
Automated Hierarchy Discovery for Planning in
Partially Observable Environments

Laurent Charlin & Pascal Poupart
David R. Cheriton School of Computer Science

Faculty of Mathematics
University of Waterloo

Waterloo, Ontario
{lcharlin,ppoupart}@cs.uwaterloo.ca

Romy Shioda
Dept of Combinatorics and Optimization

Faculty of Mathematics
University of Waterloo

Waterloo, Ontario
rshioda@math.uwaterloo.ca

Abstract

Planning in partially observable domains is a notoriously difficult problem. How-
ever, in many real-world scenarios, planning can be simplified by decomposing the
task into a hierarchy of smaller planning problems. Severalapproaches have been
proposed to optimize a policy that decomposes according to ahierarchy specified
a priori. In this paper, we investigate the problem of automatically discovering
the hierarchy. More precisely, we frame the optimization ofa hierarchical policy
as a non-convex optimization problem that can be solved withgeneral non-linear
solvers, a mixed-integer non-linear approximation or a form of bounded hierar-
chical policy iteration. By encoding the hierarchical structure as variables of the
optimization problem, we can automatically discover a hierarchy. Our method is
flexible enough to allow any parts of the hierarchy to be specified based on prior
knowledge while letting the optimization discover the unknown parts. It can also
discover hierarchical policies, includingrecursivepolicies, that are more compact
(potentially infinitely fewer parameters) and often easierto understand given the
decomposition induced by the hierarchy.

1 Introduction

Planning in partially observable domains is a notoriously difficult problem. However, in many real-
world scenarios, planning can be simplified by decomposing the task into a hierarchy of smaller
planning problems. Such decompositions can be exploited inplanning to temporally abstract sub-
policies intomacroactions (a.k.a. options). Pineau et al. [17], Theocharous et al. [22], and Hansen
and Zhou [10] proposed various algorithms that speed up planning in partially observable domains
by exploiting the decompositions induced by a hierarchy. However these approaches assume that a
policy hierarchy is specified by the user, so an important question arises: how can we automate the
discovery of a policy hierarchy? In fully observable domains, there exists a large body of work on
hierarchical Markov decision processes and reinforcementlearning [6, 21, 7, 15] and several hier-
archy discovery techniques have been proposed [23, 13, 11, 20]. However those techniques rely on
the assumption that states are fully observable to detect abstractions and subgoals, which prevents
their use in partially observable domains.

We propose to frame hierarchy and policy discovery as an optimization problem with variables
corresponding to the hierarchy and policy parameters. We present an approach that searches in the
space of hierarchical controllers [10] for a good hierarchical policy. The search leads to a difficult
non-convex optimization problem that we tackle using threeapproaches: generic non-linear solvers,
a mixed-integer non-linear programming approximation or an alternating optimization technique
that can be thought as a form of hierarchical bounded policy iteration. We also generalize Hansen
and Zhou’s hierarchical controllers [10] to allowrecursivecontrollers. These are controllers that

may recursively call themselves, with the ability of representing policies with a finite number of
parameters that would otherwise require infinitely many parameters. Recursive policies are likely
to arise in language processing tasks such as dialogue management and text generation due to the
recursive nature of language models.

2 Finite State Controllers

We first review partially observable Markov decision processes (POMDPs) (Sect. 2.1), which is the
framework used throughout the paper for planning in partially observable domains. Then we review
how to represent POMDP policies as finite state controllers (Sect. 2.2) as well as some algorithms
to optimize controllers of a fixed size (Sect. 2.3).

2.1 POMDPs

POMDPs have emerged as a popular framework for planning in partially observable domains [12].
A POMDP is formally defined by a tuple(S,O,A, T, Z,R, γ) whereS is the set of states,O is
the set of observations,A is the set of actions,T (s′, s, a) = Pr(s′|s, a) is the transition function,
Z(o, s′, a) = Pr(o|s′, a) is the observation function,R(s, a) = r is the reward function andγ ∈
[0, 1) is the discount factor. It will be useful to viewγ as a termination probability. This will
allow us to absorbγ into the transition probabilities by defining discounted transition probabilities:
Prγ(s′|s, a) = Pr(s′|s, a)γ. Given a POMDP, the goal is to find a course of action that maximizes
expected total rewards. To select actions, the system can only use the information available in
the past actions and observations. Thus we define a policyπ as a mapping from histories of past
actions and observations to actions. Since histories may become arbitrarily long, we can alternatively
define policies as mappings from beliefs to actions (i.e.,π(b) = a). A belief b(s) = Pr(s) is a
probability distribution over states, taking into accountthe information provided by past actions
and observations. Given a beliefb, after executinga and receivingo, we can compute an updated
belief ba,o using Bayes’ theorem:ba,o(s) = kb(s) Pr(s′|s, a) Pr(o|s′a). Herek is a normalization
constant. The valueV π of policy π when starting with beliefb is measured by the expected sum of
the future rewards:V π(b) =

∑

t R(bt, π(bt)), whereR(b, a) =
∑

s b(s)R(s, a). An optimal policy
π∗ is a policy with the highest valueV ∗ for all beliefs (i.e.,V ∗(b) ≥ V π(b)∀b, π). The optimal
value function also satisfies Bellman’s equation:V ∗(b) = maxa (R(b, a) + γ Pr(o|b, a)V ∗(ba,o)),
wherePr(o|b, a) =

∑

s,s′ b(s) Pr(s′|s, a) Pr(o|s′, a).

2.2 Policy Representation

A convenient representation for an important class of policies is that of finite state controllers [9].
A finite state controller consists of a finite state automaton(N,E) with a setN of nodes and a set
E of directed edges Each noden has one outgoing edge per observation. A controller encodesa
policy π = (α, β) by mapping each node to an action (i.e.,α(n) = a) and each edge (referred by its
observation labelo and its parent noden) to a successor node (i.e.,β(n, o) = n′). At runtime, the
policy encoded by a controller is executed by doing the action at = α(nt) associated with the node
nt traversed at time stept and following the edge labelled with observationot to reach the next node
nt+1 = β(nt, ot).

Stochastic controllers [18] can also be used to represent stochastic policies by redefiningα andβ as
distributions over actions and successor nodes. More precisely, letPrα(a|n) be the distribution from
which an actiona is sampled in noden and letPrβ(n′|n, a, o) be the distribution from which the
successor noden′ is sampled after executinga and receivingo in noden. The value of a controller
is computed by solving the following system of linear equations:

V π
n (s) =

∑

a

Prα(a|n)[R(s, a) +
∑

s′,o,n′

Prγ(s′|s, a) Pr(o|s′, a) Prβ(n′|n, a, o)V π
n′(s′)] ∀n, s (1)

While there always exists an optimal policy representable bya deterministic controller, this con-
troller may have a very large (possibly infinite) number of nodes. Given time and memory con-
straints, it is common practice to search for the best controller with a bounded number of nodes [18].
However, when the number of nodes is fixed, the best controller is not necessarily deterministic. This
explains why searching in the space of stochastic controllers may be advantageous.

Table 1: Quadratically constrained optimization program for bounded stochastic controllers [1].

max
x,y

X

s

bo(s) Vno(s)
| {z }

y

s.t. Vn(s)
| {z }

y

=
X

a,n′

h

Pr(a, n
′|n, ok)

| {z }
x

R(s, a) +
X

s′,o

Prγ(s′|s, a) Pr(o|s′, a) Pr(n′
, a|n, o)

| {z }
x

Vn′(s′)
| {z }

y

i

∀n, s

Pr(n′
, a|n, o)

| {z }
x

≥ 0 ∀n
′
, a, n, o

X

n′,a

Pr(n′
, a|n, o)

| {z }
x

= 1 ∀n, o

X

n′

Pr(n′
, a|n, o)

| {z }
x

=
X

n′

Pr(n′
, a|n, ok)

| {z }
x

∀a, n, o

2.3 Optimization of Stochastic Controllers

The optimization of a stochastic controller with a fixed number of nodes can be formulated as a
quadratically constrained optimization problem (QCOP) [1]. The idea is to maximizeV π by varying
the controller parametersPrα andPrβ . Table 1 describes the optimization problem withVn(s)
and the joint distributionPr(n′, a|n, o) = Prα(n|a) Prβ(n′|n, a, o) as variables. The first set of
constraints corresponds to those of Eq. 1 while the remaining constraints ensure thatPr(n′, a|n, o)
is a proper distribution and that

∑

′

n Pr(n′, a|n, o) = Prα(a|n)∀o. This optimization program is
non-convex due to the first set of constraints. Hence, existing techniques can at best guarantee
convergence to a local optimum. Several techniques have been tried including gradient ascent [14],
stochastic local search [3], bounded policy iteration (BPI) [18] and a general non-linear solver called
SNOPT (based on sequential quadratic programming) [1, 8]. Empirically, biased-BPI (version of
BPI that biases its search to the belief region reachable from a given initial belief state) and SNOPT
have been shown to outperform the other approaches on some benchmark problems [19, 1]. We
quickly review BPI since it will be extended in Section 3.2 tooptimize hierarchical controllers. BPI
alternates between policy evaluation and policy improvement. Given a policy with fixed parameters
Pr(a, n′|n, o), policy evaluation solves the linear system in Eq 1 to findVn(s) for all n, s. Policy
improvement can be viewed as a linear simplification of the program in Table 1 achieved by fixing
Vn′(s′) in the right hand side of the first set of constraints. Policy improvement is achieved by
optimizing the controller parametersPr(n′, a|n, o) and the valueVn(s) on the left hand side.1

3 Hierarchical controllers

Hansen and Zhou [10] recently proposed hierarchical finite-state controllers as a simple and intu-
itive way of encoding hierarchical policies. A hierarchical controller consists of a set of nodes and
edges as in a flat controller, however some nodes may be abstract, corresponding to sub-controllers
themselves. As with flat controllers, concrete nodes are parameterized with an action mappingα
and edges outgoing concrete nodes are parameterized by a successor node mappingβ. In contrast,
abstract nodes are parameterized by a child node mapping indicating in which child node the sub-
controller should start. Hansen and Zhou consider two schemes for the edges outgoing abstract
nodes: either there is a single outgoing edge labelled with anull observation or there is one edge
per terminal node of the subcontroller labelled with an abstract observation identifying the node in
which the subcontroller terminated.

Subcontrollers encode full POMDP policies with the addition of a termination condition. In fully
observable domains, it is customary to stop the subcontroller once a goal state (from a predefined
set of terminal states) is reached. This strategy cannot work in partially observable domains, so
Hansen and Zhou propose to terminate a subcontroller when anend node (from a predefined set of
terminal nodes) is reached. Since the decision to reach a terminal node is made according to the
successor node mappingβ, the timing for returning control is implicitly optimized.Hansen and

1Note however that this optimization may decrease the value of some nodes so [18] add an additional
constraint to ensure monotonic improvement by forcingVn(s) on the left hand side to be at least as high as
Vn(s) on the right hand side.

Zhou propose to use|A| terminal nodes, each mapped to a different action. Terminalnodes do not
have any outgoing edges nor any action mapping since they already have an action assigned.

The hierarchy of the controller is assumed to be finite and specified by the programmer. Subcon-
trollers are optimized in isolation in a bottom up fashion. Subcontrollers at the bottom level are
made up only of concrete nodes and therefore can be optimizedas usual using any controller op-
timization technique. Controllers at other levels may contain abstract nodes for which we have to
define the reward function and the transition probabilities. Recall that abstract nodes are not mapped
to concrete actions, but rather to children nodes. Hence, the immediate reward of an abstract node
n̄ corresponds to the valueVα(n̄)(s) of its child nodeα(n̄). Similarly, the probability of reach-
ing states′ after executing the subcontroller of an abstract noden̄ corresponds to the probability
Pr(send|s, α(n̄)) of terminating the subcontroller insend when starting ins at child nodeα(n̄).
This transition probability can be computed by solving the following linear system:

Pr(send|s, n) =







1 whenn is a terminal node ands = send

0 whenn is a terminal node ands 6= send
∑

o,s′ Pr(s′|s, α(n)) Pr(o|s′, α(n)) Pr(send|s
′, β(n, o)) otherwise

(2)

Subcontrollers with abstract actions correspond to partially observable semi-Markov decision pro-
cesses (POSMDPs) since the duration of each abstract actionmay vary. The duration of an action is
important to determine the amount by which future rewards should be discounted. Hansen and Zhou
propose to use the mean duration to determine the amount of discounting, however this approach
does not work. In particular, abstract actions with non-zero probability of never terminating have an
infinite mean duration. Instead, we propose to absorb the discount factor into the transition distribu-
tion (i.e.,Prγ(s′|s, a) = γ Pr(s′|s, a)). This avoids all issues related to discounting and allows us to
solve POSMDPs with the same algorithms as POMDPs. Hence, given the abstract reward function
R(s, α(n̄)) = Vα(n̄)(s) and the abstract transition functionPrγ(s′|s, α(n̄)) obtained by solving the
linear system in Eq. 2, we have a POSMDP which can be optimizedusing any POMDP optimization
technique (as long as the discount factor is absorbed into the transition function).

Hansen’s hierarchical controllers have two limitations: the hierarchy must have a finite number of
levels and it must be specified by hand. In the next section we describe recursive controllers which
may have infinitely many levels. We also describe an algorithm to discover a suitable hierarchy by
simultaneously optimizing the controller parameters and hierarchy.

3.1 Recursive Controllers

In some domains, policies are naturallyrecursivein the sense that they decompose into subpolicies
that may call themselves. This is often the case in language processing tasks since language models
such as probabilistic context-free grammars are composed of recursive rules. Recent work in dia-
logue management uses POMDPs to make high level discourse decisions [24]. Assuming POMDP
dialogue management eventually handles decisions at the sentence level, recursive policies will nat-
urally arise. Similarly, language generation with POMDPs would naturally lead to recursive policies
that reflect the recursive nature of language models.

We now propose several modifications to Hansen and Zhou’s hierarchical controllers that simplify
things while allowing recursive controllers. First, the subcontrollers of abstract nodes may be com-
posed of any node (including the parent node itself) and transitions can be made to any node any-
where (whether concrete or abstract). This allows recursive controllers and smaller controllers since
nodes may be shared across levels. Second, we use a single terminal node that has no action nor any
outer edge. It is a virtual node simply used to signal the termination of a subcontroller. Third, while
abstract nodes lead to the execution of a subcontroller, they are also associated with an action. This
action is executed upon termination of the subcontroller. Hence, the actions that were associated
with the terminal nodes in Hansen and Zhou’s proposal are associated with the abstract nodes in
our proposal. This allows a uniform parameterization of actions for all nodes while reducing the
number of terminal nodes to 1. Fourth, the outer edges of abstract nodes are labelled with regular
observations since an observation will be made following the execution of the action of an abstract
node. Finally, to circumvent all issues related to discounting, we absorb the discount factor into the
transition probabilities (i.e.,Prγ(s′|s, a)).

n̄

s

Pr(n′
, a|n̄, o)

oc(send, nend|s, nbeg)

Pr(nbeg|n̄)

nend
send

n
′

s
′

nbeg

s

(a)

n̄

s

Pr(n′
, a|n̄, o)

oc(send, nend|s, nbeg)

Pr(nbeg|n̄)

oc(send, nend|s, nbeg)n0

s0

nend
send

n
′

s
′

nbeg

s

(b)

Figure 1: The figures represent controllers and transitionsas written in Equations 5 and 6b. Along-
side the directed edges we’ve indicated the equivalent partof the equations which they correspond
to.

3.2 Hierarchy and Policy Optimization

We formulate the search for a good stochastic recursive controller, including the automated hierarchy
discovery, as an optimization problem (see Table 2). The global maximum of this optimization
problem corresponds to the optimal policy (and hierarchy) for a fixed setN of concrete nodesn
and a fixed set̄N of abstract nodes̄n. The variables consist of the value functionVn(s), the policy
parametersPr(n′, a|n, o), the (stochastic) child node mappingPr(n′|n̄) for each abstract nodēn and
the occupancy frequencyoc(n, s|n0, s0) of each(n, s)-pair when starting in(n0, s0). The objective
(Eq. 3) is the expected value

∑

s b0(s)Vn0
(s) of starting the controller in noden0 with initial belief

b0. The constraints in Equations 4 and 5 respectively indicatethe expected value of concrete and
abstract nodes. The expected value of an abstract node corresponds to the sum of three terms: the
expected valueVnbeg

(s) of its subcontroller given by its child nodenbeg, the rewardR(send, an̄)
immediately after the termination of the subcontroller andthe future rewardsVn(s′). Figure 1a
illustrates graphically the relationship between the variables in Equation 5. Circles are state-node
pairs labelled by their expected value. Edges indicate single transitions (solid line), sequences of
transitions (dashed line) or the beginning/termination ofa subcontroller (bold/dotted line). Edges
are labelled with the corresponding transition probability variables.

Note that the rewardR(send, an̄) depends on the statesend in which the subcontroller terminates.
Hence we need to compute the probability that the last state visited in the subcontroller issend.
This probability is given by the occupancy frequencyoc(send, nend|s, nbeg), which is recursively
defined in Eq. 6 in terms of a preceding state-node pair which may be concrete (6a) or abstract (6b).
Figure 1b illustrates graphically the relationship between the variables in Eq. 6b. Eq. 7 prevents
infinite loops (without any action execution) in the child node mappings. Thelabel function refers
to the labelling of all abstract nodes, which induces an ordering on the abstract nodes. Only the
nodes labelled with numbers larger than the label of an abstract node can be children of that abstract
node. This constraint ensures that chains of child node mappings have a finite length, eventually
reaching a concrete node where an action is executed. Constraints, like the ones in Table 1, are also
needed to guarantee that the policy parameters and the childnode mappings are proper distributions.

3.3 Algorithms

Since the problem in Table 2 has non-convex (quartic) constraints in Eq. 5 and 6, it is difficult to
solve. We consider three approaches inspired from the techniques for non-hierarchical controllers:

Non-convex optimization: Use a general non-linear solver, such as SNOPT, to directly tackle the
optimization problem in Table 2. This is the most convenientapproach, however a globally optimal
solution may not be found due to the non-convex nature of the problem.

Mixed-Integer Non-Linear Programming (MINLP): We restrictPr(n′, a|n, o) andPr(nbeg|n̄)
to be binary (i.e., in{0, 1}). Since the optimal controller is often near deterministicin practice, this
restriction tends to have a negligible effect on the value ofthe optimal controller. The problem is
still non-convex but can be tackled with a mixed-integer non-linear solver such as MINLPBB 2.

Bounded Hierarchical Policy Iteration (BHPI): We alternate between (i) solving a simplified ver-
sion of the optimization where some variables are fixed and (ii) updating the values of the fixed vari-
ables. More precisely, we fixVn′(s′) in Eq. 5 andoc(s, n̄|s0, n0) in Eq. 6. As a result, Eq. 5 and 6
are now cubic, involving products of variables that includea single continuous variable. This per-

2http://www-unix.mcs.anl.gov/∼leyffer/solvers.html

Table 2: Non-convex quarticly constrained optimization problem for hierarchy and policy discovery
in bounded stochastic recursive controllers.

max
w,x,y,z

X

s∈S

b0(s) Vn0
(s)

| {z }
y

(3)

s.t. Vn(s)
| {z }

y

=
X

a,n′

h

Pr(n′
, a|n, ok)

| {z }
x

R(s, a) +
X

s′,o

Prγ(s′|s, a) Pr(o|s′, a) Pr(n′
, a|n, o)

| {z }
x

Vn′(s′)
| {z }

y

i

∀s, n

(4)

Vn̄(s)
| {z }

y

=
X

nbeg

Pr(nbeg|n̄)
| {z }

z

h

Vnbeg
(s)

| {z }
y

+
X

send,a,n′

oc(send, nend|s, nbeg)
| {z }

w

h

Pr(n′
, a|n̄, ok)

| {z }
x

R(send, a)

+
X

s′,o

Prγ(s′|send, a) Pr(o|s′, a) Pr(n′
, a|n̄, o)

| {z }
x

Vn′(s′)
| {z }

y

ii

∀s, n̄ (5)

oc(s′, n′|s0, n0)
| {z }

w

= δ(s′, n′
, s0, n0) +

X

s,o,a

h

(6)

X

n

oc(s, n|s0, n0)
| {z }

w

Prγ(s′|s, a) Pr(o|s′, a) Pr(n′
, a|n, o)

| {z }
x

i

9

=

;
n concrete (6a)

+
P

send,nbeg,n̄ oc(s, n̄|s0, n0)
| {z }

w

Prγ(s′|send, a) Pr(o|s′, a)

oc(send, nend|s, nbeg)
| {z }

w

Pr(n′
, a|n̄, o)

| {z }
x

Pr(nbeg|n̄)
| {z }

z

i

∀s0, s
′, n0, n

′

9

>>=

>>;

n̄ abstract (6b)

Pr(n̄′|n̄) = 0 if label(n̄′) ≤ label(n̄), ∀n̄, n̄
′ (7)

mits the use of disjunctive programming [2] to linearize theconstraints without any approximation.
The idea is to replace any productBX (whereB is binary andX is continuous) by a new continuous
variableY constrained bylbXB ≤ Y ≤ ubXB andX + (B − 1)ubX ≤ Y ≤ X + (B − 1)lbX

wherelbX andubX are lower and upper bounds onX. One can verify that those additional linear
constraints forceY to be equal toBX. After applying disjunctive programming, we solve the result-
ing mixed-integerlinear program (MILP) and updateVn′(s′) andoc(s, n̄|s0, n0) based on the new
values forVn(s) andoc(s′, n′|s0, n0). We repeat the process until convergence or until a pre-defined
time limit is reached. Although, convergence cannot be guaranteed, in practice we have found BHPI
to be monotonically increasing. Note that fixingVn′(s′) andoc(s, n̄|s0, n0) while varying the policy
parameters is reminiscent of policy iteration, hence the namebounded hierarchical policy iteration.

3.4 Discussion

Discovering a hierarchy offers many advantages over previous methods that assume the hierarchy is
already known. In situations where the user is unable to specify the hierarchy, our approach provides
a principled way of discovering it. In situations where the user has a hierarchy in mind, it may be
possible to find a better one. Note however that discovering the hierarchy while optimizing the
policy is a much more difficult problem than simply optimizing the policy parameters. Additional
variables (e.g.,Pr(n′, a|n, o) andoc(s, n|s0, n0)) must be optimized and the degree of non-linearity
increases. Our approach can also be used when the hierarchy and the policy are partly known. It is
fairly easy to set the variables that are known or to reduce their range by specifying upper and lower
bounds. This also has the benefit of simplifying the optimization problem.

It is also interesting to note that hierarchical policies may be encoded with exponentially fewer
nodes in a hierarchical controller than a flat controller. Intuitively, when a subcontroller is called by
k abstract nodes, this subcontroller is shared by all its abstract parents. An equivalent flat controller
would have to usek separate copies of the subcontroller. If a hierarchical controller hasl levels
with subcontrollers shared byk parents in each level, then the equivalent flat controller will need
O(kl) copies. By allowing recursive controllers, policies may berepresented even more compactly.
Recursive controllers allow abstract nodes to call subcontrollers that may contain themselves. An

Table 3: Experiment results

Problem S A O V* Num. SNOPT BHPI MINLPBB
of Nodes Time V Time V Time V

Paint 4 4 2 3.3 4(3/1) 2s 0.48 13s 3.29 <1s 3.29
Shuttle 8 3 5 32.7 4(3/1) 2s 31.87 85s 18.92 4s 18.92

8 3 5 32.7 6(4/2) 6s 31.87 7459s 27.93 221s 27.68
8 3 5 32.7 7(4/3) 26s 31.87 10076s 31.87 N/A –
8 3 5 32.7 9(5/4) 1449s 30.27 10518s 3.73 N/A –

4x4 Maze 16 4 2 3.7 3(2/1) 3s 3.15 397s 3.21 30s 3.73

equivalent non-hierarchical controller would have to unroll the recursion by creating a separate copy
of the subcontroller each time it is called. Since recursivecontrollers essentially call themselves in-
finitely many times, they can represent infinitely large non-recursive controllers with finitely many
nodes. As a comparison, recursive controllers are to non-recursive hierarchical controllers what
context-free grammars are to regular expressions. Since the leading approaches for controller opti-
mization fix the number of nodes [18, 1], one may be able to find amuch better policy by considering
hierarchical recursive controllers. In addition, hierarchical controllers may be easier to understand
and interpret than flat controllers given their natural decomposition into subcontrollers and their
possibly smaller size.

4 Experiments

We report on some preliminary experiments with three toy problems (paint, shuttle and maze) from
the POMDP repository3. We used the SNOPT package to directly solve the non-convex optimization
problem in Table 2 and bounded hierarchical policy iteration (BHPI) to solve it iteratively. Table 3
reports the running time and the value of the hierarchical policies found.4 For comparison purposes,
the optimal value of each problem (copied from [4]) is reported in the column labelled byV ∗.
We optimized hierarchical controllers of two levels with a fixed number of nodes reported in the
column labelled “Num. of Nodes”. The numbers in parenthesesindicate the number of nodes at
the top level (left) and at the bottom level (right).5 In general, SNOPT finds the optimal solution
with minimal computational time. In contrast, BHPI is less robust and takes up to several orders of
magnitude longer. MINLPBB returns good solutions for the smaller problems but is unable to find
feasible solutions to the larger ones. We also looked at the hierarchy discovered for each problem
and verified that it made sense. In particular, the hierarchydiscovered for the paint problem matches
the one hand coded by Pineau in her PhD thesis [16]. Given the relatively small size of the test
problems, these experiments should be viewed as a proof of concept that demonstrate the feasibility
of our approach. More extensive experiments with larger problems will be necessary to demonstrate
the scalability of our approach.

5 Conclusion & Future Work

This paper proposes the first approach for hierarchy discovery in partially observable planning prob-
lems. We model the search for a good hierarchical policy as a non-convex optimization problem
with variables corresponding to the hierarchy and policy parameters. We propose to tackle the op-
timization problem using non-linear solvers such as SNOPT or by reformulating the problem as
an approximate MINLP or as a sequence of MILPs that can be thought of as a form of hierarchical
bounded policy iteration. Preliminary experiments demonstrate the feasibility of our approach, how-
ever further research is necessary to improve scalability.The approach can also be used in situations
where a user would like to improve or learn part of the hierarchy. Many variables can then be set (or
restricted to a smaller range) which simplifies the optimization problem and improves scalability.

We also generalize Hansen and Zhou’s hierarchical controllers torecursivecontrollers. Recursive
controllers can encode policies with finitely many nodes that would otherwise require infinitely large

3http://pomdp.org/pomdp/examples/index.shtml
4N/A refers to a trial when the solver was unable to return a feasible solution tothe problem.
5Since the problems are simple, the number of levels was restricted to two, though our approach permits any

number of levels and does not require the number of levels nor the number of nodes per level to be specified.

non-recursive controllers. Further details about recursive controllers and our other contributions can
be found in [5]. We plan to further investigate the use of recursive controllers in dialogue manage-
ment and text generation where recursive policies are expected to naturally capture the recursive
nature of language models.

Acknowledgements: this research was supported by the Natural Sciences and Engineering Re-
search Council (NSERC) of Canada, the Canada Foundation forInnovation (CFI) and the Ontario
Innovation Trust (OIT).

References
[1] C. Amato, D. Bernstein, and S. Zilberstein. Solving POMDPs using quadratically constrained linear

programs. InTo appear In International Joint Conferences on Artificial Intelligence (IJCAI), 2007.

[2] E. Balas. Disjunctive programming.Annals of Discrete Mathematics, 5:3–51, 1979.

[3] D. Braziunas and C. Boutilier. Stochastic local search for POMDP controllers. InAAAI, pages 690–696,
2004.

[4] A. Cassandra.Exact and approximate algorithms for partially observable Markov decision processes.
PhD thesis, Brown University, Dept. of Computer Science, 1998.

[5] L. Charlin. Automated hierarchy discovery for planning in partially observable domains. Master’s thesis,
University of Waterloo, 2006.

[6] T. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decomposition.JAIR,
13:227–303, 2000.

[7] M. Ghavamzadeh and S. Mahadevan. Hierarchical policy gradient algorithms. In T. Fawcett and
N. Mishra, editors,ICML, pages 226–233. AAAI Press, 2003.

[8] P. Gill, W. Murray, and M. Saunders. SNOPT: An SQP algorithm for large-scale constrained optimization.
SIAM Review, 47(1):99–131, 2005.

[9] E. Hansen. An improved policy iteration algorithm for partially observable MDPs. InNIPS, 1998.

[10] E. Hansen and R. Zhou. Synthesis of hierarchical finite-state controllers for POMDPs. In E. Giunchiglia,
N. Muscettola, and D. Nau, editors,ICAPS, pages 113–122. AAAI, 2003.

[11] B. Hengst. Discovering hierarchy in reinforcement learning with HEXQ. In ICML, pages 243–250, 2002.

[12] L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in partially observable stochastic do-
mains.Artificial Intelligence, 101(1-2):99–134, 1998.

[13] A. McGovern and A. Barto. Automatic discovery of subgoals in reinforcement learning using diverse
density. InICML, pages 361–368, 2001.

[14] N. Meuleau, L. Peshkin, K.-E. Kim, and L. Kaelbling. Learning finite-state controllers for partially
observable environments. InUAI, pages 427–436, 1999.

[15] R. Parr. Hierarchical Control and learning for Markov decision processes. PhD thesis, University of
California at Berkeley, 1998.

[16] J. Pineau.Tractable Planning Under Uncertainty: Exploiting Structure. PhD thesis, Robotics Institute,
Carnegie Mellon University, 2004.

[17] J. Pineau, G. Gordon, and S. Thrun. Policy-contingent abstraction for robust robot control. InUAI, pages
477–484, 2003.

[18] P. Poupart and C. Boutilier. Bounded finite state controllers. InNIPS, 2003.

[19] Pascal Poupart.Exploiting Structure to efficiently solve large scale partially observable Markov decision
processes. PhD thesis, University of Toronto, 2005.

[20] M. Ryan. Using abstract models of behaviours to automatically generate reinforcement learning hierar-
chies. InICML, pages 522–529, 2002.

[21] R. Sutton, D. Precup, and S. Singh. Between MDPs and Semi-MDPs: A framework for temporal abstrac-
tion in reinforcement learning.Artificial Intelligence, 112(1-2):181–211, 1999.

[22] G. Theocharous, S. Mahadevan, and L. Kaelbling. Spatial and temporal abstractions in POMDPs ap-
plied to robot navigation. Technical Report MIT-CSAIL-TR-2005-058, Computer Science and Artificial
Intelligence Laboratory, MIT, 2005.

[23] S. Thrun and A. Schwartz. Finding structure in reinforcement learning. InNIPS, pages 385–392, 1994.

[24] J. Williams and S. Youngs. Scaling POMDPs for dialogue management with composite summary point-
based value iteration (CSPBVI). InAAAI workshop on Statistical and Empirical Methods in Spoken
Dialogue Systems, 2006.

