Efficient ADD Operations for Point-Based Algorithms

Guy Shani and Ronen I. Brafman and Solomon E. Shimony
Ben-Gurion University, Israel

Pascal Poupart
University of Waterloo, Canada

Abstract

During the past few years, point-based POMDP solvers have
gradually scaled up to handle medium sized domains through
better selection of the set of points and efficient backup meth-
ods. Point-based research has focused on flat, explicit repre-
sentation of the state space, yet in many realistic domains a
factored representation is more appropriate. The latter have
exponentially large state-spaces, and current methods are un-
likely to handle models of reasonable size. Thus, adapting
point-based methods to factored representations by model-
ing propositional state spaces better, e.g. by using Algebraic
Decision Diagrams (ADDs) is needed. While a straightfor-
ward ADD-based implementation can effectively tackle large
factored POMDPs, we propose several techniques to further
improve scalability. In particular, we show how ADDs can
be used successfully in factored domains that exhibit reason-
able locality. Our algorithms are several orders of magnitude
faster than current point-based algorithms used with flat rep-
resentations.

Introduction

Partially Observable Markov Decision Processes (POMDPs)
are widely used to model agents acting in a stochastic en-
vironment with partial observability. Exact solution algo-
rithms for POMDPs can handle small state spaces only, but
approximate solution methods, and in particular, the family
of point-based methods (Pineau, Gordon, & Thrun 2003),
generates good, approximate policies for larger domains.

In many cases, it is natural to describe the state of the
environment within a POMDP via a set of state variables,
and the effects of actions in terms of their effects on these
variables. Dynamic Bayesian Networks (DBNs) with condi-
tional probability tables (CPTs) in the form of decision-trees
or graphs are often used to represent these effects compactly.
This representation is often referred to as a factored repre-
sentation. The state space of such models is exponential in
the number of variables, and quickly grows outside the reach
of methods that operate on an explicit, flat representation,
including point-based methods. To address this problem, re-
searchers suggested the use of Algebraic Decision Diagram
(ADDs) (Boutilier & Poole 1996; Hansen & Feng 2000;
Poupart 2005; Hoey et al. 2007). ADDs represent functions
f :{T/F}™ — R and can therefore compactly represent

Copyright (© 2008, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

the environment dynamics. ADDs support fast function sum
and product operations. Consequently, all basic POMDP op-
erations, such as the computation of the next belief state, can
be implemented efficiently on ADDs. When each action af-
fects a relatively small number of variables, this representa-
tion can be very compact.

ADD-based algorithms for MDPs/POMPDs are not new.
In the context of fully observable Markov Decision Pro-
cesses (MDPs), ADD-based algorithms scale-up better than
algorithms that operate on flat representations (St-Aubin,
Hoey, & Boutilier 2000). POMDPs provide a considerable
challenge — instead of a single ADD used to describe a
single MDP value function, in POMDPs we need to main-
tain ADDs for multiple value functions (a-vectors) and be-
lief states (Hansen & Feng 2000). The number of ADD
operations is therefore much more significant in POMDPs.
The Symbolic Perseus (SP) algorithm (Poupart 2005) used
ADDs to implement the Perseus algorithm (Spaan & Vlassis
2005), using several techniques and approximations that we
discuss in this paper.

This paper provides the first thorough description and
evaluation of the various possible choices when using ADDs
in point-based algorithms. Even though ADDs were consid-
ered in the past, no previous research has properly evaluated
their usability on multiple POMDP domains, and identified
the possibilities and difficulties. We explain how ADD op-
erations can be improved in various ways, and also explain
various approximation techniques that can be employed.
Our operations are applicable for any point-based algorithm.

In addition, we take a special look at domains that possess
effect locality, i.e., the property that each action affects only
a small number of variables. Many standard test domains
exhibit this property, and other authors attempted to utilize
it (Guestrin, Koller, & Parr 2001). This paper explains how
backup and 7 operations used in point-based methods can be
efficiently implemented for such domains. We show experi-
mentally that in domains exhibiting reasonable effect local-
ity, our ADD-based point-based algorithms are several or-
ders of magnitude faster than the best existing point-based
algorithms, considerably pushing the boundary of existing
POMDP solutions algorithms.

Background
MDPs and POMDPs

A Markov Decision Process (MDP) is a tuple (S, A, tr, R)
where S is a set of world states, A is a set of actions,
tr(s, a, s’) is the probability of transitioning from state s to
state s’ using action a, and R(s, a) defines the reward for
executing action q in state s.

A Partially Observable Markov Decision Process
(POMDP) is a tuple (S, A, tr, R, 2, O, by) where S, A, tr, R
compose an MDP, {2 is a set of observations and O(a, s, 0)
is the probability of observing o after executing a and
reaching state s. The agent maintains a belief-state — a
vector b of probabilities such that b(s) is the probability that
the agent is currently at state s. by defines the initial belief
state — the agent belief over its initial state.

The transition from belief state b to belief state b’ using
action ¢ is deterministic given an observation o and defines
the 7 transition function. We denote &’ = 7(b, a, 0) where:

fon O(a,s',0) > b(s)tr(s,a,s")
ble) = pr(ob,a)

M

pr(olb,a) = Z b(s) Z tr(s,a,s)O0(a,s’,0) 2

In many cases the belief state b has many zero value en-
tries. Implementing belief states using data structures that
allow iterating only over the non-zero entries of the belief
state is therefore much faster in practice.

In many MDP and POMDP examples the agent should ei-
ther reach some state (called the goal state) where it receives
areward, or collect rewards that can be found in a very small
subset of the state space. Other problems provide different
rewards in each state.

Value Functions for POMDPs

It is well known that the value function V for the belief-
space MDP can be represented as a finite collection of |.S|-
dimensional vectors known as « vectors. Thus, V' is both
piecewise linear and convex (Smallwood & Sondik 1973).
A policy over the belief space is defined by associating an
action a to each vector «, so that « - b represents the value of
taking a in belief state b and following the policy afterwards.
It is therefore standard practice to compute a value function
— aset V of a vectors. The policy 7y is derivable using:

mv (b) = argmax,,, cy 0o b 3)

where o - b is the inner product (or dot product) of vectors:

a-b= Z a(s)b(s) 4

s

The value function can be iteratively computed

Vi (b) = maaxlp- 7 47 Y pr(ola, DVa(r(b.a,0))] - (5)

o

where r,(s) = R(s,a). The computation of the next
value function V,, 1 () out of the current V,, (Equation 5) is

known as a backup step, and can be efficiently implemented
(Pineau, Gordon, & Thrun 2003) by:

backup(b) = argmax.,e b - q° (6)

gg =Tq + 0 Z argmaxgg,o:aev b- gg,o (7)

o

g5 .(s) = Z O(a, s',0)tr(s,a,s)a’(s’) (8)

ry

The g5, computation (Equation 8), which we call the
atomic ba7ckup of an a-vector, does not depend on the belief
state b or the number of vectors in V. Like the 7 function
computation (Equation 1) it has a complexity of O(]S|?),
but as most a-vectors are not sparse the atomic backup op-
eration in practice is slower than 7.

Point Based Value Iteration

Updating V' over the entire belief space, hence computing
an optimal policy is computationally hard. Approximation
schemes attempt to decrease the computation complexity.

A possible approximation is to compute an optimal value
function over a subset of the belief space (Pineau, Gor-
don, & Thrun 2003). An optimal value function for a sub-
set of the belief space is only an approximation of a full
solution, but will hopefully generalize well to other belief
states. Point-based algorithms choose a subset B of the be-
lief space, reachable from the initial belief state, and com-
pute a value function only over these belief points using
point-based backups (Equation 6).

Point-based algorithms differ on two main scales — the
selection of B, the set of belief points and the order by which
point-based backups are performed.

Pineau and Thrun (Pineau, Gordon, & Thrun 2003) ex-
pand B iteratively, choosing at each step successor belief
points that are as far as possible from B, attempting to cover
the space of reachable beliefs as best as possible. When
computing the value function they go over the belief states in
an arbitrary order, creating an a-vector for each belief state.

In the Perseus algorithm, Spann and Vlassis (Spaan &
Vlassis 2005) collect a set of belief points through a ran-
dom walk over the belief space. When updating the value
function, they randomly select at each step a belief state b
from B that was not yet improved and compute an c-vector
for b. Afterwards, all belief states whose value has been im-
proved by the new a-vector are removed from B. Once B
has been emptied all original belief points are returned and
a new iteration is started.

A different approach is taken by the trial-based algorithms
— HSVI (Smith & Simmons 2005) and FSVI (Shani, Braf-
man, & Shimony 2007). These algorithms execute traver-
sals through the belief space, computing backups in reversed
order. These algorithms currently scale up well because
they do not constantly maintain a large set of belief points,
only the current belief space traversal. HSVI has conver-
gence guarantees but its traversal heuristic is time consum-
ing. FSVI computes good traversals in belief space rapidly
but cannot guarantee convergence.

All point-based algorithms above use a number of basic
operations such as backups, g-operations (Equation 8), the 7
function (Equation 1), and inner products between a-vectors

and belief states (Equation 4). An efficient implementation
for these operations will speed up all point based algorithms.

Factored POMDPs

Traditionally, the MDP/POMDP state space is defined by
a set of states, which we call a flat representation. For
many problems, however, it is natural to define a set of
state variables X = {Xj,...,X,} such that each state
s =< x1,...,T, > is an assignment for the state variables
(Boutilier & Poole 1996). The transition function ¢r(s, a, s’)
is replaced by the distribution pr(X/| X, a)'.

It is also possible to define factored actions (Guestrin,
Koller, & Parr 2001) and observations, but we currently
choose a flat representation for actions and observations.
Without loss of generality, we use only binary variables to
simplify the exposition (i.e. limit the possible values of a
state variable to T/ F'). To represent a ’real’ state variable
that requires n distinct values, such as a coordinate on an
n x n grid, we use log(n) artificial boolean state variables,
jointly representing a value in the required range.

Consider, for example, the network administration prob-
lem (Poupart 2005), where a set of machines are connected
through some network. Each machine may fail with some
probability, which is increased when a neighbor machine is
down. The task of the network administrator is to maximize
the number of working machines, using restart operations
over a single machine. The administrator must ping a ma-
chine to receive noisy status information (up/down).

This problem can be described using a state variable for
each machine X = {Mj, ..., M, }. When machine ¢ is cur-
rently working (up) we set M; = T'.

A factored representation becomes compact when depen-
dencies between state variables are limited. Formally, for
each state variable X; and action a we define X' to be the
minimal set of variables s.t. pr(X/|a, X{) = pr(X/|a, X).
Smaller X sets result in a compact description of the
pr(X/|a, X¢) distribution. For example, if the network
topology is a clique, then for each ¢ and ¢ X = X and
the problem does not factor well. If the topology is a ring,
then | X?| = 3 — machine ¢ and its two neighbors — the
problem has a compact factored representation.

Boutilier and Poole (Boutilier & Poole 1996) suggested
representing factored POMDPs using decision trees, where
nodes are labeled by state variables and edges are labeled by
possible values for the state variables (T'/F). The decision
tree leaves contain real numbers, representing probabilities
or values.

Algebraic Decision Diagrams (ADDs)

An Algebraic Decision Diagram (R.I. Bahar et al. 1993)
is an extension of Binary Decision Diagrams, that can be
used to compactly represent decision trees. A decision tree
can have many identical subtrees, and an ADD unifies these
subtrees, resulting in a rooted DAG rather than a tree (Fig-
ure 1). The ADD representation becomes more compact as
the problem becomes more structured.

"We follow Boutilier and Poole in denoting the pre-action vari-
ables by X and the post-action variables by X".

()

{6» S ?.

Figure 1: A decision tree and an ADD of the same function.
All variables have binary values. A solid line indicates a 0
value (False) and a dashed line indicates a value of 1 (True).

As ADDs define functions f : {T/F}™ — R, function
product (denoted ®), function sum (denoted &) and scalar
product, or inner product, (denoted ®) can be computed effi-
ciently by iterating over the ADDs and caching visited nodes
(Bryant 1986).

Given a variable ordering, an ADD has a unique minimal
representation. The reduce operation takes an ADD and re-
duces it to its minimal form. Another operation specialized
for ADDs is the variable elimination, also known as existen-
tial abstraction (denoted) _ y). This operation eliminates a
given variable X; from the ADD by replacing each occur-
rence of X; by the sum of its children. Let A be an ADD,
and Y and Z variables, where Z does not appear in A. The
translate operation (denoted A(Y — Z)), replaces each oc-
currence of variable Y by variable Z in A. Let A be an ADD
and < x1,...,x, > is an assignment to the variables in A.
We denote the value A assigns to this specific assignment by
A(z1, ..., zy,). This value is computed by traversing the path
specified by the assignment until a leaf is reached.

Point-Based Value Iteration with ADDs

An ADD-based point-based algorithm uses ADDs to repre-
sent belief states and a-vectors, and must provide an ADD-
based implementation of the basic operations used: belief
state backup (Equations 6 to 8), belief state update (Equa-
tion 1) and inner product of a belief state and an a-vector
(Equation 4).

ADD-based Operations

To compute both 7 and backups the Complete Action Dia-
gram PJ(Boutilier & Poole 1996; Hansen & Feng 2000) is
created, for each action a and observation o.

P;(mlw'wwnvx/h“'vm'/n) = (9)
z, >)0(a,< 2, ...,

ADDs are also used for the immediate reward function:

(< Ty ey Ty >, 0, < T, ey xl, >,0)

Ro(z1, ..y n) = R(< 1, ...y Tn, >, a) (10)

The set of all Py and R, ADDs are a sufficient description
of the system dynamics.

Belief update: Using the complete action diagram and
replacing Equation 1, the next belief state is computed:

V=(Y, P ebX —X) (11)

where the ® operation is ADD product and the sum
is an existential abstraction over the pre-action state vari-
ables. A scalar product over the values in the resulting ADD
by 1/p(ola,b) is now needed. The posterior probability
pr(ola,b) can be computed by eliminating all variables in
the resulting ADD, but in the next section we offer a faster
method.

After eliminating all pre-action variables, the remaining
ADD is over X’ — the post-action variables. Next, the vari-
ables are translated back into pre-action variables, replacing
each occurrence of any X/ with X;.

Backup: To replace Equation 8 for computing g , with
an ADD implementation a similar approach is used: 7

o= Y PloaX-X) (12)

’ !
XY, X,

The translation here of the former a-vector (ADD) is
needed because Equation 8 requires the value of the post-
action state s’. All other operations used for backup such as
summing and scalar products are done over the ADDs.

Inner product: Inner product operations provide a chal-
lenge. A simple implementation that follows the algorithm
structure of Bryant (1986), will compare poorly to a flat rep-
resentation. This is because it is easy to implement inner
products very efficiently using sparse (non-zero entries only)
vector representations of a belief state and a-vector. We ex-
plain in the next section how to efficiently implement inner
products.

Compressing ADDs

St-Aubin et al. (2000) show how the structure in an ADD can
be exploited to create approximations that influence the size
of the ADD. We can reduce the number of leaves, and hence
the number of nodes, by grouping together values that are ¢
far, thus creating smaller ADDs with little loss of accuracy.
This operation can be easily done for ADDs representing a-
vectors. To ensure that the a-vectors remain a lower bound
over the value function we always replace a value v with a
smaller value in the range [v — €, v].

The same process is applicable to belief states. However,
for belief states, where values can be substantially smaller
than a-vector values, we use a much smaller €. Also, we
make sure that a non-zero value is never transformed into a
zero value in the process.

Scaling Up ADD Operations

In flat POMDPs, belief states and a-vectors are efficiently
implemented as vectors containing only the non-zero en-
tries. ADD representation can be beneficial when belief
states and/or a-vectors contains significant structure. In the
worst case, the ADD reduces to a complete decision tree,
and the amount of storage space is twice that of a flat vector.

The straight-forward replacement of vectors with ADDs
discussed in the previous section provides some benefits in
structured domains, but much leverage can be gained when
using several modifications. We describe below a set of im-
provements that leads to substantially better performance.
We provide details on some exact improvements and also on
some approximations.

Efficient Inner Product Operations

The inner product operation between a belief state and an
a-vector is executed many times by point-based algorithms.
Within the augmented backup process described below and
when attempting to find the best a-vector for a belief state
during policy execution, many inner products are used.

A possible implementation of inner-products can handle
the ADDs as if they were fully specified decision trees,
traversing the two trees together, multiplying leaf scalars,
and summing up the results. Most ADD operations such as
product and sum are implemented likewise, and can be aug-
mented by caching paths that were already traversed. An-
other, even more costly alternative, is to first compute the
product of the two ADDs and then eliminate all variables
through existential abstraction, resulting in a single leaf con-
taining the sum of the scalars in the ADD.

As the result of an inner product is not an ADD but a
scalar, we suggest a more efficient solution, that does not
traverse the entire ADD structure. We first add to each ADD
vertex a scalar, specifying the sum of the subtrees below it.
As in an ADD an efficient representation may not specify
some variables, we need to be careful when computing the
sum such that missing variables are still taken into consider-
ation. For example, in the ADD in Figure 1, the value sum
of the Y variable is 0.2 4+ 0.5 = 0.7, but when we compute
the value sum of the X variable itis 0.7 + 0.5 x 2 = 1.7
because the right subtree of X contains two instances of the
0.5 value (as we can see specified in the fully specified deci-
sion tree) represented by a single node. Computing the sum
of values is done within the reduce operation.

Using the computed sum at each node, we can avoid
traversing all the nodes of the ADDs (Algorithm 1?).

Algorithm 1 InnerProduct(vy,v2)
1: if vy is a leaf then

2: return value(vi) X valueSum(v2)

3: if vz is a leaf then

4: return value(v2) X valueSum(vi)

5: if root(vi) < root(vz) then

6: return InnerProduct(leftChild(vi), v2) +
InnerProduct(rightChild(v1), v2)

7: if root(vi) > root(vz) then

8: return InnerProduct(vy, leftChild(v2)) +
InnerProduct(vy, rightChild(v2))

9: else

10: return InnerProduct(leftChild(v1),leftChild(v2))+
InnerProduct(rightChild(vi), rightChild(v2))

The recursion terminates whenever the traversal over one
of the ADDs reaches a leaf. Hence, computation time is the
product of the sizes of the two ADDs in the worst case (just
like regular ADD products), but when the structure of the
ADD:s is considerably different, significant improvement is
gained.

Let us trace the algorithm execution over the two ADDs
in Figure 2. We begin the algorithm in the root of both
ADDs (labeled by variable X), and first descend left to their
False children. In A; we are now at the variable labeled

Details omitted for a more readable pseudo-code.

9

\

(a) A1 (b) A2

Figure 2: During an inner product operation, only nodes col-
ored in grey are visited.

Y, but in A5 we have reached a leaf. As such, there is no
farther need to visit the children of Y in A; and we can
immediately compute the value. The sum of the children
of Y is 0.2 + 0.5 = 0.7. The value of the leaf in Ay is
0.2. The result is therefore 0.2 x 0.7 = 0.14. The straight
forward computation of the left subtree would have been
0.2 x 0.2+ 0.5 x 0.2 = 0.14. When computing the inner
products of the A; and As, only the grey nodes are visited.
Adding the sum of its children to each node has another
helpful aspect. When computing a belief state update (Equa-
tion 1) we need to normalize the resulting belief state. The
normalizing value — pr(o|a,b) — is the sum of values of
the ADD. While it is possible to receive this value by an ex-
istential abstraction over all the variables of the ADD, the
value sum of the root is the sum of all values of the ADD.

Relevant Variables

The size of P; — the complete action diagram — influences
the computation speed of all operations. Variable ordering
provides a substantial reduction but a farther reduction can
be achieved by ignoring some state variables.

In many problems each action affects only a small subset
of the state variables of the domain. For example, in the
RockSample domain, when a robot takes a move action, the
state of the rocks (Good/Bad) does not change. We denote
by X% the set of state variables affected by action a, and
X%p, the set of state variables unchanged by a:

X¢={X; :pr(X] #z|X; =x,a) >0} (13)
X ={X; :pr(X] =2|X; =z,a) =1} (14)
pr(o| X', a) = pr(o| Xz, a) (15)

The last equation specifies that the observation received after
action a depends only on the state variables in X .
Now, we can simplify Equation 11:

Y Pleb= Y PR, @Pg,®b (16)

where Pp, is an ADD restricted to the relevant variables and
P_ R, is restricted to the irrelevant variables. P_p_ contains
only variables that are unaffected by action a and also do not
affect the probability of receiving an observation afterwards,
and hence does not depend on the observation o.
Computing this equation using two ADD product op-
erations is inefficient, as pre-computing the complete ac-
tion diagram is done once where Equation 16 is executed
over each 7 operation. However, P_r, ® b can be com-
puted without an ADD product. For each X; € X%,

p(X! = z|X; = x,a) = 1, i.e. an action does not change
the variable value. Hence, the product reduces to a transla-
tion operation, replacing each X; € X%, in b by X:

Yo o Pieb= > P @b(Xikr—X'R) (7

X150y Xn Xq‘,GX%:

In fact, P_p, is unneeded and thus not computed. An
equivalent change is done to Equation 12, required for
backup computations.

Y PeaX—X)= > P oaXi— XE)
Xlexy
(18)
Instead of the complete action diagrams we hence main-
tain partial action diagrams only over the relevant variables.
This results in smaller (in some cases, much smaller) ADDs,
and in rapid computations of backups and 7 operations.

Beliefs As Products of Marginals

The complete action diagrams (and even the partial action
diagrams from the previous section) are, in the worst case,
exponential in the number of state variables. Also, if a be-
lief state is represented with a single ADD, its size might be
exponential in the number of state variables. Unless several
states have the same probability, the ADD will be a full tree.
However, Boyen and Koller (1998) noticed that many of the
correlations between state variables are weak and suggested
that an approximation that breaks some of the weak correla-
tions could be reasonable.

We define a set of components C' = {C, ..., C,,} such
that C; = {X,,, ..., X;, } and C; N C; = (). Variables within
a component are highly correlated while variables from dif-
ferent components are weakly correlated. A joint belief over
all the variables is approximated as a product of marginal

beliefs over the different components — b = [[,_, .. bs,
where b; is an ADD representing the belief over component
C;. We maintain T, ; — the transition probabilities, and
Oa,0,i — the observation probabilities, for each C;.

Belief update over this approximated belief state is done
by multiplying the transition and observation probabilitie,

and eliminating all variables except for a single component:

l;,lb. = (Z HOa,o,il;iTa,i)(Xl - X) (19)

Xux’/cl e

This approach trades the exact representation of belief states
for a smaller representation.

Variable Elimination In Equation 19, if the product of
the transition and observation ADDs is computed before any
variable is eliminated, an exponentially large ADD will be
generated, defeating the purpose of approximating beliefs
by a compact product of marginals. However, since belief
updates and point-based backups essentially correspond to
sum-product operations, it is natural to consider the variable
elimination algorithm (Zhang & Poole 1994). We can inter-
leave the products and summations so that the intermediate
ADDs remain small. The key to variable elimination is to
select a good ordering for the elimination of the variables.
While finding the best ordering is NP-hard, heuristics often

perform well in practice. As an example, a heuristic that
greedily eliminates the variable that leads to the smallest in-
termediate ADD often yields good results.

The efficiency of variable elimination can also be im-
proved by considering only the relevant variables (and their
conditional probability distributions).

It is interesting to compare belief updates with complete
action diagrams to variable elimination. The complete ac-
tion diagram can be pre-computed, which saves the multi-
plication of all transition and observation probabilities. In
contrast, it is not possible to pre-compute any product with
variable elimination due to the interleaving of products and
sums. But, the intermediate ADDs can be much smaller than
the complete action diagram. Both approaches can be fur-
ther improved by considering only relevant variables. We
can also tradeoff accuracy for an additional speedup in vari-
able elimination when approximating beliefs by a product of
marginals.

Factored Expectation Another operation that must be re-
defined is the inner product of a belief state and an a-vector:

a-E:a@Hb} (20)

It is possible to speed up the products a ® []; b; too.
We traverse the o vector ADD in such a way that the val-
ues stored in the leafs are multiplied by the product of the
marginals corresponding to each path. Less than linear time
can be achieved by pruning paths as soon as a marginal prob-
ability of 0 is encountered. We call the resulting algorithm
Factored Expectation (Algorithm 2).

Algorithm 2 FE(v,,b)
1: ifisLeaf(va) then
2: return value(va)
3: else

4 result «— 0, X; «— variable(va)

5: if pr(X; = 0[b) > 0 then

6

7

8

9

result+ = pr(X; = 0b) x FE(leftChild(v,), b)
if pr(X; = 1|b) > 0 then

result+ = pr(X; = 1|b) * FE(rightChild(vs), b)
return result

Efficient Backup Operations

Measuring the CPU time it takes to execute atomic backup
operations and comparing it to 7 operations it is apparent
that 7 operations are considerably faster. We believe that this
is because a-vectors rapidly become less structured, causing
their ADDs to grow in size while, in the examples we use,
belief states are highly structured and remain so even after
executing many actions from the initial belief point by. For
example, in the Network Administration problem, immedi-
ately after a restart action, half of the states (states where
the restarted machine is down) have zero probability. In the
RockSample domain, where actions results are stochastic,
only states that correspond to a single location over the board
have non-zero probability. However, a-vectors for both do-
mains rarely have any zero value states.

Therefore, computing the value of a belief state in the next
value function by Equation 5, which is done by computing
many belief updates, is faster than computing the backup
operation (Equation 6) that computes many atomic backups.

Some of the computed atomic backups will be later used
to construct the new a-vector in Equation 7. However, most
of the gg', computed by the atomic backup operation are
dominated by others and will not participate in the newly
created a-vector. If we knew the action a and the vectors
o; that maximize Equation 7 and Equation 6 we could avoid
computing dominated g5 ,. Indeed, the action and a-vectors
that maximize these equations are exactly the same as those
that maximize Equation 5, which suggests a more efficient
implementation for the backup process.

Algorithm 3 uses Equation 5 to compute which gy , are
combined to yield the resulting a-vector and only then com-
putes and combines them, thus minimizing the needed num-
ber of atomic backup computations.

Algorithm 3 Backup(b,V)

1: a* «— nil, v* +— —inf

2: for each o € w do «, «— nil
3: foralla € Ado

4 Qa(b) — 0
5 for all o € wdo
6: b «— 7(b,a,0)
7-
8
9

Qo — argmax, ey o - b
Qa(b) «— Qa(b) + a0 - V'
if Qa(b) > v™ then
10: a* — a,v" — Qq(b)
11: for each 0 € w do*ozZ — Qo
12: returnrq- +7v> ", Ja’

As all g; , computations are replaced with 7 computa-
tions the complexity of the backup process does not change.
Nevertheless, the actual CPU time can be reduced consider-
ably.

Experimental Results

We tested our approach on a number of domains with in-
creasing size. Our goal is to evaluate the ADD-based ap-
proach and determine whether it allows us to scale up better
to larger domains. We also evaluate the influence of effect
locality on ADD operations.

Tables 1, 2 and 3 present a detailed comparison of the
running time of flat and ADD-based implementations of the
basic operations used by point-based algorithms: 7 func-
tion, atomic backup operations, inner products, and the full
backup process. We also provide total running time. Our
tests use the FSVI algorithm (Shani, Brafman, & Shimony
2007) which is both very simple and highly efficient. How-
ever, our ADD operations can be used by any point-based
algorithm. Table 1 also contains results for the product of
marginals approximation (denoted Marginals).

Our flat representation is also as efficient as possible. All
belief points and a-vectors maintain only non-zero entries
and all iterations are done only over these entries. All op-
erations that iterate over the set of states S, , = {¢
tr(s,a,s’) # 0} for some state s are implemented in
O(]S4,s]), avoiding zero transitions.

Rocks 6 8 10 12 14
|S| 212 214 216 218 220
Average time for g, , computation in milliseconds (107%)
Flat 4993 77904 X X X
Factored 4 23 74 432 1321
Average time for 7 computation in microseconds (10~ °)
Flat 13952 | 281953 | 1455786 X X
Factored 315 375 585 701 1115
Marginals 1980 2676 3554 | 4462 5009
Average time for inner product in microseconds (107 ")
Flat 9 38 X X X
Factored 8 11 14 14 65
Marginals 14 38 97 230 1354
Average time for backup computation in milliseconds (10~ %)
Flat 10705 | 168074 X X X
Factored 33 112 126 246 2836
Marginals 123 278 640 | 2339 | 44943
Average belief state size (number of ADD vertices)
Factored 10 11 12 14 15
Marginals 22 24 25 34 32
Average a-vector size (number of ADD vertices)

[389] 909 | 973 [1515 [5682
Total time until convergence in seconds
Flat 501 35883 X X X
Factored 1 5 17 33 2258
Marginals 14 113 214 370 4774
Final Average Discounted Reward (ADR) - 200 trials

[1252] 1569] 18.64 [21.09 [25.01

Table 1: Average time on the rock sample problem with an
8 x 8 board and an increasing number of rocks.

Benchmark Domains

RockSample - In the RockSample domain (Smith & Sim-
mons 2005) a rover is scanning an n over m board contain-
ing k rocks using a long range sensor.

The factored representation has state variables for X and
Y coordinates and a state variable for each rock. There are
4 move actions, k sensor actions and a single sample action.
There are two observations — "good’ and "bad’.

Network Administrator - In this domain a network ad-
ministrator should maintain a network of n machines ar-
ranged in a ring topology (Poupart 2005). Each machine
can be either "up’ or ’down’. The administrator can ping a
machine, checking whether the machine is up or down. The
factored representation has n variables specifying the ma-
chine state. The agent can ’ping’ or 'restart’ each machine
(2n actions) or execute a ‘no-op’ action. There are 2 obser-
vations — "up and ’down’.

Logistics - In the logistics domain the agent must dis-
tribute a set of n packages between m cities. Each pack-
age starts in a random city and has a predefined destination
city. To move packages between cities the packages must be
loaded onto a truck. The agent has & trucks it can use.

Each action can have stochastic effects — loading and un-
loading a package may fail with a probability of 0.1. Load-
ing fails always if the specified truck and package are not
at the same city. Driving the truck to a city may fail with a
probability of 0.25, causing the truck to end in some other
city with uniform probability. Each action returns an obser-
vation of "success’ or “fail” with 0.9 accuracy. The agent can

Machines 6 7 8 9 10 11 12
S| 96 97 98 99 | 910 ol1 912
Average time for g , computation in milliseconds (1079)

Flat 0.5 2 8 34 | 142 477 | 1827
Factored 1 1.9 5.1 | 149 | 36.7 110 227
Average time for 7 computation in milliseconds (10~%)

Flat 0.33 1.1 44 1169 | 76.8 218 990

Factored 6.3 | 10.8 | 15.1 | 274 | 755 149 527
Average time for product in microseconds (10~°)

Flat 34.1 | 36.1 | 45.6 | 66.2 93 172 373
Factored | 76.1 | 131 | 226 | 305 | 481 647 820

Average time for backup computation in seconds

Flat 0.11 | 0.68 | 10.8 | 81.4 | 452 | 1508 X
Factored 0.8 38 | 154 | 52.8 | 89.1 362 599

Total time till convergence in seconds x 10°

Flat 0.11 | 0.65 24 1102 | 25.1 317 X
Factored | 0.22 | 1.06 35 | 11.3 | 247 110 480

Table 2: Average time for operations on the Network Ad-
ministration problem with a ring configuration and different
numbers of machines.

also ’ping’ a package or a truck to find its location. When
pinging a truck the result is the truck location and when
pinging a package the result is the truck it is on, or the city
it is at if it is currently unloaded. Results have a 0.8 accu-
racy. Driving the trucks between cities costs 1 and all other
operations cost 0.1. When delivering a package to its final
destination the agent receives a reward of 10.

For each truck there is a variable with m possible values
(cities) and for each package there is a variable with m + k
possible values (cities and trucks). There are n x k load
actions, loading a specific package to a specific truck, and n
unload actions. There are n + k ping actions. There are at
most m + k possible observations.

Packages 2 3 4 5 6
S| 910 913 916 919 922
Average time for 7 computation in milliseconds (10~ °)
Flat 37 1539 36024 X X
Factored 23 22.3 134 | 82.1 94.3
Average time for g , computation in milliseconds (1079)
Flat 94 7393 | 537895 X X
Factored 1.6 17.1 154 | 149 35
Inner product computation in microseconds (10~°)

Flat 62.8 | 254.1 1188 X X
Factored | 95.5 | 855.2 4879 | 3151 5428
Average time for backup computation in seconds

Flat 2.8 80.3 5831 X X
Factored 1.5 22 3.0 7.6 9.2
Total time till convergence in seconds

Flat 203 | 15448 X X X
Factored 36 91 650 | 1559 5832

Table 3: Average time for the Logistics domain with 4 cities,
2 trucks and increasing number of packages.

Results

We compare our ADD based operations, using all the im-
provements explained above over all domains. In the tables

below, Flat refers to representing belief states and a-vectors
as mapping from states to values. In both belief states and
a-vectors only non-zero entries are maintained. Factored
denotes the ADD based representation.

ADD size for | ADD size for | Average time for
Move actions | Check actions G computation
7 Rocks - |S] = 2%3
XX’ 21790 107412 125
Mixed 51 1712 73
Relevant 18 494 4
8 Rocks - |S| = 2™
XX’ 44164 219506 330
Mixed 51 1994 145
Relevant 18 505 13
9 Rocks - [S| = 2™°
XX’ 86536 446238 855
Mixed 54 2280 331
Relevant 18 525 44

Table 4: Influence of variable ordering and relevant variables
over ADD size and computation time in the RockSample
problem with an 8X8 board and increasing number of rocks.
XX’ —- first all pre-action variables and then all post-action
variables. Mixed — X/ specified immediately after X;. Rel-
evant — using only relevant variables in a mixed order.

Over all benchmarks the flat executions (which were the
slowest) were stopped after a 48 hours timeout, resulting
in an X symbol in the tables below. Over all benchmarks
the flat representation and the ADD representation resulted
in identical ADRs. The approximate belief representation
worked well for all domains: no approximation was intro-
duced for Rock Sample, while the approximations intro-
duced for Network and Logistics still allowed us to find
equally good policies.

Rocks 7 8 9
g-based | 24,873 | 35285 | 71,076
T-based 216 290 408

Table 5: CPU time for a backup operation comparing g-
based vs. 7-based backups over the RockSample 8 x 8 do-
main with relevant variables and increasing number of rocks.

The best results are presented in the Logistics domain as
it displays the maximal action effect locality. The size of the
relevant action diagrams is therefore compact and all point
based operations are computed very rapidly.

Table 4 shows the influence of variable ordering (St-
Aubin, Hoey, & Boutilier 2000) and the elimination of irrel-
evant variables over ADD size and operation time for actions
with many irrelevant variables (move actions in RockSam-
ple) and actions with a small number of irrelevant variables
(check actions). Table 5 shows the advantage of 7-based
backups compared to the standard g-based backup process
used by point-based algorithms.

It is evident that in the RockSample and Logistics domain,
ADD operations do not exhibit the exponential growth of
operation time given the number of state variables. The inner

product operation benefits the most from our improvements.
Belief states remain structured and thus compact, and the
size of the a-vectors does not have a considerable effect on
the inner product. This is very important, as point based
algorithms execute a large number of inner products.

Conclusion and Future Work

This paper explains how ADDs can be used in point-based
algorithms over factored POMDPs. We thoroughly out-
line the various approaches to scaling up, including efficient
ADD operations, belief approximation through a product of
marginals and the efficient point based backups.

We experimented with a range of benchmark domains
with different properties. Our experimental results show
that in domains that present action effect locality, the ADD-
based algorithm is orders of magnitude better, and is able to
scale up to substantially larger models. In the network do-
main, where effect locality does not hold (any machine can
fail following each action), the ADD-based algorithm does
not provide significant improvements, although it still scales
up better than the flat algorithm.

References

Boutilier, C., and Poole, D. 1996. Computing optimal policies
for partially observable decision processes using compact repre-
sentations. In AAAI-96, 1168-1175.

Boyen, X., and Koller, D. 1998. Tractable inference for complex
stochastic processes. In UAI 98, 33—42.

Bryant, R. E. 1986. Graph-based algorithms for boolean function
manipulation. /IEEE Transactions on Computers 35(8):677-691.
Guestrin, C.; Koller, D.; and Parr, R. 2001. Solving factored
pomdps with linear value functions. In IJCAI workshop on Plan-
ning under Uncertainty and Incomplete Information.

Hansen, E. A., and Feng, Z. 2000. Dynamic programming for
POMDPs using a factored state representation. In Artificial Intel-
ligence Planning Systems, 130-139.

Hoey, J.; von Bertoldi, A.; Poupart, P.; and Mihailidis, A. 2007.
Assisting persons with dementia during handwashing using a par-
tially observable markov decision process. In International Con-
ference on Vision Systems (ICVS).

Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based value
iteration: An anytime algorithm for POMDPs. In IJCAI
Poupart, P. 2005. Exploiting Structure to Efficiently Solve Large
Scale POMDPs. Ph.D. Dissertation, University of Toronto.

R.I. Bahar; E.A. Frohm; C.M. Gaona; G.D. Hachtel; E. Macii;
and A. Pardo. 1993. Algebraic Decision Diagrams and Their
Applications. In International Conference on CAD, 188—191.
Shani, G.; Brafman, R.; and Shimony, S. 2007. Forward search
value iteration for pomdps. In IJCAI-07.

Smallwood, R., and Sondik, E. 1973. The optimal control of
partially observable processes over a finite horizon. OR 21.
Smith, T., and Simmons, R. 2005. Point-based pomdp algorithms:
Improved analysis and implementation. In UAI 2005.

Spaan, M. T. J., and Vlassis, N. 2005. Perseus: Randomized
point-based value iteration for POMDPs. JAIR 24:195-220.
St-Aubin, R.; Hoey, J.; and Boutilier, C. 2000. APRICODD: Ap-
proximate policy construction using decision diagrams. In NIPS.
Zhang, N. L., and Poole, D. 1994. A simple approach to bayesian
network computations. In Candian Al, 171-178.

