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A Proofs for mixtures of Bernoullis

A.1 Derivation of (4.14)

From (4.10), the update of µ1 is:

M(µ1)i = Z−11

∫
q̃1(x)xdx =

µ1i

xi
Z−11 Fi, (A.1)

where Fi = π∗1µ
∗
1iB1i + π∗2µ

∗
2iB2i and B1i, B2i defined

in (4.15). So,

M(λ)i − λi = 2S−1i µ∗i (M(µ1)i − µ1i)

= 2S−1i µ∗iµ1ix
−1
i Z−11 (Fi − Z1xi).

(A.2)

Bringing in the definition of Z1 in (4.12), we have

Fi − Z1xi = π∗1B1i(µ
∗
1i − xi(1 + π∗2λi)) +

+ π∗2B2i(µ
∗
2i − xi(1− π∗1λi)). (A.3)

With the definitions of xi, µ∗i and λi, we obtain:

Fi − Z1xi = 2π∗1π
∗
2µ
∗
i (1− xi)−1(1− µ1i)(B1i −B2i),

which, combined with (A.2), yields (4.14).

A.2 Proof of Theorem 4.5

In this section, we prove the following theorem:

Theorem 4.4. For m = D = 2, given σ12 6= 0 and
x ∈ (0, 1)D, with EM algorithm, π1 = ε, µ2 = x and
uniform random initialization for µ1, λ will converge to
the positive regions at a linear rate with probability 1.
Therefore, EM will almost surely escape one-cluster re-
gions.

We assume that σ12 > 0 because the σ12 < 0 can be
similarly proved by relabeling x2 → 1−x2. The theorem
is equivalent to showing that b converges to the regions
where b1b2 > 0, due to (4.13) and Corollary 4.1. We

also call these regions as positive regions. It is not hard
to derive from (4.10) and (2.9) that the EM update is:

b1 ← b1 + Z−11 σΛ1b2, (A.4)
b2 ← b2 + Z−11 σΛ2b1, (A.5)

with Λi = µ1i(1− µ1i).

We first notice some properties of σ12, as can be easily
seen from its definition. For convenience, in the follow-
ing proof we define σ := σ12S

−1
1 S−12 which we call the

normalized covariance.

Lemma A.1. If σ12 > 0, then σ12 < x1(1− x2), σ12 <
x2(1− x1).

Proof. Trivial from the definition of σ12.

A direct consequence is:

Corollary A.1. If σ12 > 0, then σ2S1S2 < 1.

In the following lemma, we show that in a neighborhood
of the origin, b almost always converges to the positive
regions.

Lemma A.2 (Convergence with small ||b|| initializa-
tion, two features). Assume σ12 > 0. ∃δ > 0 small
enough, with a random b initialized from the L1 ball
||b||1 < δ and the update function defined by EM, b
converges to the positive regions {(b1, b2)|b1b2 > 0} at
a linear rate.

Proof. In this case, Λi and Z are roughly constant, and

b′ =

[
b′1
b′2

]
= A(b)b =

[
1 σ12Σ−12

σ12S
−1
1 1

] [
b1
b2

]
.

(A.6)
The eigensystem of A(b) is:

λ1 = 1 + σ12

√
S−11 S−12 , v1 = (

√
σ12S

−1
2 ,

√
σ12S

−1
1 ).

λ2 = 1− σ12
√
S−11 S−12 , v2 = (−

√
σ12S

−1
2 ,

√
σ12S

−1
1 ).



Applying A(b) for enough number of times, b will con-
verge to a multiple of v1, where σb1b2 > 0.

Let us make the argument above more concrete. Expand
b as:

b = c1v1 + c2v2. (A.7)

Since c1 = 0 is a measure zero set, we have c1 6= 0
almost everywhere. WLOG, we assume c1 > 0. Denote

A(b) =

[
1 σZ−1Λ1

σZ−1Λ1 1

]
, (A.8)

A(0) =

[
1 σ12S

−1
2

σ12S
−1
1 1

]
. (A.9)

We first prove that each element of A(b) − A(0) is
bounded. This can be done by noticing:

A(b)−A(0) =

[
0 σ(Z−1Λ1 − S1)

σ(Z−1Λ2 − S2) 0

]
,

and that

Z−1Λi − Si = Z−1(bi(1− 2xi)− b2i − σb1b2Si).

So, A(b) −A(0) = O(δ) in ||b||1 < δ. From this fact,
one can show in ||b||1 < δ,

A(b)b � A(0)b− cδ2v1, (A.10)

with c some constant. WLOG, we assume b is still in the
negative region and thus ||b||1 decreases, so our approx-
imation is still valid. Applying EM for k times and by
use of (A.10), we know the result is at least (the general-
ized inequality is defined by the positive cone R2

++, see,
e.g., [1])

A(0)kb− cδ2(λk−11 + · · ·+ λ1 + 1)v1

= (c1λ
k
1 − cδ2

λk1 − 1

λ1 − 1
)v1 + c2λ

k
2v2. (A.11)

In the above analysis we used A(0)u � 0 for u �
0. For δ small enough, we know almost surely c1 >
cδ2/(λ1 − 1). Therefore, at almost everywhere A(b)kb
converges to the positive regions at a linear rate.

The choice of L1 ball is irrelevant, since in finite vector
space all Lp norms are equivalent.

Now, let us show that in the worst case b shrinks to
a neighborhood of the origin. Hence, combined with
Lemma A.2, we finish the proof. First, rewrite (A.4) and
(A.5) as:

b1 ← Z−1(b1 + σS1b2 + σ(1− 2x1)b1b2), (A.12)
b2 ← Z−1(b2 + σS2b1 + σ(1− 2x2)b1b2). (A.13)

Figure 1: Contours f(b1) = 0 and g(b1) = 0.

The two contours b′1 = 0, b′2 = 0 are respectively:

Cb′1=0 : b2 = f(b1) = − b1
σ(1− 2x1)b1 + σS1

,

(A.14)

Cb′2=0 : b2 = g(b1) =
−σS2b1

1 + σ(1− 2x2)b1
. (A.15)

f, g are both linear fractional functions of b1, an example
of which is depicted in Figure 1. The derivatives are:

f ′(b1) = − S1

σ((1− 2x1)b1 + S1)2
,

g′(b1) = − σS2

(1 + σ(1− 2x2)b1)2
, (A.16)

therefore, f, g are both decreasing if σ > 0. It fol-
lows that f ′(0) = −(σS1)−1 and g′(0) = −σS2. From
Corollary A.1,

|g′(0)|
|f ′(0)|

< 1. (A.17)

Now, let us look at the secant lines crossing the ori-
gin and f(−x1), g(−x1) separately. From (A.14) and
(A.15),

f(−x1) =
1

σx1
, (A.18)

g(−x1) =
σS2x1

1− σx1(1− 2x2)
, (A.19)

and one can obtain f(1 − x1) and g(1 − x1) similarly.
So, −b1/b2 is bounded in the following region:

{(b1, b2)|b1b2 < 0, f(b1)g(b1) < 0}, (A.20)

and the bound is given by the slopes of the tangent lines
at (0, 0) and the secant lines.
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Another important point to notice is that f(b1) and
g(b1) intersect exactly once. Which can be proved from
Lemma A.1, (A.14) and (A.15):

Lemma A.3. Assume σ > 0, f(b1) = g(b1) has exactly
one solution b1 = 0 in the feasible region b1 ∈ [−x1, 1−
x1].

Proof. The solution b1 = 0 is obvious. For b1 6= 0,
f(b1) = g(b1) is equivalent to:

σ2S2 ((1− 2x1)b1 + S1)− σ(1− 2x2)b1 = 1. (A.21)

We will show that the left hand side is always less than
one. This is a linear function, so we only need to show it
at both end points. At b1 = −x1, the left hand side can
be simplified as:

σx1(1− x2) + σx1x2 (σx1(1− x2)− 1) < 1,

where we used Lemma A.1. Similarly, at b1 = 1 − x1,
the left hand side of (A.21) is:

σx2(1− x1) + σ(1− x1)(1− x2) (σx2(1− x1)− 1) < 1.

From Lemma A.3, the feasible region of b is divided
into four parts by f(b1) and g(b1). If f(b1)g(b1) > 0,
then EM update goes to the positive region. Otherwise,
f(b1)g(b1) < 0. In this region, neither b1 nor b2 changes
the sign. Because −b1/b2 is bounded, from (A.4) and
(A.5), ||b||(t+1)

1 6 q||b||(t)1 with 0 < q < 1 being a con-
stant. So, in the worst case, b will converge to the neigh-
borhood of the origin at a linear rate, and then shift to
the positive regions at a linear rate, according to Lemma
A.2. This lemma can be used because the EM update is
not singular: it does not map a measure nonzero set to
a measure zero set. Hence, after finitely many steps, at
the neighborhood of the origin, the random distribution
at the beginning is still random.

Figure 2 is an example of the trajectory.

B A General Conjecture

In this appendix, we propose a general conjecture for
mixtures of Bernoullis:

Conjecture B.1. For any number of clusters and a
general number of features, with random initialization
around k-cluster regions, EM will almost always con-
verge to an m-cluster point.

Besides empirical evidence, we can show theoretical
guarantees at m = 2. In this case, the problem reduces
to showing the convergence to positive regions proposed

Figure 2: An example of the trajectory. b moves from
the second orthant to a positive region, by shrinking its
norm and rotating.

in Section 4.2.2. The convergence to the positive regions
is observed empirically for mixtures of two Bernoullis,
which always happens with random initialization.

The first result shows that if ||λ|| is small, λ will con-
verge to the positive regions:

Proposition B.1 (Convergence with small ||λ|| initial-
ization, general). For mixtures of two Bernoullis, ∃δ >
0 small enough, with a random λ initialized from the L1

ball ||λ||1 < δ and the update function defined by EM, λ
will converge to the positive regions.

Proof. Around ||λ|| ∼ 0, Z1 ∼ 1. Expanding (4.14)
to the linear order, we find that the update of λ can be
linearized as:

M(λ) = Aλ, (B.1)

where Aii = 1 and Aij = (2µ∗i )2π∗1π
∗
2S
−1
i Z−11 > 0 for

i 6= j. After enough iterations, λ will converge to the
linear span of the largest eigenvector of A.

From the Perron-Frobenius theorem [2], A has a
unique largest real eigenvalue, and eigmax(A) >
mini

∑
j Aij > 1. Also, the maximal eigenvector of A,

vmax, is a multiple of an all positive vector. Therefore,
we can prove the proposition in a similar fashion as the
proof of Lemma A.2.

This proposition also tells us that EM has an effect of
rotating λ to the positive regions. It is interesting to ob-
serve that such unstable fixed point λ = 0 is analogous to
the strict saddle points studied in [3]. It might be possible
to use stable manifold theorem to prove our conjecture at
m = 2.
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Another special case is when the maxi λi increases or
mini λi decreases. For a given λ, we can order the com-
ponents. WLOG, we assume λ1 6 λ2 6 . . . λi < 0 =
λi+1 = · · · = λj < λj+1 6 . . . 6 λD. We can show the
following proposition:

Proposition B.2. For mixtures of two Bernoullis, assume
λ1 6 λ2 6 . . . λi < 0 = λi+1 = · · · = λj < λj+1 6
. . . 6 λD, if M(λ)1 < λ1 or M(λ)D > λD, then λ will
eventually converge to the positive regions. Otherwise,
we have M(λ)1 > λ1 and M(λ)D 6 λD.

Proof. From the definitions of B1i and B2i, (4.15), we
have

B11 −B21 > . . . > B1D −B2D. (B.2)

M1(λ) < λ1, from (4.14), tells us that B11 − B21 <
0, and thus every λi decreases. As each λi decreases,
B1i − B2i will get smaller as well. Therefore, all λi’s
decrease at least as a linear function. Since the feasible
region is bounded, λ will converge to −RD

++ eventually.

Similarly, if MD(λ) > λD, we know that λ will con-
verge to RD

++ eventually.

Otherwise, we must have B11 − B21 > 0 and B1D −
B2D 6 0, yieldingM1(λ) > λ1 andMD(λ) 6 λD.

The two patterns M(λ)1 < λ1 and M(λ)D > λD have
been observed in experiments very frequently, while the
case with M(λ)1 > λ1 and M(λ)D 6 λD needs some
further understanding.
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