
Automated Explanations for MDP Policies

Omar Zia Khan, Pascal Poupart and James P. Black
David R. Cheriton School of Computer Science

University of Waterloo
200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
{ozkhan, ppoupart, jpblack}@cs.uwaterloo.ca

Abstract

Explaining policies of Markov Decision Processes (MDPs) is complicated due
to their probabilistic and sequential nature. We present a technique to explain
policies for factored MDP by populating a set of domain-independent templates.
We also present a mechanism to determine a minimal set of templates that, viewed
together, completely justify the policy. We demonstrate our technique using the
problems of advising undergraduate students in their course selection and evaluate
it through a user study.

1 Introduction

Sequential decision making is a notoriously difficult problem especially when there is uncertainty in
the effects of the actions and the objectives are complex. MDPs [10] provide a principled approach
for automated planning under uncertainty. State-of-the-art techniques provide scalable algorithms
for MDPs [9], but the bottleneck is gaining user acceptance as it is harder to understand why certain
actions are recommended. Explanations can enhance the user’s understanding of these plans (when
the policy is to be used by humans like in recommender systems) and help MDP designers to debug
them (even when the policy is to be used by machines, like in robotics). Our explanations highlight
key factors through a set of explanation templates. The set of templates are sufficient, such that they
justify the recommended action, yet also minimal, such that the size of the set cannot be smaller. We
demonstrate our technique through a course-advising MDP and evaluate our explanations through a
user study. A more detailed description of our work can be found in [6].

2 Background

A Markov decision process (MDP) is defined by a set S of states s, a set A of actions a, a transition
model (the probability Pr (s′|s, a) of an action a in state s leading to state s′), a reward model (the
utility/reward R (s, a) for executing action a in state s), and a discount factor γ ∈ [0, 1). Factored
MDPs [1] are typically used for MDPs with large state space where states are determined by values
of some variables. A scenario sc is defined as the set of states obtained by assigning values to a
subset of state variables. A policy π : S → A is a mapping from states to actions. The value V π (s)
of a policy π when starting in state s is the sum of the expected discounted rewards earned by
executing policy π. A policy can be evaluated by using Bellman’s equation V π (s) = R (s, π (s)) +
γ

∑
s′∈S Pr (s′|s, π (s)) · V π (s′). We shall use an alternative method to evaluate a policy based

on occupancy frequencies. The discounted occupancy frequency (hereafter referred as occupancy
frequency) λπs0 (s′) is the expected (discounted) number of times we reach state s′ from starting state
s0 by executing policy π. Occupancy frequencies can be computed by solving Eq. 1.

λπs0 (s′) = δ (s′, s0) + γ
∑
s∈S

Pr (s′|s, π (s)) · λπs0 (s) ∀s′ (1)

1



where δ (s′, s0) is a Kroenecker delta which assigns 1 when s′ = s0 and 0 otherwise. The occupancy
frequencies for a scenario (or a set of scenarios), λπs0 (sc), is the expected number of times we reach
a scenario sc, from starting state s0, by executing policy π i.e., λπs0 (sc) =

∑
s∈sc λ

π
s0 (s). Let scr

be a set of scenarios with reward value r. The dot product of occupancy frequencies and rewards
gives the value of a policy, as shown in Eq. 2.

V π (s0) =
∑
r

λπs0(scr) · r (2)

An optimal policy π∗ earns the highest value for all states (i.e., V π∗(s) ≥ V π(s) ∀π, s).

3 Explanations for MDPs

3.1 Templates for Explanations

Our explanation answers the question, “Why has this action been recommended?” by populating
generic templates, at run-time, with domain-specific information from the MDP i.e., occupancy
frequency of a scenario. The reward function implicitly partitions the state space in regions with
equal reward value. These regions can be defined as partial variable assignments corresponding to
scenarios or sets of scenarios. An explanation then could be the frequency of reaching a scenario
is highest (or lowest). This is especially useful when this scenario also has a relatively high (or
low) reward. Below we describe templates in which the underlined phrases (scenarios and their
frequencies) are populated at run-time.

• Template 1: “ActionName is the only action that is likely to take you to
V ar1 = V al1, V ar2 = V al2, ... about λ times, which is higher (or lower) than any other
action”

• Template 2: “ActionName is likely to take you to V ar1 = V al1, V ar2 = V al2, ... about
λ times, which is as high (or low) as any other action”

• Template 3: “ActionName is likely to take you to V ar1 = V al1, V ar2 = V al2, ... about
λ times”

While these templates provide a method to present explanations, multiple templates can be populated
even for non-optimal actions; a non-optimal action can have the highest frequency of reaching a
scenario without having the maximum expected utility. Thus, we need to identify a set of templates
that justify the optimal action.

3.2 Minimal Sufficient Explanations

We define an explanation as sufficient if it can prove that the recommendation is optimal, i.e., the
selected templates show the action is optimal without needing additional templates. A sufficient ex-
planation cannot be generated for a non-optimal action since an explanation for another action (e.g.,
the optimal action) will have a higher utility. A sufficient explanation is also minimal if it includes
the minimum number of templates needed to ensure it is sufficient. The minimality constraint is
useful for users and sufficiency constraint is useful for designers.

Let s0 be the state where we need to explain why π∗ (s0) is an optimal action. We can compute the
value of the optimal policy V π

∗
(s0) or the Q-function1 Qπ

∗
(s0, a) using Eq. 2. Since a template is

populated by a frequency and a scenario, the utility of this pair in a template is λπ
∗

s0 (scr) · r. Let E
be the set of frequency-scenario pairs that appear in an explanation. If we exclude a pair from the
explanation, the utility is λπ

∗

s0 (sci) · r̄, where rmin is the minimum value for the reward variable.
This definition indicates that the worst is assumed for the scenario in this pair. The utility of an
explanation VE is

1In reinforcement learning, the Q-function Qπ(s, a) denotes the value of executing action a in state s
followed by policy π.

2



VE =
∑
i∈E

λπ
∗

s0 (sci) · ri +
∑
j /∈E

λπ
∗

s0 (scj) · rmin (3)

where the first part includes the utility from all the pairs in the explanation and the second part
considers the worst case for all other pairs. For an explanation to be sufficient, its utility has to
be higher than the next best action, i.e., V π

∗ ≥ VE > Qπ
∗

(s0, a) ∀a 6= π∗ (s0). For it to be
minimal, it should use the fewest possible pairs. Let us define the gain of including a pair in an
explanation as the difference between the utility of including versus excluding that pair (λπ

∗

s0 (sci) ·
ri − λπ

∗

s0 (sci) · rmin). To find a minimal sufficient explanation, we can sort the gains of all pairs
in descending order and select the first k pairs that ensure VE ≥ Qπ

∗
(s0, a). This provides our

minimal sufficient explanation.

3.3 Workflow and Algorithm

The designer identifies the states and actions, and specifies the transition and reward functions. The
optimal policy is computed, using a technique such as value iteration, and is consulted to determine
the optimal action. Now an explanation can be requested. The pseudo code for the algorithm to
compute a minimal sufficient explanation is shown in Algorithm 1.

Algorithm 1 Computing Minimal Sufficient Explanations

The function ComputeScenarios returns the set of scenarios with reward value r which is avail-
able in the encoding of the reward function. The function ComputeOccupancyFrequency is
the most expensive step which corresponds to solging the system of linear system defined in Eq. 1,
which has a worst case complexity that is cubic in the size of the state space. However, in prac-
tice, the running time can often be sublinear by using variable elimination to exploit conditional
independence and algebraic decision diagrams [5] to automatically aggregate states with identical
values/frequencies. The function GenerateTemplates chooses an applicable template, from
the list of templates, in the order of the list, with the last always applicable.

4 Experiments and Evaluation

4.1 Sample Explanations

We ran experiments on course-advising and hand-washing MDPs [6]. We only discuss the course-
advising domain here due to space considerations. The transition model was obtained by using
historical data collected over several years at the University of Waterloo. The reward function pro-
vides rewards for completing different degree requirements. The horizon of this problem is 3 steps,

3



each step representing one term and the policy emits a pair of courses to take in that term. The
problem has 117.4 million states. We precomputed the optimal policy since it does not need to be
recomputed for every explanation. We were able to compute explanations in approximately 1 sec-
ond on a Pentium IV 1.66 GHz laptop with 1GB RAM using Java on Windows XP with the optimal
policy and second best action precomputed. A sample explanation is shown below.

• Action TakeCS343&CS448 is the best action because:-

– It’s likely to take you to CoursesCompleted = 6, TermNumber = Final about
0.86 times, which is as high as any other action

4.2 User Study with Students

We conducted a user study to evaluate explanations for course advising. We recruited 37 students
and showed 3 different recommendations with explanations for different states. For each expla-
nation, they were asked to rate it on various factors such as comprehension, trust-worthiness and
usefulness with partial results shown in Figure 1. 59% (65/111) of the respondents indicated that
they were able to understand our explanation without any other information; the rest also wanted to
know the occupancy frequencies for some other actions. We can provide this information as it is
already computed. 76% (84/111) believed that the explanation provided by our system was accurate,
with a few wanting to know our sample size to judge the accuracy. 69% (77/111) indicated that they
would require extra information beyond that presented in the explanation. When asked what other
type of information is needed, we discovered that they wanted the model to cater to preferences such
as student’s interest, future career plans, and level of difficulty rather than the explanation being in-
adequate for our existing model. An important indicator of the usefulness of these explanations is
that 71% (79/111) of the students mentioned that the explanation provided them with extra infor-
mation that helped them in making a decision. Also while some students, 23% (26/111), initially
disagreed with the recommendation, in 35% (9/26) of these cases our explanation convinced them
to change their mind and agree with the original recommendation. The rest disagreed primarily
because they wanted a more elaborate model, so no explanation could have convinced them.

We also asked students if they were provided with our system, in addition to the option of discussing
their choices with an undergraduate advisor, would they use it. 86% of them mentioned they would
use it from home and 89% mentioned they would use it before meeting with an advisor to examine
different options for themselves. These numbers indicate substantial interest in our explanations.
The explanations generated by our system are generic, while those provided by the advisors are
domain-specific. The user study indicates that these two types of explanations are complementary
and students would like to access our explanations in addition to consulting advisors.

5 Relationship to Other Explanations Strategies

Explanations have been considered an essential component of intelligent reasoning systems and var-
ious strategies have been devised to generate them. Explanations for expert systems are generally
in the form of execution traces, such as in MYCIN [2]. Execution traces indicate the rules used in
arriving at a conclusion. There are no specific rules in an MDP and the optimal decision is made
by maximizing the expected utility which involves considering all of the transition and reward func-
tion. Thus, in our explanation we highlight the more important parts of the transition and reward
function. Xplain [12] is an example of an intelligent tutoring system that also provided justifica-
tions of its decisions. In addition to the rules used by the expert system, it also needed additional
domain knowledge to generate these explanations. Our current approach does not use any additional
domain knowledge, however this also means we cannot justify the correctness of the transition or
reward function. We can only argue about the optimal action using the specified transition and re-
ward functions. Explanations in single-shot recommender systems [13] and case-based reasoning
systems [11] are typically based on identifying similar clusters of users or cases and then demon-
strating the similarity of the current choice to a cluster or case. Since MDPs are not based on the
principle of recommending actions based on similarity, such an approach to generate explanations
would be infeasible. Herlocker et al. [4] presented the idea of highlighting key data leading to a
recommendation for explanations in recommender systems. Our approach is also motivated by this
idea with the key difference that choices in MDPs also impact future states and actions rather than

4



Figure 1: User Perception of MDP-Based Explanations

explaining an isolated decision. McGuinness et al. [8] identify several templates to present explana-
tions in task processing systems based on predefined workflows. Our approach also uses templates,
but we cannot use predefined workflows due to the probabilistic nature of MDPs.

Lacave et al. [7] presented several approaches to explain graphical models, including Bayesian net-
works and influence diagrams. Their explanations require a background in decision analysis and
they present utilities of different actions graphically and numerically. We focus on users without
any knowledge of utility theory. Elizalde et al. [3] present an approach to generate explanations for
an MDP policy that recommends actions for an operator in training. A set of explanations is defined
manually by an expert and their algorithm determines a relevant variable to be presented as explana-
tion. Our approach does not restrict to a single relevant variable and considers the long-term effects
of the optimal action (beyond one time step). We also use generic, domain-independent templates
and provide a technique to determine a minimum set of templates that can completely justify an
action.

6 Significance and Implications

While there has been a lot of work on explanations for intelligent systems, such as expert, rule-based,
and case-based reasoning systems, there has not been much work for probabilistic and decision-
theoretic systems. The main reason behind this discrepancy is the difference in processes through
which they arrive at their conclusions. For probabilistic and decision-theoretic systems, there are
well-known axioms of probability and theorems from utility theory that are applied to perform in-
ference or compute a policy. Therefore, experts do not need to examine the reasoning trace to
determine if the inference or policy computation process is correct. The trace would essentially re-
fer to concepts such as Bayes’ theorem, or the principle of maximum expected utility etc, which do
not need to be verified. Instead, the input, i.e., transition and reward function, need to be verified.
With recent advances in scalability and the subsequent application of MDPs to real-world problems,
now explanation capabilities are needed. The explanation should highlight portions of the input that
lead to a particular result.

Real-world MDPs are difficult to design because they can involve millions of states. There are
no existing tools for experts to examine and/or debug their models. The current design process
involves successive iterations of tweaking various parameters to achieve a desirable output. At the
end, the experts still cannot verify if the policy indeed accurately reflects their requirements. Our
explanations provide hints to experts in debugging by indicating the components of the model that
are being utilized in the decision-making process at the current step. This allows experts to verify
whether the correct components are being used and focus the tweaking of the model.

5



Current users have to trust an MDP policy blindly, with no explanations whatsoever regarding the
process of computing the recommendation or the confidence of the system in this recommendation.
They cannot observe which factors have been considered by the system while making the recom-
mendation. Our explanations can provide users with the information that the MDP is using to base
its recommendation. This is especially important if user preferences are not accurately encoded.

If experts or users disagree with the optimal policy, the next step would be to automatically update
the model based on interaction, i.e., update the transition and reward functions if the user/expert
disagree with the optimal policy despite the explanation. Any such automatic update of the model
needs to be preceded by a proper understanding of the existing model, which can only be achieved
through explanations, such as those provided by our system.

Just like the optimal policies for MDPs from different domains can be computed using the same
underlying techniques, our technique to generate explanations is also generic and can be employed
for an MDP from any domain. We have used the same approach described here to generate minimal
sufficient explanations for the handwashing MDP [6]. The mechanism to present the explanation to
users can then be tailored for various domains. Often a fancier graphical presentation may be more
useful than a text-based template. Our focus is to produce generic explanations that can then be
transformed for presentation in a user-friendly format.

7 Conclusion

We presented a mechanism to generate explanations for factored MDP in any domain without re-
quiring any additional effort from the MDP designer. We introduced the concept of a minimal
sufficient explanation through which an action can be explained using the fewest possible templates.
We showed that our explanations can be generated in near-real time and conducted a user study to
evaluate their effectiveness. The students appreciated the extra information provided by our generic
explanations. Most of the students considered the combination of our explanation with the advisor
explanation more effective than either one alone.

In the future, it would be interesting to extend this work to partially observable MDPs. Since the
states are not directly observable, it is not obvious how one could generate an explanation that refers
to the frequency with which some states are visited. It would also be interesting to extend this work
to reinforcement learning problems where the parameters of the model (i.e., transition probabilities
and reward function) are unknown or at best partially known. Finally, when an explanation is pro-
vided and the user insists that the recommended action is suboptimal, then it would be interesting to
close the loop by updating the model to take into account the feedback provided by the user.

References
[1] Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. Stochastic dynamic programming

with factored representations. Artificial Intelligence, 121(1-2):49–107, 2000.
[2] W. J. Clancey. The epistemology of a rule-based expert system – a framework for explanation.

Artificial Intelligence, 20:215–251, 1983.
[3] F. Elizalde, E. Sucar, A. Reyes, and P. deBuen. An MDP approach for explanation generation.

In AAAI Workshop on Explanation-Aware Computing, 2007.
[4] J. Herlocker. Explanations in recommender systems. In CHI’ 99 Workshop on Interacting with

Recommender Systems, 1999.
[5] Jesse Hoey, Robert St-aubin, Alan Hu, and Craig Boutilier. SPUDD: Stochastic planning using

decision diagrams. In UAI, pages 279–288, Stockholm, Sweden, 1999.
[6] Omar Zia Khan, Pascal Poupart, and James P. Black. Minimal sufficient explanations for

factored markov decision processes. In ICAPS, Thessaloniki, Greece, 2009.
[7] C. Lacave, M. Luque, and F.J. Dez. Explanation of Bayesian networks and influence diagrams

in Elvira. IEEE Transactions on Systems, Man, and Cybernetics, 37(4):952–965, 2007.
[8] D. McGuinness, A. Glass, M. Wolverton, and P. da Silva. Explaining task processing in cogni-

tive assistants that learn. In Proceedings of AAAI Spring Symposium on Interaction Challenges
for Intelligent Assistants, 2007.

6



[9] Warren B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimensional-
ity. Wiley, 2nd edition, 2011.

[10] Martin Puterman. Markov Decision Processes. Wiley, 1994.
[11] Frode Sørmo, Jörg Cassens, and Agnar Aamodt. Explanation in case-based reasoning—

perspectives and goals. Artificial Intelligence Review, 24(2):109–143, 2005.
[12] W. R. Swartout. Xplain: A system for creating and explaining expert consulting programs.

Artificial Intelligence, 21:285–325, 1983.
[13] N. Tintarev and J. Masthoff. A survey of explanations in recommender systems. In ICDE

Workshop on Recommender Systems & Intelligent User Interfaces, 2007.

7


