Results

Datasets: Our datasets are subsets of two temporal KGs
that have become standard benchmarks for TKGC: ICEWS
(Boschee et al. 2015) and GDELT (Leetaru and Schrodt
2013). For ICEWS, we use the two subsets generated by
(Garcia-Durdn, Dumanci¢, and Niepert 2018): 1- ICEWS14
corresponding to the facts in 2014 and 2- ICEWS05-15 cor-
responding to the facts between 2005 to 2015. For GDELT,
we use the subset extracted by (Trivedi et al. 2017) corre-
sponding to the facts from April 1, 2015 to March 31, 2016.
We changed the train/validation/test sets following a similar
procedure as in (Bordes et al. 2013) to make the problem
into a TKGC rather than an extrapolation problem. Table 1
provides a summary of the dataset statistics.

Baselines: Our baselines include both static and tempo-
ral KG embedding models. From the static KG embedding
models, we use TransE and DistMult and SimplE where the
timing information are ignored. From the temporal KG em-
bedding models, we use the ones introduced in the Existing
Approaches section.

Table 1: Statistics on ICEWS14, ICEWS05-15, and GDELT.

Dataset || V| | IRl | IT| | l|train| | |validation| | [test] G|
ICEWS14 7,128 | 230 | 365 72,826 8,941 8,963 90,730
ICEWSO05-15 || 10,488 | 251 | 4017 | 386,962 46,275 46,092 479,329
GDELT 500 20 366 | 2,735,685 341,961 341,961 | 3,419,607

Metrics: For each fact f = (v,r,u,t) € test, we cre-
ate two queries: 1- (v,r,7,t) and 2- (?,r,u,t). For the
first query, the model ranks all entities in u U C¢, where
Ciu={u:u €V, (v,r,u,t) € G}. This corresponds to
the filtered setting commonly used in the literature (Bordes
et al. 2013). We follow a similar approach for the second
query. Let ky, and Ky, represent the ranking for u and v
for the two queries respectively. We report mean recipro-

cal rank (MRR) defined as 72*”165“ Zf:(v,r7u7t)€test(ﬁ +
1

W) Compared to its counterpart mean rank which is

lafgely influenced by a single bad prediction, MRR is
more stable (Nickel et al. 2016). We also report Hit@1,
Hit@3 and Hit@10 measures where Hit@k is defined as
m Zf:(v,r,u,t)etest(]]‘kf.ufk' +]]‘kf,VSk’)’ where]]‘Clmd is
1 if cond holds and 0 otherwise.

Implementation’> We implemented our model and the
baselines in PyTorch (Paszke et al. 2017). We ran our ex-
periments on a node with four GPUs. For the two ICEWS
datasets, we report the results for some of the baselines from
Garcia-Durdn, Dumanci¢, and Niepert (2018). For the other
experiments on these datasets, for the fairness of results, we
follow a similar experimental setup as in (Garcia-Durdn, Du-
manci¢, and Niepert 2018) by using the ADAM optimizer
(Kingma and Ba 2014) and setting learning rate = 0.001,
batch size = 512, negative ratio = 500, embedding size
= 100, and validating every 20 epochs selecting the model
giving the best validation MRR. Following the best results
obtained in (Ma, Tresp, and Daxberger 2018) (and consid-
ering the memory restrictions), for ConT we set embed-
ding size = 40, batch size = 32 on ICEWS14 and GDELT
and 16 on ICEWSO05-15. We validated dropout values from
{0.0,0.2,0.4}. We tuned ~y for our model from the values
{16, 32, 64}. For GDELT, we used a similar setting but with
a negative ratio = 5 due to the large size of the dataset. Un-
less stated otherwise, we use sine as the activation func-
tion for Equation (1). Since the timestamps in our datasets
are dates rather than single numbers, we apply the temporal
part of Equation (1) to year, month, and day separately (with
different parameters) thus obtaining three temporal vectors.
Then we take an element-wise sum of the resulting vectors
obtaining a single temporal vector. Intuitively, this can be
viewed as converting a date into a timestamp in the embed-
ded space.

Comparative Study

We compare the baselines with three variants of our model:
1- DE-TransE, 2- DE-DistMult, and 3- DE-SimplE. The ob-
tained results in Table 2 indicate that the large number of

2Code and datasets: https:/github.com/BorealisAl/DE-SimplE.

parameters per timestamp makes ConT perform poorly on
ICEWS 14 and ICEWS05-15. On GDELT, it shows a some-
what better performance as GDELT has many training facts
in each timestamp. Besides affecting the predictive perfor-
mance, the large number of parameters makes training ConT
extremely slow. According to the results, the temporal ver-
sions of different models outperform the static counterparts
in most cases, thus providing evidence for the merit of cap-
turing temporal information.

DE-TransE outperforms the other TransE-based base-
lines (TTransE and HyTE) on ICEWS14 and GDELT and
gives on-par results with HyTE on ICEWSO05-15. This re-
sult shows the superiority of our diachronic embeddings
compared to TTransE and HyTE. DE-DistMult outperforms
TA-DistMult, the only DistMult-based baseline, showing the
superiority of our diachronic embedding compared to TA-
DistMult. Moreover, DE-DistMult outperforms all TransE-
based baselines. Finally, just as SimplE beats TransE and
DistMult due to its higher expressivity, our results show that
DE-SimplE beats DE-TransE, DE-DistMult, and the other
baselines due to its higher expressivity.

Previously, each of the existing models was tested on dif-
ferent subsets of ICEWS and GDELT and a comprehensive
comparison of them did not exist. As a side contribution,
Table 2 provides a comparison of these approaches on the
same benchmarks and under the same experimental setting.
The results reported in Table 2 may be directly used for com-
parison in future works.

Model Variants & Ablation Study

We run experiments on ICEWS14 with several variants of
the proposed models to provide a better understanding of
them. The results can be found in Table 3 and Figure 1. Ta-
ble 3 includes DE-TransE and DE-DistMult with no variants
as well so other variants can be easily compared to them.
Activation Function: So far, we used sine as the acti-
vation function in Equation (1). The performance for other
activation functions including Tanh, sigmoid, Leaky ReLU
(with 0.1 leakage), and squared exponential are presented in
Table 3. From the table, it can be viewed that other activation
functions also perform well. Specifically, squared exponen-
tial performs almost on-par with sine. We believe one reason
why sine and squared exponential give better performance is
because a combination of sine or square exponential features
can generate more sophisticated features than a combination
of Tanh, sigmoid, or ReLU features. While a temporal fea-
ture with Tanh or sigmoid as the activation corresponds to a
smooth off-on (or on-off) temporal switch, a temporal fea-
ture with sine or squared exponential activation corresponds
to two (or more) switches (e.g., off-on-off) which can poten-

Table 2: Results on ICEWS 14, ICEWS05-15, and GDELT. Best results are in bold.

ICEWS14 ICEWSO05-15 GDELT
Model MRR Hit@l Hit@3 Hit@l0 | MRR Hit@l Hit@3 Hit@l0 | MRR Hit@l Hit@3 Hit@10
TransE 0.280 9.4 - 63.7 0.294 9.0 - 66.3 0.113 0.0 15.8 31.2
DistMult 0.439 323 - 67.2 0.456 33.7 - 69.1 0.196 11.7 20.8 34.8
SimplE 0.458 34.1 51.6 68.7 0.478 35.9 53.9 70.8 0.206 12.4 22.0 36.6
ConT 0.185 11.7 20.5 31.5 0.163 10.5 18.9 27.2 0.144 8.0 15.6 26.5
TTransE 0.255 7.4 - 60.1 0.271 8.4 - 61.6 0.115 0.0 16.0 31.8
HyTE 0.297 10.8 41.6 65.5 0.316 11.6 44.5 68.1 0.118 0.0 16.5 32.6
TA-DistMult | 0.477 36.3 - 68.6 0.474 34.6 - 72.8 0.206 12.4 21.9 36.5
DE-TransE | 0.326 12.4 46.7 68.6 0.314 10.8 45.3 68.5 0.126 0.0 18.1 35.0
DE-DistMult | 0.501 39.2 56.9 70.8 0.484 36.6 54.6 71.8 0.213 13.0 22.8 37.6
DE-SimplE | 0.526 41.8 59.2 72.5 0.513 39.2 57.8 74.8 0.230 14.1 24.8 40.3
tially model relations that start at some time and end after [——] [} . DistMult
a while (e.g., PresidentOf). These results also provide evi- o e — DE-DistMult
dence for the effectiveness of diachronic embedding across % 050 600
several DEEMB functions. % 8 o0l 1
Diachronic Embedding for Relations: Compared to en- "o
tities, we hypothesize that relations may evolve at a very 0.46 200
lower rate or, for some relations, evolve only negligibly. 00 02 04 06 08 10 0 160 200 300 400 500
Therefore, modeling relations with a static (rather than a di- Percentage of Temporal Features Training epoch
achronic) representation may suffice. To test this hypothesis, (@ (b)

we ran DE-TransE and DE-DistMult on ICEWS 14 where re-
lation embeddings are also a function of time. From the ob-
tained results in Table 3, one can see that the model with di-
achronic embeddings for both entities and relations performs
on-par with the model with diachronic embedding only for
entities. We conducted the same experiment on ICEWSO05-
15 (which has a longer time horizons) and GDELT and ob-
served similar results. These results show that at least on our
benchmarks, modeling the evolution of relations may not be
helpful. Future work can test this hypothesis on datasets with
other types of relations and longer horizons.

Generalizing to Unseen Timestamps: We created a vari-
ant of the ICEWS14 dataset by including every fact except
those on the 5%, 15", and 25" day of each month in the train
set. We split the excluded facts randomly into validation and
test sets (removing the ones including entities not observed
in the train set). This ensures that none of the timestamps in
the validation or test sets has been observed by the model
in the train set. Then we ran DistMult and DE-DistMult on
the resulting dataset. The obtained results in Table 3 indi-
cate that DE-DistMult gains almost 10% MRR improve-
ment over DistMult thus showing the effectiveness of our
diachronic embedding to generalize to unseen timestamps.

Importance of Model Parameters: In Equation (1), the
temporal part of the embedding contains three components:
ay, wy, and b,. To measure the importance of each compo-
nent, we ran DE-DistMult on ICEWS 14 under three settings:
1- when a,s are removed (i.e. set to 1), 2- when w,s are re-
moved (i.e. set to 1), and 3- when by s are removed (i.e. set to
0). From the obtained results presented in Table 3, it can be
viewed that all three components are important for the tem-
poral features, especially a,s and w,s. Removing b,s does
not affect the results as much as a,s and w,s. Therefore, if

Figure 1: (a) Test MRR of DE-SimplE on ICEWS14 as a
function of ~. (b) The training curve for DistMult and DE-
DistMult.

one needs to reduce the number of parameters, removing b,
may be a good option as long as they can tolerate a slight
reduction in accuracy.

Static Features: Figure 1(a) shows the test MRR of DE-
SimplE on ICEWS14 as a function of ~, the percentage of
temporal features. According to Figure 1(a), as soon as some
features become temporal (i.e. 7 changes from 0 to a non-
zero number), a substantial boost in performance can be ob-
served. This observation sheds more light on the importance
of learning temporal features and having diachronic embed-
dings. As vy becomes larger, MRR reaches a peak and then
slightly drops. This slight drop in performance can be due
to overfitting to temporal cues. This result demonstrates that
modeling static features explicitly can help reduce the num-
ber of learnable parameters and avoid overfitting. Such a de-
sign choice may be even more important when the embed-
ding dimensions are larger. However, it comes at the cost
of adding one hyper-parameter to the model. If one prefers
a slightly less accurate model with fewer hyper-parameters,
they can make all vector elements temporal.

Training Curve: Figure 1(b) shows the training curve for
DistMult and DE-DistMult on ICEWS14. While it has been
argued that using sine activation functions may complicate
training in some neural network architectures (see, e.g., (Gi-
ambattista Parascandolo 2017)), it can be viewed that when
using sine activations, the training curve for our model is
quite stable.

Table 3: Results for different variations of our model on ICEWS14.

Model Variation

MRR | Hit@1 | Hit@3 | Hit@10

DE-TransE
DE-DistMult

No variation (Activation function: Sine) 0.326 12.4 46.7 68.6
No variation (Activation function: Sine) 0.501 39.2 56.9 70.8

DE-DistMult
DE-DistMult
DE-DistMult
DE-DistMult

Activation function: Tanh
Activation function: Sigmoid
Activation function: Leaky ReLU 0.478 36.3 542 70.1
Activation function: Squared Exponential 0.501 39.0 56.8 70.9

0.486 37.5 54.7 70.1
0.484 37.0 54.6 70.6

DE-TransE | Diachronic embedding for both entities and relations | 0.324 12.7 46.1 68.0
DE-DistMult | Diachronic embedding for both entities and relations | 0.502 394 56.6 70.4
DistMult Generalizing to unseen timestamps 0.410 30.2 46.2 62.0
DE-DistMult Generalizing to unseen timestamps 0.452 34.5 51.3 65.4
DE-DistMult an[=1for1 <n<~d forallv eV 0.458 | 344 51.8 68.3
DE-DistMult wy[n] =1 forl <n < ~d forallv eV 0470 | 364 53.1 67.1
DE-DistMult byin] =0 forl <n <~d forallv eV 0.498 | 389 56.2 70.4
Related Work lated problem is the extrapolation problem where future in-

StaRAI: Statistical relational Al (Raedt et al. 2016) ap-
proaches are mainly based on soft (hanf-crafted or learned)
rules where the probability of a world is proportional to the
number of rules that are satisfied/violated in that world and
the confidence for each rule. These approaches have been
combined with embeddings (Kazemi and Poole 2018a) and
also extended to temporal KGs (see, e.g., (Dylla, Miliaraki,
and Theobald 2013; Chekol and Stuckenschmidt 2018)).

Static KG Embedding: A large number of models have
been developed for static KG embedding. A class of these
models are the translational approaches corresponding to
variations of TransE (see, e.g., (Lin et al. 2015; Wang et
al. 2014; Nguyen et al. 2016)). Another class of approaches
are based on a bilinear score function zIZ r2y, each impos-
ing a different sparsity constraint on the Z, matrices (see,
e.g., (Nickel, Tresp, and Kriegel 2011; Trouillon et al. 2016;
Kazemi and Poole 2018b)). A third class of models are based
on deep learning approaches using feed-forward or convolu-
tional layers on top of the embeddings (see, e.g., (Socher et
al. 2013; Dettmers et al. 2018)). These models can be poten-
tially extended to TKGC through our diachronic embedding.

Temporal KG Embedding: Several works have ex-
tended the static KG embedding models to temporal KGs.
(Jiang et al. 2016) extend TransE by adding a timestamp em-
bedding into the score function. (Dasgupta, Ray, and Taluk-
dar 2018) extend TransE by projecting the embeddings to
the timestamp hyperplain and then using the TransE score
on the projected space. (Ma, Tresp, and Daxberger 2018)
extend several models by adding a timestamp embedding to
their score functions. These models may not work well when
the number of timestamps is large. Furthermore, since they
only learn embeddings for observed timestamps, they cannot
generalize to unseen timestamps. (Garcia-Durdn, Dumancié,
and Niepert 2018) extend TransE and DistMult by combin-
ing the relation and timestamp through a character LSTM.
These models have been described in the paper and their
performances have been reported in Table 2.

KG Embedding for Extrapolation: TKGC is an inter-
polation problem where given a set of temporal facts in a
time frame, the goal is to predict the missing facts. A re-

teractions are to be predicted (see, e.g., (Trivedi et al. 2017;
Kumar, Zhang, and Leskovec 2018; Trivedi et al. 2019)).
Despite some similarities in the employed approaches, KG
extrapolation is fundamentally different from TKGC in that
a score for an interaction (v, r, u, t) is to be computed given
only the past (i.e. facts before t) whereas in TKGC the score
is to be computed given past, present, and future. A compre-
hensive analysis of the existing models for interpolation and
extrapolation can be found in (Kazemi et al. 2019).

Diachronic Word Embeddings: The idea behind our
proposed embeddings is similar to diachronic word embed-
dings where a corpus is typically broken temporally into
slices (e.g., 20-year chuncks of a 200-year corpus) and em-
beddings are learned for words in each chunk thus provid-
ing word embeddings that are a function of time (see, e.g.,
(Hamilton, Leskovec, and Jurafsky 2016; Bamler and Mandt
2017)). The main goal of diachronic word embeddings is to
reveal how the meanings of the words have evolved over
time. Our work can be viewed as an extension of diachronic
word embeddings to continuous-time KG completion.

Conclusion

We developed a diachronic embedding function for tempo-
ral KG completion which provides a hidden representation
for the entities of a temporal KG at any point in time. Our
embedding is generic and can be combined with any score
function. We proved that combining our diachronic embed-
ding with SimplE results in a fully expressive model — the
first temporal KG embedding model for which such a result
exists. We showed the superior performance of our model
compared to existing work on several benchmarks. Future
work includes designing functions other than the one pro-
posed in Equation (1), a comprehensive study of which func-
tions are favored by different types of KGs, and using our
proposed embedding for diachronic word embedding.

References

Bamler, R., and Mandt, S. 2017. Dynamic word embed-
dings. In ICML, 380-389.

Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for modeling
multi-relational data. In NeurIPS, 2787-2795.

Boschee, E.; Lautenschlager, J.; O’Brien, S.; Shellman, S.;
Starz, J.; and Ward, M. 2015. Icews coded event data. Har-
vard Dataverse 12.

Chekol, M. W., and Stuckenschmidt, H. 2018. Rule based
temporal inference. In ICLP.

Dasgupta, S. S.; Ray, S. N.; and Talukdar, P. 2018. Hyte:

Hyperplane-based temporally aware knowledge graph em-
bedding. In EMNLP, 2001-2011.

Dettmers, T.; Minervini, P.; Stenetorp, P.; and Riedel, S.
2018. Convolutional 2d knowledge graph embeddings. In
AAAL

Dylla, M.; Miliaraki, I.; and Theobald, M. 2013. A
temporal-probabilistic database model for information ex-
traction. VLDB Endowment 6(14):1810-1821.

Fatemi, B.; Ravanbakhsh, S.; and Poole, D. 2019. Improved
knowledge graph embedding using background taxonomic
information. In AAAL

Garcia-Durdn, A.; Dumanci¢, S.; and Niepert, M. 2018.
Learning sequence encoders for temporal knowledge graph
completion. In EMNLP.

Giambattista Parascandolo, Heikki Huttunen, T. V. 2017.
Taming the waves: sine as activation function in deep neural
networks.

Hamilton, W. L.; Leskovec, J.; and Jurafsky, D. 2016. Di-
achronic word embeddings reveal statistical laws of seman-
tic change. arXiv preprint arXiv:1605.09096.

Hitchcock, F. L. 1927. The expression of a tensor or a
polyadic as a sum of products. Journal of Mathematics and
Physics 6(1-4):164-189.
Jiang, T.; Liu, T.; Ge, T.; Sha, L.; Chang, B.; Li, S.; and Sui,
Z. 2016. Towards time-aware knowledge graph completion.
In COLING, 1715-1724.

Kadlec, R.; Bajgar, O.; and Kleindienst, J. 2017. Knowl-
edge base completion: Baselines strike back. arXiv preprint
arXiv:1705.10744.

Kazemi, S. M., and Poole, D. 2018a. ReINN: A deep neural
model for relational learning. In AAAL

Kazemi, S. M., and Poole, D. 2018b. SimplE embedding for
link prediction in knowledge graphs. In NeurIPS.

Kazemi, S. M.; Goel, R.; Jain, K.; Kobyzev, L.; Sethi, A.;
Forsyth, P.; and Poupart, P. 2019. Relational representation

learning for dynamic (knowledge) graphs: A survey. arXiv
preprint arXiv:1905.11485.

Kingma, D. P, and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

Kumar, S.; Zhang, X.; and Leskovec, J. 2018. Learning
dynamic embedding from temporal interaction networks.
arXiv preprint arXiv:1812.02289.

Leetaru, K., and Schrodt, P. A. 2013. Gdelt: Global data
on events, location, and tone, 1979-2012. In ISA annual
convention, volume 2, 1-49. Citeseer.

Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; and Zhu, X. 2015. Learn-
ing entity and relation embeddings for knowledge graph
completion. In AAAI, 2181-2187.

Ma, Y.; Tresp, V.; and Daxberger, E. A. 2018. Embedding
models for episodic knowledge graphs. Journal of Web Se-
mantics.

Minervini, P.; Costabello, L.; Muiioz, E.; Novacek, V.; and
Vandenbussche, P.-Y. 2017. Regularizing knowledge graph
embeddings via equivalence and inversion axioms. In ECML
PKDD, 668-683. Springer.

Nguyen, D. Q.; Sirts, K.; Qu, L.; and Johnson, M. 2016.
Stranse: a novel embedding model of entities and relation-
ships in knowledge bases. In NAACL-HLT.

Nickel, M.; Murphy, K.; Tresp, V.; and Gabrilovich, E.
2016. A review of relational machine learning for knowl-
edge graphs. Proceedings of the IEEE 104(1):11-33.
Nickel, M.; Tresp, V.; and Kriegel, H.-P. 2011. A three-
way model for collective learning on multi-relational data.
In ICML, volume 11, 809-816.

Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer,
A. 2017. Automatic differentiation in pytorch. In NIPS-W.
Raedt, L. D.; Kersting, K.; Natarajan, S.; and Poole, D.
2016. Statistical relational artificial intelligence: Logic,
probability, and computation. Synthesis Lectures on Arti-
ficial Intelligence and Machine Learning 10(2):1-189.
Socher, R.; Chen, D.; Manning, C. D.; and Ng, A. 2013.
Reasoning with neural tensor networks for knowledge base
completion. In AAAI, 926-934.

Sun, Z.; Deng, Z.-H.; Nie, J.-Y.; and Tang, J. 2019. Ro-
tatE: Knowledge graph embedding by relational rotation in
complex space. In ICLR.

Trivedi, R.; Dai, H.; Wang, Y.; and Song, L. 2017. Know-
evolve: Deep temporal reasoning for dynamic knowledge
graphs. In ICML, 3462-3471.

Trivedi, R.; Farajtabar, M.; Biswal, P.; and Zha, H. 2019.
DyRep: Learning representations over dynamic graphs. In
ICLR.

Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, E.; and
Bouchard, G. 2016. Complex embeddings for simple link
prediction. In ICML, 2071-2080.

Trouillon, T.; Dance, C. R.; Gaussier, E.; Welbl, J.; Riedel,
S.; and Bouchard, G. 2017. Knowledge graph completion
via complex tensor factorization. JMLR 18(1):4735-4772.
Tucker, L. R. 1966. Some mathematical notes on three-
mode factor analysis. Psychometrika 31(3):279-311.
Wang, Z.; Zhang, J.; Feng, J.; and Chen, Z. 2014. Knowl-
edge graph embedding by translating on hyperplanes. In
AAAL

Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How
powerful are graph neural networks? In ICLR.

Yang, B.; Yih, W.-t.; He, X.; Gao, J.; and Deng, L. 2015.
Embedding entities and relations for learning and inference
in knowledge bases. /ICLR.

