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Abstract

In many situations, a set of hard constraints encodes the feasible configurations of some system or product over which multiple
users have distinct preferences. However, making suitable decisions requires that the preferences of a specific user for different
configurations be articulated or elicited, something generally acknowledged to be onerous. We address two problems associated
with preference elicitation: computing a best feasible solution when the user’s utilities are imprecisely specified; and developing
useful elicitation procedures that reduce utility uncertainty, with minimal user interaction, to a point where (approximately) optimal
decisions can be made. Our main contributions are threefold. First, we propose the use of minimax regret as a suitable decision
criterion for decision making in the presence of such utility function uncertainty. Second, we devise several different procedures, all
relying on mixed integer linear programs, that can be used to compute minimax regret and regret-optimizing solutions effectively.
In particular, our methods exploit generalized additive structure in a user’s utility function to ensure tractable computation. Third,
we propose various elicitation methods that can be used to refine utility uncertainty in such a way as to quickly (i.e., with as
few questions as possible) reduce minimax regret. Empirical study suggests that several of these methods are quite successful in
minimizing the number of user queries, while remaining computationally practical so as to admit real-time user interaction.
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1. Introduction

The development of automated decision support software is a key focus within decision analysis [21,43,52] and ar-
tificial intelligence [9,10,16,17]. In the application of such tools, there are many situations in which the set of decisions
and their effects (i.e., induced distribution over outcomes) are fixed, while the utility functions of different users vary
widely. Developing systems that make or recommend decisions for a number of different users requires accounting
for such differences in preferences. Several classes of methods have been employed by decision-support systems to
“tune” their behavior appropriately, including inference or induction of user preferences based on observed behavior
[28,33] or the similarity of a user’s behavior to that of others (e.g., as in collaborative filtering [31]). Such behavior-
based methods often require considerable data before strong conclusions can be drawn about a user’s preferences
(hence before good decisions can be recommended).

In many circumstances, direct preference elicitation may be undertaken in order to capture specific user prefer-
ences to a sufficient degree to allow an (approximately) optimal decision to be taken. In preference elicitation, the
user is queried about her preferences directly. Different approaches to this problem have been proposed, including
Bayesian methods that quantify uncertainty about preferences probabilistically [10,17,27], and methods that simply
pose constraints on the set of possible utility functions and refine these incrementally [14,50,52].

In this paper, we will focus on direct preference elicitation for constraint-based optimization problems (COPs).
COPs provide a natural framework for specifying and solving many decision problems. For example, configuration
tasks [42] can naturally be viewed as consisting of a set of hard constraints (options available to a customer) and a util-
ity function (reflecting customer preferences). While much work in the constraint-satisfaction literature has considered
indirectly modeling preferences as hard constraints (with suitable relaxation techniques), more direct modeling of util-
ity functions has come to be recognized as both natural and computationally effective. The direct or indirect modeling
of multi-attribute utility functions has increasingly been incorporated into constraint optimization software.3 Soft-
constraint frameworks [8,46] that associate values with the satisfaction or violation of various constraints can also be
seen as implicitly reflecting a user utility function.

However, the requirement of complete utility information demanded by a COP is often problematic. For instance,
users may have neither the ability nor the patience to provide full utility information to a system. Furthermore, in
many if not most instances, an optimal decision (or some approximation thereof) can be determined with a very
partial specification of the user’s utility function. As such, it is imperative that preference elicitation procedures be
designed that focus on the relevant aspects of the problem. Preferences for unrealizable or infeasible outcomes are not
(directly) relevant to decision making in a particular context; nor are precise preferences needed among outcomes that
are provably dominated by others given the partial information at hand. Finally, though one could refine knowledge
of a user’s utility function with increased interaction, the elicitation effort needed to reach an optimal decision may
not be worth the improvement in decision quality: often a near-optimal decision can be made with only a fraction of
the information needed to make the optimal choice. Ultimately, it is the impact on decision quality that should guide
elicitation effort [10,13,17,50].

The preference elicitation problem lies at the heart of considerable work in multiattribute utility theory [30,35,51]
and the theory of consumer choice (such as conjoint analysis [29,48]), though our approach will differ considerably
from classic models. Unfortunately, scant attention has been paid to preference elicitation in the constraint-satisfaction
and optimization literature. Only recently has the problem of elicitation of objective functions been given due consid-
eration [38,39].4 While interactive preference elicitation has received little attention, optimizing with respect to a given
set of preferences over configurations has been studied extensively. Branch-and-bound methods are commonly used
for optimization in conjunction with constraint propagation techniques. A number of frameworks have also been pro-
posed for modeling such systems using “soft constraints” of various types [8,46], each with an associated penalty or
value that indirectly represent a user’s preferences for different configurations.

In this paper, we adopt a somewhat different perspective from the usual soft constraints formalisms: we assume
a user’s preferences are represented directly as a utility function over possible configurations. Given a utility func-
tion and the hard constraints defining the decision space, we have a standard constraint-based optimization problem.

3 For example, see www.ilog.com.
4 Related, but of a decidedly different character is work on constraint acquisition [37]; more closely tied is work on learning soft constraints [41].

www.ilog.com
www.ilog.com
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However, as argued earlier, it is unrealistic to expect users to express their utility functions with complete precision,
nor will we generally require full utility information to make good decisions. Thus we are motivated to consider
two problems, namely, the problem of “optimizing” in the presence of partial utility information, and the problem of
effectively eliciting the most relevant utility information.

With respect to optimization in the presence of imprecise utility information, we suppose that a set of bounds (or
more general linear constraints) on utility function parameters are provided (these constraints will arise as the result
of the elicitation procedures we consider). We then consider the problem of finding a feasible solution that minimizes
maximum regret [4,24,32,34,45] within the space of feasible utility functions. This is the solution we would regret the
least should an adversary choose the user’s utility function in a way that is consistent with our knowledge of the user’s
preferences. In a very strong sense, this minimizes the worst-case loss the user could experience as a result of our
recommendation. We show that this minimax problem can be formulated and solved using a series of linear integer
programs (IPs) and mixed integer programs (MIPs) in the case where utility functions have no structure.

In practice, some utility structure is necessary if we expect to solve problems of realistic size. We therefore also
consider problems where utility functions can be expressed using a generalized additive form [3,22,23], which in-
cludes linear utility functions [30] and factored (or graphical) models like UCP-nets [12] as special cases. We derive
two solution techniques for solving such structured problems: the first gives rise to a MIP with fewer variables, com-
bined with an effective constraint generation procedure; the second encodes the entire minimax problem as a single
MIP using a cost-network to formulate a compact set of constraints. The former method is shown to be especially
effective.

If our knowledge of the utility parameters is loose enough, minimax regret may be unacceptably high, in which
case we would like to query the user for additional information about her utility function. In this work we consider
bound queries—a local form of standard gamble queries [24] that provide tighter upper or lower bounds on the utility
parameters—and comparison queries, that present outcomes to the user for ranking. However, we focus on bound
queries in our experiments. We develop several new strategies for eliciting bound information, strategies whose aim is
to reduce the worst-case error (i.e., get guaranteed improvement in decision quality) with as few queries as possible.
Our first strategy, halve largest gap (HLG), provides the best theoretical guarantees—it works by providing uniform
uncertainty reduction over the entire utility space. The HLG strategy is similar to heuristically motivated polyhedral
methods in conjoint analysis, used in product design and marketing [29,48]. In fact, HLG can be viewed as a special
case of the method of [48] in which our polyhedra are hyper-rectangles. Our second strategy, current solution (CS),
is more heuristic in nature, and focuses attention on relevant aspects of the utility function. Our empirical results
show that this strategy works much better in practice than HLG, and does indeed distinguish relevant from irrelevant
queries. Furthermore, its ability to discern good queries is also largely unaffected by approximation: the anytime
nature of minimax computation allows time bounds to be used to ensure real-time response with little impact on the
elicitation effort required. We also introduce several additional strategies which capture some of the same intuitions as
HLG and CS, but with different computational procedures (and complexity). Among these, the optimistic-pessimistic
(OP) method works almost as well as CS, having much lower computational demands, but without providing the same
strong guarantees on decision quality.

The remainder of the paper is organized as follows. In Section 2 we briefly review constraint-based optimization
with factored utility models. We define and motivate minimax regret for decision making with imprecisely specified
utility functions in Section 3. In Section 4 we describe several methods for computing minimax regret for COPs, and
evaluate one such method empirically. We also suggest several computational shortcuts well-suited to the interactive
elicitation context. We define a number of elicitation strategies in Section 5 and provide empirical comparisons of
these strategies, both computationally and with respect to number of queries required to reach an optimal solution or
an acceptable level of regret. We conclude in Section 6 with a discussion of future research directions.

2. Constraint-based optimization and factored utility models

We begin by describing the basic problem of constraint-based optimization assuming a known utility function and
also describe the use of factored utility models in COPs. This will establish background and notation for the remainder
of the paper.
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2.1. Optimization with known utility functions

We assume a finite set of attributes X = {X1,X2, . . . ,XN } with finite domains Dom(Xi). An assignment x ∈
Dom(X) = �iDom(Xi) is often referred to as a state. For simplicity of presentation, we assume these attributes
are Boolean, but nothing important depends on this (indeed, our experiments will involve primarily non-Boolean
attributes). We assume a set of hard constraints C over these attributes. Each constraint C�, � = 1, . . . ,L, is defined
over a set X[�] ⊆ X, and thus induces a set of legal configurations of attributes in X[�]. More formally, C� can be
viewed as the subset of Dom(X[�]) from which all feasible configurations must be constructed. We assume that the
constraints C� are represented in some logical form and can be expressed compactly; for example, we might write

(X1 ∧ X2) ⊃ ¬X3

to denote that all legal configurations of Boolean variables X1,X2,X3 are such that X3 must be false if X1 and X2
are both true. We let Feas(X) denote the subset of feasible states (i.e., assignments satisfying C). The constraint
satisfaction problem is that of finding a feasible assignment to a specific set of constraints. While the set of states
Dom(X) is exponential in N (the number of variables), logically expressed constraints allow us to specify the feasible
set Feas(X) compactly, and makes explicit problem structure that can be exploited to (often) effectively solve CSPs.
We refer to Dechter [20] for a detailed overview of models and methods for constraint satisfaction.

The constraint graph for a given set of constraints is the undirected graph whose nodes are attributes and whose
edges connect any two attributes that occur in the same constraint. This graph has useful properties that can be
used to determine the worst-case complexity of various algorithms for constraint-satisfaction and constraint-based
optimization [20]. Fig. 1 illustrates a small constraint graph over four variables induced by the logical constraints
shown.

Our focus here will not be on constraint satisfaction, but rather on constraint-based optimization problems (COPs).5

Suppose we have a known non-negative utility function u : Dom(X) → R+ which ranks all states (whether feasible or
not) according to their degree of desirability.6 Our aim is to find an optimal feasible state x∗; that is, any

x∗ ∈ arg max
x∈Feas(X)

u(x).

Since choices are restricted to feasible states, we sometimes call feasible states decisions. Without making any as-
sumptions regarding the nature of the utility function (e.g., with regard to structure, independence, compactness, etc.)
we can formulate the COP in an “explicit” fashion as a (linear) 0–1 integer program:

max{Ix,Xi }
∑

x

uxIx subject to A and C, (1)

where we have:

• variables Ix: for each x ∈ Dom(X), Ix is a Boolean variable indicating whether x is the decision made (i.e., the
feasible state chosen). In other words, Ix = 1 iff x is the solution to the COP.

Fig. 1. An example constraint graph induced by the logical constraints shown to the left.

5 We use the term constraint-based optimization (often called constraint optimization) to refer to discrete combinatorial optimization problems
with explicit logical constraints over variable instantiations, as in CSPs, to distinguish these from more general constrained optimization problems
with arbitrary (e.g., continuous) variables and general functional constraints.

6 For ease of presentation, we assume the utility function has been normalized to be non-negative. Nothing critical depends on this, as such
normalization is always possible [23].
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• variables Xi : Xi is a Boolean variable corresponding to the ith attribute. In other words, variables Xi = 1 iff
feature Xi is true in the solution to the COP.7

• coefficients ux: for each x ∈ Dom(X), constant ux denotes the (known) utility of state x.
• constraint set A: for each variable Ix, we impose a constraint that relates it to its corresponding variable assign-

ment. Specifically, for each Xi : if Xi is true in x, we constrain Ix � Xi ; and if Xi is false in x, we constrain
Ix � 1 − Xi . We use A to denote this set of state definition constraints.

• constraint set C: we impose each feasibility constraint C� on the attributes Xi ∈ X[�]. Logical constraints on the
variables Xi can be written in a natural way as linear constraints [18], so we omit details.8

Note that this formulation ensures that, if there is a feasible solution (given the constraints A and C), then exactly
one Ix will be non-zero.

As an example of the interplay between the constraints in A and C, consider the example in Fig. 1. The following
constraints will be present in the set A for the state abcd (with analogous constraints for the other 15 instantiations of
the four Boolean variables):

Iabcd � A; Iabcd � B; Iabcd � C; Iabcd � 1 − D;
while the constraint set C, capturing the three domain constraints in the figure are:

A + B � 1; B + C � 1; A + B + C � 2.

2.2. Factored utility models

Even with logically specified constraints, solving a COP in the manner above is not usually feasible, since the utility
function is not specified concisely. As a result, the IP formulation above is not practical, since there is one Ix variable
per state and the number of states is exponential in the number of attributes. With such flat utility functions, it is
not generally possible to formulate the optimization problem concisely: indeed, if there is no (structural) relationship
between the utility of different states, little can be done but to enumerate feasible states to ensure that an optimal
solution is found. In contrast, if some structure is imposed on the utility function, say, in the form of a factored
(or graphical) model, we are then often able to reduce the number of variables to be linear in the number of parameters
of the factored model.

We consider here generalized additive independence (GAI) models [3,22], a natural, but flexible and fully expres-
sive generalization of additive (or linear) utility models.9 GAI is appealing because of its generality and expressive-
ness; for instance, it encompasses both linear models [30] and UCP-nets [12] as special cases,10 but can capture any
utility function. The advantage of structured utility models, and GAI specifically, is that the constraint-based opti-
mization can be formulated and (typically) solved without explicit enumeration of states. While we focus on the GAI
model, other compact structured utility models can be exploited in similar fashion (e.g., see the many such models
proposed by Keeney and Raiffa [30]).

The GAI model assumes that our utility function can be written as the sum of K local utility functions, or factors,
over small sets of attributes:

u(x) =
∑
k�K

fk(x[k]). (2)

Here each function fk depends only on a local family of attributes X[k] ⊂ X. We denote by x[k] the restriction of state
x to the attributes in X[k]. Again we assume that each function fk is non-negative. For example, if X = {A,B,C,D}
we might decompose a utility function as follows:

u(ABCD) = f1(A,B) + f2(B,C).

7 If features are non-Boolean, then Xi simply needs to be a general integer variable ranging over Dom(Xi).
8 Again, generalizing the form of these constraints to generalized logical constraints involving non-Boolean attributes is straightforward.
9 Fishburn [22] introduced the model, using the term interdependent value additivity; Bacchus and Grove [3] dubbed the same concept GAI,

which seems to be more commonly used in the AI literature currently.
10 For example, UCP-nets encompass GAI with some additional restrictions. Hence any algorithm for GAI models automatically applies to UCP-
nets, though one might be able to exploit the structure of UCP-nets for additional computational gain.
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Fig. 2. An example utility graph induced by the two utility factors shown to the left.

Fig. 2 illustrates a possible instantiation of the two factors. Note that a user with such a utility function exhibits no
preference for the different values of variable D.

The conditions under which a GAI model provides an accurate representation of a utility function were defined by
Fishburn [22,23]. We provide the intuitions here. Let P be some probability distribution over Dom(X), interpreted as
a gamble or lottery presented to the decision maker. For instance, P may correspond to the distribution over outcomes
induced by some decision she could take. Fishburn showed that the decision maker’s utility function u could be
written in GAI form over factors fk iff she is indifferent between any pair of gambles P and Q over Dom(X) whose
marginals over each subset of variables X[k] (k � K) are identical. Note that GAI models are completely general
(since any utility function can be represented trivially using a single factor consisting of all variables). Furthermore,
linear models are a special case in which we have a singleton factor for each variable.

We refer to a pair 〈C, {fk: k � K}〉 as a structured COP, where C is a set of feasibility constraints and {fk: k � K}
is a set of utility factors. An IP similar to Eq. (1) can be used to solve for the optimal decision in the case of a GAI
model:

max{Ix[k],Xi }
∑
k�K

∑
x[k]∈Dom(X[k])

ux[k]Ix[k] subject to A and C. (3)

Instead of one variable Ix per state, we now have a set of local state variables Ix[k] for each family k and each instan-
tiation x[k] ∈ Dom(X[k]) of the variables in that family. Similarly, we have one associated constant coefficient ux[k]
denoting fk(x[k]). Ix[k] is true iff the assignment to X[k] is x[k]. Each Ix[k] is related logically to the attributes
X ∈ X[k] by (local) state definition constraints A as before, and the usual feasibility constraints C are also imposed as
above.

Notice that the number of variables and constraints in this IP (excluding the exogenous feasibility constraints C)
is now linear in the number of parameters of the underlying utility model, which itself is linear in the number of
attributes |X| if we assume that the size of each utility factor fk is bounded. This compares favorably with the expo-
nential size of the IP for unfactored utility models in Section 2.1.

This formulation of COPs is more or less the same as several other models of COPs found in the constraint
satisfaction literature. For example, the notion of a cost network is often used to represent objective functions by
assuming a similar form of factored decomposition of the objective function [20]. Specifically, let the utility graph
be defined in the same fashion as the constraint graph, but with edges connecting attributes that occur in the same
utility factor. This utility graph can be viewed as a cost network. Fig. 2 illustrates the utility graph over variables
{A,B,C,D} induced by the utility function decomposition described above (corresponding to the two utility factors
AB and BC shown at the left of the figure).

Similarly, certain soft constraint formalisms can be used to represent COPs [8]. Every constraint is assigned a cost
corresponding to a penalty incurred if that constraint is not satisfied. Hard constraints in C are assigned an infinite
cost, and constraints corresponding to configurations of local utility factors are given a finite cost corresponding to
their (negative) utility. The goal is to find a minimum cost state, with the infinite costs associated with hard constraints
ensuring a preference for any feasible solution over any infeasible solution.

The IP formulation of structured COPs in Eq. (3) can be solved using off-the-shelf solution software for general IPs.
Various special purposes algorithms that rely on the use of dynamic programming (e.g., the variable elimination
algorithm) or constraint satisfaction techniques can also be used to solve these problems; we refer to Dechter [20]
for a discussion of various algorithmic approaches to COPs developed in the constraint satisfaction literature. While
many of these could be adapted to address the problems discussed in the paper, we will focus on IP formulations and
their direct solution using standard IP software.
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We remark here on the use of utility functions rather than (qualitative) preference rankings in this work. In a deter-
ministic setting, such as in the constraint-based framework adopted here, one does not need utility functions to make
decisions. Instead an ordinal preference ranking will suffice [30] since, without uncertainty, strength of preference
information is not needed to assess tradeoffs: complete ordinal preference information will dictate which feasible
outcome is preferred. However, in large multiattribute domains, even with factored preference models, full elicitation
will often be time-consuming and unnecessary. As discussed, our aim is to make decisions with incomplete preference
information. If we make a decision that is potentially suboptimal, we cannot be sure of its quality unless we have some
information about the strength of preference of this decision (at least relative to the optimal decision). Simply know-
ing that one decision “may be preferred” to another does not give us enough information to know whether additional
preference information should be elicited if we are content with making good, rather than, optimal decisions. It is
impossible to say how good a non-optimal decision actually is without some quantitative utility information.

3. Minimax regret

In many circumstances, we are faced with a COP in which a user may not have fully articulated her utility function
over configurations of attributes. This arises naturally when distinct configurations must be produced for users with
different preferences, with some form of utility elicitation used to extract only a partial expression of these preferences.
It will frequently be the case that we must make a decision before a complete utility function can be specified. For
instance, users may have neither the ability nor the patience to provide full utility information to a system before
requiring a decision to be recommended. Furthermore, in many if not most instances, an optimal decision (or some
approximation thereof) can be determined with a very partial specification of the user’s utility function. This will
become evident in our preference elicitation framework and the models we consider in this paper.

If the utility function is unknown, then we have a slightly different problem than the standard COP. We cannot
maximize utility (or expected utility in stochastic decision problems) because the utility function is incompletely
specified. However, we will often have constraints on the utility function, either initial information about plausible
utility values, or more refined constraints based on the results of utility elicitation with a specific user. For example,
these might be bounds on the parameters of the utility model, or possibly more general constraints (as we discuss
below). Given such a set of possible utility functions (namely those consistent with these constraints), we must adopt
some suitable decision criterion for optimization, knowing only that the user’s utility function lies within this set.

In the paper we propose the use of minimax regret [12,24,32,43,45,50] as a natural decision criterion for imprecise
COPs. We first define the notion of minimax regret and then provide some motivation for its use as a suitable criterion
in this setting.

3.1. Minimax regret in COPs

Minimax regret is a very natural criterion for decision making with imprecise or incompletely specified utility func-
tions. It requires that one adopt the (feasible) assignment x with minimum max regret, where max regret is the largest
amount by which one could regret making decision x (while allowing the utility function to vary within the bounds). It
has been suggested as an alternative to classical expected utility theory. Specifically, it has been proposed as a means
for accounting for uncertainty over possible states of nature (or the outcomes of decisions) [4,32,34,44], both when
probabilistic information is unavailable, and as a descriptive theory of human decision making that explains certain
common violations of von Neumann–Morgenstern [49] axioms. However, only recently has it been considered as
a means for dealing with the utility function uncertainty a decision system may possess regarding a user’s preferences
[12,14,43,50]. It is this formulation we present here.

Formally, let U denote the set of feasible utility functions, reflecting our partial knowledge of the user’s preferences.
The set U may be finite; but more commonly it will be continuous, defined by bounds (or constraints) on (sets of) utility
values u(x) for various states. We refer to a pair 〈C,U〉 as an imprecise COP, where C is a set of feasibility constraints
and U is the set of feasible utility functions. In the case where U is defined by a finite set of linear constraints U , we
sometimes abuse terminology by speaking of 〈C,U〉 as an imprecise COP.

We define minimax regret in stages:
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Definition 1. The pairwise regret of state x with respect to state x′ over feasible utility set U is defined as

R(x,x′,U) = max
u∈U

u(x′) − u(x). (4)

Intuitively, U represents the knowledge a decision support system has of the user’s preferences. R(x,x′,U) is the
most the system could regret choosing x instead of x′, if an adversary could impose any utility function in U on the
user. In other words, if the system were forced to choose between x and x′, then this corresponds to the worst-case
loss associated with choosing x rather than x′ with respect to possible realizations of u ∈ U.

Definition 2. The maximum regret of decision x is:

MR(x,U) = max
x′∈Feas(X)

R(x,x′,U) (5)

= max
u∈U

max
x′∈Feas(X)

u(x′) − u(x). (6)

Since the goal of our decision support system is to make the optimal choice with respect to the user’s true utility
function, MR(x,U) is the most the system could regret choosing x; that is, it is the worst-case loss associated with
choosing x in the presence of an adversary who could choose the user’s utility function to maximize the difference
between x and acting optimally.11

Definition 3. The minimax regret of feasible utility set U is:

MMR(U) = min
x∈Feas(X)

MR(x,U) (7)

= min
x∈Feas(X)

max
u∈U

max
x′∈Feas(X)

u(x′) − u(x). (8)

A minimax-optimal decision x∗ is any decision that minimizes max regret:

x∗ ∈ arg min
x∈Feas(X)

MR(x,U).

If the only information we have about a user’s utility function is that it lies in the set U, then a decision x∗ that
minimizes max regret is very intuitive as we elaborate below. Specifically, without distributional information over the
set of possible utility functions, choosing (or recommending) a minimax-optimal decision x∗ minimizes the worst-
case loss with respect to possible realizations of the utility function u ∈ U. Our goal of course is to formulate the
minimax regret optimization (Eq. (8)) in a computationally tractable way. We address this in Section 4.

To illustrate minimax regret, consider the example illustrated in Figs. 1 and 2; but suppose that the precise utility
values associated with these factors are unknown, and instead replaced with the upper and lower bounds shown in
Fig. 3. The problem admits five feasible states, and the pairwise max regret R(x,x′,U) for each pair of states (with x
along columns and x′ along the rows) is shown in Table 1. The max regret of each feasible state is shown in the final
column, from which we see that state ABC is the minimax optimal decision.

Fig. 3. Imprecisely specified utility factors (with upper and lower bounds provided for each parameter.

11 Note that the x′ chosen by the adversary for a specific u will always be the optimal decision under u: any other choice would give the adversary
lesser utility and thus reduce regret.
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Table 1

ABC ABC ABC ABC ABC Max regret

ABC 0 8 5 2 10 10
ABC 4 0 7 6 2 7
ABC 12 18 0 6 12 18
ABC 7 15 6 4 0 15
ABC 15 7 6 4 0 15

3.2. Motivation for minimax regret

As mentioned, minimax regret has been widely studied (and critiqued) as a means for decision making under
uncertainty. It has been studied primarily as a means for making decisions when a decision maker is unwilling or
unable to quantify her uncertainty over possible states of nature, or as a means of explaining violations of classical
axioms of expected utility theory. Savage [44] introduced the notion though could not provide a “categorical” defense
of its use. The use of regret, including the incorporation of feelings of regret (and its opposite, “rejoicing”) into
expected utility theory, has been proposed as a means of accounting for the manner in which people violate the
axioms of expected utility theory in practice [4,34]. Difficulties with the use of this decision criterion include the fact
that the minimax regret criterion does not satisfy the principle of irrelevant alternatives [24,44], and regret theory fails
to satisfy a reasonable notion of stochastic dominance [40]. It can also be argued that, from a Bayesian perspective, a
decision maker might as well construct their own subjective assessment of possible states of nature. For this reason,
minimax regret is often viewed as too cautious a criterion.

The perspective we adopt here is somewhat different. We do not adopt minimax regret as a means of accounting
for a decision maker’s personal feelings of regret. Rather we define regret with respect to our decision system’s
uncertainty with respect to the user’s true utility function. It seems incontrovertible that there will generally be some
utility function uncertainty on the part of any system designed to make decisions on behalf of users. The only issue is
how this uncertainty is represented and reasoned with.

Naturally, Bayesian methods may be entirely appropriate in some circumstances: if one can quantify uncertainty
over possible utility functions probabilistically, then one can take expectations over this density to determine the
expected expected utility of a decision [10,11,17]. However, there are many circumstances in which the Bayesian
approach is inappropriate. First, it can often be very difficult to develop reasonable priors over the utility functions of
a wide class of users. Furthermore, representing priors over such complex entities as utility functions is fraught with
difficulty and inevitably requires computational approximations in inference (this is made abundantly clear in recent
Bayesian approaches to preference elicitation [10,17]). As a consequence, the value of such “normatively correct”
models is undermined in practice. Often bounds on the parameters of utility functions are generally much easier to
come by, much easier to maintain, and lend themselves to much more computationally manageable algorithms as
we will see in this paper. In addition, max regret provides an upper bound on the expected loss when probabilistic
information is known. As we will see below, minimax regret is a very effective driver of preference elicitation, so
concerns about its pessimistic nature are largely unfounded. We will see that with relatively few queries, max regret
can be reduced to very low levels (often to the point of offering provably optimal solutions). Though we don’t pursue
this approach here, when probabilistic information is available, it can be combined rather effectively with minimax
computation [50].

Finally, it is worth noting that making a recommendation whose utility is near optimal in expectation, as is the case
in Bayesian models of preference elicitation, is often of cold comfort to a user when the decision made is actually
very far from optimal. While minimax regret provides a worst-case bound on the loss in decision quality arising from
utility function uncertainty (even in cases where distributional information is available), Bayesian methods cannot
typically provide such a bound. In some contexts, such as procurement, this has been reported as a source of con-
tention with clients using automated preference elicitation [14]. The argument is often made that users do not want
to “leave money on the table” (even if the odds are low); if any money is left on the table, they want guarantees (as
opposed to probabilistic assurances) that the amount they could have saved through further preference elicitation is
limited.
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Recently, a considerable amount of work in robust optimization has adopted the minimax regret decision criterion
[1,2,32].12 This work addresses combinatorial optimization problems with data uncertainty (e.g., shortest path prob-
lems or facility location with uncertain parameters) and find “robust deviation decisions” that minimize max regret.
While the perspective in this work is somewhat different than that adopted in ours, the models and methods are quite
similar. Our formulation is specific to the constraint-based optimization setting, but more importantly we focus on
how minimax regret can be used to drive the process of elicitation, a problem not addressed systematically in the ro-
bust optimization literature. Our techniques for preference elicitation could in fact be adapted for problems in robust
optimization as a means to drive the reduction in data uncertainty.

4. Computing minimax regret in COPs

We address the computational problem of computing minimax optimal decisions in several stages. We initially
assume upper and lower bounds on utility parameters and discuss procedures for minimax computation for this form
of uncertainty. We begin in Section 4.1 by formulating minimax regret in flat (unfactored) utility models to develop
intuitions used in the factored case. In Section 4.2 we discuss the computation of maximum regret in factored utility
models, and propose two procedures for dealing with minimax regret. We evaluate one of these methods empirically
in Section 4.3. Finally, in Section 4.4 we propose a generalization for the minimax problem in the case where the
feasible utility set is defined by arbitrary linear constraints on parameters of the utility model.

4.1. Minimax regret with flat utility models

If we make no assumptions about the structure of the utility function, nor any assumptions about the nature of the
feasible utility set U, the optimization problem defined in Eq. (8) can be posed directly as a semi-infinite, quadratic,
mixed-integer program (MIP):

min{Mx,Ix,Xi }
∑

x

MxIx subject to

{
Mx � ux′ − ux ∀x ∈ X, ∀x′ ∈ Feas(X), ∀u ∈ U,

A and C,

where we have:

• variables Mx: for each x, Mx is a real-valued variable denoting the max regret when decision x is made (i.e., when
that state is chosen).

• variables Ix: for each x, Ix is a Boolean variable indicating whether x is the decision made.
• coefficients ux: for each u ∈ U and each state x, ux denotes the utility of x given utility function u.
• state definition constraints A and feasibility constraints C (defined as above).

Direct solution of this MIP is problematic, specifically because of the set of constraints on the Mx variables. First,
if U is continuous (the typical case we consider here), then the set of constraints of the form Mx � ux′ − ux is also
continuous, since it requires that we “enumerate” all utility values ux and ux′ corresponding to any utility function
u ∈ U. Furthermore, it is critical that we restrict our attention to those constraints associated with x′ in the feasible set
(i.e., those states satisfying C). Fortunately, we can often tackle this seemingly complex optimization in much simpler
stages if we make some very natural assumptions regarding the nature of the feasible utility space and utility function
structure.

We begin by considering the case where our imprecise knowledge regarding all utility parameters ux is independent
and represented by simple upper and lower bounds. For example, asking standard gamble queries, as discussed further
in Section 5.1, provides precisely such bounds on utility values [24]. Specifically, we assume an upper bound ux↑ and
a lower bound ux↓ on each ux, thus defining the feasible utility set U to be a hyper-rectangle. This assumption allows
us to compute the minimax regret in three simpler stages, which we now describe.13

12 The term “robust optimization” has a number of different interpretations (see for example the work of Ben-Tal and Nemirovski [5]) of which
minimax regret is one of the less common.
13 This transformation essentially reduces the semi-infinite quadratic MIP to a finite linear IP.
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First, we note that the pairwise regret for an ordered pair of states can be easily computed since each ux is bounded
by an upper and lower bound:

R(x,x′,U) =
{

u′
x↑ − ux↓ when x �= x′,

0 when x = x′.
(9)

Let rx,x′ denote this pairwise regret value for each x, x′, which we now assume has been pre-computed for all pairs.
Second, using Eq. (5), we can also compute the max regret MR(x,U) of any state x based on the pre-computed

pairwise regret values rx,x′ . Specifically, we can enumerate all feasible states x′, retaining the largest (pre-computed)
pairwise regret:

MR(x,U) = max
x′∈Feas(X)

rx,x′ . (10)

Alternatively, we can search through feasible states “implicitly” with the following IP:

MR(x,U) = max
{Ix′ ,X′

i }
∑

x′
rx,x′Ix′ subject to A and C. (11)

Third, let mx denote the value of MR(x,U). With the max regret terms mx = MR(x,U) in hand, we can compute
the minimax regret MMR(U) readily. We simply enumerate all feasible states x and retain the one with the smallest
(precomputed) max regret value mx:

MMR(U) = min
x∈Feas(X)

mx. (12)

Again, this enumeration may be done implicitly using the following IP:

MMR(U) = min{Ix,Xi }
∑

x

mxIx subject to A and C. (13)

In this flat model case, the two IPs above are not necessarily practical, since they require one indicator variable per
state. However, this reformulation does show that the original quadratic MIP with a continuous set of constraints
can be solved in stages using finite, linear IPs. More importantly, these intuitions will next be applied to develop an
analogous procedure for factored utility models.

Note that the strategy above hinges on the fact that we have independently determined upper and lower bounds
on the utility value of each state. If utility values are correlated by more complicated constraints, this strategy will
not generally work. In particular, comparison queries in which a user is asked which of two states is preferred induce
linear constraints on the entire set of utility parameters, thus preventing exploitation of independent upper and lower
bounds. We discuss formulations that allow us to deal with such feasible utility sets in Section 4.4. However, we
initially focus on the case of independent bounds.

4.2. Minimax regret with factored utility models

The optimization for flat models is interesting in that it allows us to get a good sense of how minimax regret works
in a constraint-satisfaction setting. From a practical perspective, however, the above model has little to commend it. By
solving IPs with one Ix variable per state, we have lost all of the advantage of using a compact and natural constraint-
based approach to problem modeling. As we have seen when optimizing with known utility functions, if there is no
a priori structure in the utility function, there is very little one can do but enumerate (feasible) states. On the other
hand, when the problem structure allows for modeling via factored utility functions the optimization becomes more
practical. We now show how much of this practicality remains when our goal is to compute the minimax-optimal state
given uncertainty in a factored utility function represented as a graphical model.

Assume a set of factors fk , k � K , defined over local families X[k], as described in Section 2.2. The parameters of
this utility function are denoted by ux[k] = fk(x[k]), where x[k] ranges over Dom(X[k]). We use the term imprecise
structured COP to describe an imprecise COP 〈C,U〉 where the feasible utility set U is defined by a set of constraints
U over the parameters ux[k] of a factored utility model {fk: k � K}.

As in the flat-model case, we assume upper and lower bounds on each of these parameters, which we denote by
ux[k]↑ and ux[k]↓, respectively. Hence the range of each utility factor fk for a given assignment x[k] corresponds
to an interval. By defining u(x) as in Eq. (2), pairwise regret, max regret and minimax regret are all defined in the
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same manner outlined in Section 3. We now show how to compute each of these quantities in turn by generalizing the
intuitions developed for flat models.

4.2.1. Computing pairwise regret and max regret
As in the unfactored case (Section 4.1), it is straightforward to compute the pairwise regret of any pair of states x

and x′. For each factor fk and pair of local assignments x[k], x′[k], we define the local pairwise regret:

rx[k],x′[k] =
{

ux′[k]↑ − ux[k]↓ when x[k] �= x′[k],
0 when x[k] = x′[k].

With factored models it is not hard to see from Eqs. (2) and (9) that R(x,x′,U) is simply the sum of local pairwise
regrets:

R(x,x′,U) =
∑

k

rx[k],x′[k]. (14)

We can compute max regret MR(x,U) by substituting Eq. (14) into Eq. (5):

MR(x,U) = max
x′∈Feas(X)

∑
k

rx[k],x′[k], (15)

which leads to the following IP formulation:

MR(x,U) = max
{Ix′[k],X′

i }
∑

k

∑
x′[k]

rx[k],x′[k]Ix′[k] subject to A and C. (16)

The above IP differs from its flat counterpart (Eq. (11)) in the use of one indicator variable Ix′[k] per utility parameter
rather than one per state, and is thus much more compact and efficiently solvable. Indeed, the size of the IP in terms
of the number of variables and constraints (excluding exogenously determined feasibility constraints C) is linear in
the size of the underlying factored utility model.

4.2.2. Computing minimax regret: constraint generation
We can compute minimax regret MMR(U) by substituting Eq. (15) into Eq. (7):

MMR(U) = min
x∈Feas(X)

max
x′∈Feas(X)

∑
k

rx[k],x′[k] (17)

which leads to the following MIP formulation:

MMR(U) = min{Ix[k],Xi }
max

x′∈Feas(X)

∑
k

∑
x[k]

rx[k],x′[k]Ix[k] subject to A and C (18)

= min{Ix[k],Xi ,M}M subject to

{
M �

∑
k

∑
x[k] rx[k],x′[k]Ix[k] ∀x′ ∈ Feas(X),

A and C.
(19)

In Eq. (18), we introduce the variables for the minimization, while in Eq. (19) we transform the minimax program
into a min program. The new real-valued variable M corresponds to the max regret of the minimax-optimal solution.
In contrast with the flat IP (Eq. (13)), this MIP has a number of Ix[k] variables that is linear in the number of utility
parameters. However, this MIP is not generally compact because Eq. (19) has one constraint per feasible state x′.
Nevertheless, we can get around the potentially large number of constraints in either of two ways.

The first technique we consider for dealing with the large number of constraints in Eq. (19) is constraint generation,
a common technique in operations research for solving problems with large numbers of constraints. Our approach can
be viewed as a form of Benders’ decomposition [6,36]. This approach proceeds by repeatedly solving the MIP in
Eq. (19), but using only a subset of the constraints on M associated with the feasible states x′. At the first iteration,
all constraints on M are ignored. At each iteration, we obtain a solution indicating some decision x with purported
minimax regret; however, since certain unexpressed constraints may be violated, we cannot be content with this
solution. Thus, we look for the unexpressed constraint on M that is maximally violated by the current solution. This
involves finding a witness x′ that maximizes regret w.r.t. the current solution x; that is, a decision x′ (and, implicitly,
a utility function) that an adversary would choose to cause a user to regret x the most.
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Recall that finding the feasible x′ that maximizes R(x,x′,U) involves solving a single IP given by Eq. (16). We
then impose the specific constraint associated with witness x′ and re-solve the MIP in Eq. (19) at the next iteration
with this additional constraint. Formally, we have the following procedure:

(1) Let Gen = {x′} for some arbitrary feasible x′.
(2) Solve the MIP in Eq. (19) using the constraints corresponding to states in Gen. Let x∗ be the MIP solution with

objective value m∗.
(3) Compute the max regret of state x∗ using the IP in Eq. (16), producing a solution with regret level r∗ and witness

(adversarial state) x′′. If r∗ > m∗, then add x′′ to Gen and repeat from Step 2; otherwise (if r∗ = m∗), terminate
with minimax-optimal solution x∗ (with regret level m∗).

Intuitively, when we solve the MIP in Step 2 using only the constraints in Gen, we are computing minimax regret
against a restricted adversary: the adversary is only allowed to use choices x′ ∈ Gen in order to make us regret our
solution x∗ to the MIP. As such, this solution provides a lower bound on true minimax regret (i.e., the solution that
would have been obtained were a completely unrestricted adversary considered).

When we compute the true max regret r∗ of x∗ in Step 3, we also obtain an upper bound on minimax regret (since
we can always attain max regret of r∗ simply by stopping and recommending solution x∗). It is not hard to see that
if r∗ = m∗, then no constraint is violated at the current solution x∗ (and our upper and lower bounds on minimax
regret coincide); so x∗ is the minimax-optimal configuration at this point. The procedure is finite and guaranteed to
arrive at the optimal solution. The constraint generation routine is not guaranteed to finish before it has the full set of
constraints, but it is relatively simple and (as we will see) tends to generate a very small number of constraints. Thus
in practice we solve this very large MIP using a series of small MIPs, each with a small number of variables and a set
of active constraints that is also, typically, very small.

Since minimax regret will be computed between elicitation queries, it is critical that minimax regret be estimated
in a relatively short period of time (e.g., five seconds for certain applications, five minutes for others, possibly several
hours for very high stakes applications). With this in mind, several improvements can be made to speed up minimax
regret computation. For instance, it is often sufficient to find a feasible (instead of optimal) configuration x for the
MIP in Eq. (19) for each newly generated constraint. Intuitively, as long as the feasible x allows us to find a violated
constraint—constraint generation continues to make progress. Hence, instead of waiting a long time for an optimal x,
we can stop the MIP solver as soon as we find a feasible solution for which a violated constraint exists. Of course, at
the last iteration, when there are no violated constraints, we have no choice but to wait for the optimal x.

Minimax regret can also be estimated more quickly—to allow for the real-time response needed for interactive
optimization—by exploiting the anytime nature of the computation to simply stop early. Since minimax regret is
computed incrementally by generating constraints, early stopping has the effect that some violated constraints may
not have been generated. As a result the solution provides us with a lower bound on minimax regret. We can terminate
early based on a fixed number of iterations (constraints), a fixed amount of computation time, or by terminating when
bounds on the solution are tight enough. Apart from this lower bound, we can also obtain an upper bound on minimax
regret by computing the max regret of the x found for the last minimax MIP solved. Note that we may need to
explicitly compute this since Step (3) of our procedure may not be invoked if we terminate based only on the number
of iterations rather than testing for constraint violation.

Approximation can be very appealing if real-time interactive response is required. The anytime flavor of the al-
gorithm means that these lower and upper bounds are often tight enough to provide elicitation guidance of similar
quality to that obtained from computing minimax regret exactly.

Although the full interaction of minimax regret computation with elicitation is explored in Section 5, as a precursor
to that discussion, we mention another strategy for accelerating computation which directly influences the querying
process. We have observed, unsurprisingly, that the minimax regret problem solved after receiving a response to one
query is very similar to that solved before posing the query. As such, one can “seed” the minimax procedure invoked
after a query with the constraints generated at the previous step. In this way, typically, only a few extra constraints
are generated during each minimax computation. Given that the running time of minimax regret is dominated by
constraint generation, this effectively amortizes the cost of minimax computation over a number of queries.
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4.2.3. Computing minimax regret: a cost network formulation
A second technique for dealing with the large number of constraints in Eq. (19) is to use a cost network to generate

a compact set of constraints that effectively summarizes this set. This type of approach has been used recently, for
example, to solve Markov decision processes [26]. The main benefit of the cost network approach is that, in principle,
it allows us to formulate a MIP with a feasible number of constraints (as elaborated below). We have observed,
however, the constraint generation approach described above is usually much faster in practice and much easier to
implement, even though it lacks the same worst-case run-time guarantees. Indeed, this same fact has been observed in
the context of MDPs [47]. It is for this reason that we emphasize (and only experiment with) the constraint generation
algorithm. However, we sketch the cost network formulation for completeness.

To formulate a compact constraint system, we first transform the MIP of Eq. (19) into the following equivalent
MIP by introducing penalty terms ρx[�] for each feasibility constraint C�:

MMR(U) = min{Ix[k],Xi ,M}M s.t.

{
M �

∑
k

∑
x[k] rx[k],x′[k]Ix[k] + ∑

� ρx′[�] ∀x′ ∈ Dom(X)

A and C

= min{Ix[k],Xi ,M}M s.t.

⎧⎨
⎩

M �
∑

k Rx′[k] + ∑
� ρx′[�] ∀x′ ∈ Dom(X)

Rx′[k] = ∑
x[k] rx[k],x′[k]Ix[k] ∀k,x′[k] ∈ Dom(X[k])

A and C.

(20)

The MIP of Eq. (19) has one constraint on M per feasible state x′, whereas the MIP of Eq. (20) has one constraint per
state x′ (whether feasible or not). Therefore, to effectively maintain the feasibility constraints on x′, we add penalty
terms ρx′[�] that make a constraint on M meaningless when its corresponding state x′ is infeasible. This is achieved
by defining a local penalty function ρ�(x′[�]) for each logical constraint C� that returns −∞ when x′[�] violates C�

and 0 otherwise.
This transformation has, unfortunately, increased the number of constraints. However, it in fact allows us to rewrite

the constraints in a much more compact form, as follows. Instead of enumerating all constraints on M , we analytically
construct the constraint that provides the greatest lower bound, while simply ignoring the others. This greatest lower
bound GLB is computed by taking the max of all constraints on M :

GLB = max
x′

∑
k

Rx′[k] +
∑

�

ρx′[�]

= max
x′

1

max
x′

2

. . .max
x′
N

∑
k

Rx′[k] +
∑

�

ρx′[�].

This maximization can be computed efficiently by using variable elimination [19], a well-known form of non-serial
dynamic programming [7]. The idea is to distribute the max operator inward over the summations, and then collect
the results as new terms which are successively pulled out. We illustrate its workings by means of an example.

Suppose we have the attributes X1,X2,X3,X4, a utility function decomposed into the factors f1(x1, x2),
f2(x2, x3), f3(x1, x4) and two logical constraints with associated penalty functions ρ1(x1) and ρ2(x3, x4). We then
obtain

GLB = max
x′

1

max
x′

2

max
x′

3

max
x′

4

Rx′
1,x

′
2
+ Rx′

2,x
′
3
+ Rx′

1,x
′
4
+ ρx′

1
+ ρx′

3,x
′
4

= max
x′

1

[ρx′
1
+ max

x′
2

[Rx′
1,x

′
2
+ max

x′
3

[Rx′
2,x

′
3
+ max

x′
4

[Rx′
1,x

′
4
+ ρx′

3,x
′
4
]]]]

by distributing the individual max operators inward over the summations. To compute the GLB, we successively
formulate new terms that summarize the result of completing each max in turn, as follows:

Let Ax′
1,x

′
3
= max

x′
4

Rx′
1,x

′
4
+ ρx′

3,x
′
4
.

Let Ax′
1,x

′
2
= max

x′
3

Rx′
2,x

′
3
+ Ax′

1,x
′
3
.

Let Ax′
1
= max

x′
2

Rx′
1,x

′
2
+ Ax′

1,x
′
2
.

Let GLB = max
x′ ρx′

1
+ Ax′

1
.

1
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Notice that this incremental procedure can be substantially faster than enumerating all states x′. In fact the complexity
of each step is only exponential in the local subset of attributes that indexes each auxiliary A variable.

Based on this procedure, we can substitute all the constraints on M in the MIP in Eq. (20) with the following
compact set of constraints that analytically encodes the greatest lower bound on M :

Ax′
1,x

′
3
� Rx′

1,x
′
4
+ ρx′

3,x
′
4

∀x′
1, x

′
3, x

′
4 ∈ Dom(X1,X3,X4),

Ax′
1,x

′
2
� Rx′

2,x
′
3
+ Ax′

1,x
′
3

∀x′
1, x

′
2, x

′
3 ∈ Dom(X1,X2,X3),

Ax′
1
� Rx′

1,x
′
2
+ Ax′

1,x
′
2

∀x′
1, x

′
2 ∈ Dom(X1,X2),

M � ρx′
1
+ Ax′

1
∀x′

1 ∈ Dom(X1).

By encoding constraints in this way, the constraint system specified by the MIP in Eq. (20) can be generally encoded
with a small number of variables and constraints. Overall we obtain a MIP where: the number of Ix variables is linear
in the number of parameters of the utility function; and the number of auxiliary variables (the A variables in our
example) and constraints that are added is locally exponential with respect to the largest subset of attributes indexing
some auxiliary variable. In practice, since this largest subset is often very small compared to the set of all attributes, the
resulting MIP encoding is compact and readily solvable. In particular, let the joint graph be the union of the constraint
graph and the utility graph (e.g., the union of the graphs in Figs. 1 and 2). The complexity of this algorithm and hence
the size of the resultant set of constraints is determined directly by the properties of variable elimination, and as such
depends on the order in which the variables in X are eliminated. More precisely, it is exponential in the tree width
of the joint graph induced by the elimination ordering [19]. Often this tree width is very small, thus rendering the
algorithm only locally exponential [19].

4.3. Empirical results

To test the plausibility of minimax regret computation, we implemented the constraint generation strategy outlined
above and ran a series of experiments to determine whether factored structure was sufficient to permit practical solution
times. We implemented the constraint generation approach outlined in Section 4.2 and used CPLEX 9.0 as the generic
IP solver.14 Our experiments considered two realistic domains—car rentals and real estate—as well as randomly
generated synthetic problems. In each case we imposed a factored structure to reduce the required number of utility
parameters (upper and lower bounds).

For the real-estate problem, we modeled the domain with 20 (multivalued) variables that specify various attributes
of single family dwellings that are normally relevant to making a purchase decision. The variables we used included:
square footage, age, size of yard, garage, number of bedrooms, etc. Variables have domains with sizes ranging from
two to four values. In total, there were 47,775,744 possible configurations of the variables. We then used a factored
utility model consisting of 29 local factors, each defined on only one, two or three variables. In total, there were 160
utility parameters (i.e., utilities for local configurations). Therefore a total of 320 upper and lower bounds had to be
specified, a significant reduction over the nearly 108 values that would have been required using a unfactored model.
The local utility functions represented complementarities and substitutabilities in the utility function, such as requiring
a large yard and a fence to allow a pool, sacrificing a large yard if the house happens to be near a park, etc.

The car-rental problem features 26 multi-valued variables encoding attributes relevant to consumers considering
a car rental, such as: automobile size and class, manufacturer, rental agency, seating and luggage capacity, safety
features (air bags, ABS, etc.), and so on. The size of the domain of the variables varies from 2 to 9. The total number
of possible variable configurations is 61,917,360,000. There are 36 local utility factors, each defined on at most five
variables, giving rise to 435 utility parameters. Constraints encode infeasible configurations (e.g., no luxury sedans
have four-cylinder engines).

For both the car-rental and real-estate problems, we first computed the configuration with minimax regret given
manually chosen bounds on the utility functions. The constraint generation technique of Section 4.2 took 15 seconds
for the car-rental problem and 0.48 seconds for the real-estate problem. It is interesting to note that only 63 constraints

14 These experiments were performed on 3.0 GHz PCs.
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Fig. 4. Computation time (left) and number of constraints generated (right) for minimax regret on real-estate problem (48 million configurations)
as a function of the tightness of the utility bounds.

Fig. 5. Computation time (left) and number of constraints generated (right) for minimax regret on car-rental problem (62 billion configurations)
as a function of the tightness of the utility bounds.

(out of 61,917,360,000 possible constraints) for the car-rental problem and seven constraints (out of 47,775,744 pos-
sible constraints) for the real-estate problem were generated in the search for the minimax optimal configuration. The
structure exhibited by the utility functions of each problem is largely responsible for this small number of required
constraints.

In practice, minimax regret computation will be interleaved with some preference elicitation technique (as we
discuss in Section 5). As the bounds on utility parameters get tighter, we would like to know the impact on the
running time of our constraint generation algorithm. To that effect, we carried out an experiment where we randomly
set bounds, but with varying degrees of tightness. Initial utility gaps (i.e., difference between upper and lower bounds)
ranged from 0 to 100. Figs. 4 and 5 show how tightening the bounds decreases both the running time and the number
of constraints generated in an exponential fashion. For this experiment, bounds on utility were generated at random,
but the difference between the upper and lower bounds of any utility was capped at a fixed percentage of some
predetermined range. Intuitively, as preferences are elicited, the values will shrink relative to the initial range.

Figs. 4 and 5 show scatterplots of computation time and number of constraints for ten random problem instances
generated for each of a number of increasingly tight relative utility ranges. As those figures suggest, a significant speed
up is obtained as elicitation converges to the true utilities. Intuitively, the optimization required to compute minimax
regret benefits from tighter bounds since some configurations emerge as clearly dominant, which in turn requires the
generation of fewer constraints.

We carried out a second experiment with synthetic problems. A set of random problems of varying sizes was
constructed by randomly setting the utility bounds as well as the variables on which each utility factor depends. Each
utility factor depends on at most three variables and each variable has at most five values. Fig. 6 shows the results as
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Fig. 6. Computation time (left) and number of constraints generated (right) for artificial random problems as a function of problem size (number
of variables and factors).

Fig. 7. Computation time (left) and number of constraints generated (right) for minimax regret on artificial random problems (30 variables, 30 fac-
tors) as a function of the tightness of the utility bounds.

we vary the number of variables and factors (the number of factors is always the same as the number of variables).
The running time and the number of constraints generated increases exponentially with the size of the problem. Note
however that the number of constraints generated is still a tiny fraction of the total number of possible constraints.
For problems with 10 variables, only 7 constraints were necessary (out of 278,864) on average; and for problems with
30 variables, only 47 constraints were necessary (out of 2.8 × 1016) on average.

We also tested the impact of the relative tightness of utility bounds on the efficiency of our constraint generation
technique, with results shown in Fig. 7. Here, problems of 30 variables and 30 factors were generated randomly while
varying the relative range of the utilities with respect to some predetermined range. Each factor has at most three
variables chosen randomly and each variable can take at most five values. Once again, as the bounds get tighter, some
configurations emerge as clearly dominant, which allows an exponential reduction in the running time as well as the
number of required constraints.

Finally, we illustrate the anytime properties of our algorithm. In Fig. 8 we show the lower bound on minimax regret
as a function of computation time. Each data point corresponds to one additional generated constraint. As we can see,
the constraint generation algorithm has very good anytime properties, approaching the true minimax regret level very
quickly as a function of time and number of constraints. This is due to two factors. First, as a function of the number of
constraints generated, minimax regret lower bounds increase much more quickly early on, thus exhibiting the desired
anytime behavior. Second, solution time with smaller numbers of constraints tends to be considerably less than with
larger numbers of constraints. This enhances the anytime profile with respect to time (providing a much steeper
increase than one would see if plotting the bound with respect to number of constraints generated). For example, in
the rental car problem shown, the first ten constraints are generated in 1.7 s, the first twenty in 4.6 s, the first thirty in
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Fig. 8. Lower bound on minimax regret until convergence as a function of computation time. Results for Rental Car (left) and Real Estate (right),
both at 70% of utility range. Solution quality is plotted for the solutions generated by adding one additional constraint. Data points are marked for
every fifth constraint generated.

8.9 s, and so on until convergence to the true minimax regret after 57 constraints (24.62 s). This anytime property has
important implications for real-time preference elicitation as we discuss below.

4.4. Minimax regret with linear utility constraints

The computational methods above exploit the existence of upper and lower bounds on utility parameters. While
some types of queries used in elicitation allow one to maintain such independent bounds, other forms of queries
(e.g., comparison queries) impose arbitrary linear constraints on these utility parameters, demanding new methods for
computing minimax regret. We now develop an IP-based procedure for solving COPs with linear constraints on the
utility parameters.

Suppose we have an imprecise structured COP 〈C,U〉 where U is a polytope defined by a finite set of (arbitrary)
linear utility constraints U over the parameters ux[k] of a factored utility model {fk: k � K}. Thus we relax the
assumption that the constraints U take the form of bounds.

Computing the max regret of a state x can no longer rely on the existence of local pairwise regrets as in Eq. (16).
However, we can reformulate the problem somewhat differently to allow this to be solved linearly even when the con-
straints U take this more general form. First, we can recast the computation of max regret as a quadratic optimization:

MR(x,U) = max
{Ix′[k],X′

i ,Ux[k]}
∑

k

[ ∑
x′[k]

Ux′[k]Ix′[k]
]

− Ux[k] subject to A, C, and U . (21)

We have introduced one real-valued variable Ux[k] (denoted Ux′[k] when referring to specific adversarial local states
x′) for each utility parameter ux[k], reflecting their unknown nature; these are constrained by U . The presence of the
Ux′[k] variables renders the optimization quadratic. However, this can be reformulated by the introduction of new real-
valued variables Yx′[k] for each such utility variable. Intuitively, Yx′[k] denotes the product Ux′[k]Ix′[k]. This product
can be defined by assuming (loose) upper bounds ux[k]↑ on the utility parameters. Specifically, we rewrite Eq. (21) as
follows:

MR(x,U) = max
{Ix′[k],X′

i ,Ux[k],Yx′[k]}
∑

k

( ∑
x′[k]

Yx′[k]
)

− Ux[k] subject to

⎧⎨
⎩

Yx′[k] � Ix′[k]ux′[k]↑ ∀k,x′[k],
Yx′[k] � Ux′[k] ∀k,x′[k], (22)
A,C and U .
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The constraints on Yx′[k], together with the fact that the objective aims to maximize its value, ensure that it takes the
value zero if Ix′[k] = 0 and takes the value Ux′[k] otherwise.15

With the ability to compute max regret by solving a MIP, we can use a variant of the constraint generation procedure
described in Section 4.2. Notice that the solution to the MIP in Eq. (22) produces a witness x′ as well as a specific
utility function in which each variable Ux[k] is set to the value of utility parameter ux[k] that maximizes the regret
of the state in question. Notice also that the state x′ must be the optimal feasible state for the chosen utility function
u ∈ U (otherwise regret could be made even higher).

We can then express minimax regret in a way similar to Eqs. (18) and (19).

MMR(U) = min{Ix[k],Xi }
max

x′∈Feas(X′),u∈U

∑
k

(
ux′[k] −

∑
x[k]

ux[k]Ix[k]
)

s.t. A and C

= min{Ix[k],Xi }
M s.t.

{
M �

∑
k

(
ux′[k] − ∑

x[k] ux[k]Ix[k]
)

∀x′ ∈ Feas(X′), u ∈ U,

A and C.

(23)

We can use the max regret computation described in Eq. (22) to generate constraints iteratively as required for Eq. (23).

5. Elicitation strategies

While the use of minimax regret provides a useful way of handling imprecise utility information, the initial bounds
on utility parameters provided by users are unlikely to be tight enough to admit configurations with provably low
regret. Instead, we imagine an interactive process in which the decision software queries the user for further infor-
mation about her utility function—refining bounds or constraints on the parameters—until minimax regret, given the
current constraints, reaches an acceptable level τ .16 We can summarize the general form of the interactive elicitation
procedure as follows:

(1) Compute minimax regret mmr.
(2) Repeat until mmr < τ :

(a) Ask query q .
(b) Update the constraints U over utility parameters to reflect the response to q .
(c) Recompute mmr with respect to new constraint set U .

We begin by discussing bound queries, the primary type of query that we consider here, then describe a number of
elicitation strategies using bound queries. Throughout most of this section we assume some imprecise structured COP
problem 〈C,U〉 where U is specified by a factored utility model {fk: k � K} with upper and lower bounds on its
parameters. However, we will also discuss comparison queries, and hence U in which arbitrary linear constraints are
present, in Section 5.6.

There are a number of important issues regarding user interaction that will need to be addressed in the develop-
ment of any interactive decision support software. The perspective we adopt here is rather rigid and assumes users
can (somewhat comfortably) answer the types of queries we pose. We do not consider issues of framing, preference
construction or exploration, or other issues surrounding the mode of interaction. Nor we do consider users who may
express inconsistent preferences (indeed, none of our strategies will ever ask a query that can be responded to in-
consistently). However, we believe the core of our elicitation techniques can certainly be incorporated into the larger
context in which these important issues are addressed. For a discussion of some of these issues in the context of
constraint-based optimization, see the work of Pu, Faltings, and Torrens [39].

15 Note that this relies on the fact that each Ux′[k] is non-negative. If we allow negative local utility, these constraints can be generalized by
exploiting a (loose) lower bound on Ux′[k] as well.
16 We could insist that regret reaches zero (i.e., that we have a provably optimal solution), or stop when regret reaches a point where further
improvement is outweighed by the cost of additional interaction.
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5.1. Bound queries

Bound queries form the primary class of queries we consider, in which we ask the user whether one of her utility
parameters lies above a certain value. A positive response raises the lower bound on that parameter, while a negative
response lowers the upper bound: in both cases, uncertainty is reduced.

While users often have difficulty assessing numerical parameters, they are typically better at comparing outcomes
[24,30]. Fortunately, a bound query can be viewed as a local form of a standard gamble query (SGQ), commonly used
in decision analysis; these in fact ask for comparisons. An SGQ for a specific state x asks the user if she prefers x to
a gamble in which the best outcome x� occurs with probability l and the worst x⊥ occurs with probability 1 − l [30].
A positive response puts a lower bound on the utility of x, and a negative response puts an upper bound. Calibration is
attained by the use of common best and worst outcomes across all queries (and numerical assessment is restricted to
evaluating probabilities). Thus a bound query “Is u(x) > q?” can be cast as a standard gamble query: “Do you prefer
x to a gamble in which x� is obtained with probability q and x⊥ is obtained with probability 1 − q?”17

For instance, ignoring factorization, one might ask in the car rental domain: “Would you prefer CAR27 or a gamble
in which your received CARB with probability l and CARW with probability 1 − l?” Here CAR27 is the specific
complete outcome of interest, while CARB and CARW are the best and worst possible car configurations, respectively
(these need not be feasible in general). Of course, given the factorization of the model, we would prefer not to focus
a user’s attention on complete outcomes, but rather take advantage of the utility independence inherent in the GAI
model to elicit information about local outcomes. As a consequence, we will ask analogous bound queries on local
factors.

Our general elicitation procedure when restricted to bound queries takes the following form:

(1) Compute minimax regret mmr.
(2) Repeat until mmr < τ :

(a) Ask a bound query “Is ux[k] � q?” of some utility parameter ux[k].
(b) If ux[k] � q then reduce upper bound ux[k]↑ to q . Otherwise raise lower bound ux[k]↓ to q .
(c) Recompute mmr using the new bounds.

While we focus on bound queries, other forms of queries are quite natural. For example, comparison queries ask if
one state x is preferred to another x′ and are discussed further in Section 5.6. Hierarchical structuring of attributes is
another avenue that could be considered in posing queries, though we leave this for future research within our model.

The foundations of bound queries can be made precise using results of Fishburn [22]. Roughly speaking, we
require calibration across factors in the GAI model in order to be sure that the stated comparisons are meaningful.
Gonzales and Perny [25] provide a specific procedure for (full) elicitation in GAI networks that relies on asking queries
over complete outcomes, while Braziunas and Boutilier [15] provide a algorithm that allows for local queries (over
small subsets of attributes). Bound queries in our framework can be supplemented with a small number of additional
calibration queries as suggested in [15] if one requires calibration across factors for the user. Alternatively, if the scales
associated with each of the GAI factors is obviously calibrated (e.g., the “utilities” refer to the monetary amount the
user is willing to pay for a specific combination of attributes), then bound queries can be used directly without need
for additional calibration. We refer to [15,25] for further details.

Several of our bound query strategies rely on the following definitions.

Definition 4. Let 〈C,U〉 be an imprecise COP problem. An optimistic state xo, a pessimistic state xp , and a most
uncertain state xmu are any states satisfying (respectively):

xo ∈ arg max
x∈Feas(X)

max
u∈U

u(x), xp ∈ arg max
x∈Feas(X)

min
u∈U

u(x), xmu ∈ arg max
x∈Feas(X)

max
u,u′∈U

u(x) − u′(x).

An optimistic state is a feasible state with the greatest upper bound on utility. A pessimistic state has the greatest
lower bound on utility. A most uncertain state has the greatest difference between its upper and lower bounds. Each

17 If the user is nearly indifferent to the two alternatives, they may be tempted to respond “I don’t know”. This can be handled by imposing
a quantitative interpretation on “near indifference” and imposing a constraint that makes these two utilities “close”.
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of these states can be computed in a single optimization by setting the parameters of the utility model to their upper
bounds, their lower bounds, or their difference, and solving the corresponding (precise) COP problem.

5.2. The halve largest gap strategy

The first query strategy we consider is the halve largest gap (HLG) strategy. It asks a query at the midpoint of the
interval of the parameter x[k] with the largest gap between its upper and lower bounds. This is motivated by theoretical
considerations, based on simple worst-case bounds on minimax regret.

Definition 5. Define the gap of a utility parameter ux[k], the span of factor fk and maxspan of our utility model as
follows:

gap(x[k]) = ux[k]↑ − ux[k]↓, (24)

span(fk) = max
x[k]∈Dom(X[k])

gap(x[k]), (25)

maxspan(U) =
∑

k

span(fk). (26)

The quantity maxspan measures the largest difference between the upper and lower utility bound, regardless of
feasibility. We can show that this quantity bounds minimax regret:

Proposition 1. For any 〈C,U〉, MMR(U) � maxspan(U).

Proof. By definition of minimax regret, we have MMR(U) � MR(xo,U). For any optimistic state xo and any alterna-
tive state x we must have that u↑(x)−u↓(xo) � u↑(xo)−u↓(xo) � maxspan(U) (i.e., the difference between the up-
per and lower bounds of x and xo, respectively, is bounded by maxspan(U), since the upper bound of x cannot exceed
that of xo, and the lower bound of xo can be no less than u↑(xo) − maxspan(U)). Thus, MR(xo,U) � maxspan(U).
The result follows immediately. �

We note that the definition of maxspan can be tightened in two ways. (a) One could account for logical consis-
tency across utility factors (e.g., if X occurs in two factors, we cannot have a total utility span for a single state that
instantiates the span in one factor with X true, and the span in the other with X false). Computing this tighter de-
finition of span requires some minor optimization to find the logically consistent state with maximum span, but is
otherwise straightforward. (b) One could make this tighter still by restricting attention to feasible states (w.r.t. C); in
other words, maxspan would be defined as the “span” of any most uncertain state xmu. The result still holds with these
tighter definitions. However, the current definition requires no optimization to assess.

The relationship between maxspan and minimax regret suggests an obvious query strategy, the HLG method, in
which a bound query is asked of the local state x[k] with the largest utility gap, at the midway point of its interval,
(ux[k]↑ − ux[k]↓)/2. This method guarantees reasonably rapid reduction in max regret:

Proposition 2. Let U be an uncertain utility model with n parameters and let m = maxspan(U). After n log(m/ε)

queries in the HLG strategy, minimax regret is no greater than ε.

Proof. Given a utility model with n parameters with a specific initial set of gaps, the largest gap among all states
must be reduced by at least half after n queries according to the HLG strategy (with this bound being tight only if the
largest initial gap is no more than twice that of the smallest initial gap). Thus after kn queries, leading to an updated
feasible utility set U′, we have maxspan(U′) � 2−km. The result then follows by application of Proposition 1. �

In the worst case, there are classes of utility functions for which the bound is tight, so sets U and configuration
constraints C exist that ensure regret will never be reduced to zero in finitely many queries. For example, if we have
a linear utility function over X1, . . . ,Xn with

u(X) = f1(X1) + · · · + fn(Xn),
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with each local utility parameter having the same gap g and no feasibility constraints, then minimax regret can be
reduced no more quickly than this.18

This strategy is similar to heuristically motivated polyhedral methods in conjoint analysis used in product design
and marketing [29,48]. In fact, HLG can be viewed as a special case of the polyhedral method of [48] in which our
polyhedra are hyper-rectangles.

5.3. The current solution strategy

While HLG allows one to provide strong worst-case guarantees on regret improvement, it is “undirected” in that
considerations of feasibility play no role in determining which queries to ask. An alternative strategy is to focus
attention on parameters that participate in defining minimax regret, namely, the minimax optimal x∗ and the adversarial
witness xw for the current feasible utility set U (recall that the witness xw maximizes the regret of x∗). The current
solution (CS) query strategy asks about the utility parameter in the set {x∗[k]: k � K} ∪ {xw[k]: k � K} with largest
gap(x[k]) and queries the midpoint of the corresponding utility interval. Intuitively, should the answer to a query raise
the lower bound on some ux∗[k] or lower the upper bound on some uxw[k], then the pairwise regret R(x∗,xw,U) will
be reduced, and usually minimax regret will be reduced as well. Of course, if the answer lowers the upper bound
on some ux∗[k] or raises the lower bound on some uxw[k], then pairwise regret R(x∗,xw,U) remains unchanged and
minimax regret is not guaranteed to be reduced (though it may).

We have also experimented with a variant of the CS strategy in which regret is computed approximately to ensure
fast interactive response in the querying process. This can be done by imposing a time bound on the solution algorithm
for computing minimax regret, exploiting the anytime nature of the method described in Section 4.2. While we can’t
be sure we have the minimax optimal solution with early termination, the solution may be good enough to guide the
querying process. Furthermore, since we can compute the max regret of the anytime solution, we have an upper bound
on minimax regret which can be used as a natural termination criterion.

5.4. Alternative strategies

Finally, we consider several other strategies, which we describe briefly. The optimistic query strategy computes
an optimistic state xo and queries (at the midpoint of the interval) the utility parameter in xo with the largest gap.
Intuitively, an optimistic xo is a useful adversarial choice, so refining information about it can help reduce regret. The
pessimistic query strategy is analogous, relying on the intuition that a pessimistic choice is useful in preventing the
adversary from making us regret our decision too much. The optimistic-pessimistic (OP) strategy combines the two
intuitions: it chooses the parameter with largest gap among both states. These strategies are computationally appealing
since they require solving only a standard COP, not a full-fledged minimax optimization.19

The most uncertain state (MUS) strategy is a variant of HLG that accounts for feasibility: we compute a most
uncertain state xmu and query (at the midpoint) the parameter in xmu with the largest gap. Finally, the second-best (SB)
strategy is based on the following intuition: suppose we have the optimistic state xo and the second-best optimistic
state x2o (i.e., that state with the second-highest upper bound—this is computable with a single optimization). If we
could ask a query which reduced the upper bound utility of xo to lower than that of x2o, we ensure that regret is
reduced (since the adversary can no longer attain this most optimistic value); if the lower bound of xo were raised to
the level of x2o’s upper bound, then we could terminate—knowing that xo is optimal. Thus we would like to query xo

at x2o’s upper bound: a negative response will reduce regret, a positive response ensures xo is optimal. Unfortunately,
this cannot be implemented directly, since we can only query local parameters, but the strategy can be approximated
for factored models by “distributing” this query across the different parameters and asking a set of queries.

The myopically optimal (MY) strategy computes the average regret reduction of the midpoint query for each utility
parameter by solving the minimax optimization problem for each response to each query; it then asks the query with

18 The bound is not generally tight if there is overlap in factors. But the bound is tight if maxspan is defined to account for logical consistency.
19 Even termination can be determined heuristically, for example, by computing the max regret of the optimistic state after each query, or doing
minimax optimization after every q queries.
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the largest regret reduction averaged over both possible answers, yes and no. For large problems, this approach is
computationally infeasible, but we test it on small problems to see how the other methods compare.20

5.5. Empirical results

To test the effectiveness of the various query strategies, we ran a series of elicitation experiments on a variety of
problems. For each problem we tested the following elicitation strategies: halve largest gap (HLG), current solution
(CS), current solution with a computation-time bound of five seconds per query (CS-5), optimistic-pessimistic (OP),
second-best (SB), and most uncertain state (MUS). In addition, on problems small enough to permit it, we also
compared these strategies to the much more computationally demanding myopically optimal method (MY).

We implemented the constraint generation approach outlined in Section 4.2 and used CPLEX 9.0 as the generic IP
solver.21 Our experiments considered two realistic domains—car rental and real estate—as well as randomly generated
synthetic problems, as described in Section 4.3, with a factored structure sufficient to admit practical solution.

First, we experimented with a set of small synthetic problems. We did this to allow comparison of all of our
proposed heuristics with the computationally demanding MY strategy. Fig. 9 reports the average minimax regret over
45 small synthetic problems constructed by randomly setting the utility bounds and the variables on which each utility
factor depends. Each problem has ten attributes that can take at most four values and ten factors that depend on at most
three attributes. We simulate user responses by drawing a random utility function u for each trial, consistent with the
bounds, representing a specific user’s preferences. Responses to queries are generated using u, assuming that the user
accurately answers all queries relative to the specific utility function u.

Results are shown for two cases: first, for utility parameters drawn from a uniform distribution over the correspond-
ing interval; and second, for parameters drawn from a truncated Gaussian distribution centered at the midpoint of the
corresponding interval and truncated at the endpoints of that interval. This second regime reflects the fact that, given
some initial unquantified uncertainty about a utility parameter, a user is somewhat more likely to have a true parame-
ter value nearer the middle of the range. However, this probabilistic information is used only to generate “simulated
users”, and is not exploited by the elicitation algorithms.22

In the case of both the uniform and truncated Gaussian distributions, we observe that the OP, CS and CS-5
elicitation strategies decrease minimax regret at a rate very close to MY. This suggests that OP, CS and CS-5 are
computationally feasible, yet promising alternatives to the computationally prohibitive MY strategy.

We report on further experiments using all strategies except MY (excluded for computational reasons) with larger
synthetic problems, the real-estate problem and the car-rental problem. All results are averaged over 45 trials and

Fig. 9. Average max regret on small random problems (45 instances) as a function of number of queries given uniform (left) and Gaussian (right)
distributed utilities.

20 By doing lookahead of k stages of this type, we could in fact compute the optimal query plan of k-steps; however, doing so is infeasible for all
but the smallest problems and small values of k.
21 These simulations were performed on 3.0 GHz PCs.
22 All experiments show a reasonably small variance so we exclude error bars for legibility.
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Fig. 10. Average max regret on car-rental problem (45 instances) as a function of number of queries given uniform (left) and Gaussian (right)
distributed utilities.

use the same regime described above, involving both uniform and truncated Gaussian priors to generate users. Per-
formance of the various query strategies on the car rental problem is depicted in Fig. 10, showing average minimax
regret as a function of the number of queries. Initial utility bounds are set to give minimax regret of roughly 18% of
the optimal solution.

Both CS and CS-5 perform extremely well: regret is reduced to almost zero within 160 queries on average. Though
this may seem like a lot of queries, recall that the problem is itself large and the utility model has 150 parameters.
We intentionally choose problems this large to push the computational boundaries of regret-based elicitation. Fur-
thermore, while 160 queries may be large for typical consumer choice problems, it is more than reasonable for high
stakes configuration applications. More importantly, these methods show excellent anytime performance: after only
80 queries, average minimax regret has dropped from 18% to under 2%.

Interestingly, the time bound of five seconds imposed by CS-5, while leading to approximately minimax optimal
solutions, does not affect query quality: the approximate solutions give rise to queries that are virtually as effective as
those generated by the optimal solutions. This demonstrates the importance of the anytime properties of our constraint
generation procedure discussed in the previous section. The CS strategy requires on average 83 seconds per query,
compared to the five seconds needed by CS-5. The OP strategy works very well too, and requires less computation
time (0.1 s per query) since it does not need to solve minimax problems (except to verify termination “periodically”,
which is not reflected in the reported query computation time). However, both OP and CS-5 are fast enough to be used
interactively on problems of this size. MUS, HLG, and SB do not work nearly as well, with SB essentially stalling
because of the slow progress made in reducing the upper bounds of the optimistic state.

Note the HLG performs poorly since it fails to account for the feasibility of options, thus directing its attention to
parts of utility space for which no product exists (hence polyhedral methods alone [29,48] will not offer reasonable
elicitation in our setting). MUS significantly outperforms HLG for just this reason.

The real-estate problem was also tested, with query performance shown in Fig. 11, using the same regime as
above. Again, both CS and CS-5 perform best, and the time bound of CS-5 has no effect on the quality of the CS
strategy. Interestingly, OP performs almost identically to these, with somewhat lower computational cost.23 Each of
these methods reduces minimax regret from 40% of optimal to under 5% in about 120 queries. As above, SB fails to
make progress, while HLG and MUS provide reasonable performance. Note that HLG requires no optimization nor
any significant computation (except to test for termination).

Finally, we tested the query strategies on larger randomly generated problems (with 25 variables of domain size no
more than four, and 20 utility factors with no more than three variables each). Results are shown in Fig. 12. The same
performance patterns as in the real-estate problem emerge, with CS, CS-5 and OP all performing much better than the
others. Although OP performs slightly better than CS/CS-5, the difference is not statistically significant.

23 CS takes 14 seconds per query, CS-5 takes five seconds, and OP 0.1 seconds. Though we haven’t experimented with this, we expect CS would
work equally well on this problem with a much tighter time bound than five seconds.
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Fig. 11. Average max regret on real-estate problem (45 instances) as a function of number of queries given uniform (left) and Gaussian (right)
distributed utilities.

Fig. 12. Average max regret on large random problems (45 instances) as a function of number of queries given uniform (left) and Gaussian (right)
distributed utilities.

5.6. Comparison queries

Comparison queries provide a natural alternative to bound queries in many situations. A comparison query takes
the form “Do you prefer x to x′?” A positive response implies that ux > ux′ . If the utility model is factored, this
corresponds to the following linear constraint:∑

k

ux[k] >
∑

k

ux′[k].

A negative response imposes the complementary constraint.
Given a collection of linear constraints U imposed by responses to a sequence of comparison queries, the minimax

optimal decision can be computed using the constraint generation procedure described in Section 4.4. Our generic
elicitation algorithm can then be used to ask specific comparison queries until minimax regret reaches an acceptable
level. Though we do not experiment with specific comparison query strategies here, we expect that a modification of
the current solution (CS) strategy proposed for bound queries would work especially well with comparison queries.
More precisely, suppose that given the current constraints U , the minimax optimal solution is computed to be x∗ with
adversarial witness xw . The CS query strategy for comparison queries requires that we ask the user to compare x∗
and xw . Should the user prefer x∗, this rules out the adversary’s chosen utility function from the feasible set U, thus
ensuring a reduction in the pairwise regret R(x∗,xw,U) to zero, and usually reducing minimax regret as well. If xw

is preferred, this does not rule out the adversary’s chosen utility function, nor is it guaranteed to reduce regret, but
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generally imposes a fairly strong constraint on U. Given the success of this strategy with respect to bound queries,
and the success of related strategies in other domains [13,14], we expect the CS strategy to perform quite well.

Unlike the case of bound queries, where it is quite clear (due to the focus on gaps in specific parameters) that a user
cannot provide a response that is inconsistent with prior responses, it is not obvious that a user cannot be inconsistent
in responding to comparison queries. However, the CS strategy for bound queries does indeed ensure consistency.
Unless minimax regret is zero (in which case the process would terminate), there must be some utility function in the
current feasible set U for which xw is preferred to x∗. Furthermore, there must be some utility function for which x∗
is preferred to xw; otherwise, xw would have regret no greater that of x∗ under all u ∈ U , and would thus be minimax
optimal as well (also implying that, since it is the witness, that minimax regret is zero).

6. Concluding remarks

Preference elicitation techniques for constraint-based optimization problems are critical to the development of in-
teractive decision software. We have begun to address several important issues in this regard, specifically, how one
should make decisions in the presence of (non-probabilistic) utility function uncertainty, and elicitation strategies that
improve decision quality with minimal interaction. We have developed techniques for computing minimax optimal
decisions in constraint-based decision problems when a user’s utility function is only partially specified in the form
of upper and lower bounds on utility parameters, or arbitrary linear constraints on such parameters. While the corre-
sponding optimizations are potentially complex, we derived methods whereby they could be solved effectively using
a sequence of MIPs. Furthermore, we showed how structure in the utility model could be exploited to ensure that the
resulting IPs are compact or could be solved using an effective constraint generation procedure. Experiments with
utility uncertainty specified by parameter bounds demonstrated the practicality of these techniques.

We also developed a number of query strategies for eliciting bounds on the parameters of utility models for the
purpose of solving imprecise COPs. The most promising of these strategies, CS and OP, perform extremely well,
requiring very few queries (relative to the model size) to provide dramatic reductions in regret. We have shown that
using approximation of minimax regret reduces interactive computation time to levels required for real-time response
without a noticeable effect on the performance of CS. OP also can be executed in real-time, since it does not require
the same intensive minimax computation.

There are a number of directions in which this work can be extended. For example, the use of search and constraint-
propagation methods for solving the COPs associated with computing minimax regret is of great interest. Our goal in
this paper was to provide a precise formulation of these computational problems as integer programs and use off-the-
shelf software to solve them. We expect that constraint-based optimization techniques that are specifically directed
toward these problems should prove fruitful. Along these lines, we hope to develop deeper connections to existing
work on soft constraints, valued-CSPs, and related frameworks.

Experimental validation of our suggested approach for comparison queries is an important next step, as is the de-
velopment of new query strategies. In practice, we can often assume or develop prior distributional information over
utilities. Rather than asking queries at midpoints of intervals, we could optimize the query point using probabilistic
(value of information) computation, while using (distribution-free) regret to make decisions [50]. We are quite in-
terested in the possibility of integrating Bayesian methods for reasoning about uncertain utility functions [10,17,27]
with the constraint-based representation of the decision space. Finally, while optimal (non-myopic) strategies could
be found (in principle) by solving prohibitively large continuous MDPs, it would nevertheless be interesting to ex-
plore non-myopic heuristics, and investigate the extent to which lookahead information can improve the reduction in
minimax regret.

Naturally, we would like to consider additional query types, as well as alternative means for structuring outcomes
and interactions to ease the cognitive burden on users. Developing means to improve robustness of our methods to the
types of errors users typically make is also critical if tools such as those proposed here are to find widespread use. As
such, user studies with our models will be required in order to assess the naturalness of such interaction models and
to further refine our techniques to make them more understandable and intuitive for users.

An important question left unaddressed is that of eliciting the structure of a GAI model. Our work here assumes
that the GAI factorization has been given and elicits only parameters of this model. We are currently exploring the
application of techniques from decision analysis and elicitation of graphical models to the automated elicitation of
GAI model structure.
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